mirror of
https://github.com/openwrt/openwrt.git
synced 2025-01-12 16:03:13 +00:00
0e73da37d5
Broadcom submitted new SMP patches for this SoC to upstream Linux, add them to OpenWrt. Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de> SVN-Revision: 47687
561 lines
16 KiB
Diff
561 lines
16 KiB
Diff
From e99fb6d01cddf38cffc11655aba4a96a981d604e Mon Sep 17 00:00:00 2001
|
|
From: Kapil Hali <kapilh@broadcom.com>
|
|
Date: Wed, 25 Nov 2015 13:25:55 -0500
|
|
Subject: [PATCH 133/134] ARM: BCM: Add SMP support for Broadcom NSP
|
|
|
|
Add SMP support for Broadcom's Northstar Plus SoC
|
|
cpu enable method. This changes also consolidates
|
|
iProc family's - BCM NSP and BCM Kona, platform
|
|
SMP handling in a common file.
|
|
|
|
Northstar Plus SoC is based on ARM Cortex-A9
|
|
revision r3p0 which requires configuration for ARM
|
|
Errata 764369 for SMP. This change adds the needed
|
|
configuration option.
|
|
|
|
Signed-off-by: Kapil Hali <kapilh@broadcom.com>
|
|
---
|
|
arch/arm/mach-bcm/Kconfig | 2 +
|
|
arch/arm/mach-bcm/Makefile | 8 +-
|
|
arch/arm/mach-bcm/kona_smp.c | 228 ----------------------------------
|
|
arch/arm/mach-bcm/platsmp.c | 290 +++++++++++++++++++++++++++++++++++++++++++
|
|
4 files changed, 298 insertions(+), 230 deletions(-)
|
|
delete mode 100644 arch/arm/mach-bcm/kona_smp.c
|
|
create mode 100644 arch/arm/mach-bcm/platsmp.c
|
|
|
|
--- a/arch/arm/mach-bcm/Makefile
|
|
+++ b/arch/arm/mach-bcm/Makefile
|
|
@@ -20,7 +20,7 @@ obj-$(CONFIG_ARCH_BCM_281XX) += board_bc
|
|
obj-$(CONFIG_ARCH_BCM_21664) += board_bcm21664.o
|
|
|
|
# BCM281XX and BCM21664 SMP support
|
|
-obj-$(CONFIG_ARCH_BCM_MOBILE_SMP) += kona_smp.o
|
|
+obj-$(CONFIG_ARCH_BCM_MOBILE_SMP) += platsmp.o
|
|
|
|
# BCM281XX and BCM21664 L2 cache control
|
|
obj-$(CONFIG_ARCH_BCM_MOBILE_L2_CACHE) += kona_l2_cache.o
|
|
--- a/arch/arm/mach-bcm/kona_smp.c
|
|
+++ /dev/null
|
|
@@ -1,228 +0,0 @@
|
|
-/*
|
|
- * Copyright (C) 2014-2015 Broadcom Corporation
|
|
- * Copyright 2014 Linaro Limited
|
|
- *
|
|
- * This program is free software; you can redistribute it and/or
|
|
- * modify it under the terms of the GNU General Public License as
|
|
- * published by the Free Software Foundation version 2.
|
|
- *
|
|
- * This program is distributed "as is" WITHOUT ANY WARRANTY of any
|
|
- * kind, whether express or implied; without even the implied warranty
|
|
- * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
- * GNU General Public License for more details.
|
|
- */
|
|
-
|
|
-#include <linux/init.h>
|
|
-#include <linux/errno.h>
|
|
-#include <linux/io.h>
|
|
-#include <linux/of.h>
|
|
-#include <linux/sched.h>
|
|
-
|
|
-#include <asm/smp.h>
|
|
-#include <asm/smp_plat.h>
|
|
-#include <asm/smp_scu.h>
|
|
-
|
|
-/* Size of mapped Cortex A9 SCU address space */
|
|
-#define CORTEX_A9_SCU_SIZE 0x58
|
|
-
|
|
-#define SECONDARY_TIMEOUT_NS NSEC_PER_MSEC /* 1 msec (in nanoseconds) */
|
|
-#define BOOT_ADDR_CPUID_MASK 0x3
|
|
-
|
|
-/* Name of device node property defining secondary boot register location */
|
|
-#define OF_SECONDARY_BOOT "secondary-boot-reg"
|
|
-#define MPIDR_CPUID_BITMASK 0x3
|
|
-
|
|
-/* I/O address of register used to coordinate secondary core startup */
|
|
-static u32 secondary_boot_addr;
|
|
-
|
|
-/*
|
|
- * Enable the Cortex A9 Snoop Control Unit
|
|
- *
|
|
- * By the time this is called we already know there are multiple
|
|
- * cores present. We assume we're running on a Cortex A9 processor,
|
|
- * so any trouble getting the base address register or getting the
|
|
- * SCU base is a problem.
