serval-dna/conf_om.c

555 lines
16 KiB
C
Raw Normal View History

/*
Serval DNA configuration
Copyright (C) 2012 Serval Project Inc.
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <stdarg.h>
#include <assert.h>
2012-11-29 06:42:43 +00:00
#include "mem.h"
#include "str.h"
#include "strbuf.h"
#include "log.h"
#include "conf.h"
static const char *cf_find_keyend(const char *const key, const char *const fullkeyend)
{
const char *s = key;
if (s < fullkeyend && (isalpha(*s) || *s == '_'))
++s;
while (s < fullkeyend && (isalnum(*s) || *s == '_'))
++s;
if (s == key || (s < fullkeyend && *s != '.'))
return NULL;
return s;
}
/* This predicate function defines the constraints on configuration option names.
* Valid:
* foo
* foo.bar
* foo.bar.chow
* _word
* word1
* word_1
* Invalid:
* foo.
* .foo
* 1foo
* foo.bar.
* 12
* 1.2.3
* foo bar
* @author Andrew Bettison <andrew@servalproject.com>
*/
int is_configvarname(const char *text)
{
const char *const textend = text + strlen(text);
const char *key = text;
const char *keyend = NULL;
while (key <= textend && (keyend = cf_find_keyend(key, textend)) != NULL)
key = keyend + 1;
return keyend != NULL;
}
static int cf_om_make_child(struct cf_om_node **const parentp, const char *const fullkey, const char *const key, const char *const keyend)
{
// Allocate parent node if it is not present.
if (!*parentp && (*parentp = emalloc_zero(sizeof **parentp)) == NULL)
return -1;
size_t keylen = keyend - key;
int i = 0;
struct cf_om_node *child;
if ((*parentp)->nodc) {
// Binary search for matching child.
int m = 0;
int n = (*parentp)->nodc - 1;
int c;
do {
i = (m + n) / 2;
child = (*parentp)->nodv[i];
c = strncmp(key, child->key, keylen);
if (c == 0 && child->key[keylen])
c = -1;
//DEBUGF(" m=%d n=%d i=%d child->key=%s c=%d", m, n, i, alloca_str_toprint(child->key), c);
if (c == 0) {
//DEBUGF(" found i=%d", i);
return i;
}
if (c > 0)
m = ++i;
else
n = i - 1;
} while (m <= n);
}
// At this point, i is the index where a new child should be inserted.
assert(i >= 0);
assert(i <= (*parentp)->nodc);
if ((child = emalloc_zero(sizeof *child)) == NULL)
return -1;
++(*parentp)->nodc;
if ((*parentp)->nodc > NELS((*parentp)->nodv))
*parentp = realloc(*parentp, sizeof(**parentp) + sizeof((*parentp)->nodv[0]) * ((*parentp)->nodc - NELS((*parentp)->nodv)));
int j;
for (j = (*parentp)->nodc - 1; j > i; --j)
(*parentp)->nodv[j] = (*parentp)->nodv[j-1];
(*parentp)->nodv[i] = child;
2012-11-29 06:42:43 +00:00
if (!(child->fullkey = strn_edup(fullkey, keyend - fullkey))) {
free(child);
return -1;
}
child->key = child->fullkey + (key - fullkey);
//DEBUGF(" insert i=%d", i);
return i;
}
int cf_om_add_child(struct cf_om_node **const parentp, const char *const key)
{
size_t parent_fullkey_len = (parentp && *parentp && (*parentp)->fullkey) ? strlen((*parentp)->fullkey) : 0;
size_t fullkey_len = parent_fullkey_len + 1 + strlen(key);
char fullkey[fullkey_len + 1];
char *pkey = fullkey;
if (parent_fullkey_len) {
strcpy(fullkey, (*parentp)->fullkey);
pkey = fullkey + parent_fullkey_len;
*pkey++ = '.';
}
strcpy(pkey, key);
return cf_om_make_child(parentp, fullkey, pkey, fullkey + fullkey_len);
}
int cf_om_get_child(const struct cf_om_node *parent, const char *key, const char *keyend)
{
if (keyend == NULL)
keyend = key + strlen(key);
// TODO: use binary search, since child nodes are already sorted by key
int i;
for (i = 0; i < parent->nodc; ++i)
if (memcmp(parent->nodv[i]->key, key, keyend - key) == 0 && parent->nodv[i]->key[keyend - key] == '\0')
return i;
return -1;
}
int cf_om_parse(const char *source, const char *buf, size_t len, struct cf_om_node **rootp)
{
const char *end = buf + len;
const char *line = buf;
const char *nextline;
