openwrt/target/linux/ipq807x/patches-5.15/0901-regulator-add-Qualcomm-CPR-regulators.patch
Robert Marko b5f32064ed ipq807x: add Qualcomm Atheros IPQ807x target
Qualcomm Atheros IPQ807x is a modern WiSoC featuring:
* Quad Core ARMv8 Cortex A-53
	* @ 2.2 GHz (IPQ8072A/4A/6A/8A) Codename Hawkeye
	* @ 1.4 GHz (IPQ8070A/1A) Codename Acorn
* Dual Band simultaneaous IEEE 802.11ax
	* 5G: 8x8/80 or 4x4/160MHz (IPQ8074A/8A)
	* 5G: 4x4/80 or 2x2/160MHz (IPQ8071A/2A/6A)
	* 5G: 2x2/80MHz (IPQ8070A)
	* 2G: 4x4/40MHz (IPQ8072A/4A/6A/8A)
	* 2G: 2x2/40MHz (IPQ8070A/1A)
* 1x PSGMII via QCA8072/5 (Max 5x 1GbE ports)
* 2x SGMII/USXGMII (1/2.5/5/10 GbE) on Hawkeye
* 2x SGMII/USXGMII (1/2.5/5 GbE) on Acorn
* DDR3L/4 32/16 bit up to 2400MT/s
* SDIO 3.0/SD card 3.0/eMMC 5.1
* Dual USB 3.0
* One PCIe Gen2.1 and one PCIe Gen3.0 port (Single lane)
* Parallel NAND (ONFI)/LCD
* 6x QUP BLSP SPI/I2C/UART
* I2S, PCM, and TDMA
* HW PWM
* 1.8V configurable GPIO
* Companion PMP8074 PMIC via SPMI (GPIOS, RTC etc)

Note that only v2 SOC models aka the ones ending with A suffix are
supported, v1 models do not comply to the final 802.11ax and have
lower clocks, lack the Gen3 PCIe etc.

SoC itself has two UBI32 cores for the NSS offloading system, however
currently no offloading is supported.

Signed-off-by: Robert Marko <robimarko@gmail.com>
2023-01-16 12:42:23 +01:00

12148 lines
368 KiB
Diff

From 303fb163bb86f04432c93325ff8b9638c9e50641 Mon Sep 17 00:00:00 2001
From: Robert Marko <robimarko@gmail.com>
Date: Mon, 11 Apr 2022 14:35:36 +0200
Subject: [PATCH] regulator: add Qualcomm CPR regulators
Add Qualcomm CPR driver, which allows using the CPR HW to calculate the
correct OPP point voltage dynamically based on the system load.
Signed-off-by: Robert Marko <robimarko@gmail.com>
---
drivers/regulator/Kconfig | 33 +
drivers/regulator/Makefile | 3 +
drivers/regulator/cpr3-npu-regulator.c | 695 +++
drivers/regulator/cpr3-regulator.c | 5112 +++++++++++++++++++++++
drivers/regulator/cpr3-regulator.h | 1211 ++++++
drivers/regulator/cpr3-util.c | 2750 ++++++++++++
drivers/regulator/cpr4-apss-regulator.c | 1819 ++++++++
include/soc/qcom/socinfo.h | 463 ++
8 files changed, 12086 insertions(+)
create mode 100644 drivers/regulator/cpr3-npu-regulator.c
create mode 100644 drivers/regulator/cpr3-regulator.c
create mode 100644 drivers/regulator/cpr3-regulator.h
create mode 100644 drivers/regulator/cpr3-util.c
create mode 100644 drivers/regulator/cpr4-apss-regulator.c
create mode 100644 include/soc/qcom/socinfo.h
--- a/drivers/regulator/Kconfig
+++ b/drivers/regulator/Kconfig
@@ -1423,5 +1423,38 @@ config REGULATOR_QCOM_LABIBB
boost regulator and IBB can be used as a negative boost regulator
for LCD display panel.
+config REGULATOR_CPR3
+ bool "QCOM CPR3 regulator core support"
+ help
+ This driver supports Core Power Reduction (CPR) version 3 controllers
+ which are used by some Qualcomm Technologies, Inc. SoCs to
+ manage important voltage regulators. CPR3 controllers are capable of
+ monitoring several ring oscillator sensing loops simultaneously. The
+ CPR3 controller informs software when the silicon conditions require
+ the supply voltage to be increased or decreased. On certain supply
+ rails, the CPR3 controller is able to propagate the voltage increase
+ or decrease requests all the way to the PMIC without software
+ involvement.
+
+config REGULATOR_CPR3_NPU
+ bool "QCOM CPR3 regulator for NPU"
+ depends on OF && REGULATOR_CPR3
+ help
+ This driver supports Qualcomm Technologies, Inc. NPU CPR3
+ regulator Which will always operate in open loop.
+
+config REGULATOR_CPR4_APSS
+ bool "QCOM CPR4 regulator for APSS"
+ depends on OF && REGULATOR_CPR3
+ help
+ This driver supports Qualcomm Technologies, Inc. APSS application
+ processor specific features including memory array power mux (APM)
+ switching, one CPR4 thread which monitor the two APSS clusters that
+ are both powered by a shared supply, hardware closed-loop auto
+ voltage stepping, voltage adjustments based on online core count,
+ voltage adjustments based on temperature readings, and voltage
+ adjustments for performance boost mode. This driver reads both initial
+ voltage and CPR target quotient values out of hardware fuses.
+
endif
--- a/drivers/regulator/Makefile
+++ b/drivers/regulator/Makefile
@@ -105,6 +105,9 @@ obj-$(CONFIG_REGULATOR_QCOM_RPMH) += qco
obj-$(CONFIG_REGULATOR_QCOM_SMD_RPM) += qcom_smd-regulator.o
obj-$(CONFIG_REGULATOR_QCOM_SPMI) += qcom_spmi-regulator.o
obj-$(CONFIG_REGULATOR_QCOM_USB_VBUS) += qcom_usb_vbus-regulator.o
+obj-$(CONFIG_REGULATOR_CPR3) += cpr3-regulator.o cpr3-util.o
+obj-$(CONFIG_REGULATOR_CPR3_NPU) += cpr3-npu-regulator.o
+obj-$(CONFIG_REGULATOR_CPR4_APSS) += cpr4-apss-regulator.o
obj-$(CONFIG_REGULATOR_PALMAS) += palmas-regulator.o
obj-$(CONFIG_REGULATOR_PCA9450) += pca9450-regulator.o
obj-$(CONFIG_REGULATOR_PF8X00) += pf8x00-regulator.o
--- /dev/null
+++ b/drivers/regulator/cpr3-npu-regulator.c
@@ -0,0 +1,695 @@
+/*
+ * Copyright (c) 2017, The Linux Foundation. All rights reserved.
+ *
+ * Permission to use, copy, modify, and/or distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+ * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ */
+
+#include <linux/err.h>
+#include <linux/platform_device.h>
+#include <linux/module.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+#include <linux/slab.h>
+#include <linux/thermal.h>
+
+#include "cpr3-regulator.h"
+
+#define IPQ807x_NPU_FUSE_CORNERS 2
+#define IPQ817x_NPU_FUSE_CORNERS 1
+#define IPQ807x_NPU_FUSE_STEP_VOLT 8000
+#define IPQ807x_NPU_VOLTAGE_FUSE_SIZE 6
+#define IPQ807x_NPU_CPR_CLOCK_RATE 19200000
+
+#define IPQ807x_NPU_CPR_TCSR_START 6
+#define IPQ807x_NPU_CPR_TCSR_END 7
+
+#define NPU_TSENS 5
+
+u32 g_valid_npu_fuse_count = IPQ807x_NPU_FUSE_CORNERS;
+/**
+ * struct cpr3_ipq807x_npu_fuses - NPU specific fuse data for IPQ807x
+ * @init_voltage: Initial (i.e. open-loop) voltage fuse parameter value
+ * for each fuse corner (raw, not converted to a voltage)
+ * This struct holds the values for all of the fuses read from memory.
+ */
+struct cpr3_ipq807x_npu_fuses {
+ u64 init_voltage[IPQ807x_NPU_FUSE_CORNERS];
+};
+
+/*
+ * Constants which define the name of each fuse corner.
+ */
+enum cpr3_ipq807x_npu_fuse_corner {
+ CPR3_IPQ807x_NPU_FUSE_CORNER_NOM = 0,
+ CPR3_IPQ807x_NPU_FUSE_CORNER_TURBO = 1,
+};
+
+static const char * const cpr3_ipq807x_npu_fuse_corner_name[] = {
+ [CPR3_IPQ807x_NPU_FUSE_CORNER_NOM] = "NOM",
+ [CPR3_IPQ807x_NPU_FUSE_CORNER_TURBO] = "TURBO",
+};
+
+/*
+ * IPQ807x NPU fuse parameter locations:
+ *
+ * Structs are organized with the following dimensions:
+ * Outer: 0 to 1 for fuse corners from lowest to highest corner
+ * Inner: large enough to hold the longest set of parameter segments which
+ * fully defines a fuse parameter, +1 (for NULL termination).
+ * Each segment corresponds to a contiguous group of bits from a
+ * single fuse row. These segments are concatentated together in
+ * order to form the full fuse parameter value. The segments for
+ * a given parameter may correspond to different fuse rows.
+ */
+static struct cpr3_fuse_param
+ipq807x_npu_init_voltage_param[IPQ807x_NPU_FUSE_CORNERS][2] = {
+ {{73, 22, 27}, {} },
+ {{73, 16, 21}, {} },
+};
+
+/*
+ * Open loop voltage fuse reference voltages in microvolts for IPQ807x
+ */
+static int
+ipq807x_npu_fuse_ref_volt [IPQ807x_NPU_FUSE_CORNERS] = {
+ 912000,
+ 992000,
+};
+
+/*
+ * IPQ9574 (Few parameters are changed, remaining are same as IPQ807x)
+ */
+#define IPQ9574_NPU_FUSE_CORNERS 2
+#define IPQ9574_NPU_FUSE_STEP_VOLT 10000
+#define IPQ9574_NPU_CPR_CLOCK_RATE 24000000
+
+/*
+ * fues parameters for IPQ9574
+ */
+static struct cpr3_fuse_param
+ipq9574_npu_init_voltage_param[IPQ9574_NPU_FUSE_CORNERS][2] = {
+ {{105, 12, 17}, {} },
+ {{105, 6, 11}, {} },
+};
+
+/*
+ * Open loop voltage fuse reference voltages in microvolts for IPQ9574
+ */
+static int
+ipq9574_npu_fuse_ref_volt [IPQ9574_NPU_FUSE_CORNERS] = {
+ 862500,
+ 987500,
+};
+
+struct cpr3_controller *g_ctrl;
+
+void cpr3_npu_temp_notify(int sensor, int temp, int low_notif)
+{
+ u32 prev_sensor_state;
+
+ if (sensor != NPU_TSENS)
+ return;
+
+ prev_sensor_state = g_ctrl->cur_sensor_state;
+ if (low_notif)
+ g_ctrl->cur_sensor_state |= BIT(sensor);
+ else
+ g_ctrl->cur_sensor_state &= ~BIT(sensor);
+
+ if (!prev_sensor_state && g_ctrl->cur_sensor_state)
+ cpr3_handle_temp_open_loop_adjustment(g_ctrl, true);
+ else if (prev_sensor_state && !g_ctrl->cur_sensor_state)
+ cpr3_handle_temp_open_loop_adjustment(g_ctrl, false);
+}
+
+/**
+ * cpr3_ipq807x_npu_read_fuse_data() - load NPU specific fuse parameter values
+ * @vreg: Pointer to the CPR3 regulator
+ *
+ * This function allocates a cpr3_ipq807x_npu_fuses struct, fills it with
+ * values read out of hardware fuses, and finally copies common fuse values
+ * into the CPR3 regulator struct.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_ipq807x_npu_read_fuse_data(struct cpr3_regulator *vreg)
+{
+ void __iomem *base = vreg->thread->ctrl->fuse_base;
+ struct cpr3_ipq807x_npu_fuses *fuse;
+ int i, rc;
+
+ fuse = devm_kzalloc(vreg->thread->ctrl->dev, sizeof(*fuse), GFP_KERNEL);
+ if (!fuse)
+ return -ENOMEM;
+
+ for (i = 0; i < g_valid_npu_fuse_count; i++) {
+ rc = cpr3_read_fuse_param(base,
+ vreg->cpr3_regulator_data->init_voltage_param[i],
+ &fuse->init_voltage[i]);
+ if (rc) {
+ cpr3_err(vreg, "Unable to read fuse-corner %d initial voltage fuse, rc=%d\n",
+ i, rc);
+ return rc;
+ }
+ }
+
+ vreg->fuse_corner_count = g_valid_npu_fuse_count;
+ vreg->platform_fuses = fuse;
+
+ return 0;
+}
+
+/**
+ * cpr3_npu_parse_corner_data() - parse NPU corner data from device tree
+ * properties of the CPR3 regulator's device node
+ * @vreg: Pointer to the CPR3 regulator
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_npu_parse_corner_data(struct cpr3_regulator *vreg)
+{
+ int rc;
+
+ rc = cpr3_parse_common_corner_data(vreg);
+ if (rc) {
+ cpr3_err(vreg, "error reading corner data, rc=%d\n", rc);
+ return rc;
+ }
+
+ return rc;
+}
+
+/**
+ * cpr3_ipq807x_npu_calculate_open_loop_voltages() - calculate the open-loop
+ * voltage for each corner of a CPR3 regulator
+ * @vreg: Pointer to the CPR3 regulator
+ * @temp_correction: Temperature based correction
+ *
+ * If open-loop voltage interpolation is allowed in device tree, then
+ * this function calculates the open-loop voltage for a given corner using
+ * linear interpolation. This interpolation is performed using the processor
+ * frequencies of the lower and higher Fmax corners along with their fused
+ * open-loop voltages.
+ *
+ * If open-loop voltage interpolation is not allowed, then this function uses
+ * the Fmax fused open-loop voltage for all of the corners associated with a
+ * given fuse corner.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_ipq807x_npu_calculate_open_loop_voltages(
+ struct cpr3_regulator *vreg, bool temp_correction)
+{
+ struct cpr3_ipq807x_npu_fuses *fuse = vreg->platform_fuses;
+ struct cpr3_controller *ctrl = vreg->thread->ctrl;
+ int i, j, rc = 0;
+ u64 freq_low, volt_low, freq_high, volt_high;
+ int *fuse_volt;
+ int *fmax_corner;
+
+ fuse_volt = kcalloc(vreg->fuse_corner_count, sizeof(*fuse_volt),
+ GFP_KERNEL);
+ fmax_corner = kcalloc(vreg->fuse_corner_count, sizeof(*fmax_corner),
+ GFP_KERNEL);
+ if (!fuse_volt || !fmax_corner) {
+ rc = -ENOMEM;
+ goto done;
+ }
+
+ for (i = 0; i < vreg->fuse_corner_count; i++) {
+ if (ctrl->cpr_global_setting == CPR_DISABLED)
+ fuse_volt[i] = vreg->cpr3_regulator_data->fuse_ref_volt[i];
+ else
+ fuse_volt[i] = cpr3_convert_open_loop_voltage_fuse(
+ vreg->cpr3_regulator_data->fuse_ref_volt[i],
+ vreg->cpr3_regulator_data->fuse_step_volt,
+ fuse->init_voltage[i],
+ IPQ807x_NPU_VOLTAGE_FUSE_SIZE);
+
+ /* Log fused open-loop voltage values for debugging purposes. */
+ cpr3_info(vreg, "fused %8s: open-loop=%7d uV\n",
+ cpr3_ipq807x_npu_fuse_corner_name[i],
+ fuse_volt[i]);
+ }
+
+ rc = cpr3_determine_part_type(vreg,
+ fuse_volt[CPR3_IPQ807x_NPU_FUSE_CORNER_TURBO]);
+ if (rc) {
+ cpr3_err(vreg,
+ "fused part type detection failed failed, rc=%d\n", rc);
+ goto done;
+ }
+
+ rc = cpr3_adjust_fused_open_loop_voltages(vreg, fuse_volt);
+ if (rc) {
+ cpr3_err(vreg,
+ "fused open-loop voltage adjustment failed, rc=%d\n",
+ rc);
+ goto done;
+ }
+ if (temp_correction) {
+ rc = cpr3_determine_temp_base_open_loop_correction(vreg,
+ fuse_volt);
+ if (rc) {
+ cpr3_err(vreg,
+ "temp open-loop voltage adj. failed, rc=%d\n",
+ rc);
+ goto done;
+ }
+ }
+
+ for (i = 1; i < vreg->fuse_corner_count; i++) {
+ if (fuse_volt[i] < fuse_volt[i - 1]) {
+ cpr3_info(vreg,
+ "fuse corner %d voltage=%d uV < fuse corner %d \
+ voltage=%d uV; overriding: fuse corner %d \
+ voltage=%d\n",
+ i, fuse_volt[i], i - 1, fuse_volt[i - 1],
+ i, fuse_volt[i - 1]);
+ fuse_volt[i] = fuse_volt[i - 1];
+ }
+ }
+
+ /* Determine highest corner mapped to each fuse corner */
+ j = vreg->fuse_corner_count - 1;
+ for (i = vreg->corner_count - 1; i >= 0; i--) {
+ if (vreg->corner[i].cpr_fuse_corner == j) {
+ fmax_corner[j] = i;
+ j--;
+ }
+ }
+
+ if (j >= 0) {
+ cpr3_err(vreg, "invalid fuse corner mapping\n");
+ rc = -EINVAL;
+ goto done;
+ }
+
+ /*
+ * Interpolation is not possible for corners mapped to the lowest fuse
+ * corner so use the fuse corner value directly.
