serval-dna/overlay_address.c

413 lines
13 KiB
C
Raw Normal View History

/*
Serval Distributed Numbering Architecture (DNA)
Copyright (C) 2010 Paul Gardner-Stephen
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/*
Smart-flooding of broadcast information is also a requirement. The long addresses help here, as we can make any address that begins
with the first 192 bits all ones be broadcast, and use the remaining 64 bits as a "broadcast packet identifier" (BPI).
Nodes can remember recently seen BPIs and not forward broadcast frames that have been seen recently. This should get us smart flooding
of the majority of a mesh (with some node mobility issues being a factor). We could refine this later, but it will do for now, especially
since for things like number resolution we are happy to send repeat requests.
*/
#include "serval.h"
#include "conf.h"
#include "str.h"
#include "overlay_address.h"
#include "overlay_buffer.h"
#include "overlay_packet.h"
#include <arpa/inet.h>
#define MAX_BPIS 1024
#define BPI_MASK 0x3ff
static struct broadcast bpilist[MAX_BPIS];
#define OA_CODE_SELF 0xff
#define OA_CODE_PREVIOUS 0xfe
// each node has 16 slots based on the next 4 bits of a subscriber id
// each slot either points to another tree node or a struct subscriber.
struct tree_node{
// bit flags for the type of object each element points to
int is_tree;
union{
struct tree_node *tree_nodes[16];
struct subscriber *subscribers[16];
};
};
static struct tree_node root;
struct subscriber *my_subscriber=NULL;
static unsigned char get_nibble(const unsigned char *sid, int pos){
unsigned char byte = sid[pos>>1];
if (!(pos&1))
byte=byte>>4;
return byte&0xF;
}
// find a subscriber struct from a whole or abbreviated subscriber id
struct subscriber *find_subscriber(const unsigned char *sid, int len, int create){
struct tree_node *ptr = &root;
int pos=0;
if (len!=SID_SIZE)
create =0;
do{
unsigned char nibble = get_nibble(sid, pos++);
if (ptr->is_tree & (1<<nibble)){
ptr = ptr->tree_nodes[nibble];
}else if(!ptr->subscribers[nibble]){
// subscriber is not yet known
if (create){
struct subscriber *ret=(struct subscriber *)malloc(sizeof(struct subscriber));
memset(ret,0,sizeof(struct subscriber));
ptr->subscribers[nibble]=ret;
bcopy(sid, ret->sid, SID_SIZE);
ret->abbreviate_len=pos;
}
return ptr->subscribers[nibble];
}else{
// there's a subscriber in this slot, does it match the rest of the sid we've been given?
struct subscriber *ret = ptr->subscribers[nibble];
if (memcmp(ret->sid,sid,len)==0){
return ret;
}
// if we need to insert this subscriber, we have to make a new tree node first
if (!create)
return NULL;
// create a new tree node and move the existing subscriber into it
struct tree_node *new=(struct tree_node *)malloc(sizeof(struct tree_node));
memset(new,0,sizeof(struct tree_node));
ptr->tree_nodes[nibble]=new;
ptr->is_tree |= (1<<nibble);
ptr=new;
nibble=get_nibble(ret->sid,pos);
ptr->subscribers[nibble]=ret;
ret->abbreviate_len=pos+1;
// then go around the loop again to compare the next nibble against the sid until we find an empty slot.
}
}while(pos < len*2);
// abbreviation is not unique
return NULL;
}
/*
Walk the subscriber tree, calling the callback function for each subscriber.
if start is a valid pointer, the first entry returned will be after this subscriber
if the callback returns non-zero, the process will stop.