|
|
- *
|
|
- * Return 0 if successful or an error code otherwise.
|
|
- */
|
|
-static int __init scu_a9_enable(void)
|
|
-{
|
|
- unsigned long config_base;
|
|
- void __iomem *scu_base;
|
|
-
|
|
- if (!scu_a9_has_base()) {
|
|
- pr_err("no configuration base address register!\n");
|
|
- return -ENXIO;
|
|
- }
|
|
-
|
|
- /* Config base address register value is zero for uniprocessor */
|
|
- config_base = scu_a9_get_base();
|
|
- if (!config_base) {
|
|
- pr_err("hardware reports only one core\n");
|
|
- return -ENOENT;
|
|
- }
|
|
-
|
|
- scu_base = ioremap((phys_addr_t)config_base, CORTEX_A9_SCU_SIZE);
|
|
- if (!scu_base) {
|
|
- pr_err("failed to remap config base (%lu/%u) for SCU\n",
|
|
- config_base, CORTEX_A9_SCU_SIZE);
|
|
- return -ENOMEM;
|
|
- }
|
|
-
|
|
- scu_enable(scu_base);
|
|
-
|
|
- iounmap(scu_base); /* That's the last we'll need of this */
|
|
-
|
|
- return 0;
|
|
-}
|
|
-
|
|
-static void __init bcm_smp_prepare_cpus(unsigned int max_cpus)
|
|
-{
|
|
- static cpumask_t only_cpu_0 = { CPU_BITS_CPU0 };
|
|
- struct device_node *cpus_node = NULL;
|
|
- struct device_node *cpu_node = NULL;
|
|
- int ret;
|
|
-
|
|
- /*
|
|
- * This function is only called via smp_ops->smp_prepare_cpu().
|
|
- * That only happens if a "/cpus" device tree node exists
|
|
- * and has an "enable-method" property that selects the SMP
|
|
- * operations defined herein.
|
|
- */
|
|
- cpus_node = of_find_node_by_path("/cpus");
|
|
- if (!cpus_node)
|
|
- return;
|
|
-
|
|
- for_each_child_of_node(cpus_node, cpu_node) {
|
|
- u32 cpuid;
|
|
-
|
|
- if (of_node_cmp(cpu_node->type, "cpu"))
|
|
- continue;
|
|
-
|
|
- if (of_property_read_u32(cpu_node, "reg", &cpuid)) {
|
|
- pr_debug("%s: missing reg property\n",
|
|
- cpu_node->full_name);
|
|
- ret = -ENOENT;
|
|
- goto out;
|
|
- }
|
|
-
|
|
- /*
|
|
- * "secondary-boot-reg" property should be defined only
|
|
- * for secondary cpu
|
|
- */
|
|
- if ((cpuid & MPIDR_CPUID_BITMASK) == 1) {
|
|
- /*
|
|
- * Our secondary enable method requires a
|
|
- * "secondary-boot-reg" property to specify a register
|
|
- * address used to request the ROM code boot a secondary
|
|
- * core. If we have any trouble getting this we fall
|
|
- * back to uniprocessor mode.
|
|
- */
|
|
- if (of_property_read_u32(cpu_node,
|
|
- OF_SECONDARY_BOOT,
|
|
- &secondary_boot_addr)) {
|
|
- pr_warn("%s: no" OF_SECONDARY_BOOT "property\n",
|
|
- cpu_node->name);
|
|
- ret = -ENOENT;
|
|
- goto out;
|
|
- }
|
|
- }
|
|
- }
|
|
-
|
|
- /*
|
|
- * Enable the SCU on Cortex A9 based SoCs. If -ENOENT is
|
|
- * returned, the SoC reported a uniprocessor configuration.
|
|
- * We bail on any other error.