+ */
+ for (i = 0; i <= fmax_corner[0]; i++)
+ vreg->corner[i].open_loop_volt = fuse_volt[0];
+
+ /* Interpolate voltages for the higher fuse corners. */
+ for (i = 1; i < vreg->fuse_corner_count; i++) {
+ freq_low = vreg->corner[fmax_corner[i - 1]].proc_freq;
+ volt_low = fuse_volt[i - 1];
+ freq_high = vreg->corner[fmax_corner[i]].proc_freq;
+ volt_high = fuse_volt[i];
+
+ for (j = fmax_corner[i - 1] + 1; j <= fmax_corner[i]; j++)
+ vreg->corner[j].open_loop_volt = cpr3_interpolate(
+ freq_low, volt_low, freq_high, volt_high,
+ vreg->corner[j].proc_freq);
+ }
+
+done:
+ if (rc == 0) {
+ cpr3_debug(vreg, "unadjusted per-corner open-loop voltages:\n");
+ for (i = 0; i < vreg->corner_count; i++)
+ cpr3_debug(vreg, "open-loop[%2d] = %d uV\n", i,
+ vreg->corner[i].open_loop_volt);
+
+ rc = cpr3_adjust_open_loop_voltages(vreg);
+ if (rc)
+ cpr3_err(vreg,
+ "open-loop voltage adjustment failed, rc=%d\n",
+ rc);
+ }
+
+ kfree(fuse_volt);
+ kfree(fmax_corner);
+ return rc;
+}
+
+/**
+ * cpr3_npu_print_settings() - print out NPU CPR configuration settings into
+ * the kernel log for debugging purposes
+ * @vreg: Pointer to the CPR3 regulator
+ */
+static void cpr3_npu_print_settings(struct cpr3_regulator *vreg)
+{
+ struct cpr3_corner *corner;
+ int i;
+
+ cpr3_debug(vreg,
+ "Corner: Frequency (Hz), Fuse Corner, Floor (uV), \
+ Open-Loop (uV), Ceiling (uV)\n");
+ for (i = 0; i < vreg->corner_count; i++) {
+ corner = &vreg->corner[i];
+ cpr3_debug(vreg, "%3d: %10u, %2d, %7d, %7d, %7d\n",
+ i, corner->proc_freq, corner->cpr_fuse_corner,
+ corner->floor_volt, corner->open_loop_volt,
+ corner->ceiling_volt);
+ }
+
+ if (vreg->thread->ctrl->apm)
+ cpr3_debug(vreg, "APM threshold = %d uV, APM adjust = %d uV\n",
+ vreg->thread->ctrl->apm_threshold_volt,
+ vreg->thread->ctrl->apm_adj_volt);
+}
+
+/**
+ * cpr3_ipq807x_npu_calc_temp_based_ol_voltages() - Calculate the open loop
+ * voltages based on temperature based correction margins
+ * @vreg: Pointer to the CPR3 regulator
+ */
+
+static int
+cpr3_ipq807x_npu_calc_temp_based_ol_voltages(struct cpr3_regulator *vreg,
+ bool temp_correction)
+{
+ int rc, i;
+
+ rc = cpr3_ipq807x_npu_calculate_open_loop_voltages(vreg,
+ temp_correction);
+ if (rc) {
+ cpr3_err(vreg,
+ "unable to calculate open-loop voltages, rc=%d\n", rc);
+ return rc;
+ }
+
+ rc = cpr3_limit_open_loop_voltages(vreg);
+ if (rc) {
+ cpr3_err(vreg, "unable to limit open-loop voltages, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ cpr3_open_loop_voltage_as_ceiling(vreg);
+
+ rc = cpr3_limit_floor_voltages(vreg);
+ if (rc) {
+ cpr3_err(vreg, "unable to limit floor voltages, rc=%d\n", rc);
+ return rc;
+ }
+
+ for (i = 0; i < vreg->corner_count; i++) {
+ if (temp_correction)
+ vreg->corner[i].cold_temp_open_loop_volt =
+ vreg->corner[i].open_loop_volt;
+ else
+ vreg->corner[i].normal_temp_open_loop_volt =
+ vreg->corner[i].open_loop_volt;
+ }
+
+ cpr3_npu_print_settings(vreg);
+
+ return rc;
+}
+
+/**
+ * cpr3_npu_init_thread() - perform steps necessary to initialize the
+ * configuration data for a CPR3 thread
+ * @thread: Pointer to the CPR3 thread
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_npu_init_thread(struct cpr3_thread *thread)
+{
+ int rc;
+
+ rc = cpr3_parse_common_thread_data(thread);
+ if (rc) {
+ cpr3_err(thread->ctrl,
+ "thread %u CPR thread data from DT- failed, rc=%d\n",
+ thread->thread_id, rc);
+ return rc;
+ }
+
+ return 0;
+}
+
+/**
+ * cpr3_npu_init_regulator() - perform all steps necessary to initialize the
+ * configuration data for a CPR3 regulator
+ * @vreg: Pointer to the CPR3 regulator
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_npu_init_regulator(struct cpr3_regulator *vreg)
+{
+ struct cpr3_ipq807x_npu_fuses *fuse;
+ int rc, cold_temp = 0;
+ bool can_adj_cold_temp = cpr3_can_adjust_cold_temp(vreg);
+
+ rc = cpr3_ipq807x_npu_read_fuse_data(vreg);
+ if (rc) {
+ cpr3_err(vreg, "unable to read CPR fuse data, rc=%d\n", rc);
+ return rc;
+ }
+
+ fuse = vreg->platform_fuses;
+
+ rc = cpr3_npu_parse_corner_data(vreg);
+ if (rc) {
+ cpr3_err(vreg,
+ "Cannot read CPR corner data from DT, rc=%d\n", rc);
+ return rc;
+ }
+
+ rc = cpr3_mem_acc_init(vreg);
+ if (rc) {
+ if (rc != -EPROBE_DEFER)
+ cpr3_err(vreg,
+ "Cannot initialize mem-acc regulator settings, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ if (can_adj_cold_temp) {
+ rc = cpr3_ipq807x_npu_calc_temp_based_ol_voltages(vreg, true);
+ if (rc) {
+ cpr3_err(vreg,
+ "unable to calculate open-loop voltages, rc=%d\n", rc);
+ return rc;
+ }
+ }
+
+ rc = cpr3_ipq807x_npu_calc_temp_based_ol_voltages(vreg, false);
+ if (rc) {
+ cpr3_err(vreg,
+ "unable to calculate open-loop voltages, rc=%d\n", rc);
+ return rc;
+ }
+
+ if (can_adj_cold_temp) {
+ cpr3_info(vreg,
+ "Normal and Cold condition init done. Default to normal.\n");
+
+ rc = cpr3_get_cold_temp_threshold(vreg, &cold_temp);
+ if (rc) {
+ cpr3_err(vreg,
+ "Get cold temperature threshold failed, rc=%d\n", rc);
+ return rc;
+ }
+ register_low_temp_notif(NPU_TSENS, cold_temp,
+ cpr3_npu_temp_notify);
+ }
+
+ return rc;
+}
+
+/**
+ * cpr3_npu_init_controller() - perform NPU CPR3 controller specific
+ * initializations
+ * @ctrl: Pointer to the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_npu_init_controller(struct cpr3_controller *ctrl)
+{
+ int rc;
+
+ rc = cpr3_parse_open_loop_common_ctrl_data(ctrl);
+ if (rc) {
+ if (rc != -EPROBE_DEFER)
+ cpr3_err(ctrl, "unable to parse common controller data, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ ctrl->ctrl_type = CPR_CTRL_TYPE_CPR3;
+ ctrl->supports_hw_closed_loop = false;
+
+ return 0;
+}
+
+static const struct cpr3_reg_data ipq807x_cpr_npu = {
+ .cpr_valid_fuse_count = IPQ807x_NPU_FUSE_CORNERS,
+ .init_voltage_param = ipq807x_npu_init_voltage_param,
+ .fuse_ref_volt = ipq807x_npu_fuse_ref_volt,
+ .fuse_step_volt = IPQ807x_NPU_FUSE_STEP_VOLT,
+ .cpr_clk_rate = IPQ807x_NPU_CPR_CLOCK_RATE,
+};
+
+static const struct cpr3_reg_data ipq817x_cpr_npu = {
+ .cpr_valid_fuse_count = IPQ817x_NPU_FUSE_CORNERS,
+ .init_voltage_param = ipq807x_npu_init_voltage_param,
+ .fuse_ref_volt = ipq807x_npu_fuse_ref_volt,
+ .fuse_step_volt = IPQ807x_NPU_FUSE_STEP_VOLT,
+ .cpr_clk_rate = IPQ807x_NPU_CPR_CLOCK_RATE,
+};
+
+static const struct cpr3_reg_data ipq9574_cpr_npu = {
+ .cpr_valid_fuse_count = IPQ9574_NPU_FUSE_CORNERS,
+ .init_voltage_param = ipq9574_npu_init_voltage_param,
+ .fuse_ref_volt = ipq9574_npu_fuse_ref_volt,
+ .fuse_step_volt = IPQ9574_NPU_FUSE_STEP_VOLT,
+ .cpr_clk_rate = IPQ9574_NPU_CPR_CLOCK_RATE,
+};
+
+static struct of_device_id cpr3_regulator_match_table[] = {
+ {
+ .compatible = "qcom,cpr3-ipq807x-npu-regulator",
+ .data = &ipq807x_cpr_npu
+ },
+ {
+ .compatible = "qcom,cpr3-ipq817x-npu-regulator",
+ .data = &ipq817x_cpr_npu
+ },
+ {
+ .compatible = "qcom,cpr3-ipq9574-npu-regulator",
+ .data = &ipq9574_cpr_npu
+ },
+ {}
+};
+
+static int cpr3_npu_regulator_probe(struct platform_device *pdev)
+{
+ struct device *dev = &pdev->dev;
+ struct cpr3_controller *ctrl;
+ int i, rc;
+ const struct of_device_id *match;
+ struct cpr3_reg_data *cpr_data;
+
+ if (!dev->of_node) {
+ dev_err(dev, "Device tree node is missing\n");
+ return -EINVAL;
+ }
+
+ ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL);
+ if (!ctrl)
+ return -ENOMEM;
+ g_ctrl = ctrl;
+
+ match = of_match_device(cpr3_regulator_match_table, &pdev->dev);
+ if (!match)
+ return -ENODEV;
+
+ cpr_data = (struct cpr3_reg_data *)match->data;
+ g_valid_npu_fuse_count = cpr_data->cpr_valid_fuse_count;
+ dev_info(dev, "NPU CPR valid fuse count: %d\n", g_valid_npu_fuse_count);
+ ctrl->cpr_clock_rate = cpr_data->cpr_clk_rate;
+
+ ctrl->dev = dev;
+ /* Set to false later if anything precludes CPR operation. */
+ ctrl->cpr_allowed_hw = true;
+
+ rc = of_property_read_string(dev->of_node, "qcom,cpr-ctrl-name",
+ &ctrl->name);
+ if (rc) {
+ cpr3_err(ctrl, "unable to read qcom,cpr-ctrl-name, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ rc = cpr3_map_fuse_base(ctrl, pdev);
+ if (rc) {
+ cpr3_err(ctrl, "could not map fuse base address\n");
+ return rc;
+ }
+
+ rc = cpr3_read_tcsr_setting(ctrl, pdev, IPQ807x_NPU_CPR_TCSR_START,
+ IPQ807x_NPU_CPR_TCSR_END);
+ if (rc) {
+ cpr3_err(ctrl, "could not read CPR tcsr rsetting\n");
+ return rc;
+ }
+
+ rc = cpr3_allocate_threads(ctrl, 0, 0);
+ if (rc) {
+ cpr3_err(ctrl, "failed to allocate CPR thread array, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ if (ctrl->thread_count != 1) {
+ cpr3_err(ctrl, "expected 1 thread but found %d\n",
+ ctrl->thread_count);
+ return -EINVAL;
+ }
+
+ rc = cpr3_npu_init_controller(ctrl);
+ if (rc) {
+ if (rc != -EPROBE_DEFER)
+ cpr3_err(ctrl, "failed to initialize CPR controller parameters, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ rc = cpr3_npu_init_thread(&ctrl->thread[0]);
+ if (rc) {
+ cpr3_err(ctrl, "thread initialization failed, rc=%d\n", rc);
+ return rc;
+ }
+
+ for (i = 0; i < ctrl->thread[0].vreg_count; i++) {
+ ctrl->thread[0].vreg[i].cpr3_regulator_data = cpr_data;
+ rc = cpr3_npu_init_regulator(&ctrl->thread[0].vreg[i]);
+ if (rc) {
+ cpr3_err(&ctrl->thread[0].vreg[i], "regulator initialization failed, rc=%d\n",
+ rc);
+ return rc;
+ }
+ }
+
+ platform_set_drvdata(pdev, ctrl);
+
+ return cpr3_open_loop_regulator_register(pdev, ctrl);
+}
+
+static int cpr3_npu_regulator_remove(struct platform_device *pdev)
+{
+ struct cpr3_controller *ctrl = platform_get_drvdata(pdev);
+
+ return cpr3_open_loop_regulator_unregister(ctrl);
+}
+
+static struct platform_driver cpr3_npu_regulator_driver = {
+ .driver = {
+ .name = "qcom,cpr3-npu-regulator",
+ .of_match_table = cpr3_regulator_match_table,
+ .owner = THIS_MODULE,
+ },
+ .probe = cpr3_npu_regulator_probe,
+ .remove = cpr3_npu_regulator_remove,
+};
+
+static int cpr3_regulator_init(void)
+{
+ return platform_driver_register(&cpr3_npu_regulator_driver);
+}
+arch_initcall(cpr3_regulator_init);
+
+static void cpr3_regulator_exit(void)
+{
+ platform_driver_unregister(&cpr3_npu_regulator_driver);
+}
+module_exit(cpr3_regulator_exit);
+
+MODULE_DESCRIPTION("QCOM CPR3 NPU regulator driver");
+MODULE_LICENSE("Dual BSD/GPLv2");
+MODULE_ALIAS("platform:npu-ipq807x");
--- /dev/null
+++ b/drivers/regulator/cpr3-regulator.c
@@ -0,0 +1,5112 @@
+/*
+ * Copyright (c) 2015-2017, The Linux Foundation. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 and
+ * only version 2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ */
+
+#define pr_fmt(fmt) "%s: " fmt, __func__
+
+#include <linux/bitops.h>
+#include <linux/debugfs.h>
+#include <linux/delay.h>
+#include <linux/err.h>
+#include <linux/init.h>
+#include <linux/interrupt.h>
+#include <linux/io.h>
+#include <linux/kernel.h>
+#include <linux/ktime.h>
+#include <linux/list.h>
+#include <linux/module.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+#include <linux/platform_device.h>
+#include <linux/pm_opp.h>
+#include <linux/slab.h>
+#include <linux/sort.h>
+#include <linux/string.h>
+#include <linux/uaccess.h>
+#include <linux/regulator/driver.h>
+#include <linux/regulator/machine.h>
+#include <linux/regulator/of_regulator.h>
+#include <linux/panic_notifier.h>
+
+#include "cpr3-regulator.h"
+
+#define CPR3_REGULATOR_CORNER_INVALID (-1)
+#define CPR3_RO_MASK GENMASK(CPR3_RO_COUNT - 1, 0)
+
+/* CPR3 registers */
+#define CPR3_REG_CPR_CTL 0x4
+#define CPR3_CPR_CTL_LOOP_EN_MASK BIT(0)
+#define CPR3_CPR_CTL_LOOP_ENABLE BIT(0)
+#define CPR3_CPR_CTL_LOOP_DISABLE 0
+#define CPR3_CPR_CTL_IDLE_CLOCKS_MASK GENMASK(5, 1)
+#define CPR3_CPR_CTL_IDLE_CLOCKS_SHIFT 1
+#define CPR3_CPR_CTL_COUNT_MODE_MASK GENMASK(7, 6)
+#define CPR3_CPR_CTL_COUNT_MODE_SHIFT 6
+#define CPR3_CPR_CTL_COUNT_MODE_ALL_AT_ONCE_MIN 0
+#define CPR3_CPR_CTL_COUNT_MODE_ALL_AT_ONCE_MAX 1
+#define CPR3_CPR_CTL_COUNT_MODE_STAGGERED 2
+#define CPR3_CPR_CTL_COUNT_MODE_ALL_AT_ONCE_AGE 3
+#define CPR3_CPR_CTL_COUNT_REPEAT_MASK GENMASK(31, 9)
+#define CPR3_CPR_CTL_COUNT_REPEAT_SHIFT 9
+
+#define CPR3_REG_CPR_STATUS 0x8
+#define CPR3_CPR_STATUS_BUSY_MASK BIT(0)
+#define CPR3_CPR_STATUS_AGING_MEASUREMENT_MASK BIT(1)
+
+/*
+ * This register is not present on controllers that support HW closed-loop
+ * except CPR4 APSS controller.
+ */
+#define CPR3_REG_CPR_TIMER_AUTO_CONT 0xC
+
+#define CPR3_REG_CPR_STEP_QUOT 0x14
+#define CPR3_CPR_STEP_QUOT_MIN_MASK GENMASK(5, 0)
+#define CPR3_CPR_STEP_QUOT_MIN_SHIFT 0
+#define CPR3_CPR_STEP_QUOT_MAX_MASK GENMASK(11, 6)
+#define CPR3_CPR_STEP_QUOT_MAX_SHIFT 6
+
+#define CPR3_REG_GCNT(ro) (0xA0 + 0x4 * (ro))
+
+#define CPR3_REG_SENSOR_BYPASS_WRITE(sensor) (0xE0 + 0x4 * ((sensor) / 32))
+#define CPR3_REG_SENSOR_BYPASS_WRITE_BANK(bank) (0xE0 + 0x4 * (bank))
+
+#define CPR3_REG_SENSOR_MASK_WRITE(sensor) (0x120 + 0x4 * ((sensor) / 32))
+#define CPR3_REG_SENSOR_MASK_WRITE_BANK(bank) (0x120 + 0x4 * (bank))
+#define CPR3_REG_SENSOR_MASK_READ(sensor) (0x140 + 0x4 * ((sensor) / 32))
+
+#define CPR3_REG_SENSOR_OWNER(sensor) (0x200 + 0x4 * (sensor))
+
+#define CPR3_REG_CONT_CMD 0x800
+#define CPR3_CONT_CMD_ACK 0x1
+#define CPR3_CONT_CMD_NACK 0x0
+
+#define CPR3_REG_THRESH(thread) (0x808 + 0x440 * (thread))
+#define CPR3_THRESH_CONS_DOWN_MASK GENMASK(3, 0)
+#define CPR3_THRESH_CONS_DOWN_SHIFT 0
+#define CPR3_THRESH_CONS_UP_MASK GENMASK(7, 4)
+#define CPR3_THRESH_CONS_UP_SHIFT 4
+#define CPR3_THRESH_DOWN_THRESH_MASK GENMASK(12, 8)
+#define CPR3_THRESH_DOWN_THRESH_SHIFT 8
+#define CPR3_THRESH_UP_THRESH_MASK GENMASK(17, 13)
+#define CPR3_THRESH_UP_THRESH_SHIFT 13
+
+#define CPR3_REG_RO_MASK(thread) (0x80C + 0x440 * (thread))
+
+#define CPR3_REG_RESULT0(thread) (0x810 + 0x440 * (thread))
+#define CPR3_RESULT0_BUSY_MASK BIT(0)
+#define CPR3_RESULT0_STEP_DN_MASK BIT(1)
+#define CPR3_RESULT0_STEP_UP_MASK BIT(2)
+#define CPR3_RESULT0_ERROR_STEPS_MASK GENMASK(7, 3)
+#define CPR3_RESULT0_ERROR_STEPS_SHIFT 3
+#define CPR3_RESULT0_ERROR_MASK GENMASK(19, 8)
+#define CPR3_RESULT0_ERROR_SHIFT 8
+#define CPR3_RESULT0_NEGATIVE_MASK BIT(20)
+
+#define CPR3_REG_RESULT1(thread) (0x814 + 0x440 * (thread))
+#define CPR3_RESULT1_QUOT_MIN_MASK GENMASK(11, 0)
+#define CPR3_RESULT1_QUOT_MIN_SHIFT 0
+#define CPR3_RESULT1_QUOT_MAX_MASK GENMASK(23, 12)
+#define CPR3_RESULT1_QUOT_MAX_SHIFT 12
+#define CPR3_RESULT1_RO_MIN_MASK GENMASK(27, 24)
+#define CPR3_RESULT1_RO_MIN_SHIFT 24
+#define CPR3_RESULT1_RO_MAX_MASK GENMASK(31, 28)
+#define CPR3_RESULT1_RO_MAX_SHIFT 28
+
+#define CPR3_REG_RESULT2(thread) (0x818 + 0x440 * (thread))
+#define CPR3_RESULT2_STEP_QUOT_MIN_MASK GENMASK(5, 0)
+#define CPR3_RESULT2_STEP_QUOT_MIN_SHIFT 0
+#define CPR3_RESULT2_STEP_QUOT_MAX_MASK GENMASK(11, 6)
+#define CPR3_RESULT2_STEP_QUOT_MAX_SHIFT 6
+#define CPR3_RESULT2_SENSOR_MIN_MASK GENMASK(23, 16)
+#define CPR3_RESULT2_SENSOR_MIN_SHIFT 16
+#define CPR3_RESULT2_SENSOR_MAX_MASK GENMASK(31, 24)
+#define CPR3_RESULT2_SENSOR_MAX_SHIFT 24
+
+#define CPR3_REG_IRQ_EN 0x81C
+#define CPR3_REG_IRQ_CLEAR 0x820
+#define CPR3_REG_IRQ_STATUS 0x824
+#define CPR3_IRQ_UP BIT(3)
+#define CPR3_IRQ_MID BIT(2)
+#define CPR3_IRQ_DOWN BIT(1)
+
+#define CPR3_REG_TARGET_QUOT(thread, ro) \
+ (0x840 + 0x440 * (thread) + 0x4 * (ro))
+
+/* Registers found only on controllers that support HW closed-loop. */
+#define CPR3_REG_PD_THROTTLE 0xE8
+#define CPR3_PD_THROTTLE_DISABLE 0x0
+
+#define CPR3_REG_HW_CLOSED_LOOP 0x3000
+#define CPR3_HW_CLOSED_LOOP_ENABLE 0x0
+#define CPR3_HW_CLOSED_LOOP_DISABLE 0x1
+
+#define CPR3_REG_CPR_TIMER_MID_CONT 0x3004
+#define CPR3_REG_CPR_TIMER_UP_DN_CONT 0x3008
+
+#define CPR3_REG_LAST_MEASUREMENT 0x7F8
+#define CPR3_LAST_MEASUREMENT_THREAD_DN_SHIFT 0
+#define CPR3_LAST_MEASUREMENT_THREAD_UP_SHIFT 4
+#define CPR3_LAST_MEASUREMENT_THREAD_DN(thread) \
+ (BIT(thread) << CPR3_LAST_MEASUREMENT_THREAD_DN_SHIFT)
+#define CPR3_LAST_MEASUREMENT_THREAD_UP(thread) \
+ (BIT(thread) << CPR3_LAST_MEASUREMENT_THREAD_UP_SHIFT)
+#define CPR3_LAST_MEASUREMENT_AGGR_DN BIT(8)
+#define CPR3_LAST_MEASUREMENT_AGGR_MID BIT(9)
+#define CPR3_LAST_MEASUREMENT_AGGR_UP BIT(10)
+#define CPR3_LAST_MEASUREMENT_VALID BIT(11)
+#define CPR3_LAST_MEASUREMENT_SAW_ERROR BIT(12)
+#define CPR3_LAST_MEASUREMENT_PD_BYPASS_MASK GENMASK(23, 16)
+#define CPR3_LAST_MEASUREMENT_PD_BYPASS_SHIFT 16
+
+/* CPR4 controller specific registers and bit definitions */
+#define CPR4_REG_CPR_TIMER_CLAMP 0x10
+#define CPR4_CPR_TIMER_CLAMP_THREAD_AGGREGATION_EN BIT(27)
+
+#define CPR4_REG_MISC 0x700
+#define CPR4_MISC_MARGIN_TABLE_ROW_SELECT_MASK GENMASK(23, 20)
+#define CPR4_MISC_MARGIN_TABLE_ROW_SELECT_SHIFT 20
+#define CPR4_MISC_TEMP_SENSOR_ID_START_MASK GENMASK(27, 24)
+#define CPR4_MISC_TEMP_SENSOR_ID_START_SHIFT 24
+#define CPR4_MISC_TEMP_SENSOR_ID_END_MASK GENMASK(31, 28)
+#define CPR4_MISC_TEMP_SENSOR_ID_END_SHIFT 28
+
+#define CPR4_REG_SAW_ERROR_STEP_LIMIT 0x7A4
+#define CPR4_SAW_ERROR_STEP_LIMIT_UP_MASK GENMASK(4, 0)
+#define CPR4_SAW_ERROR_STEP_LIMIT_UP_SHIFT 0
+#define CPR4_SAW_ERROR_STEP_LIMIT_DN_MASK GENMASK(9, 5)
+#define CPR4_SAW_ERROR_STEP_LIMIT_DN_SHIFT 5
+
+#define CPR4_REG_MARGIN_TEMP_CORE_TIMERS 0x7A8
+#define CPR4_MARGIN_TEMP_CORE_TIMERS_SETTLE_VOLTAGE_COUNT_MASK GENMASK(28, 18)
+#define CPR4_MARGIN_TEMP_CORE_TIMERS_SETTLE_VOLTAGE_COUNT_SHIFT 18
+
+#define CPR4_REG_MARGIN_TEMP_CORE(core) (0x7AC + 0x4 * (core))
+#define CPR4_MARGIN_TEMP_CORE_ADJ_MASK GENMASK(7, 0)
+#define CPR4_MARGIN_TEMP_CORE_ADJ_SHIFT 8
+
+#define CPR4_REG_MARGIN_TEMP_POINT0N1 0x7F0
+#define CPR4_MARGIN_TEMP_POINT0_MASK GENMASK(11, 0)
+#define CPR4_MARGIN_TEMP_POINT0_SHIFT 0
+#define CPR4_MARGIN_TEMP_POINT1_MASK GENMASK(23, 12)
+#define CPR4_MARGIN_TEMP_POINT1_SHIFT 12
+#define CPR4_REG_MARGIN_TEMP_POINT2 0x7F4
+#define CPR4_MARGIN_TEMP_POINT2_MASK GENMASK(11, 0)
+#define CPR4_MARGIN_TEMP_POINT2_SHIFT 0
+
+#define CPR4_REG_MARGIN_ADJ_CTL 0x7F8
+#define CPR4_MARGIN_ADJ_CTL_BOOST_EN BIT(0)
+#define CPR4_MARGIN_ADJ_CTL_CORE_ADJ_EN BIT(1)
+#define CPR4_MARGIN_ADJ_CTL_TEMP_ADJ_EN BIT(2)
+#define CPR4_MARGIN_ADJ_CTL_TIMER_SETTLE_VOLTAGE_EN BIT(3)
+#define CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_EN_MASK BIT(4)
+#define CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_ENABLE BIT(4)
+#define CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_DISABLE 0
+#define CPR4_MARGIN_ADJ_CTL_PER_RO_KV_MARGIN_EN BIT(7)
+#define CPR4_MARGIN_ADJ_CTL_KV_MARGIN_ADJ_EN BIT(8)
+#define CPR4_MARGIN_ADJ_CTL_PMIC_STEP_SIZE_MASK GENMASK(16, 12)
+#define CPR4_MARGIN_ADJ_CTL_PMIC_STEP_SIZE_SHIFT 12
+#define CPR4_MARGIN_ADJ_CTL_INITIAL_TEMP_BAND_MASK GENMASK(21, 19)
+#define CPR4_MARGIN_ADJ_CTL_INITIAL_TEMP_BAND_SHIFT 19
+#define CPR4_MARGIN_ADJ_CTL_MAX_NUM_CORES_MASK GENMASK(25, 22)
+#define CPR4_MARGIN_ADJ_CTL_MAX_NUM_CORES_SHIFT 22
+#define CPR4_MARGIN_ADJ_CTL_KV_MARGIN_ADJ_STEP_QUOT_MASK GENMASK(31, 26)
+#define CPR4_MARGIN_ADJ_CTL_KV_MARGIN_ADJ_STEP_QUOT_SHIFT 26
+
+#define CPR4_REG_CPR_MASK_THREAD(thread) (0x80C + 0x440 * (thread))
+#define CPR4_CPR_MASK_THREAD_DISABLE_THREAD BIT(31)
+#define CPR4_CPR_MASK_THREAD_RO_MASK4THREAD_MASK GENMASK(15, 0)
+
+/*
+ * The amount of time to wait for the CPR controller to become idle when
+ * performing an aging measurement.
+ */
+#define CPR3_AGING_MEASUREMENT_TIMEOUT_NS 5000000
+
+/*
+ * The number of individual aging measurements to perform which are then
+ * averaged together in order to determine the final aging adjustment value.
+ */
+#define CPR3_AGING_MEASUREMENT_ITERATIONS 16
+
+/*
+ * Aging measurements for the aged and unaged ring oscillators take place a few
+ * microseconds apart. If the vdd-supply voltage fluctuates between the two
+ * measurements, then the difference between them will be incorrect. The
+ * difference could end up too high or too low. This constant defines the
+ * number of lowest and highest measurements to ignore when averaging.