*/
static int walk_tree(struct tree_node *node, int pos,
unsigned char *start, int start_len,
unsigned char *end, int end_len,
int(*callback)(struct subscriber *, void *), void *context){
int i=0, e=16;
if (start && pos < start_len*2){
i=get_nibble(start,pos);
}
if (end && pos < end_len*2){
e=get_nibble(end,pos) +1;
}
for (;i<e;i++){
if (node->is_tree & (1<<i)){
if (walk_tree(node->tree_nodes[i], pos+1, start, start_len, end, end_len, callback, context))
return 1;
}else if(node->subscribers[i]){
if (callback(node->subscribers[i], context))
return 1;
}
// stop comparing the start sid after looking at the first branch of the tree
start=NULL;
}
return 0;
}
/*
walk the tree, starting at start inclusive, calling the supplied callback function
*/
void enum_subscribers(struct subscriber *start, int(*callback)(struct subscriber *, void *), void *context){
walk_tree(&root, 0, start->sid, SID_SIZE, NULL, 0, callback, context);
}
// generate a new random broadcast address
int overlay_broadcast_generate_address(struct broadcast *addr)
{
int i;
for(i=0;i<BROADCAST_LEN;i++) addr->id[i]=random()&0xff;
return 0;
}
// test if the broadcast address has been seen
int overlay_broadcast_drop_check(struct broadcast *addr)
{
/* Hash the BPI and see if we have seen it recently.
If so, drop the frame.
The occassional failure to supress a broadcast frame is not
something we are going to worry about just yet. For byzantine
robustness it is however required. */
int bpi_index=0;
int i;
for(i=0;i<BROADCAST_LEN;i++)
{
bpi_index=((bpi_index<<3)&0xfff8)+((bpi_index>>13)&0x7);
bpi_index^=addr->id[i];
}
bpi_index&=BPI_MASK;
if (memcmp(bpilist[bpi_index].id, addr->id, BROADCAST_LEN)){
if (config.debug.broadcasts)
DEBUGF("BPI %s is new", alloca_tohex(addr->id, BROADCAST_LEN));
bcopy(addr->id, bpilist[bpi_index].id, BROADCAST_LEN);
return 0; /* don't drop */
}else{
if (config.debug.broadcasts)
DEBUGF("BPI %s is a duplicate", alloca_tohex(addr->id, BROADCAST_LEN));
return 1; /* drop frame because we have seen this BPI recently */
}
}
int overlay_broadcast_append(struct overlay_buffer *b, struct broadcast *broadcast)
{
return ob_append_bytes(b, broadcast->id, BROADCAST_LEN);
}
// append an appropriate abbreviation into the address
int overlay_address_append(struct decode_context *context, struct overlay_buffer *b, struct subscriber *subscriber)
{
if (!subscriber)
return WHY("No address supplied");
if (context && subscriber==context->sender){
if (ob_append_byte(b, OA_CODE_SELF))
return -1;
}else if(context && subscriber==context->previous){
if (ob_append_byte(b, OA_CODE_PREVIOUS))
return -1;
}else{
int len=SID_SIZE;
if (subscriber->send_full){
subscriber->send_full=0;
}else{
len=(subscriber->abbreviate_len+2)/2;
if (subscriber->reachable==REACHABLE_SELF)
len++;
if (len>SID_SIZE)
len=SID_SIZE;
}
if (ob_append_byte(b, len))
return -1;
if (ob_append_bytes(b, subscriber->sid, len))
return -1;
}
if (context)
context->previous = subscriber;
return 0;
}
static int add_explain_response(struct subscriber *subscriber, void *context){
struct decode_context *response = context;
if (!response->please_explain){
response->please_explain = calloc(sizeof(struct overlay_frame),1);
response->please_explain->payload=ob_new();
ob_limitsize(response->please_explain->payload, 1024);
}
// if one of our identities is unknown,
// the header of this packet must include our full sid.
if (subscriber->reachable==REACHABLE_SELF){
subscriber->send_full=1;
if (subscriber==my_subscriber){
response->please_explain->source_full=1;
return 0;
}
}
// add the whole subscriber id to the payload, stop if we run out of space
DEBUGF("Adding full sid by way of explanation %s", alloca_tohex_sid(subscriber->sid));
if (ob_append_byte(response->please_explain->payload, SID_SIZE))
return 1;
if (ob_append_bytes(response->please_explain->payload, subscriber->sid, SID_SIZE))
return 1;
return 0;
}
2012-12-06 01:34:13 +00:00
static int find_subscr_buffer(struct decode_context *context, struct overlay_buffer *b, int len, struct subscriber **subscriber){
if (len<=0 || len>SID_SIZE){
return WHY("Invalid abbreviation length");
}
unsigned char *id = ob_get_bytes_ptr(b, len);
2012-12-06 01:34:13 +00:00
if (!id){
return WHY("Not enough space in buffer to parse address");
2012-12-06 01:34:13 +00:00
}
if (!subscriber){
WARN("Could not resolve address, no buffer supplied");
context->invalid_addresses=1;
return 0;
}
*subscriber=find_subscriber(id, len, 1);
if (!*subscriber){
context->invalid_addresses=1;
// generate a please explain in the passed in context
// add the abbreviation you told me about
if (!context->please_explain){
context->please_explain = calloc(sizeof(struct overlay_frame),1);
context->please_explain->payload=ob_new();
ob_limitsize(context->please_explain->payload, MDP_MTU);
}
// And I'll tell you about any subscribers I know that match this abbreviation,
// so you don't try to use an abbreviation that's too short in future.