unsigned lineno = 1;
int result = CFEMPTY;
for (lineno = 1; line < end; line = nextline, ++lineno) {
const char *lend = line;
while (lend < end && *lend != '\n')
++lend;
nextline = lend + 1;
if (lend > line && lend[-1] == '\r')
--lend;
//DEBUGF("lineno=%u %s", lineno, alloca_toprint(-1, line, lend - line));
if (line[0] == '#')
continue; // skip comment lines
const char *p;
for (p = line; p < lend && isspace(*p); ++p)
;
if (p == lend)
continue; // skip empty and blank lines
for (p = line; p < lend && *p != '='; ++p)
;
if (p == line || p == lend) {
WARNF("%s:%u: malformed configuration line", source, lineno);
result |= CFINVALID;
continue;
}
struct cf_om_node **nodep = rootp;
const char *fullkey = line;
const char *fullkeyend = p;
const char *key = fullkey;
const char *keyend = NULL;
int nodi = -1;
while (key <= fullkeyend && (keyend = cf_find_keyend(key, fullkeyend)) && (nodi = cf_om_make_child(nodep, fullkey, key, keyend)) != -1) {
key = keyend + 1;
nodep = &(*nodep)->nodv[nodi];
}
if (keyend == NULL) {
WARNF("%s:%u: malformed configuration option %s",
source, lineno, alloca_toprint(-1, fullkey, fullkeyend - fullkey)
);
result |= CFINVALID;
continue;
}
if (nodi == -1)
return CFERROR; // out of memory
struct cf_om_node *node = *nodep;
if (node->text) {
WARNF("%s:%u: duplicate configuration option %s (original is at %s:%u)",
source, lineno, alloca_toprint(-1, fullkey, fullkeyend - fullkey),
node->source, node->line_number
);
result |= CFDUPLICATE;
continue;
}
++p;
2012-11-29 06:42:43 +00:00
if (!(node->text = strn_edup(p, lend - p)))
return CFERROR; // out of memory
node->source = source;
node->line_number = lineno;
result &= ~CFEMPTY;
}
return result;
}
void cf_om_free_node(struct cf_om_node **nodep)
{
if (*nodep) {
while ((*nodep)->nodc)
cf_om_free_node(&(*nodep)->nodv[--(*nodep)->nodc]);
if ((*nodep)->fullkey) {
free((char *)(*nodep)->fullkey);
(*nodep)->fullkey = (*nodep)->key = NULL;
}
if ((*nodep)->text) {
free((char *)(*nodep)->text);
(*nodep)->text = NULL;
}
free(*nodep);
*nodep = NULL;
}
}
void cf_om_dump_node(const struct cf_om_node *node, int indent)
{
if (node == NULL)
DEBUGF("%*sNULL", indent * 3, "");
else {
DEBUGF("%*s%s:%u fullkey=%s key=%s text=%s", indent * 3, "",
node->source ? node->source : "NULL",
node->line_number,
alloca_str_toprint(node->fullkey),
alloca_str_toprint(node->key),
alloca_str_toprint(node->text)
);
int i;
for (i = 0; i < node->nodc; ++i)
cf_om_dump_node(node->nodv[i], indent + 1);
}
}
const char *cf_om_get(const struct cf_om_node *node, const char *fullkey)
{
if (node == NULL)
return NULL;
const char *fullkeyend = fullkey + strlen(fullkey);
const char *key = fullkey;
const char *keyend = NULL;
int nodi = -1;
while (key <= fullkeyend && (keyend = cf_find_keyend(key, fullkeyend)) && (nodi = cf_om_get_child(node, key, keyend)) != -1) {
key = keyend + 1;
node = node->nodv[nodi];
}
if (keyend == NULL) {
WARNF("malformed configuration option %s", alloca_toprint(-1, fullkey, fullkeyend - fullkey));
return NULL;
}
if (nodi == -1)
return NULL;
return node->text;
}
int cf_om_set(struct cf_om_node **nodep, const char *fullkey, const char *text)
{
const char *fullkeyend = fullkey + strlen(fullkey);
const char *key = fullkey;
const char *keyend = NULL;
int nodi = -1;
while (key <= fullkeyend && (keyend = cf_find_keyend(key, fullkeyend)) && (nodi = cf_om_make_child(nodep, fullkey, key, keyend)) != -1) {
key = keyend + 1;
nodep = &(*nodep)->nodv[nodi];
}
if (keyend == NULL) {
WARNF("malformed configuration option %s", alloca_toprint(-1, fullkey, fullkeyend - fullkey));
return CFINVALID;
}
if (nodi == -1)
return CFERROR; // out of memory
struct cf_om_node *node = *nodep;
free((char *)node->text);