+ */
+#define CPR3_AGING_MEASUREMENT_FILTER 3
+
+/*
+ * The number of times to attempt the full aging measurement sequence before
+ * declaring a measurement failure.
+ */
+#define CPR3_AGING_RETRY_COUNT 5
+
+/*
+ * The maximum time to wait in microseconds for a CPR register write to
+ * complete.
+ */
+#define CPR3_REGISTER_WRITE_DELAY_US 200
+
+static DEFINE_MUTEX(cpr3_controller_list_mutex);
+static LIST_HEAD(cpr3_controller_list);
+static struct dentry *cpr3_debugfs_base;
+
+/**
+ * cpr3_read() - read four bytes from the memory address specified
+ * @ctrl: Pointer to the CPR3 controller
+ * @offset: Offset in bytes from the CPR3 controller's base address
+ *
+ * Return: memory address value
+ */
+static inline u32 cpr3_read(struct cpr3_controller *ctrl, u32 offset)
+{
+ if (!ctrl->cpr_enabled) {
+ cpr3_err(ctrl, "CPR register reads are not possible when CPR clocks are disabled\n");
+ return 0;
+ }
+
+ return readl_relaxed(ctrl->cpr_ctrl_base + offset);
+}
+
+/**
+ * cpr3_write() - write four bytes to the memory address specified
+ * @ctrl: Pointer to the CPR3 controller
+ * @offset: Offset in bytes from the CPR3 controller's base address
+ * @value: Value to write to the memory address
+ *
+ * Return: none
+ */
+static inline void cpr3_write(struct cpr3_controller *ctrl, u32 offset,
+ u32 value)
+{
+ if (!ctrl->cpr_enabled) {
+ cpr3_err(ctrl, "CPR register writes are not possible when CPR clocks are disabled\n");
+ return;
+ }
+
+ writel_relaxed(value, ctrl->cpr_ctrl_base + offset);
+}
+
+/**
+ * cpr3_masked_write() - perform a read-modify-write sequence so that only
+ * masked bits are modified
+ * @ctrl: Pointer to the CPR3 controller
+ * @offset: Offset in bytes from the CPR3 controller's base address
+ * @mask: Mask identifying the bits that should be modified
+ * @value: Value to write to the memory address
+ *
+ * Return: none
+ */
+static inline void cpr3_masked_write(struct cpr3_controller *ctrl, u32 offset,
+ u32 mask, u32 value)
+{
+ u32 reg_val, orig_val;
+
+ if (!ctrl->cpr_enabled) {
+ cpr3_err(ctrl, "CPR register writes are not possible when CPR clocks are disabled\n");
+ return;
+ }
+
+ reg_val = orig_val = readl_relaxed(ctrl->cpr_ctrl_base + offset);
+ reg_val &= ~mask;
+ reg_val |= value & mask;
+
+ if (reg_val != orig_val)
+ writel_relaxed(reg_val, ctrl->cpr_ctrl_base + offset);
+}
+
+/**
+ * cpr3_ctrl_loop_enable() - enable the CPR sensing loop for a given controller
+ * @ctrl: Pointer to the CPR3 controller
+ *
+ * Return: none
+ */
+static inline void cpr3_ctrl_loop_enable(struct cpr3_controller *ctrl)
+{
+ if (ctrl->cpr_enabled && !(ctrl->aggr_corner.sdelta
+ && ctrl->aggr_corner.sdelta->allow_boost))
+ cpr3_masked_write(ctrl, CPR3_REG_CPR_CTL,
+ CPR3_CPR_CTL_LOOP_EN_MASK, CPR3_CPR_CTL_LOOP_ENABLE);
+}
+
+/**
+ * cpr3_ctrl_loop_disable() - disable the CPR sensing loop for a given
+ * controller
+ * @ctrl: Pointer to the CPR3 controller
+ *
+ * Return: none
+ */
+static inline void cpr3_ctrl_loop_disable(struct cpr3_controller *ctrl)
+{
+ if (ctrl->cpr_enabled)
+ cpr3_masked_write(ctrl, CPR3_REG_CPR_CTL,
+ CPR3_CPR_CTL_LOOP_EN_MASK, CPR3_CPR_CTL_LOOP_DISABLE);
+}
+
+/**
+ * cpr3_clock_enable() - prepare and enable all clocks used by this CPR3
+ * controller
+ * @ctrl: Pointer to the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_clock_enable(struct cpr3_controller *ctrl)
+{
+ int rc;
+
+ rc = clk_prepare_enable(ctrl->bus_clk);
+ if (rc) {
+ cpr3_err(ctrl, "failed to enable bus clock, rc=%d\n", rc);
+ return rc;
+ }
+
+ rc = clk_prepare_enable(ctrl->iface_clk);
+ if (rc) {
+ cpr3_err(ctrl, "failed to enable interface clock, rc=%d\n", rc);
+ clk_disable_unprepare(ctrl->bus_clk);
+ return rc;
+ }
+
+ rc = clk_prepare_enable(ctrl->core_clk);
+ if (rc) {
+ cpr3_err(ctrl, "failed to enable core clock, rc=%d\n", rc);
+ clk_disable_unprepare(ctrl->iface_clk);
+ clk_disable_unprepare(ctrl->bus_clk);
+ return rc;
+ }
+
+ return 0;
+}
+
+/**
+ * cpr3_clock_disable() - disable and unprepare all clocks used by this CPR3
+ * controller
+ * @ctrl: Pointer to the CPR3 controller
+ *
+ * Return: none
+ */
+static void cpr3_clock_disable(struct cpr3_controller *ctrl)
+{
+ clk_disable_unprepare(ctrl->core_clk);
+ clk_disable_unprepare(ctrl->iface_clk);
+ clk_disable_unprepare(ctrl->bus_clk);
+}
+
+/**
+ * cpr3_ctrl_clear_cpr4_config() - clear the CPR4 register configuration
+ * programmed for current aggregated corner of a given controller
+ * @ctrl: Pointer to the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+static inline int cpr3_ctrl_clear_cpr4_config(struct cpr3_controller *ctrl)
+{
+ struct cpr4_sdelta *aggr_sdelta = ctrl->aggr_corner.sdelta;
+ bool cpr_enabled = ctrl->cpr_enabled;
+ int i, rc = 0;
+
+ if (!aggr_sdelta || !(aggr_sdelta->allow_core_count_adj
+ || aggr_sdelta->allow_temp_adj || aggr_sdelta->allow_boost))
+ /* cpr4 features are not enabled */
+ return 0;
+
+ /* Ensure that CPR clocks are enabled before writing to registers. */
+ if (!cpr_enabled) {
+ rc = cpr3_clock_enable(ctrl);
+ if (rc) {
+ cpr3_err(ctrl, "clock enable failed, rc=%d\n", rc);
+ return rc;
+ }
+ ctrl->cpr_enabled = true;
+ }
+
+ /*
+ * Clear feature enable configuration made for current
+ * aggregated corner.
+ */
+ cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
+ CPR4_MARGIN_ADJ_CTL_MAX_NUM_CORES_MASK
+ | CPR4_MARGIN_ADJ_CTL_CORE_ADJ_EN
+ | CPR4_MARGIN_ADJ_CTL_TEMP_ADJ_EN
+ | CPR4_MARGIN_ADJ_CTL_KV_MARGIN_ADJ_EN
+ | CPR4_MARGIN_ADJ_CTL_BOOST_EN
+ | CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_EN_MASK, 0);
+
+ cpr3_masked_write(ctrl, CPR4_REG_MISC,
+ CPR4_MISC_MARGIN_TABLE_ROW_SELECT_MASK,
+ 0 << CPR4_MISC_MARGIN_TABLE_ROW_SELECT_SHIFT);
+
+ for (i = 0; i <= aggr_sdelta->max_core_count; i++) {
+ /* Clear voltage margin adjustments programmed in TEMP_COREi */
+ cpr3_write(ctrl, CPR4_REG_MARGIN_TEMP_CORE(i), 0);
+ }
+
+ /* Turn off CPR clocks if they were off before this function call. */
+ if (!cpr_enabled) {
+ cpr3_clock_disable(ctrl);
+ ctrl->cpr_enabled = false;
+ }
+
+ return 0;
+}
+
+/**
+ * cpr3_closed_loop_enable() - enable logical CPR closed-loop operation
+ * @ctrl: Pointer to the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_closed_loop_enable(struct cpr3_controller *ctrl)
+{
+ int rc;
+
+ if (!ctrl->cpr_allowed_hw || !ctrl->cpr_allowed_sw) {
+ cpr3_err(ctrl, "cannot enable closed-loop CPR operation because it is disallowed\n");
+ return -EPERM;
+ } else if (ctrl->cpr_enabled) {
+ /* Already enabled */
+ return 0;
+ } else if (ctrl->cpr_suspended) {
+ /*
+ * CPR must remain disabled as the system is entering suspend.
+ */
+ return 0;
+ }
+
+ rc = cpr3_clock_enable(ctrl);
+ if (rc) {
+ cpr3_err(ctrl, "unable to enable CPR clocks, rc=%d\n", rc);
+ return rc;
+ }
+
+ ctrl->cpr_enabled = true;
+ cpr3_debug(ctrl, "CPR closed-loop operation enabled\n");
+
+ return 0;
+}
+
+/**
+ * cpr3_closed_loop_disable() - disable logical CPR closed-loop operation
+ * @ctrl: Pointer to the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+static inline int cpr3_closed_loop_disable(struct cpr3_controller *ctrl)
+{
+ if (!ctrl->cpr_enabled) {
+ /* Already disabled */
+ return 0;
+ }
+
+ cpr3_clock_disable(ctrl);
+ ctrl->cpr_enabled = false;
+ cpr3_debug(ctrl, "CPR closed-loop operation disabled\n");
+
+ return 0;
+}
+
+/**
+ * cpr3_regulator_get_gcnt() - returns the GCNT register value corresponding
+ * to the clock rate and sensor time of the CPR3 controller
+ * @ctrl: Pointer to the CPR3 controller
+ *
+ * Return: GCNT value
+ */
+static u32 cpr3_regulator_get_gcnt(struct cpr3_controller *ctrl)
+{
+ u64 temp;
+ unsigned int remainder;
+ u32 gcnt;
+
+ temp = (u64)ctrl->cpr_clock_rate * (u64)ctrl->sensor_time;
+ remainder = do_div(temp, 1000000000);
+ if (remainder)
+ temp++;
+ /*
+ * GCNT == 0 corresponds to a single ref clock measurement interval so
+ * offset GCNT values by 1.
+ */
+ gcnt = temp - 1;
+
+ return gcnt;
+}
+
+/**
+ * cpr3_regulator_init_thread() - performs hardware initialization of CPR
+ * thread registers
+ * @thread: Pointer to the CPR3 thread
+ *
+ * CPR interface/bus clocks must be enabled before calling this function.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_regulator_init_thread(struct cpr3_thread *thread)
+{
+ u32 reg;
+
+ reg = (thread->consecutive_up << CPR3_THRESH_CONS_UP_SHIFT)
+ & CPR3_THRESH_CONS_UP_MASK;
+ reg |= (thread->consecutive_down << CPR3_THRESH_CONS_DOWN_SHIFT)
+ & CPR3_THRESH_CONS_DOWN_MASK;
+ reg |= (thread->up_threshold << CPR3_THRESH_UP_THRESH_SHIFT)
+ & CPR3_THRESH_UP_THRESH_MASK;
+ reg |= (thread->down_threshold << CPR3_THRESH_DOWN_THRESH_SHIFT)
+ & CPR3_THRESH_DOWN_THRESH_MASK;
+
+ cpr3_write(thread->ctrl, CPR3_REG_THRESH(thread->thread_id), reg);
+
+ /*
+ * Mask all RO's initially so that unused thread doesn't contribute
+ * to closed-loop voltage.
+ */
+ cpr3_write(thread->ctrl, CPR3_REG_RO_MASK(thread->thread_id),
+ CPR3_RO_MASK);
+
+ return 0;
+}
+
+/**
+ * cpr4_regulator_init_temp_points() - performs hardware initialization of CPR4
+ * registers to track tsen temperature data and also specify the
+ * temperature band range values to apply different voltage margins
+ * @ctrl: Pointer to the CPR3 controller
+ *
+ * CPR interface/bus clocks must be enabled before calling this function.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr4_regulator_init_temp_points(struct cpr3_controller *ctrl)
+{
+ if (!ctrl->allow_temp_adj)
+ return 0;
+
+ cpr3_masked_write(ctrl, CPR4_REG_MISC,
+ CPR4_MISC_TEMP_SENSOR_ID_START_MASK,
+ ctrl->temp_sensor_id_start
+ << CPR4_MISC_TEMP_SENSOR_ID_START_SHIFT);
+
+ cpr3_masked_write(ctrl, CPR4_REG_MISC,
+ CPR4_MISC_TEMP_SENSOR_ID_END_MASK,
+ ctrl->temp_sensor_id_end
+ << CPR4_MISC_TEMP_SENSOR_ID_END_SHIFT);
+
+ cpr3_masked_write(ctrl, CPR4_REG_MARGIN_TEMP_POINT2,
+ CPR4_MARGIN_TEMP_POINT2_MASK,
+ (ctrl->temp_band_count == 4 ? ctrl->temp_points[2] : 0x7FF)
+ << CPR4_MARGIN_TEMP_POINT2_SHIFT);
+
+ cpr3_masked_write(ctrl, CPR4_REG_MARGIN_TEMP_POINT0N1,
+ CPR4_MARGIN_TEMP_POINT1_MASK,
+ (ctrl->temp_band_count >= 3 ? ctrl->temp_points[1] : 0x7FF)
+ << CPR4_MARGIN_TEMP_POINT1_SHIFT);
+
+ cpr3_masked_write(ctrl, CPR4_REG_MARGIN_TEMP_POINT0N1,
+ CPR4_MARGIN_TEMP_POINT0_MASK,
+ (ctrl->temp_band_count >= 2 ? ctrl->temp_points[0] : 0x7FF)
+ << CPR4_MARGIN_TEMP_POINT0_SHIFT);
+ return 0;
+}
+
+/**
+ * cpr3_regulator_init_cpr4() - performs hardware initialization at the
+ * controller and thread level required for CPR4 operation.
+ * @ctrl: Pointer to the CPR3 controller
+ *
+ * CPR interface/bus clocks must be enabled before calling this function.
+ * This function allocates sdelta structures and sdelta tables for aggregated
+ * corners of the controller and its threads.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_regulator_init_cpr4(struct cpr3_controller *ctrl)
+{
+ struct cpr3_thread *thread;
+ struct cpr3_regulator *vreg;
+ struct cpr4_sdelta *sdelta;
+ int i, j, ctrl_max_core_count, thread_max_core_count, rc = 0;
+ bool ctrl_valid_sdelta, thread_valid_sdelta;
+ u32 pmic_step_size = 1;
+ int thread_id = 0;
+ u64 temp;
+
+ if (ctrl->supports_hw_closed_loop) {
+ if (ctrl->saw_use_unit_mV)
+ pmic_step_size = ctrl->step_volt / 1000;
+ cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
+ CPR4_MARGIN_ADJ_CTL_PMIC_STEP_SIZE_MASK,
+ (pmic_step_size
+ << CPR4_MARGIN_ADJ_CTL_PMIC_STEP_SIZE_SHIFT));
+
+ cpr3_masked_write(ctrl, CPR4_REG_SAW_ERROR_STEP_LIMIT,
+ CPR4_SAW_ERROR_STEP_LIMIT_DN_MASK,
+ (ctrl->down_error_step_limit
+ << CPR4_SAW_ERROR_STEP_LIMIT_DN_SHIFT));
+
+ cpr3_masked_write(ctrl, CPR4_REG_SAW_ERROR_STEP_LIMIT,
+ CPR4_SAW_ERROR_STEP_LIMIT_UP_MASK,
+ (ctrl->up_error_step_limit
+ << CPR4_SAW_ERROR_STEP_LIMIT_UP_SHIFT));
+
+ /*
+ * Enable thread aggregation regardless of which threads are
+ * enabled or disabled.
+ */
+ cpr3_masked_write(ctrl, CPR4_REG_CPR_TIMER_CLAMP,
+ CPR4_CPR_TIMER_CLAMP_THREAD_AGGREGATION_EN,
+ CPR4_CPR_TIMER_CLAMP_THREAD_AGGREGATION_EN);
+
+ switch (ctrl->thread_count) {
+ case 0:
+ /* Disable both threads */
+ cpr3_masked_write(ctrl, CPR4_REG_CPR_MASK_THREAD(0),
+ CPR4_CPR_MASK_THREAD_DISABLE_THREAD
+ | CPR4_CPR_MASK_THREAD_RO_MASK4THREAD_MASK,
+ CPR4_CPR_MASK_THREAD_DISABLE_THREAD
+ | CPR4_CPR_MASK_THREAD_RO_MASK4THREAD_MASK);
+
+ cpr3_masked_write(ctrl, CPR4_REG_CPR_MASK_THREAD(1),
+ CPR4_CPR_MASK_THREAD_DISABLE_THREAD
+ | CPR4_CPR_MASK_THREAD_RO_MASK4THREAD_MASK,
+ CPR4_CPR_MASK_THREAD_DISABLE_THREAD
+ | CPR4_CPR_MASK_THREAD_RO_MASK4THREAD_MASK);
+ break;
+ case 1:
+ /* Disable unused thread */
+ thread_id = ctrl->thread[0].thread_id ? 0 : 1;
+ cpr3_masked_write(ctrl,
+ CPR4_REG_CPR_MASK_THREAD(thread_id),
+ CPR4_CPR_MASK_THREAD_DISABLE_THREAD
+ | CPR4_CPR_MASK_THREAD_RO_MASK4THREAD_MASK,
+ CPR4_CPR_MASK_THREAD_DISABLE_THREAD
+ | CPR4_CPR_MASK_THREAD_RO_MASK4THREAD_MASK);
+ break;
+ }
+ }
+
+ if (!ctrl->allow_core_count_adj && !ctrl->allow_temp_adj
+ && !ctrl->allow_boost) {
+ /*
+ * Skip below configuration as none of the features
+ * are enabled.
+ */
+ return rc;
+ }
+
+ if (ctrl->supports_hw_closed_loop)
+ cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
+ CPR4_MARGIN_ADJ_CTL_TIMER_SETTLE_VOLTAGE_EN,
+ CPR4_MARGIN_ADJ_CTL_TIMER_SETTLE_VOLTAGE_EN);
+
+ cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
+ CPR4_MARGIN_ADJ_CTL_KV_MARGIN_ADJ_STEP_QUOT_MASK,
+ ctrl->step_quot_fixed
+ << CPR4_MARGIN_ADJ_CTL_KV_MARGIN_ADJ_STEP_QUOT_SHIFT);
+
+ cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
+ CPR4_MARGIN_ADJ_CTL_PER_RO_KV_MARGIN_EN,
+ (ctrl->use_dynamic_step_quot
+ ? CPR4_MARGIN_ADJ_CTL_PER_RO_KV_MARGIN_EN : 0));
+
+ cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
+ CPR4_MARGIN_ADJ_CTL_INITIAL_TEMP_BAND_MASK,
+ ctrl->initial_temp_band
+ << CPR4_MARGIN_ADJ_CTL_INITIAL_TEMP_BAND_SHIFT);
+
+ rc = cpr4_regulator_init_temp_points(ctrl);
+ if (rc) {
+ cpr3_err(ctrl, "initialize temp points failed, rc=%d\n", rc);
+ return rc;
+ }
+
+ if (ctrl->voltage_settling_time) {
+ /*
+ * Configure the settling timer used to account for
+ * one VDD supply step.
+ */
+ temp = (u64)ctrl->cpr_clock_rate
+ * (u64)ctrl->voltage_settling_time;
+ do_div(temp, 1000000000);
+ cpr3_masked_write(ctrl, CPR4_REG_MARGIN_TEMP_CORE_TIMERS,
+ CPR4_MARGIN_TEMP_CORE_TIMERS_SETTLE_VOLTAGE_COUNT_MASK,
+ temp
+ << CPR4_MARGIN_TEMP_CORE_TIMERS_SETTLE_VOLTAGE_COUNT_SHIFT);
+ }
+
+ /*
+ * Allocate memory for cpr4_sdelta structure and sdelta table for
+ * controller aggregated corner by finding the maximum core count
+ * used by any cpr3 regulators.
+ */
+ ctrl_max_core_count = 1;
+ ctrl_valid_sdelta = false;
+ for (i = 0; i < ctrl->thread_count; i++) {
+ thread = &ctrl->thread[i];
+
+ /*
+ * Allocate memory for cpr4_sdelta structure and sdelta table
+ * for thread aggregated corner by finding the maximum core
+ * count used by any cpr3 regulators of the thread.
+ */
+ thread_max_core_count = 1;
+ thread_valid_sdelta = false;
+ for (j = 0; j < thread->vreg_count; j++) {
+ vreg = &thread->vreg[j];
+ thread_max_core_count = max(thread_max_core_count,
+ vreg->max_core_count);
+ thread_valid_sdelta |= (vreg->allow_core_count_adj
+ | vreg->allow_temp_adj
+ | vreg->allow_boost);
+ }
+ if (thread_valid_sdelta) {
+ sdelta = devm_kzalloc(ctrl->dev, sizeof(*sdelta),
+ GFP_KERNEL);
+ if (!sdelta)
+ return -ENOMEM;
+
+ sdelta->table = devm_kcalloc(ctrl->dev,
+ thread_max_core_count
+ * ctrl->temp_band_count,
+ sizeof(*sdelta->table),
+ GFP_KERNEL);
+ if (!sdelta->table)
+ return -ENOMEM;
+
+ sdelta->boost_table = devm_kcalloc(ctrl->dev,
+ ctrl->temp_band_count,
+ sizeof(*sdelta->boost_table),
+ GFP_KERNEL);
+ if (!sdelta->boost_table)
+ return -ENOMEM;
+
+ thread->aggr_corner.sdelta = sdelta;
+ }
+
+ ctrl_valid_sdelta |= thread_valid_sdelta;
+ ctrl_max_core_count = max(ctrl_max_core_count,
+ thread_max_core_count);
+ }
+
+ if (ctrl_valid_sdelta) {
+ sdelta = devm_kzalloc(ctrl->dev, sizeof(*sdelta), GFP_KERNEL);
+ if (!sdelta)
+ return -ENOMEM;
+
+ sdelta->table = devm_kcalloc(ctrl->dev, ctrl_max_core_count
+ * ctrl->temp_band_count,
+ sizeof(*sdelta->table), GFP_KERNEL);
+ if (!sdelta->table)
+ return -ENOMEM;
+
+ sdelta->boost_table = devm_kcalloc(ctrl->dev,
+ ctrl->temp_band_count,
+ sizeof(*sdelta->boost_table),
+ GFP_KERNEL);
+ if (!sdelta->boost_table)
+ return -ENOMEM;
+
+ ctrl->aggr_corner.sdelta = sdelta;
+ }
+
+ return 0;
+}
+
+/**
+ * cpr3_write_temp_core_margin() - programs hardware SDELTA registers with
+ * the voltage margin adjustments that need to be applied for
+ * different online core-count and temperature bands.
+ * @ctrl: Pointer to the CPR3 controller
+ * @addr: SDELTA register address
+ * @temp_core_adj: Array of voltage margin values for different temperature
+ * bands.
+ *
+ * CPR interface/bus clocks must be enabled before calling this function.