|
|
- */
|
|
- ret = scu_a9_enable();
|
|
-out:
|
|
- of_node_put(cpu_node);
|
|
- of_node_put(cpus_node);
|
|
-
|
|
- if (ret) {
|
|
- /* Update the CPU present map to reflect uniprocessor mode */
|
|
- pr_warn("disabling SMP\n");
|
|
- init_cpu_present(&only_cpu_0);
|
|
- }
|
|
-}
|
|
-
|
|
-/*
|
|
- * The ROM code has the secondary cores looping, waiting for an event.
|
|
- * When an event occurs each core examines the bottom two bits of the
|
|
- * secondary boot register. When a core finds those bits contain its
|
|
- * own core id, it performs initialization, including computing its boot
|
|
- * address by clearing the boot register value's bottom two bits. The
|
|
- * core signals that it is beginning its execution by writing its boot
|
|
- * address back to the secondary boot register, and finally jumps to
|
|
- * that address.
|
|
- *
|
|
- * So to start a core executing we need to:
|
|
- * - Encode the (hardware) CPU id with the bottom bits of the secondary
|
|
- * start address.
|
|
- * - Write that value into the secondary boot register.
|
|
- * - Generate an event to wake up the secondary CPU(s).
|
|
- * - Wait for the secondary boot register to be re-written, which
|
|
- * indicates the secondary core has started.
|
|
- */
|
|
-static int kona_boot_secondary(unsigned int cpu, struct task_struct *idle)
|
|
-{
|
|
- void __iomem *boot_reg;
|
|
- phys_addr_t boot_func;
|
|
- u64 start_clock;
|
|
- u32 cpu_id;
|
|
- u32 boot_val;
|
|
- bool timeout = false;
|
|
-
|
|
- cpu_id = cpu_logical_map(cpu);
|
|
- if (cpu_id & ~BOOT_ADDR_CPUID_MASK) {
|
|
- pr_err("bad cpu id (%u > %u)\n", cpu_id, BOOT_ADDR_CPUID_MASK);
|
|
- return -EINVAL;
|
|
- }
|
|
-
|
|
- if (!secondary_boot_addr) {
|
|
- pr_err("required secondary boot register not specified\n");
|
|
- return -EINVAL;
|
|
- }
|
|
-
|
|
- boot_reg = ioremap_nocache(
|
|
- (phys_addr_t)secondary_boot_addr, sizeof(u32));
|
|
- if (!boot_reg) {
|
|
- pr_err("unable to map boot register for cpu %u\n", cpu_id);
|
|
- return -ENOMEM;
|
|
- }
|
|
-
|
|
- /*
|
|
- * Secondary cores will start in secondary_startup(),
|
|
- * defined in "arch/arm/kernel/head.S"
|
|
- */
|
|
- boot_func = virt_to_phys(secondary_startup);
|
|
- BUG_ON(boot_func & BOOT_ADDR_CPUID_MASK);
|
|
- BUG_ON(boot_func > (phys_addr_t)U32_MAX);
|
|
-
|
|
- /* The core to start is encoded in the low bits */
|
|
- boot_val = (u32)boot_func | cpu_id;
|
|
- writel_relaxed(boot_val, boot_reg);
|
|
-
|
|
- sev();
|
|
-
|
|
- /* The low bits will be cleared once the core has started */
|
|
- start_clock = local_clock();
|
|
- while (!timeout && readl_relaxed(boot_reg) == boot_val)
|
|
- timeout = local_clock() - start_clock > SECONDARY_TIMEOUT_NS;
|
|
-
|
|
- iounmap(boot_reg);
|
|
-
|
|
- if (!timeout)
|
|
- return 0;
|
|
-
|
|
- pr_err("timeout waiting for cpu %u to start\n", cpu_id);
|
|
-
|
|
- return -ENXIO;
|
|
-}
|
|
-
|
|
-static struct smp_operations bcm_smp_ops __initdata = {
|
|
- .smp_prepare_cpus = bcm_smp_prepare_cpus,
|
|
- .smp_boot_secondary = kona_boot_secondary,
|
|
-};
|
|
-CPU_METHOD_OF_DECLARE(bcm_smp_bcm281xx, "brcm,bcm11351-cpu-method",
|
|
- &bcm_smp_ops);
|
|
--- /dev/null
|
|
+++ b/arch/arm/mach-bcm/platsmp.c
|
|
@@ -0,0 +1,290 @@
|
|
+/*
|
|
+ * Copyright (C) 2014-2015 Broadcom Corporation
|
|
+ * Copyright 2014 Linaro Limited
|
|
+ *
|
|
+ * This program is free software; you can redistribute it and/or
|
|
+ * modify it under the terms of the GNU General Public License as
|
|
+ * published by the Free Software Foundation version 2.