if (text == NULL)
node->text = NULL;
else if (!(node->text = str_edup(text)))
return CFERROR; // out of memory
return CFOK;
}
void cf_om_iter_start(struct cf_om_iterator *it, const struct cf_om_node *root)
{
it->sp = 0;
it->stack[0].node = it->node = root;
it->stack[0].index = 0;
}
#if 0
static void cf_om_iter_dump(struct cf_om_iterator *it)
{
strbuf b = strbuf_alloca(1024);
strbuf_sprintf(b, "node=%p sp=%d", it->node, it->sp);
int i;
for (i = 0; i <= it->sp; ++i)
strbuf_sprintf(b, " %p[%d]", it->stack[i].node, it->stack[i].index);
DEBUG(strbuf_str(b));
}
#endif
int cf_om_iter_next(struct cf_om_iterator *it)
{
//cf_om_iter_dump(it);
if (!it->node)
return 0;
while (1) {
const struct cf_om_node *parent = it->stack[it->sp].node;
int i = it->stack[it->sp].index++;
if (i < parent->nodc) {
it->node = parent->nodv[i];
if (it->sp >= NELS(it->stack))
return -1;
++it->sp;
it->stack[it->sp].node = it->node;
it->stack[it->sp].index = 0;
return 0;
} else if (it->sp) {
--it->sp;
} else {
it->node = NULL;
return 0;
}
}
}
void _cf_warn_nodev(struct __sourceloc __whence, const struct cf_om_node *node, const char *key, const char *fmt, va_list ap)
{
strbuf b = strbuf_alloca(1024);
if (node) {
if (node->source && node->line_number)
strbuf_sprintf(b, "%s:%u: ", node->source, node->line_number);
strbuf_puts(b, "configuration option \"");
if (node->fullkey && node->fullkey[0])
strbuf_puts(b, node->fullkey);
if (key && key[0]) {
if (node->fullkey && node->fullkey[0])
strbuf_putc(b, '.');
strbuf_puts(b, key);
}
strbuf_puts(b, "\" ");
}
strbuf_vsprintf(b, fmt, ap);
WARN(strbuf_str(b));
}
void _cf_warn_childrenv(struct __sourceloc __whence, const struct cf_om_node *parent, const char *fmt, va_list ap)
{
int i;
for (i = 0; i < parent->nodc; ++i) {
_cf_warn_nodev(__whence, parent->nodv[i], NULL, fmt, ap);
_cf_warn_childrenv(__whence, parent->nodv[i], fmt, ap);
}
}
void _cf_warn_node(struct __sourceloc __whence, const struct cf_om_node *node, const char *key, const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
_cf_warn_nodev(__whence, node, key, fmt, ap);
va_end(ap);
}
void _cf_warn_children(struct __sourceloc __whence, const struct cf_om_node *node, const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
_cf_warn_childrenv(__whence, node, fmt, ap);
va_end(ap);
}
void _cf_warn_duplicate_node(struct __sourceloc __whence, const struct cf_om_node *parent, const char *key)
{
_cf_warn_node(__whence, parent, key, "is duplicate");
}
void _cf_warn_missing_node(struct __sourceloc __whence, const struct cf_om_node *parent, const char *key)
{
_cf_warn_node(__whence, parent, key, "is missing");
}
void _cf_warn_incompatible(struct __sourceloc __whence, const struct cf_om_node *node, const struct cf_om_node *orig)
{
assert(node != orig);
strbuf b = strbuf_alloca(180);
if (orig) {
strbuf_sprintf(b, "\"%s\"", orig->fullkey);
if (orig->source && orig->line_number)
strbuf_sprintf(b, " at %s:%u", orig->source, orig->line_number);
} else {
strbuf_puts(b, "other option(s)");
}
_cf_warn_node(__whence, node, NULL, "is incompatible with %s", strbuf_str(b));
}
void _cf_warn_incompatible_children(struct __sourceloc __whence, const struct cf_om_node *parent)
{
struct cf_om_iterator it;
for (cf_om_iter_start(&it, parent); it.node; cf_om_iter_next(&it))
if (it.node != parent && it.node->text)
_cf_warn_incompatible(__whence, parent, it.node);
}
void _cf_warn_unsupported_node(struct __sourceloc __whence, const struct cf_om_node *node)
{
_cf_warn_node(__whence, node, NULL, "not supported");
}
void _cf_warn_unsupported_children(struct __sourceloc __whence, const struct cf_om_node *parent)
{
int i;
for (i = 0; i < parent->nodc; ++i) {
if (parent->nodv[i]->text)