+ *
+ * Return: none
+ */
+static void cpr3_write_temp_core_margin(struct cpr3_controller *ctrl,
+ int addr, int *temp_core_adj)
+{
+ int i, margin_steps;
+ u32 reg = 0;
+
+ for (i = 0; i < ctrl->temp_band_count; i++) {
+ margin_steps = max(min(temp_core_adj[i], 127), -128);
+ reg |= (margin_steps & CPR4_MARGIN_TEMP_CORE_ADJ_MASK) <<
+ (i * CPR4_MARGIN_TEMP_CORE_ADJ_SHIFT);
+ }
+
+ cpr3_write(ctrl, addr, reg);
+ cpr3_debug(ctrl, "sdelta offset=0x%08x, val=0x%08x\n", addr, reg);
+}
+
+/**
+ * cpr3_controller_program_sdelta() - programs hardware SDELTA registers with
+ * the voltage margin adjustments that need to be applied at
+ * different online core-count and temperature bands. Also,
+ * programs hardware register configuration for per-online-core
+ * and per-temperature based adjustments.
+ * @ctrl: Pointer to the CPR3 controller
+ *
+ * CPR interface/bus clocks must be enabled before calling this function.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_controller_program_sdelta(struct cpr3_controller *ctrl)
+{
+ struct cpr3_corner *corner = &ctrl->aggr_corner;
+ struct cpr4_sdelta *sdelta = corner->sdelta;
+ int i, index, max_core_count, rc = 0;
+ bool cpr_enabled = ctrl->cpr_enabled;
+
+ if (!sdelta)
+ /* cpr4_sdelta not defined for current aggregated corner */
+ return 0;
+
+ if (ctrl->supports_hw_closed_loop && ctrl->cpr_enabled) {
+ cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
+ CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_EN_MASK,
+ (ctrl->use_hw_closed_loop && !sdelta->allow_boost)
+ ? CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_ENABLE : 0);
+ }
+
+ if (!sdelta->allow_core_count_adj && !sdelta->allow_temp_adj
+ && !sdelta->allow_boost) {
+ /*
+ * Per-online-core, per-temperature and voltage boost
+ * adjustments are disabled for this aggregation corner.
+ */
+ return 0;
+ }
+
+ /* Ensure that CPR clocks are enabled before writing to registers. */
+ if (!cpr_enabled) {
+ rc = cpr3_clock_enable(ctrl);
+ if (rc) {
+ cpr3_err(ctrl, "clock enable failed, rc=%d\n", rc);
+ return rc;
+ }
+ ctrl->cpr_enabled = true;
+ }
+
+ max_core_count = sdelta->max_core_count;
+
+ if (sdelta->allow_core_count_adj || sdelta->allow_temp_adj) {
+ if (sdelta->allow_core_count_adj) {
+ /* Program TEMP_CORE0 to same margins as TEMP_CORE1 */
+ cpr3_write_temp_core_margin(ctrl,
+ CPR4_REG_MARGIN_TEMP_CORE(0),
+ &sdelta->table[0]);
+ }
+
+ for (i = 0; i < max_core_count; i++) {
+ index = i * sdelta->temp_band_count;
+ /*
+ * Program TEMP_COREi with voltage margin adjustments
+ * that need to be applied when the number of cores
+ * becomes i.
+ */
+ cpr3_write_temp_core_margin(ctrl,
+ CPR4_REG_MARGIN_TEMP_CORE(
+ sdelta->allow_core_count_adj
+ ? i + 1 : max_core_count),
+ &sdelta->table[index]);
+ }
+ }
+
+ if (sdelta->allow_boost) {
+ /* Program only boost_num_cores row of SDELTA */
+ cpr3_write_temp_core_margin(ctrl,
+ CPR4_REG_MARGIN_TEMP_CORE(sdelta->boost_num_cores),
+ &sdelta->boost_table[0]);
+ }
+
+ if (!sdelta->allow_core_count_adj && !sdelta->allow_boost) {
+ cpr3_masked_write(ctrl, CPR4_REG_MISC,
+ CPR4_MISC_MARGIN_TABLE_ROW_SELECT_MASK,
+ max_core_count
+ << CPR4_MISC_MARGIN_TABLE_ROW_SELECT_SHIFT);
+ }
+
+ cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
+ CPR4_MARGIN_ADJ_CTL_MAX_NUM_CORES_MASK
+ | CPR4_MARGIN_ADJ_CTL_CORE_ADJ_EN
+ | CPR4_MARGIN_ADJ_CTL_TEMP_ADJ_EN
+ | CPR4_MARGIN_ADJ_CTL_KV_MARGIN_ADJ_EN
+ | CPR4_MARGIN_ADJ_CTL_BOOST_EN,
+ max_core_count << CPR4_MARGIN_ADJ_CTL_MAX_NUM_CORES_SHIFT
+ | ((sdelta->allow_core_count_adj || sdelta->allow_boost)
+ ? CPR4_MARGIN_ADJ_CTL_CORE_ADJ_EN : 0)
+ | ((sdelta->allow_temp_adj && ctrl->supports_hw_closed_loop)
+ ? CPR4_MARGIN_ADJ_CTL_TEMP_ADJ_EN : 0)
+ | (((ctrl->use_hw_closed_loop && !sdelta->allow_boost)
+ || !ctrl->supports_hw_closed_loop)
+ ? CPR4_MARGIN_ADJ_CTL_KV_MARGIN_ADJ_EN : 0)
+ | (sdelta->allow_boost
+ ? CPR4_MARGIN_ADJ_CTL_BOOST_EN : 0));
+
+ /*
+ * Ensure that all previous CPR register writes have completed before
+ * continuing.
+ */
+ mb();
+
+ /* Turn off CPR clocks if they were off before this function call. */
+ if (!cpr_enabled) {
+ cpr3_clock_disable(ctrl);
+ ctrl->cpr_enabled = false;
+ }
+
+ return 0;
+}
+
+/**
+ * cpr3_regulator_init_ctrl() - performs hardware initialization of CPR
+ * controller registers
+ * @ctrl: Pointer to the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_regulator_init_ctrl(struct cpr3_controller *ctrl)
+{
+ int i, j, k, m, rc;
+ u32 ro_used = 0;
+ u32 gcnt, cont_dly, up_down_dly, val;
+ u64 temp;
+ char *mode;
+
+ if (ctrl->core_clk) {
+ rc = clk_set_rate(ctrl->core_clk, ctrl->cpr_clock_rate);
+ if (rc) {
+ cpr3_err(ctrl, "clk_set_rate(core_clk, %u) failed, rc=%d\n",
+ ctrl->cpr_clock_rate, rc);
+ return rc;
+ }
+ }
+
+ rc = cpr3_clock_enable(ctrl);
+ if (rc) {
+ cpr3_err(ctrl, "clock enable failed, rc=%d\n", rc);
+ return rc;
+ }
+ ctrl->cpr_enabled = true;
+
+ /* Find all RO's used by any corner of any regulator. */
+ for (i = 0; i < ctrl->thread_count; i++)
+ for (j = 0; j < ctrl->thread[i].vreg_count; j++)
+ for (k = 0; k < ctrl->thread[i].vreg[j].corner_count;
+ k++)
+ for (m = 0; m < CPR3_RO_COUNT; m++)
+ if (ctrl->thread[i].vreg[j].corner[k].
+ target_quot[m])
+ ro_used |= BIT(m);
+
+ /* Configure the GCNT of the RO's that will be used */
+ gcnt = cpr3_regulator_get_gcnt(ctrl);
+ for (i = 0; i < CPR3_RO_COUNT; i++)
+ if (ro_used & BIT(i))
+ cpr3_write(ctrl, CPR3_REG_GCNT(i), gcnt);
+
+ /* Configure the loop delay time */
+ temp = (u64)ctrl->cpr_clock_rate * (u64)ctrl->loop_time;
+ do_div(temp, 1000000000);
+ cont_dly = temp;
+ if (ctrl->supports_hw_closed_loop
+ && ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3)
+ cpr3_write(ctrl, CPR3_REG_CPR_TIMER_MID_CONT, cont_dly);
+ else
+ cpr3_write(ctrl, CPR3_REG_CPR_TIMER_AUTO_CONT, cont_dly);
+
+ if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3) {
+ temp = (u64)ctrl->cpr_clock_rate *
+ (u64)ctrl->up_down_delay_time;
+ do_div(temp, 1000000000);
+ up_down_dly = temp;
+ if (ctrl->supports_hw_closed_loop)
+ cpr3_write(ctrl, CPR3_REG_CPR_TIMER_UP_DN_CONT,
+ up_down_dly);
+ cpr3_debug(ctrl, "up_down_dly=%u, up_down_delay_time=%u ns\n",
+ up_down_dly, ctrl->up_down_delay_time);
+ }
+
+ cpr3_debug(ctrl, "cpr_clock_rate=%u HZ, sensor_time=%u ns, loop_time=%u ns, gcnt=%u, cont_dly=%u\n",
+ ctrl->cpr_clock_rate, ctrl->sensor_time, ctrl->loop_time,
+ gcnt, cont_dly);
+
+ /* Configure CPR sensor operation */
+ val = (ctrl->idle_clocks << CPR3_CPR_CTL_IDLE_CLOCKS_SHIFT)
+ & CPR3_CPR_CTL_IDLE_CLOCKS_MASK;
+ val |= (ctrl->count_mode << CPR3_CPR_CTL_COUNT_MODE_SHIFT)
+ & CPR3_CPR_CTL_COUNT_MODE_MASK;
+ val |= (ctrl->count_repeat << CPR3_CPR_CTL_COUNT_REPEAT_SHIFT)
+ & CPR3_CPR_CTL_COUNT_REPEAT_MASK;
+ cpr3_write(ctrl, CPR3_REG_CPR_CTL, val);
+
+ cpr3_debug(ctrl, "idle_clocks=%u, count_mode=%u, count_repeat=%u; CPR_CTL=0x%08X\n",
+ ctrl->idle_clocks, ctrl->count_mode, ctrl->count_repeat, val);
+
+ /* Configure CPR default step quotients */
+ val = (ctrl->step_quot_init_min << CPR3_CPR_STEP_QUOT_MIN_SHIFT)
+ & CPR3_CPR_STEP_QUOT_MIN_MASK;
+ val |= (ctrl->step_quot_init_max << CPR3_CPR_STEP_QUOT_MAX_SHIFT)
+ & CPR3_CPR_STEP_QUOT_MAX_MASK;
+ cpr3_write(ctrl, CPR3_REG_CPR_STEP_QUOT, val);
+
+ cpr3_debug(ctrl, "step_quot_min=%u, step_quot_max=%u; STEP_QUOT=0x%08X\n",
+ ctrl->step_quot_init_min, ctrl->step_quot_init_max, val);
+
+ /* Configure the CPR sensor ownership */
+ for (i = 0; i < ctrl->sensor_count; i++)
+ cpr3_write(ctrl, CPR3_REG_SENSOR_OWNER(i),
+ ctrl->sensor_owner[i]);
+
+ /* Configure per-thread registers */
+ for (i = 0; i < ctrl->thread_count; i++) {
+ rc = cpr3_regulator_init_thread(&ctrl->thread[i]);
+ if (rc) {
+ cpr3_err(ctrl, "CPR thread register initialization failed, rc=%d\n",
+ rc);
+ return rc;
+ }
+ }
+
+ if (ctrl->supports_hw_closed_loop) {
+ if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) {
+ cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
+ CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_EN_MASK,
+ ctrl->use_hw_closed_loop
+ ? CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_ENABLE
+ : CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_DISABLE);
+ } else if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3) {
+ cpr3_write(ctrl, CPR3_REG_HW_CLOSED_LOOP,
+ ctrl->use_hw_closed_loop
+ ? CPR3_HW_CLOSED_LOOP_ENABLE
+ : CPR3_HW_CLOSED_LOOP_DISABLE);
+
+ cpr3_debug(ctrl, "PD_THROTTLE=0x%08X\n",
+ ctrl->proc_clock_throttle);
+ }
+
+ if ((ctrl->use_hw_closed_loop ||
+ ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) &&
+ ctrl->vdd_limit_regulator) {
+ rc = regulator_enable(ctrl->vdd_limit_regulator);
+ if (rc) {
+ cpr3_err(ctrl, "CPR limit regulator enable failed, rc=%d\n",
+ rc);
+ return rc;
+ }
+ }
+ }
+
+ if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) {
+ rc = cpr3_regulator_init_cpr4(ctrl);
+ if (rc) {
+ cpr3_err(ctrl, "CPR4-specific controller initialization failed, rc=%d\n",
+ rc);
+ return rc;
+ }
+ }
+
+ /* Ensure that all register writes complete before disabling clocks. */
+ wmb();
+
+ cpr3_clock_disable(ctrl);
+ ctrl->cpr_enabled = false;
+
+ if (!ctrl->cpr_allowed_sw || !ctrl->cpr_allowed_hw)
+ mode = "open-loop";
+ else if (ctrl->supports_hw_closed_loop)
+ mode = ctrl->use_hw_closed_loop
+ ? "HW closed-loop" : "SW closed-loop";
+ else
+ mode = "closed-loop";
+
+ cpr3_info(ctrl, "Default CPR mode = %s", mode);
+
+ return 0;
+}
+
+/**
+ * cpr3_regulator_set_target_quot() - configure the target quotient for each
+ * RO of the CPR3 thread and set the RO mask
+ * @thread: Pointer to the CPR3 thread
+ *
+ * Return: none
+ */
+static void cpr3_regulator_set_target_quot(struct cpr3_thread *thread)
+{
+ u32 new_quot, last_quot;
+ int i;
+
+ if (thread->aggr_corner.ro_mask == CPR3_RO_MASK
+ && thread->last_closed_loop_aggr_corner.ro_mask == CPR3_RO_MASK) {
+ /* Avoid writing target quotients since all RO's are masked. */
+ return;
+ } else if (thread->aggr_corner.ro_mask == CPR3_RO_MASK) {
+ cpr3_write(thread->ctrl, CPR3_REG_RO_MASK(thread->thread_id),
+ CPR3_RO_MASK);
+ thread->last_closed_loop_aggr_corner.ro_mask = CPR3_RO_MASK;
+ /*
+ * Only the RO_MASK register needs to be written since all
+ * RO's are masked.
+ */
+ return;
+ } else if (thread->aggr_corner.ro_mask
+ != thread->last_closed_loop_aggr_corner.ro_mask) {
+ cpr3_write(thread->ctrl, CPR3_REG_RO_MASK(thread->thread_id),
+ thread->aggr_corner.ro_mask);
+ }
+
+ for (i = 0; i < CPR3_RO_COUNT; i++) {
+ new_quot = thread->aggr_corner.target_quot[i];
+ last_quot = thread->last_closed_loop_aggr_corner.target_quot[i];
+ if (new_quot != last_quot)
+ cpr3_write(thread->ctrl,
+ CPR3_REG_TARGET_QUOT(thread->thread_id, i),
+ new_quot);
+ }
+
+ thread->last_closed_loop_aggr_corner = thread->aggr_corner;
+
+ return;
+}
+
+/**
+ * cpr3_update_vreg_closed_loop_volt() - update the last known settled
+ * closed loop voltage for a CPR3 regulator
+ * @vreg: Pointer to the CPR3 regulator
+ * @vdd_volt: Last known settled voltage in microvolts for the
+ * VDD supply
+ * @reg_last_measurement: Value read from the LAST_MEASUREMENT register
+ *
+ * Return: none
+ */
+static void cpr3_update_vreg_closed_loop_volt(struct cpr3_regulator *vreg,
+ int vdd_volt, u32 reg_last_measurement)
+{
+ bool step_dn, step_up, aggr_step_up, aggr_step_dn, aggr_step_mid;
+ bool valid, pd_valid, saw_error;
+ struct cpr3_controller *ctrl = vreg->thread->ctrl;
+ struct cpr3_corner *corner;
+ u32 id;
+
+ if (vreg->last_closed_loop_corner == CPR3_REGULATOR_CORNER_INVALID)
+ return;
+ else
+ corner = &vreg->corner[vreg->last_closed_loop_corner];
+
+ if (vreg->thread->last_closed_loop_aggr_corner.ro_mask
+ == CPR3_RO_MASK || !vreg->aggregated) {
+ return;
+ } else if (!ctrl->cpr_enabled || !ctrl->last_corner_was_closed_loop) {
+ return;
+ } else if (ctrl->thread_count == 1
+ && vdd_volt >= corner->floor_volt
+ && vdd_volt <= corner->ceiling_volt) {
+ corner->last_volt = vdd_volt;
+ cpr3_debug(vreg, "last_volt updated: last_volt[%d]=%d, ceiling_volt[%d]=%d, floor_volt[%d]=%d\n",
+ vreg->last_closed_loop_corner, corner->last_volt,
+ vreg->last_closed_loop_corner,
+ corner->ceiling_volt,
+ vreg->last_closed_loop_corner,
+ corner->floor_volt);
+ return;
+ } else if (!ctrl->supports_hw_closed_loop) {
+ return;
+ } else if (ctrl->ctrl_type != CPR_CTRL_TYPE_CPR3) {
+ corner->last_volt = vdd_volt;
+ cpr3_debug(vreg, "last_volt updated: last_volt[%d]=%d, ceiling_volt[%d]=%d, floor_volt[%d]=%d\n",
+ vreg->last_closed_loop_corner, corner->last_volt,
+ vreg->last_closed_loop_corner,
+ corner->ceiling_volt,
+ vreg->last_closed_loop_corner,
+ corner->floor_volt);
+ return;
+ }
+
+ /* CPR clocks are on and HW closed loop is supported */
+ valid = !!(reg_last_measurement & CPR3_LAST_MEASUREMENT_VALID);
+ if (!valid) {
+ cpr3_debug(vreg, "CPR_LAST_VALID_MEASUREMENT=0x%X valid bit not set\n",
+ reg_last_measurement);
+ return;
+ }
+
+ id = vreg->thread->thread_id;
+
+ step_dn
+ = !!(reg_last_measurement & CPR3_LAST_MEASUREMENT_THREAD_DN(id));
+ step_up
+ = !!(reg_last_measurement & CPR3_LAST_MEASUREMENT_THREAD_UP(id));
+ aggr_step_dn = !!(reg_last_measurement & CPR3_LAST_MEASUREMENT_AGGR_DN);
+ aggr_step_mid
+ = !!(reg_last_measurement & CPR3_LAST_MEASUREMENT_AGGR_MID);
+ aggr_step_up = !!(reg_last_measurement & CPR3_LAST_MEASUREMENT_AGGR_UP);
+ saw_error = !!(reg_last_measurement & CPR3_LAST_MEASUREMENT_SAW_ERROR);
+ pd_valid
+ = !((((reg_last_measurement & CPR3_LAST_MEASUREMENT_PD_BYPASS_MASK)
+ >> CPR3_LAST_MEASUREMENT_PD_BYPASS_SHIFT)
+ & vreg->pd_bypass_mask) == vreg->pd_bypass_mask);
+
+ if (!pd_valid) {
+ cpr3_debug(vreg, "CPR_LAST_VALID_MEASUREMENT=0x%X, all power domains bypassed\n",
+ reg_last_measurement);
+ return;
+ } else if (step_dn && step_up) {
+ cpr3_err(vreg, "both up and down status bits set, CPR_LAST_VALID_MEASUREMENT=0x%X\n",
+ reg_last_measurement);
+ return;
+ } else if (aggr_step_dn && step_dn && vdd_volt < corner->last_volt
+ && vdd_volt >= corner->floor_volt) {
+ corner->last_volt = vdd_volt;
+ } else if (aggr_step_up && step_up && vdd_volt > corner->last_volt
+ && vdd_volt <= corner->ceiling_volt) {
+ corner->last_volt = vdd_volt;
+ } else if (aggr_step_mid
+ && vdd_volt >= corner->floor_volt
+ && vdd_volt <= corner->ceiling_volt) {
+ corner->last_volt = vdd_volt;
+ } else if (saw_error && (vdd_volt == corner->ceiling_volt
+ || vdd_volt == corner->floor_volt)) {
+ corner->last_volt = vdd_volt;
+ } else {
+ cpr3_debug(vreg, "last_volt not updated: last_volt[%d]=%d, ceiling_volt[%d]=%d, floor_volt[%d]=%d, vdd_volt=%d, CPR_LAST_VALID_MEASUREMENT=0x%X\n",
+ vreg->last_closed_loop_corner, corner->last_volt,
+ vreg->last_closed_loop_corner,
+ corner->ceiling_volt,
+ vreg->last_closed_loop_corner, corner->floor_volt,
+ vdd_volt, reg_last_measurement);
+ return;
+ }
+
+ cpr3_debug(vreg, "last_volt updated: last_volt[%d]=%d, ceiling_volt[%d]=%d, floor_volt[%d]=%d, CPR_LAST_VALID_MEASUREMENT=0x%X\n",
+ vreg->last_closed_loop_corner, corner->last_volt,
+ vreg->last_closed_loop_corner, corner->ceiling_volt,
+ vreg->last_closed_loop_corner, corner->floor_volt,
+ reg_last_measurement);
+}
+
+/**
+ * cpr3_regulator_mem_acc_bhs_used() - determines if mem-acc regulators powered
+ * through a BHS are associated with the CPR3 controller or any of
+ * the CPR3 regulators it controls.
+ * @ctrl: Pointer to the CPR3 controller
+ *
+ * This function determines if the CPR3 controller or any of its CPR3 regulators
+ * need to manage mem-acc regulators that are currently powered through a BHS
+ * and whose corner selection is based upon a particular voltage threshold.
+ *
+ * Return: true or false
+ */
+static bool cpr3_regulator_mem_acc_bhs_used(struct cpr3_controller *ctrl)
+{
+ struct cpr3_regulator *vreg;
+ int i, j;
+
+ if (!ctrl->mem_acc_threshold_volt)
+ return false;
+
+ if (ctrl->mem_acc_regulator)
+ return true;
+
+ for (i = 0; i < ctrl->thread_count; i++) {
+ for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
+ vreg = &ctrl->thread[i].vreg[j];
+
+ if (vreg->mem_acc_regulator)
+ return true;
+ }
+ }
+
+ return false;
+}
+
+/**
+ * cpr3_regulator_config_bhs_mem_acc() - configure the mem-acc regulator
+ * settings for hardware blocks currently powered through the BHS.
+ * @ctrl: Pointer to the CPR3 controller
+ * @new_volt: New voltage in microvolts that VDD supply needs to
+ * end up at
+ * @last_volt: Pointer to the last known voltage in microvolts for the
+ * VDD supply
+ * @aggr_corner: Pointer to the CPR3 corner which corresponds to the max
+ * corner aggregated from all CPR3 threads managed by the
+ * CPR3 controller
+ *
+ * This function programs the mem-acc regulator corners for CPR3 regulators
+ * whose LDO regulators are in bypassed state. The function also handles
+ * CPR3 controllers which utilize mem-acc regulators that operate independently
+ * from the LDO hardware and that must be programmed when the VDD supply
+ * crosses a particular voltage threshold.
+ *
+ * Return: 0 on success, errno on failure. If the VDD supply voltage is
+ * modified, last_volt is updated to reflect the new voltage setpoint.
+ */
+static int cpr3_regulator_config_bhs_mem_acc(struct cpr3_controller *ctrl,
+ int new_volt, int *last_volt,
+ struct cpr3_corner *aggr_corner)
+{
+ struct cpr3_regulator *vreg;
+ int i, j, rc, mem_acc_corn, safe_volt;
+ int mem_acc_volt = ctrl->mem_acc_threshold_volt;
+ int ref_volt;
+
+ if (!cpr3_regulator_mem_acc_bhs_used(ctrl))
+ return 0;
+
+ ref_volt = ctrl->use_hw_closed_loop ? aggr_corner->floor_volt :
+ new_volt;
+
+ if (((*last_volt < mem_acc_volt && mem_acc_volt <= ref_volt) ||
+ (*last_volt >= mem_acc_volt && mem_acc_volt > ref_volt))) {
+ if (ref_volt < *last_volt)
+ safe_volt = max(mem_acc_volt, aggr_corner->last_volt);
+ else
+ safe_volt = max(mem_acc_volt, *last_volt);
+
+ rc = regulator_set_voltage(ctrl->vdd_regulator, safe_volt,
+ new_volt < *last_volt ?