|
|
+ *
|
|
+ * This program is distributed "as is" WITHOUT ANY WARRANTY of any
|
|
+ * kind, whether express or implied; without even the implied warranty
|
|
+ * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
+ * GNU General Public License for more details.
|
|
+ */
|
|
+
|
|
+#include <linux/cpumask.h>
|
|
+#include <linux/delay.h>
|
|
+#include <linux/errno.h>
|
|
+#include <linux/init.h>
|
|
+#include <linux/io.h>
|
|
+#include <linux/jiffies.h>
|
|
+#include <linux/of.h>
|
|
+#include <linux/sched.h>
|
|
+#include <linux/smp.h>
|
|
+
|
|
+#include <asm/cacheflush.h>
|
|
+#include <asm/smp.h>
|
|
+#include <asm/smp_plat.h>
|
|
+#include <asm/smp_scu.h>
|
|
+
|
|
+/* Size of mapped Cortex A9 SCU address space */
|
|
+#define CORTEX_A9_SCU_SIZE 0x58
|
|
+
|
|
+#define SECONDARY_TIMEOUT_NS NSEC_PER_MSEC /* 1 msec (in nanoseconds) */
|
|
+#define BOOT_ADDR_CPUID_MASK 0x3
|
|
+
|
|
+/* Name of device node property defining secondary boot register location */
|
|
+#define OF_SECONDARY_BOOT "secondary-boot-reg"
|
|
+#define MPIDR_CPUID_BITMASK 0x3
|
|
+
|
|
+/* I/O address of register used to coordinate secondary core startup */
|
|
+static u32 secondary_boot_addr;
|
|
+
|
|
+/*
|
|
+ * Enable the Cortex A9 Snoop Control Unit
|
|
+ *
|
|
+ * By the time this is called we already know there are multiple
|
|
+ * cores present. We assume we're running on a Cortex A9 processor,
|
|
+ * so any trouble getting the base address register or getting the
|
|
+ * SCU base is a problem.
|
|
+ *
|
|
+ * Return 0 if successful or an error code otherwise.
|
|
+ */
|
|
+static int __init scu_a9_enable(void)
|
|
+{
|
|
+ unsigned long config_base;
|
|
+ void __iomem *scu_base;
|
|
+
|
|
+ if (!scu_a9_has_base()) {
|
|
+ pr_err("no configuration base address register!\n");
|
|
+ return -ENXIO;
|
|
+ }
|
|
+
|
|
+ /* Config base address register value is zero for uniprocessor */
|
|
+ config_base = scu_a9_get_base();
|
|
+ if (!config_base) {
|
|
+ pr_err("hardware reports only one core\n");
|
|
+ return -ENOENT;
|
|
+ }
|
|
+
|
|
+ scu_base = ioremap((phys_addr_t)config_base, CORTEX_A9_SCU_SIZE);
|
|
+ if (!scu_base) {
|
|
+ pr_err("failed to remap config base (%lu/%u) for SCU\n",
|
|
+ config_base, CORTEX_A9_SCU_SIZE);
|
|
+ return -ENOMEM;
|
|
+ }
|
|
+
|
|
+ scu_enable(scu_base);
|
|
+
|
|
+ iounmap(scu_base); /* That's the last we'll need of this */
|
|
+
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+static int nsp_write_lut(void)
|
|
+{
|
|
+ void __iomem *sku_rom_lut;
|
|
+ phys_addr_t secondary_startup_phy;
|
|
+
|
|
+ if (!secondary_boot_addr) {
|
|
+ pr_warn("required secondary boot register not specified\n");
|
|
+ return -EINVAL;
|
|
+ }
|
|
+
|
|
+ sku_rom_lut = ioremap_nocache((phys_addr_t)secondary_boot_addr,
|
|
+ sizeof(secondary_boot_addr));
|
|
+ if (!sku_rom_lut) {
|
|
+ pr_warn("unable to ioremap SKU-ROM LUT register\n");
|
|
+ return -ENOMEM;
|
|
+ }
|
|
+
|
|
+ secondary_startup_phy = virt_to_phys(secondary_startup);
|
|
+ BUG_ON(secondary_startup_phy > (phys_addr_t)U32_MAX);
|
|
+
|
|
+ writel_relaxed(secondary_startup_phy, sku_rom_lut);
|
|
+
|
|
+ /* Ensure the write is visible to the secondary core */
|
|
+ smp_wmb();
|
|
+
|
|
+ iounmap(sku_rom_lut);
|
|
+
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+static void __init bcm_smp_prepare_cpus(unsigned int max_cpus)
|
|
+{
|
|
+ static cpumask_t only_cpu_0 = { CPU_BITS_CPU0 };
|
|
+ struct device_node *cpus_node = NULL;
|
|
+ struct device_node *cpu_node = NULL;
|
|
+ int ret;
|
|
+
|
|
+ /*
|
|
+ * This function is only called via smp_ops->smp_prepare_cpu().
