serval-dna/nacl/nacl-20110221/crypto_scalarmult/try.c

127 lines
4.3 KiB
C
Raw Normal View History

/*
* crypto_scalarmult/try.c version 20090118
* D. J. Bernstein
* Public domain.
*/
#include <stdlib.h>
#include "crypto_scalarmult.h"
extern unsigned char *alignedcalloc(unsigned long long);
const char *primitiveimplementation = crypto_scalarmult_IMPLEMENTATION;
#define mlen crypto_scalarmult_SCALARBYTES
#define nlen crypto_scalarmult_SCALARBYTES
#define plen crypto_scalarmult_BYTES
#define qlen crypto_scalarmult_BYTES
#define rlen crypto_scalarmult_BYTES
static unsigned char *m;
static unsigned char *n;
static unsigned char *p;
static unsigned char *q;
static unsigned char *r;
static unsigned char *m2;
static unsigned char *n2;
static unsigned char *p2;
static unsigned char *q2;
static unsigned char *r2;
void preallocate(void)
{
}
void allocate(void)
{
m = alignedcalloc(mlen);
n = alignedcalloc(nlen);
p = alignedcalloc(plen);
q = alignedcalloc(qlen);
r = alignedcalloc(rlen);
m2 = alignedcalloc(mlen + crypto_scalarmult_BYTES);
n2 = alignedcalloc(nlen + crypto_scalarmult_BYTES);
p2 = alignedcalloc(plen + crypto_scalarmult_BYTES);
q2 = alignedcalloc(qlen + crypto_scalarmult_BYTES);
r2 = alignedcalloc(rlen + crypto_scalarmult_BYTES);
}
void predoit(void)
{
}
void doit(void)
{
crypto_scalarmult(q,n,p);
crypto_scalarmult_base(r,n);
}
char checksum[crypto_scalarmult_BYTES * 2 + 1];
const char *checksum_compute(void)
{
long long i;
long long j;
long long tests;
for (i = 0;i < mlen;++i) m[i] = i;
for (i = 0;i < nlen;++i) n[i] = i + 1;
for (i = 0;i < plen;++i) p[i] = i + 2;
for (i = 0;i < qlen;++i) q[i] = i + 3;
for (i = 0;i < rlen;++i) r[i] = i + 4;
for (i = -16;i < 0;++i) p[i] = random();
for (i = -16;i < 0;++i) n[i] = random();
for (i = plen;i < plen + 16;++i) p[i] = random();
for (i = nlen;i < nlen + 16;++i) n[i] = random();
for (i = -16;i < plen + 16;++i) p2[i] = p[i];
for (i = -16;i < nlen + 16;++i) n2[i] = n[i];
if (crypto_scalarmult_base(p,n) != 0) return "crypto_scalarmult_base returns nonzero";
for (i = -16;i < nlen + 16;++i) if (n2[i] != n[i]) return "crypto_scalarmult_base overwrites input";
for (i = -16;i < 0;++i) if (p2[i] != p[i]) return "crypto_scalarmult_base writes before output";
for (i = plen;i < plen + 16;++i) if (p2[i] != p[i]) return "crypto_scalarmult_base writes after output";
for (tests = 0;tests < 100;++tests) {
for (i = -16;i < 0;++i) q[i] = random();
for (i = -16;i < 0;++i) p[i] = random();
for (i = -16;i < 0;++i) m[i] = random();
for (i = qlen;i < qlen + 16;++i) q[i] = random();
for (i = plen;i < plen + 16;++i) p[i] = random();
for (i = mlen;i < mlen + 16;++i) m[i] = random();
for (i = -16;i < qlen + 16;++i) q2[i] = q[i];
for (i = -16;i < plen + 16;++i) p2[i] = p[i];
for (i = -16;i < mlen + 16;++i) m2[i] = m[i];
if (crypto_scalarmult(q,m,p) != 0) return "crypto_scalarmult returns nonzero";
for (i = -16;i < mlen + 16;++i) if (m2[i] != m[i]) return "crypto_scalarmult overwrites n input";
for (i = -16;i < plen + 16;++i) if (p2[i] != p[i]) return "crypto_scalarmult overwrites p input";
for (i = -16;i < 0;++i) if (q2[i] != q[i]) return "crypto_scalarmult writes before output";
for (i = qlen;i < qlen + 16;++i) if (q2[i] != q[i]) return "crypto_scalarmult writes after output";
if (crypto_scalarmult(m2,m2,p) != 0) return "crypto_scalarmult returns nonzero";
for (i = 0;i < qlen;++i) if (q[i] != m2[i]) return "crypto_scalarmult does not handle n overlap";
for (i = 0;i < qlen;++i) m2[i] = m[i];
if (crypto_scalarmult(p2,m2,p2) != 0) return "crypto_scalarmult returns nonzero";
for (i = 0;i < qlen;++i) if (q[i] != p2[i]) return "crypto_scalarmult does not handle p overlap";
if (crypto_scalarmult(r,n,q) != 0) return "crypto_scalarmult returns nonzero";
if (crypto_scalarmult(q,n,p) != 0) return "crypto_scalarmult returns nonzero";
if (crypto_scalarmult(p,m,q) != 0) return "crypto_scalarmult returns nonzero";
for (j = 0;j < plen;++j) if (p[j] != r[j]) return "crypto_scalarmult not associative";
for (j = 0;j < mlen;++j) m[j] ^= q[j % qlen];
for (j = 0;j < nlen;++j) n[j] ^= p[j % plen];
}
for (i = 0;i < crypto_scalarmult_BYTES;++i) {
checksum[2 * i] = "0123456789abcdef"[15 & (p[i] >> 4)];
checksum[2 * i + 1] = "0123456789abcdef"[15 & p[i]];
}
checksum[2 * i] = 0;
return 0;
}