+ ctrl->aggr_corner.ceiling_volt :
+ new_volt);
+ if (rc) {
+ cpr3_err(ctrl, "regulator_set_voltage(vdd) == %d failed, rc=%d\n",
+ safe_volt, rc);
+ return rc;
+ }
+
+ *last_volt = safe_volt;
+
+ mem_acc_corn = ref_volt < mem_acc_volt ?
+ ctrl->mem_acc_corner_map[CPR3_MEM_ACC_LOW_CORNER] :
+ ctrl->mem_acc_corner_map[CPR3_MEM_ACC_HIGH_CORNER];
+
+ if (ctrl->mem_acc_regulator) {
+ rc = regulator_set_voltage(ctrl->mem_acc_regulator,
+ mem_acc_corn, mem_acc_corn);
+ if (rc) {
+ cpr3_err(ctrl, "regulator_set_voltage(mem_acc) == %d failed, rc=%d\n",
+ mem_acc_corn, rc);
+ return rc;
+ }
+ }
+
+ for (i = 0; i < ctrl->thread_count; i++) {
+ for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
+ vreg = &ctrl->thread[i].vreg[j];
+
+ if (!vreg->mem_acc_regulator)
+ continue;
+
+ rc = regulator_set_voltage(
+ vreg->mem_acc_regulator, mem_acc_corn,
+ mem_acc_corn);
+ if (rc) {
+ cpr3_err(vreg, "regulator_set_voltage(mem_acc) == %d failed, rc=%d\n",
+ mem_acc_corn, rc);
+ return rc;
+ }
+ }
+ }
+ }
+
+ return 0;
+}
+
+/**
+ * cpr3_regulator_switch_apm_mode() - switch the mode of the APM controller
+ * associated with a given CPR3 controller
+ * @ctrl: Pointer to the CPR3 controller
+ * @new_volt: New voltage in microvolts that VDD supply needs to
+ * end up at
+ * @last_volt: Pointer to the last known voltage in microvolts for the
+ * VDD supply
+ * @aggr_corner: Pointer to the CPR3 corner which corresponds to the max
+ * corner aggregated from all CPR3 threads managed by the
+ * CPR3 controller
+ *
+ * This function requests a switch of the APM mode while guaranteeing
+ * any LDO regulator hardware requirements are satisfied. The function must
+ * be called once it is known a new VDD supply setpoint crosses the APM
+ * voltage threshold.
+ *
+ * Return: 0 on success, errno on failure. If the VDD supply voltage is
+ * modified, last_volt is updated to reflect the new voltage setpoint.
+ */
+static int cpr3_regulator_switch_apm_mode(struct cpr3_controller *ctrl,
+ int new_volt, int *last_volt,
+ struct cpr3_corner *aggr_corner)
+{
+ struct regulator *vdd = ctrl->vdd_regulator;
+ int apm_volt = ctrl->apm_threshold_volt;
+ int orig_last_volt = *last_volt;
+ int rc;
+
+ rc = regulator_set_voltage(vdd, apm_volt, apm_volt);
+ if (rc) {
+ cpr3_err(ctrl, "regulator_set_voltage(vdd) == %d failed, rc=%d\n",
+ apm_volt, rc);
+ return rc;
+ }
+
+ *last_volt = apm_volt;
+
+ rc = msm_apm_set_supply(ctrl->apm, new_volt >= apm_volt
+ ? ctrl->apm_high_supply : ctrl->apm_low_supply);
+ if (rc) {
+ cpr3_err(ctrl, "APM switch failed, rc=%d\n", rc);
+ /* Roll back the voltage. */
+ regulator_set_voltage(vdd, orig_last_volt, INT_MAX);
+ *last_volt = orig_last_volt;
+ return rc;
+ }
+ return 0;
+}
+
+/**
+ * cpr3_regulator_config_voltage_crossings() - configure APM and mem-acc
+ * settings depending upon a new VDD supply setpoint
+ *
+ * @ctrl: Pointer to the CPR3 controller
+ * @new_volt: New voltage in microvolts that VDD supply needs to
+ * end up at
+ * @last_volt: Pointer to the last known voltage in microvolts for the
+ * VDD supply
+ * @aggr_corner: Pointer to the CPR3 corner which corresponds to the max
+ * corner aggregated from all CPR3 threads managed by the
+ * CPR3 controller
+ *
+ * This function handles the APM and mem-acc regulator reconfiguration if
+ * the new VDD supply voltage will result in crossing their respective voltage
+ * thresholds.
+ *
+ * Return: 0 on success, errno on failure. If the VDD supply voltage is
+ * modified, last_volt is updated to reflect the new voltage setpoint.
+ */
+static int cpr3_regulator_config_voltage_crossings(struct cpr3_controller *ctrl,
+ int new_volt, int *last_volt,
+ struct cpr3_corner *aggr_corner)
+{
+ bool apm_crossing = false, mem_acc_crossing = false;
+ bool mem_acc_bhs_used;
+ int apm_volt = ctrl->apm_threshold_volt;
+ int mem_acc_volt = ctrl->mem_acc_threshold_volt;
+ int ref_volt, rc;
+
+ if (ctrl->apm && apm_volt > 0
+ && ((*last_volt < apm_volt && apm_volt <= new_volt)
+ || (*last_volt >= apm_volt && apm_volt > new_volt)))
+ apm_crossing = true;
+
+ mem_acc_bhs_used = cpr3_regulator_mem_acc_bhs_used(ctrl);
+
+ ref_volt = ctrl->use_hw_closed_loop ? aggr_corner->floor_volt :
+ new_volt;
+
+ if (mem_acc_bhs_used &&
+ (((*last_volt < mem_acc_volt && mem_acc_volt <= ref_volt) ||
+ (*last_volt >= mem_acc_volt && mem_acc_volt > ref_volt))))
+ mem_acc_crossing = true;
+
+ if (apm_crossing && mem_acc_crossing) {
+ if ((new_volt < *last_volt && apm_volt >= mem_acc_volt) ||
+ (new_volt >= *last_volt && apm_volt < mem_acc_volt)) {
+ rc = cpr3_regulator_switch_apm_mode(ctrl, new_volt,
+ last_volt,
+ aggr_corner);
+ if (rc) {
+ cpr3_err(ctrl, "unable to switch APM mode\n");
+ return rc;
+ }
+
+ rc = cpr3_regulator_config_bhs_mem_acc(ctrl, new_volt,
+ last_volt, aggr_corner);
+ if (rc) {
+ cpr3_err(ctrl, "unable to configure BHS mem-acc settings\n");
+ return rc;
+ }
+ } else {
+ rc = cpr3_regulator_config_bhs_mem_acc(ctrl, new_volt,
+ last_volt, aggr_corner);
+ if (rc) {
+ cpr3_err(ctrl, "unable to configure BHS mem-acc settings\n");
+ return rc;
+ }
+
+ rc = cpr3_regulator_switch_apm_mode(ctrl, new_volt,
+ last_volt,
+ aggr_corner);
+ if (rc) {
+ cpr3_err(ctrl, "unable to switch APM mode\n");
+ return rc;
+ }
+ }
+ } else if (apm_crossing) {
+ rc = cpr3_regulator_switch_apm_mode(ctrl, new_volt, last_volt,
+ aggr_corner);
+ if (rc) {
+ cpr3_err(ctrl, "unable to switch APM mode\n");
+ return rc;
+ }
+ } else if (mem_acc_crossing) {
+ rc = cpr3_regulator_config_bhs_mem_acc(ctrl, new_volt,
+ last_volt, aggr_corner);
+ if (rc) {
+ cpr3_err(ctrl, "unable to configure BHS mem-acc settings\n");
+ return rc;
+ }
+ }
+
+ return 0;
+}
+
+/**
+ * cpr3_regulator_config_mem_acc() - configure the corner of the mem-acc
+ * regulator associated with the CPR3 controller
+ * @ctrl: Pointer to the CPR3 controller
+ * @aggr_corner: Pointer to the CPR3 corner which corresponds to the max
+ * corner aggregated from all CPR3 threads managed by the
+ * CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_regulator_config_mem_acc(struct cpr3_controller *ctrl,
+ struct cpr3_corner *aggr_corner)
+{
+ int rc;
+
+ if (ctrl->mem_acc_regulator && aggr_corner->mem_acc_volt) {
+ rc = regulator_set_voltage(ctrl->mem_acc_regulator,
+ aggr_corner->mem_acc_volt,
+ aggr_corner->mem_acc_volt);
+ if (rc) {
+ cpr3_err(ctrl, "regulator_set_voltage(mem_acc) == %d failed, rc=%d\n",
+ aggr_corner->mem_acc_volt, rc);
+ return rc;
+ }
+ }
+
+ return 0;
+}
+
+/**
+ * cpr3_regulator_scale_vdd_voltage() - scale the CPR controlled VDD supply
+ * voltage to the new level while satisfying any other hardware
+ * requirements
+ * @ctrl: Pointer to the CPR3 controller
+ * @new_volt: New voltage in microvolts that VDD supply needs to end
+ * up at
+ * @last_volt: Last known voltage in microvolts for the VDD supply
+ * @aggr_corner: Pointer to the CPR3 corner which corresponds to the max
+ * corner aggregated from all CPR3 threads managed by the
+ * CPR3 controller
+ *
+ * This function scales the CPR controlled VDD supply voltage from its
+ * current level to the new voltage that is specified. If the supply is
+ * configured to use the APM and the APM threshold is crossed as a result of
+ * the voltage scaling, then this function also stops at the APM threshold,
+ * switches the APM source, and finally sets the final new voltage.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_regulator_scale_vdd_voltage(struct cpr3_controller *ctrl,
+ int new_volt, int last_volt,
+ struct cpr3_corner *aggr_corner)
+{
+ struct regulator *vdd = ctrl->vdd_regulator;
+ int rc;
+
+ if (new_volt < last_volt) {
+ rc = cpr3_regulator_config_mem_acc(ctrl, aggr_corner);
+ if (rc)
+ return rc;
+ } else {
+ /* Increasing VDD voltage */
+ if (ctrl->system_regulator) {
+ rc = regulator_set_voltage(ctrl->system_regulator,
+ aggr_corner->system_volt, INT_MAX);
+ if (rc) {
+ cpr3_err(ctrl, "regulator_set_voltage(system) == %d failed, rc=%d\n",
+ aggr_corner->system_volt, rc);
+ return rc;
+ }
+ }
+ }
+
+ rc = cpr3_regulator_config_voltage_crossings(ctrl, new_volt, &last_volt,
+ aggr_corner);
+ if (rc) {
+ cpr3_err(ctrl, "unable to handle voltage threshold crossing configurations, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ /*
+ * Subtract a small amount from the min_uV parameter so that the
+ * set voltage request is not dropped by the framework due to being
+ * duplicate. This is needed in order to switch from hardware
+ * closed-loop to open-loop successfully.
+ */
+ rc = regulator_set_voltage(vdd, new_volt - (ctrl->cpr_enabled ? 0 : 1),
+ aggr_corner->ceiling_volt);
+ if (rc) {
+ cpr3_err(ctrl, "regulator_set_voltage(vdd) == %d failed, rc=%d\n",
+ new_volt, rc);
+ return rc;
+ }
+
+ if (new_volt == last_volt && ctrl->supports_hw_closed_loop
+ && ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) {
+ /*
+ * CPR4 features enforce voltage reprogramming when the last
+ * set voltage and new set voltage are same. This way, we can
+ * ensure that SAW PMIC STATUS register is updated with newly
+ * programmed voltage.
+ */
+ rc = regulator_sync_voltage(vdd);
+ if (rc) {
+ cpr3_err(ctrl, "regulator_sync_voltage(vdd) == %d failed, rc=%d\n",
+ new_volt, rc);
+ return rc;
+ }
+ }
+
+ if (new_volt >= last_volt) {
+ rc = cpr3_regulator_config_mem_acc(ctrl, aggr_corner);
+ if (rc)
+ return rc;
+ } else {
+ /* Decreasing VDD voltage */
+ if (ctrl->system_regulator) {
+ rc = regulator_set_voltage(ctrl->system_regulator,
+ aggr_corner->system_volt, INT_MAX);
+ if (rc) {
+ cpr3_err(ctrl, "regulator_set_voltage(system) == %d failed, rc=%d\n",
+ aggr_corner->system_volt, rc);
+ return rc;
+ }
+ }
+ }
+
+ return 0;
+}
+
+/**
+ * cpr3_regulator_get_dynamic_floor_volt() - returns the current dynamic floor
+ * voltage based upon static configurations and the state of all
+ * power domains during the last CPR measurement
+ * @ctrl: Pointer to the CPR3 controller
+ * @reg_last_measurement: Value read from the LAST_MEASUREMENT register
+ *
+ * When using HW closed-loop, the dynamic floor voltage is always returned
+ * regardless of the current state of the power domains.
+ *
+ * Return: dynamic floor voltage in microvolts or 0 if dynamic floor is not
+ * currently required
+ */
+static int cpr3_regulator_get_dynamic_floor_volt(struct cpr3_controller *ctrl,
+ u32 reg_last_measurement)
+{
+ int dynamic_floor_volt = 0;
+ struct cpr3_regulator *vreg;
+ bool valid, pd_valid;
+ u32 bypass_bits;
+ int i, j;
+
+ if (!ctrl->supports_hw_closed_loop)
+ return 0;
+
+ if (likely(!ctrl->use_hw_closed_loop)) {
+ valid = !!(reg_last_measurement & CPR3_LAST_MEASUREMENT_VALID);
+ bypass_bits
+ = (reg_last_measurement & CPR3_LAST_MEASUREMENT_PD_BYPASS_MASK)
+ >> CPR3_LAST_MEASUREMENT_PD_BYPASS_SHIFT;
+ } else {
+ /*
+ * Ensure that the dynamic floor voltage is always used for
+ * HW closed-loop since the conditions below cannot be evaluated
+ * after each CPR measurement.
+ */
+ valid = false;
+ bypass_bits = 0;
+ }
+
+ for (i = 0; i < ctrl->thread_count; i++) {
+ for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
+ vreg = &ctrl->thread[i].vreg[j];
+
+ if (!vreg->uses_dynamic_floor)
+ continue;
+
+ pd_valid = !((bypass_bits & vreg->pd_bypass_mask)
+ == vreg->pd_bypass_mask);
+
+ if (!valid || !pd_valid)
+ dynamic_floor_volt = max(dynamic_floor_volt,
+ vreg->corner[
+ vreg->dynamic_floor_corner].last_volt);
+ }
+ }
+
+ return dynamic_floor_volt;
+}
+
+/**
+ * cpr3_regulator_max_sdelta_diff() - returns the maximum voltage difference in
+ * microvolts that can result from different operating conditions
+ * for the specified sdelta struct
+ * @sdelta: Pointer to the sdelta structure
+ * @step_volt: Step size in microvolts between available set
+ * points of the VDD supply.
+ *
+ * Return: voltage difference between the highest and lowest adjustments if
+ * sdelta and sdelta->table are valid, else 0.
+ */
+static int cpr3_regulator_max_sdelta_diff(const struct cpr4_sdelta *sdelta,
+ int step_volt)
+{
+ int i, j, index, sdelta_min = INT_MAX, sdelta_max = INT_MIN;
+
+ if (!sdelta || !sdelta->table)
+ return 0;
+
+ for (i = 0; i < sdelta->max_core_count; i++) {
+ for (j = 0; j < sdelta->temp_band_count; j++) {
+ index = i * sdelta->temp_band_count + j;
+ sdelta_min = min(sdelta_min, sdelta->table[index]);
+ sdelta_max = max(sdelta_max, sdelta->table[index]);
+ }
+ }
+
+ return (sdelta_max - sdelta_min) * step_volt;
+}
+
+/**
+ * cpr3_regulator_aggregate_sdelta() - check open-loop voltages of current
+ * aggregated corner and current corner of a given regulator
+ * and adjust the sdelta strucuture data of aggregate corner.
+ * @aggr_corner: Pointer to accumulated aggregated corner which
+ * is both an input and an output
+ * @corner: Pointer to the corner to be aggregated with
+ * aggr_corner
+ * @step_volt: Step size in microvolts between available set
+ * points of the VDD supply.
+ *
+ * Return: none
+ */
+static void cpr3_regulator_aggregate_sdelta(
+ struct cpr3_corner *aggr_corner,
+ const struct cpr3_corner *corner, int step_volt)
+{
+ struct cpr4_sdelta *aggr_sdelta, *sdelta;
+ int aggr_core_count, core_count, temp_band_count;
+ u32 aggr_index, index;
+ int i, j, sdelta_size, cap_steps, adjust_sdelta;
+
+ aggr_sdelta = aggr_corner->sdelta;
+ sdelta = corner->sdelta;
+
+ if (aggr_corner->open_loop_volt < corner->open_loop_volt) {
+ /*
+ * Found the new dominant regulator as its open-loop requirement
+ * is higher than previous dominant regulator. Calculate cap
+ * voltage to limit the SDELTA values to make sure the runtime
+ * (Core-count/temp) adjustments do not violate other
+ * regulators' voltage requirements. Use cpr4_sdelta values of
+ * new dominant regulator.
+ */
+ aggr_sdelta->cap_volt = min(aggr_sdelta->cap_volt,
+ (corner->open_loop_volt -
+ aggr_corner->open_loop_volt));
+
+ /* Clear old data in the sdelta table */
+ sdelta_size = aggr_sdelta->max_core_count
+ * aggr_sdelta->temp_band_count;
+
+ if (aggr_sdelta->allow_core_count_adj
+ || aggr_sdelta->allow_temp_adj)
+ memset(aggr_sdelta->table, 0, sdelta_size
+ * sizeof(*aggr_sdelta->table));
+
+ if (sdelta->allow_temp_adj || sdelta->allow_core_count_adj) {
+ /* Copy new data in sdelta table */
+ sdelta_size = sdelta->max_core_count
+ * sdelta->temp_band_count;
+ if (sdelta->table)
+ memcpy(aggr_sdelta->table, sdelta->table,
+ sdelta_size * sizeof(*sdelta->table));
+ }
+
+ if (sdelta->allow_boost) {
+ memcpy(aggr_sdelta->boost_table, sdelta->boost_table,
+ sdelta->temp_band_count
+ * sizeof(*sdelta->boost_table));
+ aggr_sdelta->boost_num_cores = sdelta->boost_num_cores;
+ } else if (aggr_sdelta->allow_boost) {
+ for (i = 0; i < aggr_sdelta->temp_band_count; i++) {
+ adjust_sdelta = (corner->open_loop_volt
+ - aggr_corner->open_loop_volt)
+ / step_volt;
+ aggr_sdelta->boost_table[i] += adjust_sdelta;
+ aggr_sdelta->boost_table[i]
+ = min(aggr_sdelta->boost_table[i], 0);
+ }
+ }
+
+ aggr_corner->open_loop_volt = corner->open_loop_volt;
+ aggr_sdelta->allow_temp_adj = sdelta->allow_temp_adj;
+ aggr_sdelta->allow_core_count_adj
+ = sdelta->allow_core_count_adj;
+ aggr_sdelta->max_core_count = sdelta->max_core_count;
+ aggr_sdelta->temp_band_count = sdelta->temp_band_count;
+ } else if (aggr_corner->open_loop_volt > corner->open_loop_volt) {
+ /*
+ * Adjust the cap voltage if the open-loop requirement of new
+ * regulator is the next highest.
+ */
+ aggr_sdelta->cap_volt = min(aggr_sdelta->cap_volt,
+ (aggr_corner->open_loop_volt
+ - corner->open_loop_volt));
+
+ if (sdelta->allow_boost) {
+ for (i = 0; i < aggr_sdelta->temp_band_count; i++) {
+ adjust_sdelta = (aggr_corner->open_loop_volt
+ - corner->open_loop_volt)
+ / step_volt;
+ aggr_sdelta->boost_table[i] =
+ sdelta->boost_table[i] + adjust_sdelta;
+ aggr_sdelta->boost_table[i]
+ = min(aggr_sdelta->boost_table[i], 0);
+ }
+ aggr_sdelta->boost_num_cores = sdelta->boost_num_cores;
+ }
+ } else {
+ /*
+ * Found another dominant regulator with same open-loop
+ * requirement. Make cap voltage to '0'. Disable core-count
+ * adjustments as we couldn't support for both regulators.
+ * Keep enable temp based adjustments if enabled for both
+ * regulators and choose mininum margin adjustment values
+ * between them.
+ */
+ aggr_sdelta->cap_volt = 0;
+ aggr_sdelta->allow_core_count_adj = false;
+
+ if (aggr_sdelta->allow_temp_adj
+ && sdelta->allow_temp_adj) {
+ aggr_core_count = aggr_sdelta->max_core_count - 1;
+ core_count = sdelta->max_core_count - 1;
+ temp_band_count = sdelta->temp_band_count;
+ for (j = 0; j < temp_band_count; j++) {
+ aggr_index = aggr_core_count * temp_band_count
+ + j;
+ index = core_count * temp_band_count + j;
+ aggr_sdelta->table[aggr_index] =
+ min(aggr_sdelta->table[aggr_index],
+ sdelta->table[index]);
+ }
+ } else {
+ aggr_sdelta->allow_temp_adj = false;
+ }
+
+ if (sdelta->allow_boost) {
+ memcpy(aggr_sdelta->boost_table, sdelta->boost_table,
+ sdelta->temp_band_count
+ * sizeof(*sdelta->boost_table));
+ aggr_sdelta->boost_num_cores = sdelta->boost_num_cores;
+ }
+ }
+
+ /* Keep non-dominant clients boost enable state */
+ aggr_sdelta->allow_boost |= sdelta->allow_boost;
+ if (aggr_sdelta->allow_boost)
+ aggr_sdelta->allow_core_count_adj = false;
+
+ if (aggr_sdelta->cap_volt && !(aggr_sdelta->cap_volt == INT_MAX)) {
+ core_count = aggr_sdelta->max_core_count;
+ temp_band_count = aggr_sdelta->temp_band_count;
+ /*
+ * Convert cap voltage from uV to PMIC steps and use to limit
+ * sdelta margin adjustments.
+ */
+ cap_steps = aggr_sdelta->cap_volt / step_volt;
+ for (i = 0; i < core_count; i++)
+ for (j = 0; j < temp_band_count; j++) {
+ index = i * temp_band_count + j;
+ aggr_sdelta->table[index] =
+ min(aggr_sdelta->table[index],
+ cap_steps);
+ }
+ }
+}
+
+/**
+ * cpr3_regulator_aggregate_corners() - aggregate two corners together
+ * @aggr_corner: Pointer to accumulated aggregated corner which
+ * is both an input and an output
+ * @corner: Pointer to the corner to be aggregated with
+ * aggr_corner
+ * @aggr_quot: Flag indicating that target quotients should be
+ * aggregated as well.
+ * @step_volt: Step size in microvolts between available set
+ * points of the VDD supply.