|
|
+ * That only happens if a "/cpus" device tree node exists
|
|
+ * and has an "enable-method" property that selects the SMP
|
|
+ * operations defined herein.
|
|
+ */
|
|
+ cpus_node = of_find_node_by_path("/cpus");
|
|
+ if (!cpus_node)
|
|
+ return;
|
|
+
|
|
+ for_each_child_of_node(cpus_node, cpu_node) {
|
|
+ u32 cpuid;
|
|
+
|
|
+ if (of_node_cmp(cpu_node->type, "cpu"))
|
|
+ continue;
|
|
+
|
|
+ if (of_property_read_u32(cpu_node, "reg", &cpuid)) {
|
|
+ pr_debug("%s: missing reg property\n",
|
|
+ cpu_node->full_name);
|
|
+ ret = -ENOENT;
|
|
+ goto out;
|
|
+ }
|
|
+
|
|
+ /*
|
|
+ * "secondary-boot-reg" property should be defined only
|
|
+ * for secondary cpu
|
|
+ */
|
|
+ if ((cpuid & MPIDR_CPUID_BITMASK) == 1) {
|
|
+ /*
|
|
+ * Our secondary enable method requires a
|
|
+ * "secondary-boot-reg" property to specify a register
|
|
+ * address used to request the ROM code boot a secondary
|
|
+ * core. If we have any trouble getting this we fall
|
|
+ * back to uniprocessor mode.
|
|
+ */
|
|
+ if (of_property_read_u32(cpu_node,
|
|
+ OF_SECONDARY_BOOT,
|
|
+ &secondary_boot_addr)) {
|
|
+ pr_warn("%s: no" OF_SECONDARY_BOOT "property\n",
|
|
+ cpu_node->name);
|
|
+ ret = -ENOENT;
|
|
+ goto out;
|
|
+ }
|
|
+ }
|
|
+ }
|
|
+
|
|
+ /*
|
|
+ * Enable the SCU on Cortex A9 based SoCs. If -ENOENT is
|
|
+ * returned, the SoC reported a uniprocessor configuration.
|
|
+ * We bail on any other error.
|
|
+ */
|
|
+ ret = scu_a9_enable();
|
|
+out:
|
|
+ of_node_put(cpu_node);
|
|
+ of_node_put(cpus_node);
|
|
+
|
|
+ if (ret) {
|
|
+ /* Update the CPU present map to reflect uniprocessor mode */
|
|
+ pr_warn("disabling SMP\n");
|
|
+ init_cpu_present(&only_cpu_0);
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+ * The ROM code has the secondary cores looping, waiting for an event.
|
|
+ * When an event occurs each core examines the bottom two bits of the
|
|
+ * secondary boot register. When a core finds those bits contain its
|
|
+ * own core id, it performs initialization, including computing its boot
|
|
+ * address by clearing the boot register value's bottom two bits. The
|
|
+ * core signals that it is beginning its execution by writing its boot
|
|
+ * address back to the secondary boot register, and finally jumps to
|
|
+ * that address.
|
|
+ *
|
|
+ * So to start a core executing we need to:
|
|
+ * - Encode the (hardware) CPU id with the bottom bits of the secondary
|
|
+ * start address.
|
|
+ * - Write that value into the secondary boot register.
|
|
+ * - Generate an event to wake up the secondary CPU(s).