_cf_warn_unsupported_node(__whence, parent->nodv[i]);
_cf_warn_unsupported_children(__whence, parent->nodv[i]);
}
}
strbuf strbuf_cf_flags(strbuf sb, int flags)
{
if (flags == CFERROR)
return strbuf_puts(sb, "CFERROR");
size_t n = strbuf_len(sb);
static struct { int flag; const char *name; } flagdefs[] = {
{ CFEMPTY, "CFEMPTY" },
{ CFDUPLICATE, "CFDUPLICATE" },
{ CFSTRINGOVERFLOW, "CFSTRINGOVERFLOW" },
{ CFARRAYOVERFLOW, "CFARRAYOVERFLOW" },
{ CFINCOMPLETE, "CFINCOMPLETE" },
{ CFINCOMPATIBLE, "CFINCOMPATIBLE" },
{ CFINVALID, "CFINVALID" },
{ CFUNSUPPORTED, "CFUNSUPPORTED" },
};
int i;
for (i = 0; i < NELS(flagdefs); ++i) {
if (flags & flagdefs[i].flag) {
if (strbuf_len(sb) != n)
strbuf_putc(sb, ' ');
strbuf_puts(sb, flagdefs[i].name);
flags &= ~flagdefs[i].flag;
}
}
for (i = 0; i < NELS(flagdefs); ++i) {
if (flags & CFSUB(flagdefs[i].flag)) {
if (strbuf_len(sb) != n)
strbuf_putc(sb, ' ');
strbuf_puts(sb, "CFSUB(");
strbuf_puts(sb, flagdefs[i].name);
strbuf_putc(sb, ')');
flags &= ~CFSUB(flagdefs[i].flag);
}
}
if (flags) {
if (strbuf_len(sb) != n)
strbuf_putc(sb, ' ');
strbuf_sprintf(sb, "%#x", flags);
}
if (strbuf_len(sb) == n)
strbuf_puts(sb, "CFOK");
return sb;
}
strbuf strbuf_cf_flag_reason(strbuf sb, int flags)
{
if (flags == CFERROR)
return strbuf_puts(sb, "unrecoverable error");
size_t n = strbuf_len(sb);
static struct { int flag; const char *reason; } flagdefs[] = {
{ CFEMPTY, "empty" },
{ CFDUPLICATE, "duplicate element" },
{ CFSTRINGOVERFLOW, "string overflow" },
{ CFARRAYOVERFLOW, "array overflow" },
{ CFINCOMPLETE, "incomplete" },
{ CFINCOMPATIBLE, "incompatible" },
{ CFINVALID, "invalid" },
{ CFUNSUPPORTED, "not supported" },
{ CFSUB(CFEMPTY), "contains empty element" },
{ CFSUB(CFDUPLICATE), "contains element with duplicate" },
{ CFSUB(CFSTRINGOVERFLOW), "contains string overflow" },
{ CFSUB(CFARRAYOVERFLOW), "contains array overflow" },
{ CFSUB(CFINCOMPLETE), "contains incomplete element" },
{ CFSUB(CFINCOMPATIBLE), "contains incompatible element" },
{ CFSUB(CFINVALID), "contains invalid element" },
{ CFSUB(CFUNSUPPORTED), "contains unsupported element" },
};
int i;
for (i = 0; i < NELS(flagdefs); ++i) {
if (flags & flagdefs[i].flag) {
if (strbuf_len(sb) != n)
strbuf_puts(sb, ", ");
strbuf_puts(sb, flagdefs[i].reason);
flags &= ~flagdefs[i].flag;
}
}
if (strbuf_len(sb) == n)
strbuf_puts(sb, "no reason");
return sb;
}
void _cf_warn_node_value(struct __sourceloc __whence, const struct cf_om_node *node, int reason)
{
strbuf b = strbuf_alloca(180);
strbuf_cf_flag_reason(b, reason);
_cf_warn_node(__whence, node, NULL, "value %s %s", alloca_str_toprint(node->text), strbuf_str(b));
}
void _cf_warn_no_array(struct __sourceloc __whence, const struct cf_om_node *node, int reason)
{
strbuf b = strbuf_alloca(180);
strbuf_cf_flag_reason(b, reason);
_cf_warn_node(__whence, node, NULL, "array discarded -- %s", strbuf_str(b));
}
void _cf_warn_array_key(struct __sourceloc __whence, const struct cf_om_node *node, int reason)
{
strbuf b = strbuf_alloca(180);
strbuf_cf_flag_reason(b, reason);
_cf_warn_node(__whence, node, NULL, "array key %s -- %s", alloca_str_toprint(node->key), strbuf_str(b));
}
void _cf_warn_array_value(struct __sourceloc __whence, const struct cf_om_node *node, int reason)
{
strbuf b = strbuf_alloca(180);
strbuf_cf_flag_reason(b, reason);
if (node->text)
_cf_warn_node(__whence, node, NULL, "array value %s -- %s", alloca_str_toprint(node->text), strbuf_str(b));
else
_cf_warn_node(__whence, node, NULL, "array element -- %s", strbuf_str(b));
}
void _cf_warn_list_overflow(struct __sourceloc __whence, const struct cf_om_node *node)
{
_cf_warn_node(__whence, node, NULL, "list overflow");
_cf_warn_children(__whence, node, "list overflow");
}