+ *
+ * Return: none
+ */
+static void cpr3_regulator_aggregate_corners(struct cpr3_corner *aggr_corner,
+ const struct cpr3_corner *corner, bool aggr_quot,
+ int step_volt)
+{
+ int i;
+
+ aggr_corner->ceiling_volt
+ = max(aggr_corner->ceiling_volt, corner->ceiling_volt);
+ aggr_corner->floor_volt
+ = max(aggr_corner->floor_volt, corner->floor_volt);
+ aggr_corner->last_volt
+ = max(aggr_corner->last_volt, corner->last_volt);
+ aggr_corner->system_volt
+ = max(aggr_corner->system_volt, corner->system_volt);
+ aggr_corner->mem_acc_volt
+ = max(aggr_corner->mem_acc_volt, corner->mem_acc_volt);
+ aggr_corner->irq_en |= corner->irq_en;
+ aggr_corner->use_open_loop |= corner->use_open_loop;
+
+ if (aggr_quot) {
+ aggr_corner->ro_mask &= corner->ro_mask;
+
+ for (i = 0; i < CPR3_RO_COUNT; i++)
+ aggr_corner->target_quot[i]
+ = max(aggr_corner->target_quot[i],
+ corner->target_quot[i]);
+ }
+
+ if (aggr_corner->sdelta && corner->sdelta
+ && (aggr_corner->sdelta->table
+ || aggr_corner->sdelta->boost_table)) {
+ cpr3_regulator_aggregate_sdelta(aggr_corner, corner, step_volt);
+ } else {
+ aggr_corner->open_loop_volt
+ = max(aggr_corner->open_loop_volt,
+ corner->open_loop_volt);
+ }
+}
+
+/**
+ * cpr3_regulator_update_ctrl_state() - update the state of the CPR controller
+ * to reflect the corners used by all CPR3 regulators as well as
+ * the CPR operating mode
+ * @ctrl: Pointer to the CPR3 controller
+ *
+ * This function aggregates the CPR parameters for all CPR3 regulators
+ * associated with the VDD supply. Upon success, it sets the aggregated last
+ * known good voltage.
+ *
+ * The VDD supply voltage will not be physically configured unless this
+ * condition is met by at least one of the regulators of the controller:
+ * regulator->vreg_enabled == true &&
+ * regulator->current_corner != CPR3_REGULATOR_CORNER_INVALID
+ *
+ * CPR registers for the controller and each thread are updated as long as
+ * ctrl->cpr_enabled == true.
+ *
+ * Note, CPR3 controller lock must be held by the caller.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int _cpr3_regulator_update_ctrl_state(struct cpr3_controller *ctrl)
+{
+ struct cpr3_corner aggr_corner = {};
+ struct cpr3_thread *thread;
+ struct cpr3_regulator *vreg;
+ struct cpr4_sdelta *sdelta;
+ bool valid = false;
+ bool thread_valid;
+ int i, j, rc, new_volt, vdd_volt, dynamic_floor_volt, last_corner_volt;
+ u32 reg_last_measurement = 0, sdelta_size;
+ int *sdelta_table, *boost_table;
+
+ last_corner_volt = 0;
+ if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) {
+ rc = cpr3_ctrl_clear_cpr4_config(ctrl);
+ if (rc) {
+ cpr3_err(ctrl, "failed to clear CPR4 configuration,rc=%d\n",
+ rc);
+ return rc;
+ }
+ }
+
+ cpr3_ctrl_loop_disable(ctrl);
+
+ vdd_volt = regulator_get_voltage(ctrl->vdd_regulator);
+ if (vdd_volt < 0) {
+ cpr3_err(ctrl, "regulator_get_voltage(vdd) failed, rc=%d\n",
+ vdd_volt);
+ return vdd_volt;
+ }
+
+ if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) {
+ /*
+ * Save aggregated corner open-loop voltage which was programmed
+ * during last corner switch which is used when programming new
+ * aggregated corner open-loop voltage.
+ */
+ last_corner_volt = ctrl->aggr_corner.open_loop_volt;
+ }
+
+ if (ctrl->cpr_enabled && ctrl->use_hw_closed_loop &&
+ ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3)
+ reg_last_measurement
+ = cpr3_read(ctrl, CPR3_REG_LAST_MEASUREMENT);
+
+ aggr_corner.sdelta = ctrl->aggr_corner.sdelta;
+ if (aggr_corner.sdelta) {
+ sdelta = aggr_corner.sdelta;
+ sdelta_table = sdelta->table;
+ if (sdelta_table) {
+ sdelta_size = sdelta->max_core_count *
+ sdelta->temp_band_count;
+ memset(sdelta_table, 0, sdelta_size
+ * sizeof(*sdelta_table));
+ }
+
+ boost_table = sdelta->boost_table;
+ if (boost_table)
+ memset(boost_table, 0, sdelta->temp_band_count
+ * sizeof(*boost_table));
+
+ memset(sdelta, 0, sizeof(*sdelta));
+ sdelta->table = sdelta_table;
+ sdelta->cap_volt = INT_MAX;
+ sdelta->boost_table = boost_table;
+ }
+
+ /* Aggregate the requests of all threads */
+ for (i = 0; i < ctrl->thread_count; i++) {
+ thread = &ctrl->thread[i];
+ thread_valid = false;
+
+ sdelta = thread->aggr_corner.sdelta;
+ if (sdelta) {
+ sdelta_table = sdelta->table;
+ if (sdelta_table) {
+ sdelta_size = sdelta->max_core_count *
+ sdelta->temp_band_count;
+ memset(sdelta_table, 0, sdelta_size
+ * sizeof(*sdelta_table));
+ }
+
+ boost_table = sdelta->boost_table;
+ if (boost_table)
+ memset(boost_table, 0, sdelta->temp_band_count
+ * sizeof(*boost_table));
+
+ memset(sdelta, 0, sizeof(*sdelta));
+ sdelta->table = sdelta_table;
+ sdelta->cap_volt = INT_MAX;
+ sdelta->boost_table = boost_table;
+ }
+
+ memset(&thread->aggr_corner, 0, sizeof(thread->aggr_corner));
+ thread->aggr_corner.sdelta = sdelta;
+ thread->aggr_corner.ro_mask = CPR3_RO_MASK;
+
+ for (j = 0; j < thread->vreg_count; j++) {
+ vreg = &thread->vreg[j];
+
+ if (ctrl->cpr_enabled && ctrl->use_hw_closed_loop)
+ cpr3_update_vreg_closed_loop_volt(vreg,
+ vdd_volt, reg_last_measurement);
+
+ if (!vreg->vreg_enabled
+ || vreg->current_corner
+ == CPR3_REGULATOR_CORNER_INVALID) {
+ /* Cannot participate in aggregation. */
+ vreg->aggregated = false;
+ continue;
+ } else {
+ vreg->aggregated = true;
+ thread_valid = true;
+ }
+
+ cpr3_regulator_aggregate_corners(&thread->aggr_corner,
+ &vreg->corner[vreg->current_corner],
+ true, ctrl->step_volt);
+ }
+
+ valid |= thread_valid;
+
+ if (thread_valid)
+ cpr3_regulator_aggregate_corners(&aggr_corner,
+ &thread->aggr_corner,
+ false, ctrl->step_volt);
+ }
+
+ if (valid && ctrl->cpr_allowed_hw && ctrl->cpr_allowed_sw) {
+ rc = cpr3_closed_loop_enable(ctrl);
+ if (rc) {
+ cpr3_err(ctrl, "could not enable CPR, rc=%d\n", rc);
+ return rc;
+ }
+ } else {
+ rc = cpr3_closed_loop_disable(ctrl);
+ if (rc) {
+ cpr3_err(ctrl, "could not disable CPR, rc=%d\n", rc);
+ return rc;
+ }
+ }
+
+ /* No threads are enabled with a valid corner so exit. */
+ if (!valid)
+ return 0;
+
+ /*
+ * When using CPR hardware closed-loop, the voltage may vary anywhere
+ * between the floor and ceiling voltage without software notification.
+ * Therefore, it is required that the floor to ceiling range for the
+ * aggregated corner not intersect the APM threshold voltage. Adjust
+ * the floor to ceiling range if this requirement is violated.
+ *
+ * The following algorithm is applied in the case that
+ * floor < threshold <= ceiling:
+ * if open_loop >= threshold - adj, then floor = threshold
+ * else ceiling = threshold - step
+ * where adj = an adjustment factor to ensure sufficient voltage margin
+ * and step = VDD output step size
+ *
+ * The open-loop and last known voltages are also bounded by the new
+ * floor or ceiling value as needed.
+ */
+ if (ctrl->use_hw_closed_loop
+ && aggr_corner.ceiling_volt >= ctrl->apm_threshold_volt
+ && aggr_corner.floor_volt < ctrl->apm_threshold_volt) {
+
+ if (aggr_corner.open_loop_volt
+ >= ctrl->apm_threshold_volt - ctrl->apm_adj_volt)
+ aggr_corner.floor_volt = ctrl->apm_threshold_volt;
+ else
+ aggr_corner.ceiling_volt
+ = ctrl->apm_threshold_volt - ctrl->step_volt;
+
+ aggr_corner.last_volt
+ = max(aggr_corner.last_volt, aggr_corner.floor_volt);
+ aggr_corner.last_volt
+ = min(aggr_corner.last_volt, aggr_corner.ceiling_volt);
+ aggr_corner.open_loop_volt
+ = max(aggr_corner.open_loop_volt, aggr_corner.floor_volt);
+ aggr_corner.open_loop_volt
+ = min(aggr_corner.open_loop_volt, aggr_corner.ceiling_volt);
+ }
+
+ if (ctrl->use_hw_closed_loop
+ && aggr_corner.ceiling_volt >= ctrl->mem_acc_threshold_volt
+ && aggr_corner.floor_volt < ctrl->mem_acc_threshold_volt) {
+ aggr_corner.floor_volt = ctrl->mem_acc_threshold_volt;
+ aggr_corner.last_volt = max(aggr_corner.last_volt,
+ aggr_corner.floor_volt);
+ aggr_corner.open_loop_volt = max(aggr_corner.open_loop_volt,
+ aggr_corner.floor_volt);
+ }
+
+ if (ctrl->use_hw_closed_loop) {
+ dynamic_floor_volt
+ = cpr3_regulator_get_dynamic_floor_volt(ctrl,
+ reg_last_measurement);
+ if (aggr_corner.floor_volt < dynamic_floor_volt) {
+ aggr_corner.floor_volt = dynamic_floor_volt;
+ aggr_corner.last_volt = max(aggr_corner.last_volt,
+ aggr_corner.floor_volt);
+ aggr_corner.open_loop_volt
+ = max(aggr_corner.open_loop_volt,
+ aggr_corner.floor_volt);
+ aggr_corner.ceiling_volt = max(aggr_corner.ceiling_volt,
+ aggr_corner.floor_volt);
+ }
+ }
+
+ if (ctrl->cpr_enabled && ctrl->last_corner_was_closed_loop) {
+ /*
+ * Always program open-loop voltage for CPR4 controllers which
+ * support hardware closed-loop. Storing the last closed loop
+ * voltage in corner structure can still help with debugging.
+ */
+ if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3)
+ new_volt = aggr_corner.last_volt;
+ else if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4
+ && ctrl->supports_hw_closed_loop)
+ new_volt = aggr_corner.open_loop_volt;
+ else
+ new_volt = min(aggr_corner.last_volt +
+ cpr3_regulator_max_sdelta_diff(aggr_corner.sdelta,
+ ctrl->step_volt),
+ aggr_corner.ceiling_volt);
+
+ aggr_corner.last_volt = new_volt;
+ } else {
+ new_volt = aggr_corner.open_loop_volt;
+ aggr_corner.last_volt = aggr_corner.open_loop_volt;
+ }
+
+ if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4
+ && ctrl->supports_hw_closed_loop) {
+ /*
+ * Store last aggregated corner open-loop voltage in vdd_volt
+ * which is used when programming current aggregated corner
+ * required voltage.
+ */
+ vdd_volt = last_corner_volt;
+ }
+
+ cpr3_debug(ctrl, "setting new voltage=%d uV\n", new_volt);
+ rc = cpr3_regulator_scale_vdd_voltage(ctrl, new_volt,
+ vdd_volt, &aggr_corner);
+ if (rc) {
+ cpr3_err(ctrl, "vdd voltage scaling failed, rc=%d\n", rc);
+ return rc;
+ }
+
+ /* Only update registers if CPR is enabled. */
+ if (ctrl->cpr_enabled) {
+ if (ctrl->use_hw_closed_loop) {
+ /* Hardware closed-loop */
+
+ /* Set ceiling and floor limits in hardware */
+ rc = regulator_set_voltage(ctrl->vdd_limit_regulator,
+ aggr_corner.floor_volt,
+ aggr_corner.ceiling_volt);
+ if (rc) {
+ cpr3_err(ctrl, "could not configure HW closed-loop voltage limits, rc=%d\n",
+ rc);
+ return rc;
+ }
+ } else {
+ /* Software closed-loop */
+
+ /*
+ * Disable UP or DOWN interrupts when at ceiling or
+ * floor respectively.
+ */
+ if (new_volt == aggr_corner.floor_volt)
+ aggr_corner.irq_en &= ~CPR3_IRQ_DOWN;
+ if (new_volt == aggr_corner.ceiling_volt)
+ aggr_corner.irq_en &= ~CPR3_IRQ_UP;
+
+ cpr3_write(ctrl, CPR3_REG_IRQ_CLEAR,
+ CPR3_IRQ_UP | CPR3_IRQ_DOWN);
+ cpr3_write(ctrl, CPR3_REG_IRQ_EN, aggr_corner.irq_en);
+ }
+
+ for (i = 0; i < ctrl->thread_count; i++) {
+ cpr3_regulator_set_target_quot(&ctrl->thread[i]);
+
+ for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
+ vreg = &ctrl->thread[i].vreg[j];
+
+ if (vreg->vreg_enabled)
+ vreg->last_closed_loop_corner
+ = vreg->current_corner;
+ }
+ }
+
+ if (ctrl->proc_clock_throttle) {
+ if (aggr_corner.ceiling_volt > aggr_corner.floor_volt
+ && (ctrl->use_hw_closed_loop
+ || new_volt < aggr_corner.ceiling_volt))
+ cpr3_write(ctrl, CPR3_REG_PD_THROTTLE,
+ ctrl->proc_clock_throttle);
+ else
+ cpr3_write(ctrl, CPR3_REG_PD_THROTTLE,
+ CPR3_PD_THROTTLE_DISABLE);
+ }
+
+ /*
+ * Ensure that all CPR register writes complete before
+ * re-enabling CPR loop operation.
+ */
+ wmb();
+ } else if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4
+ && ctrl->vdd_limit_regulator) {
+ /* Set ceiling and floor limits in hardware */
+ rc = regulator_set_voltage(ctrl->vdd_limit_regulator,
+ aggr_corner.floor_volt,
+ aggr_corner.ceiling_volt);
+ if (rc) {
+ cpr3_err(ctrl, "could not configure HW closed-loop voltage limits, rc=%d\n",
+ rc);
+ return rc;
+ }
+ }
+
+ ctrl->aggr_corner = aggr_corner;
+
+ if (ctrl->allow_core_count_adj || ctrl->allow_temp_adj
+ || ctrl->allow_boost) {
+ rc = cpr3_controller_program_sdelta(ctrl);
+ if (rc) {
+ cpr3_err(ctrl, "failed to program sdelta, rc=%d\n", rc);
+ return rc;
+ }
+ }
+
+ /*
+ * Only enable the CPR controller if it is possible to set more than
+ * one vdd-supply voltage.
+ */
+ if (aggr_corner.ceiling_volt > aggr_corner.floor_volt &&
+ !aggr_corner.use_open_loop)
+ cpr3_ctrl_loop_enable(ctrl);
+
+ ctrl->last_corner_was_closed_loop = ctrl->cpr_enabled;
+ cpr3_debug(ctrl, "CPR configuration updated\n");
+
+ return 0;
+}
+
+/**
+ * cpr3_regulator_wait_for_idle() - wait for the CPR controller to no longer be
+ * busy
+ * @ctrl: Pointer to the CPR3 controller
+ * @max_wait_ns: Max wait time in nanoseconds
+ *
+ * Return: 0 on success or -ETIMEDOUT if the controller was still busy after
+ * the maximum delay time
+ */
+static int cpr3_regulator_wait_for_idle(struct cpr3_controller *ctrl,
+ s64 max_wait_ns)
+{
+ ktime_t start, end;
+ s64 time_ns;
+ u32 reg;
+
+ /*
+ * Ensure that all previous CPR register writes have completed before
+ * checking the status register.
+ */
+ mb();
+
+ start = ktime_get();
+ do {
+ end = ktime_get();
+ time_ns = ktime_to_ns(ktime_sub(end, start));
+ if (time_ns > max_wait_ns) {
+ cpr3_err(ctrl, "CPR controller still busy after %lld us\n",
+ div_s64(time_ns, 1000));
+ return -ETIMEDOUT;
+ }
+ usleep_range(50, 100);
+ reg = cpr3_read(ctrl, CPR3_REG_CPR_STATUS);
+ } while (reg & CPR3_CPR_STATUS_BUSY_MASK);
+
+ return 0;
+}
+
+/**
+ * cmp_int() - int comparison function to be passed into the sort() function
+ * which leads to ascending sorting
+ * @a: First int value
+ * @b: Second int value
+ *
+ * Return: >0 if a > b, 0 if a == b, <0 if a < b
+ */
+static int cmp_int(const void *a, const void *b)
+{
+ return *(int *)a - *(int *)b;
+}
+
+/**
+ * cpr3_regulator_measure_aging() - measure the quotient difference for the
+ * specified CPR aging sensor
+ * @ctrl: Pointer to the CPR3 controller
+ * @aging_sensor: Aging sensor to measure
+ *
+ * Note that vdd-supply must be configured to the aging reference voltage before
+ * calling this function.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_regulator_measure_aging(struct cpr3_controller *ctrl,
+ struct cpr3_aging_sensor_info *aging_sensor)
+{
+ u32 mask, reg, result, quot_min, quot_max, sel_min, sel_max;
+ u32 quot_min_scaled, quot_max_scaled;
+ u32 gcnt, gcnt_ref, gcnt0_restore, gcnt1_restore, irq_restore;
+ u32 ro_mask_restore, cont_dly_restore, up_down_dly_restore = 0;
+ int quot_delta, quot_delta_scaled, quot_delta_scaled_sum;
+ int *quot_delta_results;
+ int rc, rc2, i, aging_measurement_count, filtered_count;
+ bool is_aging_measurement;
+
+ quot_delta_results = kcalloc(CPR3_AGING_MEASUREMENT_ITERATIONS,
+ sizeof(*quot_delta_results), GFP_KERNEL);
+ if (!quot_delta_results)
+ return -ENOMEM;
+
+ if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) {
+ rc = cpr3_ctrl_clear_cpr4_config(ctrl);
+ if (rc) {
+ cpr3_err(ctrl, "failed to clear CPR4 configuration,rc=%d\n",
+ rc);
+ kfree(quot_delta_results);
+ return rc;
+ }
+ }
+
+ cpr3_ctrl_loop_disable(ctrl);
+
+ /* Enable up, down, and mid CPR interrupts */
+ irq_restore = cpr3_read(ctrl, CPR3_REG_IRQ_EN);
+ cpr3_write(ctrl, CPR3_REG_IRQ_EN,
+ CPR3_IRQ_UP | CPR3_IRQ_DOWN | CPR3_IRQ_MID);
+
+ /* Ensure that the aging sensor is assigned to CPR thread 0 */
+ cpr3_write(ctrl, CPR3_REG_SENSOR_OWNER(aging_sensor->sensor_id), 0);
+
+ /* Switch from HW to SW closed-loop if necessary */
+ if (ctrl->supports_hw_closed_loop) {
+ if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) {
+ cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
+ CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_EN_MASK,
+ CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_DISABLE);
+ } else if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3) {
+ cpr3_write(ctrl, CPR3_REG_HW_CLOSED_LOOP,
+ CPR3_HW_CLOSED_LOOP_DISABLE);
+ }
+ }
+
+ /* Configure the GCNT for RO0 and RO1 that are used for aging */
+ gcnt0_restore = cpr3_read(ctrl, CPR3_REG_GCNT(0));
+ gcnt1_restore = cpr3_read(ctrl, CPR3_REG_GCNT(1));
+ gcnt_ref = cpr3_regulator_get_gcnt(ctrl);
+ gcnt = gcnt_ref * 3 / 2;
+ cpr3_write(ctrl, CPR3_REG_GCNT(0), gcnt);
+ cpr3_write(ctrl, CPR3_REG_GCNT(1), gcnt);
+
+ /* Unmask all RO's */
+ ro_mask_restore = cpr3_read(ctrl, CPR3_REG_RO_MASK(0));
+ cpr3_write(ctrl, CPR3_REG_RO_MASK(0), 0);
+
+ /*
+ * Mask all sensors except for the one to measure and bypass all
+ * sensors in collapsible domains.
+ */
+ for (i = 0; i <= ctrl->sensor_count / 32; i++) {
+ mask = GENMASK(min(31, ctrl->sensor_count - i * 32), 0);
+ if (aging_sensor->sensor_id / 32 >= i
+ && aging_sensor->sensor_id / 32 < (i + 1))
+ mask &= ~BIT(aging_sensor->sensor_id % 32);
+ cpr3_write(ctrl, CPR3_REG_SENSOR_MASK_WRITE_BANK(i), mask);
+ cpr3_write(ctrl, CPR3_REG_SENSOR_BYPASS_WRITE_BANK(i),
+ aging_sensor->bypass_mask[i]);
+ }
+
+ /* Set CPR loop delays to 0 us */
+ if (ctrl->supports_hw_closed_loop
+ && ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3) {
+ cont_dly_restore = cpr3_read(ctrl, CPR3_REG_CPR_TIMER_MID_CONT);
+ up_down_dly_restore = cpr3_read(ctrl,
+ CPR3_REG_CPR_TIMER_UP_DN_CONT);
+ cpr3_write(ctrl, CPR3_REG_CPR_TIMER_MID_CONT, 0);
+ cpr3_write(ctrl, CPR3_REG_CPR_TIMER_UP_DN_CONT, 0);
+ } else {
+ cont_dly_restore = cpr3_read(ctrl,
+ CPR3_REG_CPR_TIMER_AUTO_CONT);
+ cpr3_write(ctrl, CPR3_REG_CPR_TIMER_AUTO_CONT, 0);
+ }
+
+ /* Set count mode to all-at-once min with no repeat */
+ cpr3_masked_write(ctrl, CPR3_REG_CPR_CTL,
+ CPR3_CPR_CTL_COUNT_MODE_MASK | CPR3_CPR_CTL_COUNT_REPEAT_MASK,
+ CPR3_CPR_CTL_COUNT_MODE_ALL_AT_ONCE_MIN
+ << CPR3_CPR_CTL_COUNT_MODE_SHIFT);
+
+ cpr3_ctrl_loop_enable(ctrl);
+
+ rc = cpr3_regulator_wait_for_idle(ctrl,
+ CPR3_AGING_MEASUREMENT_TIMEOUT_NS);
+ if (rc)
+ goto cleanup;
+
+ /* Set count mode to all-at-once aging */
+ cpr3_masked_write(ctrl, CPR3_REG_CPR_CTL, CPR3_CPR_CTL_COUNT_MODE_MASK,
+ CPR3_CPR_CTL_COUNT_MODE_ALL_AT_ONCE_AGE
+ << CPR3_CPR_CTL_COUNT_MODE_SHIFT);
+
+ aging_measurement_count = 0;
+ for (i = 0; i < CPR3_AGING_MEASUREMENT_ITERATIONS; i++) {
+ /* Send CONT_NACK */
+ cpr3_write(ctrl, CPR3_REG_CONT_CMD, CPR3_CONT_CMD_NACK);
+
+ rc = cpr3_regulator_wait_for_idle(ctrl,
+ CPR3_AGING_MEASUREMENT_TIMEOUT_NS);
+ if (rc)
+ goto cleanup;
+
+ /* Check for PAGE_IS_AGE flag in status register */
+ reg = cpr3_read(ctrl, CPR3_REG_CPR_STATUS);
+ is_aging_measurement
+ = reg & CPR3_CPR_STATUS_AGING_MEASUREMENT_MASK;
+
+ /* Read CPR measurement results */
+ result = cpr3_read(ctrl, CPR3_REG_RESULT1(0));
+ quot_min = (result & CPR3_RESULT1_QUOT_MIN_MASK)
+ >> CPR3_RESULT1_QUOT_MIN_SHIFT;
+ quot_max = (result & CPR3_RESULT1_QUOT_MAX_MASK)
+ >> CPR3_RESULT1_QUOT_MAX_SHIFT;
+ sel_min = (result & CPR3_RESULT1_RO_MIN_MASK)
+ >> CPR3_RESULT1_RO_MIN_SHIFT;
+ sel_max = (result & CPR3_RESULT1_RO_MAX_MASK)
+ >> CPR3_RESULT1_RO_MAX_SHIFT;
+
+ /*
+ * Scale the quotients so that they are equivalent to the fused
+ * values. This accounts for the difference in measurement
+ * interval times.