|
|
+ * - Wait for the secondary boot register to be re-written, which
|
|
+ * indicates the secondary core has started.
|
|
+ */
|
|
+static int kona_boot_secondary(unsigned int cpu, struct task_struct *idle)
|
|
+{
|
|
+ void __iomem *boot_reg;
|
|
+ phys_addr_t boot_func;
|
|
+ u64 start_clock;
|
|
+ u32 cpu_id;
|
|
+ u32 boot_val;
|
|
+ bool timeout = false;
|
|
+
|
|
+ cpu_id = cpu_logical_map(cpu);
|
|
+ if (cpu_id & ~BOOT_ADDR_CPUID_MASK) {
|
|
+ pr_err("bad cpu id (%u > %u)\n", cpu_id, BOOT_ADDR_CPUID_MASK);
|
|
+ return -EINVAL;
|
|
+ }
|
|
+
|
|
+ if (!secondary_boot_addr) {
|
|
+ pr_err("required secondary boot register not specified\n");
|
|
+ return -EINVAL;
|
|
+ }
|
|
+
|
|
+ boot_reg = ioremap_nocache(
|
|
+ (phys_addr_t)secondary_boot_addr, sizeof(u32));
|
|
+ if (!boot_reg) {
|
|
+ pr_err("unable to map boot register for cpu %u\n", cpu_id);
|
|
+ return -ENOMEM;
|
|
+ }
|
|
+
|
|
+ /*
|
|
+ * Secondary cores will start in secondary_startup(),
|
|
+ * defined in "arch/arm/kernel/head.S"
|
|
+ */
|
|
+ boot_func = virt_to_phys(secondary_startup);
|
|
+ BUG_ON(boot_func & BOOT_ADDR_CPUID_MASK);
|
|
+ BUG_ON(boot_func > (phys_addr_t)U32_MAX);
|
|
+
|
|
+ /* The core to start is encoded in the low bits */
|
|
+ boot_val = (u32)boot_func | cpu_id;
|
|
+ writel_relaxed(boot_val, boot_reg);
|
|
+
|
|
+ sev();
|
|
+
|
|
+ /* The low bits will be cleared once the core has started */
|
|
+ start_clock = local_clock();
|
|
+ while (!timeout && readl_relaxed(boot_reg) == boot_val)
|
|
+ timeout = local_clock() - start_clock > SECONDARY_TIMEOUT_NS;
|
|
+
|
|
+ iounmap(boot_reg);
|
|
+
|
|
+ if (!timeout)
|
|
+ return 0;
|
|
+
|
|
+ pr_err("timeout waiting for cpu %u to start\n", cpu_id);
|
|
+
|
|
+ return -ENXIO;
|
|
+}
|
|
+
|
|
+static int nsp_boot_secondary(unsigned int cpu, struct task_struct *idle)
|
|
+{
|
|
+ int ret;
|
|
+
|
|
+ /*
|
|
+ * After wake up, secondary core branches to the startup
|
|
+ * address programmed at SKU ROM LUT location.
|
|
+ */
|
|
+ ret = nsp_write_lut();
|
|
+ if (ret) {
|
|
+ pr_err("unable to write startup addr to SKU ROM LUT\n");
|
|
+ goto out;
|
|
+ }
|
|
+
|
|
+ /* Send a CPU wakeup interrupt to the secondary core */
|
|
+ arch_send_wakeup_ipi_mask(cpumask_of(cpu));
|
|
+
|
|
+out:
|
|
+ return ret;
|
|
+}
|
|
+
|
|
+static struct smp_operations bcm_smp_ops __initdata = {
|
|
+ .smp_prepare_cpus = bcm_smp_prepare_cpus,
|
|
+ .smp_boot_secondary = kona_boot_secondary,
|
|
+};
|
|
+CPU_METHOD_OF_DECLARE(bcm_smp_bcm281xx, "brcm,bcm11351-cpu-method",
|
|
+ &bcm_smp_ops);
|
|
+
|
|
+struct smp_operations nsp_smp_ops __initdata = {
|
|
+ .smp_prepare_cpus = bcm_smp_prepare_cpus,
|
|
+ .smp_boot_secondary = nsp_boot_secondary,
|
|
+};
|
|
+CPU_METHOD_OF_DECLARE(bcm_smp_nsp, "brcm,bcm-nsp-smp", &nsp_smp_ops);
|