walk_tree(&root, 0, id, len, id, len, add_explain_response, context);
INFOF("Asking for explanation of %s", alloca_tohex(id, len));
ob_append_byte(context->please_explain->payload, len);
ob_append_bytes(context->please_explain->payload, id, len);
}else{
2012-12-07 05:34:40 +00:00
if (context)
context->previous=*subscriber;
}
return 0;
}
int overlay_broadcast_parse(struct overlay_buffer *b, struct broadcast *broadcast)
{
return ob_get_bytes(b, broadcast->id, BROADCAST_LEN);
}
// returns 0 = success, -1 = fatal parsing error, 1 = unable to identify address
int overlay_address_parse(struct decode_context *context, struct overlay_buffer *b, struct subscriber **subscriber)
{
int len = ob_get(b);
2012-12-08 04:39:41 +00:00
if (len<0)
return WHY("Buffer too small");
switch(len){
case OA_CODE_SELF:
if (!context->sender){
INFO("Could not resolve address, sender has not been set");
context->invalid_addresses=1;
}else{
*subscriber=context->sender;
context->previous=context->sender;
}
return 0;
case OA_CODE_PREVIOUS:
if (!context->previous){
INFO("Unable to decode previous address");
context->invalid_addresses=1;
}else{
*subscriber=context->previous;
}
return 0;
}
return find_subscr_buffer(context, b, len, subscriber);
}
// once we've finished parsing a packet, complete and send a please explain if required.
int send_please_explain(struct decode_context *context, struct subscriber *source, struct subscriber *destination){
IN();
struct overlay_frame *frame=context->please_explain;
if (!frame)
RETURN(0);
frame->type = OF_TYPE_PLEASEEXPLAIN;
if (source)
frame->source = source;
else
frame->source = my_subscriber;
if (!context->sender)
frame->source_full=1;
frame->source->send_full=1;
frame->destination = destination;
if (destination && (destination->reachable & REACHABLE)){
frame->ttl=64;
}else{
frame->ttl=1;// how will this work with olsr??
overlay_broadcast_generate_address(&frame->broadcast_id);
if (context->interface){
frame->destination_resolved=1;
frame->next_hop = destination;
frame->recvaddr = context->addr;
frame->interface = context->interface;
}
}
frame->queue=OQ_MESH_MANAGEMENT;
if (!overlay_payload_enqueue(frame))
RETURN(0);
op_free(frame);
2012-11-26 04:22:49 +00:00
RETURN(-1);
}
// process an incoming request for explanation of subscriber abbreviations
int process_explain(struct overlay_frame *frame){
struct overlay_buffer *b=frame->payload;
2012-11-23 05:38:23 +00:00
struct decode_context context;
bzero(&context, sizeof context);
while(ob_remaining(b)>0){
int len = ob_get(b);
if (len<=0 || len>SID_SIZE)
return WHY("Badly formatted explain message");
unsigned char *sid = ob_get_bytes_ptr(b, len);
2012-11-23 05:38:23 +00:00
if (!sid)
return WHY("Ran past end of buffer");
if (len==SID_SIZE){
// This message is also used to inform people of previously unknown subscribers
// make sure we know this one
find_subscriber(sid,len,1);
}else{
// reply to the sender with all subscribers that match this abbreviation
INFOF("Sending responses for %s", alloca_tohex(sid, len));
walk_tree(&root, 0, sid, len, sid, len, add_explain_response, &context);
}
}
send_please_explain(&context, frame->destination, frame->source);
return 0;
}