+ */
+ quot_min_scaled = quot_min * (gcnt_ref + 1) / (gcnt + 1);
+ quot_max_scaled = quot_max * (gcnt_ref + 1) / (gcnt + 1);
+
+ if (sel_max == 1) {
+ quot_delta = quot_max - quot_min;
+ quot_delta_scaled = quot_max_scaled - quot_min_scaled;
+ } else {
+ quot_delta = quot_min - quot_max;
+ quot_delta_scaled = quot_min_scaled - quot_max_scaled;
+ }
+
+ if (is_aging_measurement)
+ quot_delta_results[aging_measurement_count++]
+ = quot_delta_scaled;
+
+ cpr3_debug(ctrl, "aging results: page_is_age=%u, sel_min=%u, sel_max=%u, quot_min=%u, quot_max=%u, quot_delta=%d, quot_min_scaled=%u, quot_max_scaled=%u, quot_delta_scaled=%d\n",
+ is_aging_measurement, sel_min, sel_max, quot_min,
+ quot_max, quot_delta, quot_min_scaled, quot_max_scaled,
+ quot_delta_scaled);
+ }
+
+ filtered_count
+ = aging_measurement_count - CPR3_AGING_MEASUREMENT_FILTER * 2;
+ if (filtered_count > 0) {
+ sort(quot_delta_results, aging_measurement_count,
+ sizeof(*quot_delta_results), cmp_int, NULL);
+
+ quot_delta_scaled_sum = 0;
+ for (i = 0; i < filtered_count; i++)
+ quot_delta_scaled_sum
+ += quot_delta_results[i
+ + CPR3_AGING_MEASUREMENT_FILTER];
+
+ aging_sensor->measured_quot_diff
+ = quot_delta_scaled_sum / filtered_count;
+ cpr3_info(ctrl, "average quotient delta=%d (count=%d)\n",
+ aging_sensor->measured_quot_diff,
+ filtered_count);
+ } else {
+ cpr3_err(ctrl, "%d aging measurements completed after %d iterations\n",
+ aging_measurement_count,
+ CPR3_AGING_MEASUREMENT_ITERATIONS);
+ rc = -EBUSY;
+ }
+
+cleanup:
+ kfree(quot_delta_results);
+
+ if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) {
+ rc2 = cpr3_ctrl_clear_cpr4_config(ctrl);
+ if (rc2) {
+ cpr3_err(ctrl, "failed to clear CPR4 configuration,rc=%d\n",
+ rc2);
+ rc = rc2;
+ }
+ }
+
+ cpr3_ctrl_loop_disable(ctrl);
+
+ cpr3_write(ctrl, CPR3_REG_IRQ_EN, irq_restore);
+
+ cpr3_write(ctrl, CPR3_REG_RO_MASK(0), ro_mask_restore);
+
+ cpr3_write(ctrl, CPR3_REG_GCNT(0), gcnt0_restore);
+ cpr3_write(ctrl, CPR3_REG_GCNT(1), gcnt1_restore);
+
+ if (ctrl->supports_hw_closed_loop
+ && ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3) {
+ cpr3_write(ctrl, CPR3_REG_CPR_TIMER_MID_CONT, cont_dly_restore);
+ cpr3_write(ctrl, CPR3_REG_CPR_TIMER_UP_DN_CONT,
+ up_down_dly_restore);
+ } else {
+ cpr3_write(ctrl, CPR3_REG_CPR_TIMER_AUTO_CONT,
+ cont_dly_restore);
+ }
+
+ for (i = 0; i <= ctrl->sensor_count / 32; i++) {
+ cpr3_write(ctrl, CPR3_REG_SENSOR_MASK_WRITE_BANK(i), 0);
+ cpr3_write(ctrl, CPR3_REG_SENSOR_BYPASS_WRITE_BANK(i), 0);
+ }
+
+ cpr3_masked_write(ctrl, CPR3_REG_CPR_CTL,
+ CPR3_CPR_CTL_COUNT_MODE_MASK | CPR3_CPR_CTL_COUNT_REPEAT_MASK,
+ (ctrl->count_mode << CPR3_CPR_CTL_COUNT_MODE_SHIFT)
+ | (ctrl->count_repeat << CPR3_CPR_CTL_COUNT_REPEAT_SHIFT));
+
+ cpr3_write(ctrl, CPR3_REG_SENSOR_OWNER(aging_sensor->sensor_id),
+ ctrl->sensor_owner[aging_sensor->sensor_id]);
+
+ cpr3_write(ctrl, CPR3_REG_IRQ_CLEAR,
+ CPR3_IRQ_UP | CPR3_IRQ_DOWN | CPR3_IRQ_MID);
+
+ if (ctrl->supports_hw_closed_loop) {
+ if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) {
+ cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
+ CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_EN_MASK,
+ ctrl->use_hw_closed_loop
+ ? CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_ENABLE
+ : CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_DISABLE);
+ } else if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3) {
+ cpr3_write(ctrl, CPR3_REG_HW_CLOSED_LOOP,
+ ctrl->use_hw_closed_loop
+ ? CPR3_HW_CLOSED_LOOP_ENABLE
+ : CPR3_HW_CLOSED_LOOP_DISABLE);
+ }
+ }
+
+ return rc;
+}
+
+/**
+ * cpr3_regulator_readjust_volt_and_quot() - readjust the target quotients as
+ * well as the floor, ceiling, and open-loop voltages for the
+ * regulator by removing the old adjustment and adding the new one
+ * @vreg: Pointer to the CPR3 regulator
+ * @old_adjust_volt: Old aging adjustment voltage in microvolts
+ * @new_adjust_volt: New aging adjustment voltage in microvolts
+ *
+ * Also reset the cached closed loop voltage (last_volt) to equal the open-loop
+ * voltage for each corner.
+ *
+ * Return: None
+ */
+static void cpr3_regulator_readjust_volt_and_quot(struct cpr3_regulator *vreg,
+ int old_adjust_volt, int new_adjust_volt)
+{
+ unsigned long long temp;
+ int i, j, old_volt, new_volt, rounded_volt;
+
+ if (!vreg->aging_allowed)
+ return;
+
+ for (i = 0; i < vreg->corner_count; i++) {
+ temp = (unsigned long long)old_adjust_volt
+ * (unsigned long long)vreg->corner[i].aging_derate;
+ do_div(temp, 1000);
+ old_volt = temp;
+
+ temp = (unsigned long long)new_adjust_volt
+ * (unsigned long long)vreg->corner[i].aging_derate;
+ do_div(temp, 1000);
+ new_volt = temp;
+
+ old_volt = min(vreg->aging_max_adjust_volt, old_volt);
+ new_volt = min(vreg->aging_max_adjust_volt, new_volt);
+
+ for (j = 0; j < CPR3_RO_COUNT; j++) {
+ if (vreg->corner[i].target_quot[j] != 0) {
+ vreg->corner[i].target_quot[j]
+ += cpr3_quot_adjustment(
+ vreg->corner[i].ro_scale[j],
+ new_volt)
+ - cpr3_quot_adjustment(
+ vreg->corner[i].ro_scale[j],
+ old_volt);
+ }
+ }
+
+ rounded_volt = CPR3_ROUND(new_volt,
+ vreg->thread->ctrl->step_volt);
+
+ if (!vreg->aging_allow_open_loop_adj)
+ rounded_volt = 0;
+
+ vreg->corner[i].ceiling_volt
+ = vreg->corner[i].unaged_ceiling_volt + rounded_volt;
+ vreg->corner[i].ceiling_volt = min(vreg->corner[i].ceiling_volt,
+ vreg->corner[i].abs_ceiling_volt);
+ vreg->corner[i].floor_volt
+ = vreg->corner[i].unaged_floor_volt + rounded_volt;
+ vreg->corner[i].floor_volt = min(vreg->corner[i].floor_volt,
+ vreg->corner[i].ceiling_volt);
+ vreg->corner[i].open_loop_volt
+ = vreg->corner[i].unaged_open_loop_volt + rounded_volt;
+ vreg->corner[i].open_loop_volt
+ = min(vreg->corner[i].open_loop_volt,
+ vreg->corner[i].ceiling_volt);
+
+ vreg->corner[i].last_volt = vreg->corner[i].open_loop_volt;
+
+ cpr3_debug(vreg, "corner %d: applying %d uV closed-loop and %d uV open-loop voltage margin adjustment\n",
+ i, new_volt, rounded_volt);
+ }
+}
+
+/**
+ * cpr3_regulator_set_aging_ref_adjustment() - adjust target quotients for the
+ * regulators managed by this CPR controller to account for aging
+ * @ctrl: Pointer to the CPR3 controller
+ * @ref_adjust_volt: New aging reference adjustment voltage in microvolts to
+ * apply to all regulators managed by this CPR controller
+ *
+ * The existing aging adjustment as defined by ctrl->aging_ref_adjust_volt is
+ * first removed and then the adjustment is applied. Lastly, the value of
+ * ctrl->aging_ref_adjust_volt is updated to ref_adjust_volt.
+ */
+static void cpr3_regulator_set_aging_ref_adjustment(
+ struct cpr3_controller *ctrl, int ref_adjust_volt)
+{
+ struct cpr3_regulator *vreg;
+ int i, j;
+
+ for (i = 0; i < ctrl->thread_count; i++) {
+ for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
+ vreg = &ctrl->thread[i].vreg[j];
+ cpr3_regulator_readjust_volt_and_quot(vreg,
+ ctrl->aging_ref_adjust_volt, ref_adjust_volt);
+ }
+ }
+
+ ctrl->aging_ref_adjust_volt = ref_adjust_volt;
+}
+
+/**
+ * cpr3_regulator_aging_adjust() - adjust the target quotients for regulators
+ * based on the output of CPR aging sensors
+ * @ctrl: Pointer to the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_regulator_aging_adjust(struct cpr3_controller *ctrl)
+{
+ struct cpr3_regulator *vreg;
+ struct cpr3_corner restore_aging_corner;
+ struct cpr3_corner *corner;
+ int *restore_current_corner;
+ bool *restore_vreg_enabled;
+ int i, j, id, rc, rc2, vreg_count, aging_volt, max_aging_volt = 0;
+ u32 reg;
+
+ if (!ctrl->aging_required || !ctrl->cpr_enabled
+ || ctrl->aggr_corner.ceiling_volt == 0
+ || ctrl->aggr_corner.ceiling_volt > ctrl->aging_ref_volt)
+ return 0;
+
+ for (i = 0, vreg_count = 0; i < ctrl->thread_count; i++) {
+ for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
+ vreg = &ctrl->thread[i].vreg[j];
+ vreg_count++;
+
+ if (vreg->aging_allowed && vreg->vreg_enabled
+ && vreg->current_corner > vreg->aging_corner)
+ return 0;
+ }
+ }
+
+ /* Verify that none of the aging sensors are currently masked. */
+ for (i = 0; i < ctrl->aging_sensor_count; i++) {
+ id = ctrl->aging_sensor[i].sensor_id;
+ reg = cpr3_read(ctrl, CPR3_REG_SENSOR_MASK_READ(id));
+ if (reg & BIT(id % 32))
+ return 0;
+ }
+
+ /*
+ * Verify that the aging possible register (if specified) has an
+ * acceptable value.
+ */
+ if (ctrl->aging_possible_reg) {
+ reg = readl_relaxed(ctrl->aging_possible_reg);
+ reg &= ctrl->aging_possible_mask;
+ if (reg != ctrl->aging_possible_val)
+ return 0;
+ }
+
+ restore_current_corner = kcalloc(vreg_count,
+ sizeof(*restore_current_corner), GFP_KERNEL);
+ restore_vreg_enabled = kcalloc(vreg_count,
+ sizeof(*restore_vreg_enabled), GFP_KERNEL);
+ if (!restore_current_corner || !restore_vreg_enabled) {
+ kfree(restore_current_corner);
+ kfree(restore_vreg_enabled);
+ return -ENOMEM;
+ }
+
+ /* Force all regulators to the aging corner */
+ for (i = 0, vreg_count = 0; i < ctrl->thread_count; i++) {
+ for (j = 0; j < ctrl->thread[i].vreg_count; j++, vreg_count++) {
+ vreg = &ctrl->thread[i].vreg[j];
+
+ restore_current_corner[vreg_count]
+ = vreg->current_corner;
+ restore_vreg_enabled[vreg_count]
+ = vreg->vreg_enabled;
+
+ vreg->current_corner = vreg->aging_corner;
+ vreg->vreg_enabled = true;
+ }
+ }
+
+ /* Force one of the regulators to require the aging reference voltage */
+ vreg = &ctrl->thread[0].vreg[0];
+ corner = &vreg->corner[vreg->current_corner];
+ restore_aging_corner = *corner;
+ corner->ceiling_volt = ctrl->aging_ref_volt;
+ corner->floor_volt = ctrl->aging_ref_volt;
+ corner->open_loop_volt = ctrl->aging_ref_volt;
+ corner->last_volt = ctrl->aging_ref_volt;
+
+ /* Skip last_volt caching */
+ ctrl->last_corner_was_closed_loop = false;
+
+ /* Set the vdd supply voltage to the aging reference voltage */
+ rc = _cpr3_regulator_update_ctrl_state(ctrl);
+ if (rc) {
+ cpr3_err(ctrl, "unable to force vdd-supply to the aging reference voltage=%d uV, rc=%d\n",
+ ctrl->aging_ref_volt, rc);
+ goto cleanup;
+ }
+
+ if (ctrl->aging_vdd_mode) {
+ rc = regulator_set_mode(ctrl->vdd_regulator,
+ ctrl->aging_vdd_mode);
+ if (rc) {
+ cpr3_err(ctrl, "unable to configure vdd-supply for mode=%u, rc=%d\n",
+ ctrl->aging_vdd_mode, rc);
+ goto cleanup;
+ }
+ }
+
+ /* Perform aging measurement on all aging sensors */
+ for (i = 0; i < ctrl->aging_sensor_count; i++) {
+ for (j = 0; j < CPR3_AGING_RETRY_COUNT; j++) {
+ rc = cpr3_regulator_measure_aging(ctrl,
+ &ctrl->aging_sensor[i]);
+ if (!rc)
+ break;
+ }
+
+ if (!rc) {
+ aging_volt =
+ cpr3_voltage_adjustment(
+ ctrl->aging_sensor[i].ro_scale,
+ ctrl->aging_sensor[i].measured_quot_diff
+ - ctrl->aging_sensor[i].init_quot_diff);
+ max_aging_volt = max(max_aging_volt, aging_volt);
+ } else {
+ cpr3_err(ctrl, "CPR aging measurement failed after %d tries, rc=%d\n",
+ j, rc);
+ ctrl->aging_failed = true;
+ ctrl->aging_required = false;
+ goto cleanup;
+ }
+ }
+
+cleanup:
+ vreg = &ctrl->thread[0].vreg[0];
+ vreg->corner[vreg->current_corner] = restore_aging_corner;
+
+ for (i = 0, vreg_count = 0; i < ctrl->thread_count; i++) {
+ for (j = 0; j < ctrl->thread[i].vreg_count; j++, vreg_count++) {
+ vreg = &ctrl->thread[i].vreg[j];
+ vreg->current_corner
+ = restore_current_corner[vreg_count];
+ vreg->vreg_enabled = restore_vreg_enabled[vreg_count];
+ }
+ }
+
+ kfree(restore_current_corner);
+ kfree(restore_vreg_enabled);
+
+ /* Adjust the CPR target quotients according to the aging measurement */
+ if (!rc) {
+ cpr3_regulator_set_aging_ref_adjustment(ctrl, max_aging_volt);
+
+ cpr3_info(ctrl, "aging measurement successful; aging reference adjustment voltage=%d uV\n",
+ ctrl->aging_ref_adjust_volt);
+ ctrl->aging_succeeded = true;
+ ctrl->aging_required = false;
+ }
+
+ if (ctrl->aging_complete_vdd_mode) {
+ rc = regulator_set_mode(ctrl->vdd_regulator,
+ ctrl->aging_complete_vdd_mode);
+ if (rc)
+ cpr3_err(ctrl, "unable to configure vdd-supply for mode=%u, rc=%d\n",
+ ctrl->aging_complete_vdd_mode, rc);
+ }
+
+ /* Skip last_volt caching */
+ ctrl->last_corner_was_closed_loop = false;
+
+ /*
+ * Restore vdd-supply to the voltage before the aging measurement and
+ * restore the CPR3 controller hardware state.
+ */
+ rc2 = _cpr3_regulator_update_ctrl_state(ctrl);
+
+ /* Stop last_volt caching on for the next request */
+ ctrl->last_corner_was_closed_loop = false;
+
+ return rc ? rc : rc2;
+}
+
+/**
+ * cpr3_regulator_update_ctrl_state() - update the state of the CPR controller
+ * to reflect the corners used by all CPR3 regulators as well as
+ * the CPR operating mode and perform aging adjustments if needed
+ * @ctrl: Pointer to the CPR3 controller
+ *
+ * Note, CPR3 controller lock must be held by the caller.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_regulator_update_ctrl_state(struct cpr3_controller *ctrl)
+{
+ int rc;
+
+ rc = _cpr3_regulator_update_ctrl_state(ctrl);
+ if (rc)
+ return rc;
+
+ return cpr3_regulator_aging_adjust(ctrl);
+}
+
+/**
+ * cpr3_regulator_set_voltage() - set the voltage corner for the CPR3 regulator
+ * associated with the regulator device
+ * @rdev: Regulator device pointer for the cpr3-regulator
+ * @corner: New voltage corner to set (offset by CPR3_CORNER_OFFSET)
+ * @corner_max: Maximum voltage corner allowed (offset by
+ * CPR3_CORNER_OFFSET)
+ * @selector: Pointer which is filled with the selector value for the
+ * corner
+ *
+ * This function is passed as a callback function into the regulator ops that
+ * are registered for each cpr3-regulator device. The VDD voltage will not be
+ * physically configured until both this function and cpr3_regulator_enable()
+ * are called.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_regulator_set_voltage(struct regulator_dev *rdev,
+ int corner, int corner_max, unsigned *selector)
+{
+ struct cpr3_regulator *vreg = rdev_get_drvdata(rdev);
+ struct cpr3_controller *ctrl = vreg->thread->ctrl;
+ int rc = 0;
+ int last_corner;
+
+ corner -= CPR3_CORNER_OFFSET;
+ corner_max -= CPR3_CORNER_OFFSET;
+ *selector = corner;
+
+ mutex_lock(&ctrl->lock);
+
+ if (!vreg->vreg_enabled) {
+ vreg->current_corner = corner;
+ cpr3_debug(vreg, "stored corner=%d\n", corner);
+ goto done;
+ } else if (vreg->current_corner == corner) {
+ goto done;
+ }
+
+ last_corner = vreg->current_corner;
+ vreg->current_corner = corner;
+
+ if (vreg->cpr4_regulator_data != NULL)
+ if (vreg->cpr4_regulator_data->mem_acc_funcs != NULL)
+ vreg->cpr4_regulator_data->mem_acc_funcs->set_mem_acc(rdev);
+
+ rc = cpr3_regulator_update_ctrl_state(ctrl);
+ if (rc) {
+ cpr3_err(vreg, "could not update CPR state, rc=%d\n", rc);
+ vreg->current_corner = last_corner;
+ }
+
+ if (vreg->cpr4_regulator_data != NULL)
+ if (vreg->cpr4_regulator_data->mem_acc_funcs != NULL)
+ vreg->cpr4_regulator_data->mem_acc_funcs->clear_mem_acc(rdev);
+
+ cpr3_debug(vreg, "set corner=%d\n", corner);
+done:
+ mutex_unlock(&ctrl->lock);
+
+ return rc;
+}
+
+/**
+ * cpr3_handle_temp_open_loop_adjustment() - voltage based cold temperature
+ *
+ * @rdev: Regulator device pointer for the cpr3-regulator
+ * @is_cold: Flag to denote enter/exit cold condition
+ *
+ * This function is adjusts voltage margin based on cold condition
+ *
+ * Return: 0 = success
+ */
+
+int cpr3_handle_temp_open_loop_adjustment(struct cpr3_controller *ctrl,
+ bool is_cold)
+{
+ int i ,j, k, rc;
+ struct cpr3_regulator *vreg;
+
+ mutex_lock(&ctrl->lock);
+ for (i = 0; i < ctrl->thread_count; i++) {
+ for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
+ vreg = &ctrl->thread[i].vreg[j];
+ for (k = 0; k < vreg->corner_count; k++) {
+ vreg->corner[k].open_loop_volt = is_cold ?
+ vreg->corner[k].cold_temp_open_loop_volt :
+ vreg->corner[k].normal_temp_open_loop_volt;
+ }
+ }
+ }
+ rc = cpr3_regulator_update_ctrl_state(ctrl);
+ mutex_unlock(&ctrl->lock);
+
+ return rc;
+}
+
+/**
+ * cpr3_regulator_get_voltage() - get the voltage corner for the CPR3 regulator
+ * associated with the regulator device
+ * @rdev: Regulator device pointer for the cpr3-regulator
+ *
+ * This function is passed as a callback function into the regulator ops that
+ * are registered for each cpr3-regulator device.
+ *
+ * Return: voltage corner value offset by CPR3_CORNER_OFFSET
+ */
+static int cpr3_regulator_get_voltage(struct regulator_dev *rdev)
+{
+ struct cpr3_regulator *vreg = rdev_get_drvdata(rdev);
+
+ if (vreg->current_corner == CPR3_REGULATOR_CORNER_INVALID)
+ return CPR3_CORNER_OFFSET;
+ else
+ return vreg->current_corner + CPR3_CORNER_OFFSET;
+}
+
+/**
+ * cpr3_regulator_list_voltage() - return the voltage corner mapped to the
+ * specified selector
+ * @rdev: Regulator device pointer for the cpr3-regulator
+ * @selector: Regulator selector
+ *
+ * This function is passed as a callback function into the regulator ops that
+ * are registered for each cpr3-regulator device.
+ *
+ * Return: voltage corner value offset by CPR3_CORNER_OFFSET
+ */
+static int cpr3_regulator_list_voltage(struct regulator_dev *rdev,
+ unsigned selector)
+{
+ struct cpr3_regulator *vreg = rdev_get_drvdata(rdev);
+
+ if (selector < vreg->corner_count)
+ return selector + CPR3_CORNER_OFFSET;
+ else
+ return 0;
+}
+
+/**
+ * cpr3_regulator_is_enabled() - return the enable state of the CPR3 regulator
+ * @rdev: Regulator device pointer for the cpr3-regulator
+ *
+ * This function is passed as a callback function into the regulator ops that
+ * are registered for each cpr3-regulator device.
+ *
+ * Return: true if regulator is enabled, false if regulator is disabled
+ */
+static int cpr3_regulator_is_enabled(struct regulator_dev *rdev)
+{
+ struct cpr3_regulator *vreg = rdev_get_drvdata(rdev);
+
+ return vreg->vreg_enabled;
+}
+
+/**
+ * cpr3_regulator_enable() - enable the CPR3 regulator
+ * @rdev: Regulator device pointer for the cpr3-regulator
+ *
+ * This function is passed as a callback function into the regulator ops that
+ * are registered for each cpr3-regulator device.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_regulator_enable(struct regulator_dev *rdev)
+{
+ struct cpr3_regulator *vreg = rdev_get_drvdata(rdev);
+ struct cpr3_controller *ctrl = vreg->thread->ctrl;
+ int rc = 0;
+
+ if (vreg->vreg_enabled == true)
+ return 0;
+
+ mutex_lock(&ctrl->lock);
+
+ if (ctrl->system_regulator) {
+ rc = regulator_enable(ctrl->system_regulator);
+ if (rc) {
+ cpr3_err(ctrl, "regulator_enable(system) failed, rc=%d\n",
+ rc);
+ goto done;
+ }
+ }
+
+ rc = regulator_enable(ctrl->vdd_regulator);
+ if (rc) {
+ cpr3_err(vreg, "regulator_enable(vdd) failed, rc=%d\n", rc);
+ goto done;
+ }
+
+ vreg->vreg_enabled = true;
+ rc = cpr3_regulator_update_ctrl_state(ctrl);
+ if (rc) {
+ cpr3_err(vreg, "could not update CPR state, rc=%d\n", rc);
+ regulator_disable(ctrl->vdd_regulator);
+ vreg->vreg_enabled = false;
+ goto done;
+ }
+
+ cpr3_debug(vreg, "Enabled\n");
+done:
+ mutex_unlock(&ctrl->lock);
+
+ return rc;
+}
+
+/**
+ * cpr3_regulator_disable() - disable the CPR3 regulator
+ * @rdev: Regulator device pointer for the cpr3-regulator
+ *
+ * This function is passed as a callback function into the regulator ops that
+ * are registered for each cpr3-regulator device.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_regulator_disable(struct regulator_dev *rdev)
+{
+ struct cpr3_regulator *vreg = rdev_get_drvdata(rdev);
+ struct cpr3_controller *ctrl = vreg->thread->ctrl;
+ int rc, rc2;
+
+ if (vreg->vreg_enabled == false)
+ return 0;
+
+ mutex_lock(&ctrl->lock);
+ rc = regulator_disable(ctrl->vdd_regulator);
+ if (rc) {
+ cpr3_err(vreg, "regulator_disable(vdd) failed, rc=%d\n", rc);
+ goto done;
+ }
+
+ vreg->vreg_enabled = false;
+ rc = cpr3_regulator_update_ctrl_state(ctrl);
+ if (rc) {
+ cpr3_err(vreg, "could not update CPR state, rc=%d\n", rc);
+ rc2 = regulator_enable(ctrl->vdd_regulator);
+ vreg->vreg_enabled = true;
+ goto done;
+ }
+
+ if (ctrl->system_regulator) {
+ rc = regulator_disable(ctrl->system_regulator);
+ if (rc) {
+ cpr3_err(ctrl, "regulator_disable(system) failed, rc=%d\n",
+ rc);
+ goto done;
+ }
+ }
+
+ cpr3_debug(vreg, "Disabled\n");
+done:
+ mutex_unlock(&ctrl->lock);
+
+ return rc;
+}
+
+static struct regulator_ops cpr3_regulator_ops = {
+ .enable = cpr3_regulator_enable,
+ .disable = cpr3_regulator_disable,
+ .is_enabled = cpr3_regulator_is_enabled,
+ .set_voltage = cpr3_regulator_set_voltage,
+ .get_voltage = cpr3_regulator_get_voltage,
+ .list_voltage = cpr3_regulator_list_voltage,
+};
+
+/**
+ * cpr3_print_result() - print CPR measurement results to the kernel log for
+ * debugging purposes
+ * @thread: Pointer to the CPR3 thread
+ *
+ * Return: None
+ */
+static void cpr3_print_result(struct cpr3_thread *thread)
+{
+ struct cpr3_controller *ctrl = thread->ctrl;
+ u32 result[3], busy, step_dn, step_up, error_steps, error, negative;
+ u32 quot_min, quot_max, ro_min, ro_max, step_quot_min, step_quot_max;
+ u32 sensor_min, sensor_max;
+ char *sign;
+
+ result[0] = cpr3_read(ctrl, CPR3_REG_RESULT0(thread->thread_id));
+ result[1] = cpr3_read(ctrl, CPR3_REG_RESULT1(thread->thread_id));
+ result[2] = cpr3_read(ctrl, CPR3_REG_RESULT2(thread->thread_id));
+
+ busy = !!(result[0] & CPR3_RESULT0_BUSY_MASK);
+ step_dn = !!(result[0] & CPR3_RESULT0_STEP_DN_MASK);
+ step_up = !!(result[0] & CPR3_RESULT0_STEP_UP_MASK);
+ error_steps = (result[0] & CPR3_RESULT0_ERROR_STEPS_MASK)
+ >> CPR3_RESULT0_ERROR_STEPS_SHIFT;
+ error = (result[0] & CPR3_RESULT0_ERROR_MASK)
+ >> CPR3_RESULT0_ERROR_SHIFT;
+ negative = !!(result[0] & CPR3_RESULT0_NEGATIVE_MASK);
+
+ quot_min = (result[1] & CPR3_RESULT1_QUOT_MIN_MASK)
+ >> CPR3_RESULT1_QUOT_MIN_SHIFT;
+ quot_max = (result[1] & CPR3_RESULT1_QUOT_MAX_MASK)
+ >> CPR3_RESULT1_QUOT_MAX_SHIFT;
+ ro_min = (result[1] & CPR3_RESULT1_RO_MIN_MASK)
+ >> CPR3_RESULT1_RO_MIN_SHIFT;
+ ro_max = (result[1] & CPR3_RESULT1_RO_MAX_MASK)
+ >> CPR3_RESULT1_RO_MAX_SHIFT;
+
+ step_quot_min = (result[2] & CPR3_RESULT2_STEP_QUOT_MIN_MASK)
+ >> CPR3_RESULT2_STEP_QUOT_MIN_SHIFT;
+ step_quot_max = (result[2] & CPR3_RESULT2_STEP_QUOT_MAX_MASK)
+ >> CPR3_RESULT2_STEP_QUOT_MAX_SHIFT;
+ sensor_min = (result[2] & CPR3_RESULT2_SENSOR_MIN_MASK)
+ >> CPR3_RESULT2_SENSOR_MIN_SHIFT;
+ sensor_max = (result[2] & CPR3_RESULT2_SENSOR_MAX_MASK)
+ >> CPR3_RESULT2_SENSOR_MAX_SHIFT;
+
+ sign = negative ? "-" : "";
+ cpr3_debug(ctrl, "thread %u: busy=%u, step_dn=%u, step_up=%u, error_steps=%s%u, error=%s%u\n",
+ thread->thread_id, busy, step_dn, step_up, sign, error_steps,
+ sign, error);
+ cpr3_debug(ctrl, "thread %u: quot_min=%u, quot_max=%u, ro_min=%u, ro_max=%u\n",
+ thread->thread_id, quot_min, quot_max, ro_min, ro_max);
+ cpr3_debug(ctrl, "thread %u: step_quot_min=%u, step_quot_max=%u, sensor_min=%u, sensor_max=%u\n",
+ thread->thread_id, step_quot_min, step_quot_max, sensor_min,
+ sensor_max);
+}
+
+/**
+ * cpr3_thread_busy() - returns if the specified CPR3 thread is busy taking
+ * a measurement
+ * @thread: Pointer to the CPR3 thread
+ *
+ * Return: CPR3 busy status
+ */
+static bool cpr3_thread_busy(struct cpr3_thread *thread)
+{
+ u32 result;
+
+ result = cpr3_read(thread->ctrl, CPR3_REG_RESULT0(thread->thread_id));
+
+ return !!(result & CPR3_RESULT0_BUSY_MASK);
+}
+
+/**
+ * cpr3_irq_handler() - CPR interrupt handler callback function used for
+ * software closed-loop operation
+ * @irq: CPR interrupt number
+ * @data: Private data corresponding to the CPR3 controller
+ * pointer
+ *
+ * This function increases or decreases the vdd supply voltage based upon the
+ * CPR controller recommendation.
+ *
+ * Return: IRQ_HANDLED
+ */
+static irqreturn_t cpr3_irq_handler(int irq, void *data)
+{
+ struct cpr3_controller *ctrl = data;
+ struct cpr3_corner *aggr = &ctrl->aggr_corner;
+ u32 cont = CPR3_CONT_CMD_NACK;
+ u32 reg_last_measurement = 0;
+ struct cpr3_regulator *vreg;
+ struct cpr3_corner *corner;
+ unsigned long flags;
+ int i, j, new_volt, last_volt, dynamic_floor_volt, rc;
+ u32 irq_en, status, cpr_status, ctl;
+ bool up, down;
+
+ mutex_lock(&ctrl->lock);
+
+ if (!ctrl->cpr_enabled) {
+ cpr3_debug(ctrl, "CPR interrupt received but CPR is disabled\n");
+ mutex_unlock(&ctrl->lock);
+ return IRQ_HANDLED;
+ } else if (ctrl->use_hw_closed_loop) {
+ cpr3_debug(ctrl, "CPR interrupt received but CPR is using HW closed-loop\n");
+ goto done;
+ }
+
+ /*
+ * CPR IRQ status checking and CPR controller disabling must happen
+ * atomically and without invening delay in order to avoid an interrupt
+ * storm caused by the handler racing with the CPR controller.
+ */
+ local_irq_save(flags);
+ preempt_disable();
+
+ status = cpr3_read(ctrl, CPR3_REG_IRQ_STATUS);
+ up = status & CPR3_IRQ_UP;
+ down = status & CPR3_IRQ_DOWN;
+
+ if (!up && !down) {
+ /*
+ * Toggle the CPR controller off and then back on since the
+ * hardware and software states are out of sync. This condition
+ * occurs after an aging measurement completes as the CPR IRQ
+ * physically triggers during the aging measurement but the
+ * handler is stuck waiting on the mutex lock.
+ */
+ cpr3_ctrl_loop_disable(ctrl);
+
+ local_irq_restore(flags);
+ preempt_enable();
+
+ /* Wait for the loop disable write to complete */
+ mb();
+
+ /* Wait for BUSY=1 and LOOP_EN=0 in CPR controller registers. */
+ for (i = 0; i < CPR3_REGISTER_WRITE_DELAY_US / 10; i++) {
+ cpr_status = cpr3_read(ctrl, CPR3_REG_CPR_STATUS);
+ ctl = cpr3_read(ctrl, CPR3_REG_CPR_CTL);
+ if (cpr_status & CPR3_CPR_STATUS_BUSY_MASK
+ && (ctl & CPR3_CPR_CTL_LOOP_EN_MASK)
+ == CPR3_CPR_CTL_LOOP_DISABLE)
+ break;
+ udelay(10);
+ }
+ if (i == CPR3_REGISTER_WRITE_DELAY_US / 10)
+ cpr3_debug(ctrl, "CPR controller not disabled after %d us\n",
+ CPR3_REGISTER_WRITE_DELAY_US);
+
+ /* Clear interrupt status */
+ cpr3_write(ctrl, CPR3_REG_IRQ_CLEAR,
+ CPR3_IRQ_UP | CPR3_IRQ_DOWN);
+
+ /* Wait for the interrupt clearing write to complete */
+ mb();
+
+ /* Wait for IRQ_STATUS register to be cleared. */
+ for (i = 0; i < CPR3_REGISTER_WRITE_DELAY_US / 10; i++) {
+ status = cpr3_read(ctrl, CPR3_REG_IRQ_STATUS);
+ if (!(status & (CPR3_IRQ_UP | CPR3_IRQ_DOWN)))
+ break;
+ udelay(10);
+ }
+ if (i == CPR3_REGISTER_WRITE_DELAY_US / 10)
+ cpr3_debug(ctrl, "CPR interrupts not cleared after %d us\n",
+ CPR3_REGISTER_WRITE_DELAY_US);
+
+ cpr3_ctrl_loop_enable(ctrl);
+
+ cpr3_debug(ctrl, "CPR interrupt received but no up or down status bit is set\n");
+
+ mutex_unlock(&ctrl->lock);
+ return IRQ_HANDLED;
+ } else if (up && down) {
+ cpr3_debug(ctrl, "both up and down status bits set\n");
+ /* The up flag takes precedence over the down flag. */
+ down = false;
+ }
+
+ if (ctrl->supports_hw_closed_loop)
+ reg_last_measurement
+ = cpr3_read(ctrl, CPR3_REG_LAST_MEASUREMENT);
+ dynamic_floor_volt = cpr3_regulator_get_dynamic_floor_volt(ctrl,
+ reg_last_measurement);
+
+ local_irq_restore(flags);
+ preempt_enable();
+
+ irq_en = aggr->irq_en;
+ last_volt = aggr->last_volt;
+
+ for (i = 0; i < ctrl->thread_count; i++) {
+ if (cpr3_thread_busy(&ctrl->thread[i])) {
+ cpr3_debug(ctrl, "CPR thread %u busy when it should be waiting for SW cont\n",
+ ctrl->thread[i].thread_id);
+ goto done;
+ }
+ }
+
+ new_volt = up ? last_volt + ctrl->step_volt
+ : last_volt - ctrl->step_volt;
+
+ /* Re-enable UP/DOWN interrupt when its opposite is received. */
+ irq_en |= up ? CPR3_IRQ_DOWN : CPR3_IRQ_UP;
+
+ if (new_volt > aggr->ceiling_volt) {
+ new_volt = aggr->ceiling_volt;
+ irq_en &= ~CPR3_IRQ_UP;
+ cpr3_debug(ctrl, "limiting to ceiling=%d uV\n",
+ aggr->ceiling_volt);
+ } else if (new_volt < aggr->floor_volt) {
+ new_volt = aggr->floor_volt;
+ irq_en &= ~CPR3_IRQ_DOWN;
+ cpr3_debug(ctrl, "limiting to floor=%d uV\n", aggr->floor_volt);
+ }
+
+ if (down && new_volt < dynamic_floor_volt) {
+ /*
+ * The vdd-supply voltage should not be decreased below the
+ * dynamic floor voltage. However, it is not necessary (and
+ * counter productive) to force the voltage up to this level
+ * if it happened to be below it since the closed-loop voltage
+ * must have gotten there in a safe manner while the power
+ * domains for the CPR3 regulator imposing the dynamic floor
+ * were not bypassed.
+ */
+ new_volt = last_volt;
+ irq_en &= ~CPR3_IRQ_DOWN;
+ cpr3_debug(ctrl, "limiting to dynamic floor=%d uV\n",
+ dynamic_floor_volt);
+ }
+
+ for (i = 0; i < ctrl->thread_count; i++)
+ cpr3_print_result(&ctrl->thread[i]);
+
+ cpr3_debug(ctrl, "%s: new_volt=%d uV, last_volt=%d uV\n",
+ up ? "UP" : "DN", new_volt, last_volt);
+
+ if (ctrl->proc_clock_throttle && last_volt == aggr->ceiling_volt
+ && new_volt < last_volt)
+ cpr3_write(ctrl, CPR3_REG_PD_THROTTLE,
+ ctrl->proc_clock_throttle);
+
+ if (new_volt != last_volt) {
+ rc = cpr3_regulator_scale_vdd_voltage(ctrl, new_volt,
+ last_volt,
+ aggr);
+ if (rc) {
+ cpr3_err(ctrl, "scale_vdd() failed to set vdd=%d uV, rc=%d\n",
+ new_volt, rc);
+ goto done;
+ }
+ cont = CPR3_CONT_CMD_ACK;
+
+ /*
+ * Update the closed-loop voltage for all regulators managed
+ * by this CPR controller.
+ */
+ for (i = 0; i < ctrl->thread_count; i++) {
+ for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
+ vreg = &ctrl->thread[i].vreg[j];
+ cpr3_update_vreg_closed_loop_volt(vreg,
+ new_volt, reg_last_measurement);
+ }
+ }
+ }
+
+ if (ctrl->proc_clock_throttle && new_volt == aggr->ceiling_volt)
+ cpr3_write(ctrl, CPR3_REG_PD_THROTTLE,
+ CPR3_PD_THROTTLE_DISABLE);
+
+ corner = &ctrl->thread[0].vreg[0].corner[
+ ctrl->thread[0].vreg[0].current_corner];
+
+ if (irq_en != aggr->irq_en) {
+ aggr->irq_en = irq_en;
+ cpr3_write(ctrl, CPR3_REG_IRQ_EN, irq_en);
+ }
+
+ aggr->last_volt = new_volt;
+
+done:
+ /* Clear interrupt status */
+ cpr3_write(ctrl, CPR3_REG_IRQ_CLEAR, CPR3_IRQ_UP | CPR3_IRQ_DOWN);
+
+ /* ACK or NACK the CPR controller */
+ cpr3_write(ctrl, CPR3_REG_CONT_CMD, cont);
+
+ mutex_unlock(&ctrl->lock);
+ return IRQ_HANDLED;
+}
+
+/**
+ * cpr3_ceiling_irq_handler() - CPR ceiling reached interrupt handler callback
+ * function used for hardware closed-loop operation
+ * @irq: CPR ceiling interrupt number
+ * @data: Private data corresponding to the CPR3 controller
+ * pointer
+ *
+ * This function disables processor clock throttling and closed-loop operation
+ * when the ceiling voltage is reached.
+ *
+ * Return: IRQ_HANDLED
+ */
+static irqreturn_t cpr3_ceiling_irq_handler(int irq, void *data)
+{
+ struct cpr3_controller *ctrl = data;
+ int volt;
+
+ mutex_lock(&ctrl->lock);
+
+ if (!ctrl->cpr_enabled) {
+ cpr3_debug(ctrl, "CPR ceiling interrupt received but CPR is disabled\n");
+ goto done;
+ } else if (!ctrl->use_hw_closed_loop) {
+ cpr3_debug(ctrl, "CPR ceiling interrupt received but CPR is using SW closed-loop\n");
+ goto done;
+ }
+
+ volt = regulator_get_voltage(ctrl->vdd_regulator);
+ if (volt < 0) {
+ cpr3_err(ctrl, "could not get vdd voltage, rc=%d\n", volt);
+ goto done;
+ } else if (volt != ctrl->aggr_corner.ceiling_volt) {
+ cpr3_debug(ctrl, "CPR ceiling interrupt received but vdd voltage: %d uV != ceiling voltage: %d uV\n",
+ volt, ctrl->aggr_corner.ceiling_volt);
+ goto done;
+ }
+
+ if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3) {
+ /*
+ * Since the ceiling voltage has been reached, disable processor
+ * clock throttling as well as CPR closed-loop operation.
+ */
+ cpr3_write(ctrl, CPR3_REG_PD_THROTTLE,
+ CPR3_PD_THROTTLE_DISABLE);
+ cpr3_ctrl_loop_disable(ctrl);
+ cpr3_debug(ctrl, "CPR closed-loop and throttling disabled\n");
+ }
+
+done:
+ mutex_unlock(&ctrl->lock);
+ return IRQ_HANDLED;
+}
+
+/**
+ * cpr3_regulator_vreg_register() - register a regulator device for a CPR3
+ * regulator
+ * @vreg: Pointer to the CPR3 regulator
+ *
+ * This function initializes all regulator framework related structures and then
+ * calls regulator_register() for the CPR3 regulator.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_regulator_vreg_register(struct cpr3_regulator *vreg)
+{
+ struct regulator_config config = {};
+ struct regulator_desc *rdesc;
+ struct regulator_init_data *init_data;
+ int rc;
+
+ init_data = of_get_regulator_init_data(vreg->thread->ctrl->dev,
+ vreg->of_node, &vreg->rdesc);
+ if (!init_data) {
+ cpr3_err(vreg, "regulator init data is missing\n");
+ return -EINVAL;
+ }
+
+ init_data->constraints.input_uV = init_data->constraints.max_uV;
+ rdesc = &vreg->rdesc;
+ init_data->constraints.valid_ops_mask |=
+ REGULATOR_CHANGE_VOLTAGE | REGULATOR_CHANGE_STATUS;
+ rdesc->ops = &cpr3_regulator_ops;
+
+ rdesc->n_voltages = vreg->corner_count;
+ rdesc->name = init_data->constraints.name;
+ rdesc->owner = THIS_MODULE;
+ rdesc->type = REGULATOR_VOLTAGE;
+
+ config.dev = vreg->thread->ctrl->dev;
+ config.driver_data = vreg;
+ config.init_data = init_data;
+ config.of_node = vreg->of_node;
+
+ vreg->rdev = regulator_register(rdesc, &config);
+ if (IS_ERR(vreg->rdev)) {
+ rc = PTR_ERR(vreg->rdev);
+ cpr3_err(vreg, "regulator_register failed, rc=%d\n", rc);
+ return rc;
+ }
+
+ return 0;
+}
+
+static int debugfs_int_set(void *data, u64 val)
+{
+ *(int *)data = val;
+ return 0;
+}
+
+static int debugfs_int_get(void *data, u64 *val)
+{
+ *val = *(int *)data;
+ return 0;
+}
+DEFINE_SIMPLE_ATTRIBUTE(fops_int, debugfs_int_get, debugfs_int_set, "%lld\n");
+DEFINE_SIMPLE_ATTRIBUTE(fops_int_ro, debugfs_int_get, NULL, "%lld\n");
+DEFINE_SIMPLE_ATTRIBUTE(fops_int_wo, NULL, debugfs_int_set, "%lld\n");
+
+/**
+ * debugfs_create_int - create a debugfs file that is used to read and write a
+ * signed int value
+ * @name: Pointer to a string containing the name of the file to
+ * create
+ * @mode: The permissions that the file should have
+ * @parent: Pointer to the parent dentry for this file. This should
+ * be a directory dentry if set. If this parameter is
+ * %NULL, then the file will be created in the root of the
+ * debugfs filesystem.
+ * @value: Pointer to the variable that the file should read to and
+ * write from
+ *
+ * This function creates a file in debugfs with the given name that
+ * contains the value of the variable @value. If the @mode variable is so
+ * set, it can be read from, and written to.
+ *
+ * This function will return a pointer to a dentry if it succeeds. This
+ * pointer must be passed to the debugfs_remove() function when the file is
+ * to be removed. If an error occurs, %NULL will be returned.
+ */
+static struct dentry *debugfs_create_int(const char *name, umode_t mode,
+ struct dentry *parent, int *value)
+{
+ /* if there are no write bits set, make read only */
+ if (!(mode & S_IWUGO))
+ return debugfs_create_file(name, mode, parent, value,
+ &fops_int_ro);
+ /* if there are no read bits set, make write only */
+ if (!(mode & S_IRUGO))
+ return debugfs_create_file(name, mode, parent, value,
+ &fops_int_wo);
+
+ return debugfs_create_file(name, mode, parent, value, &fops_int);
+}
+
+static int debugfs_bool_get(void *data, u64 *val)
+{
+ *val = *(bool *)data;
+ return 0;
+}
+DEFINE_SIMPLE_ATTRIBUTE(fops_bool_ro, debugfs_bool_get, NULL, "%lld\n");
+
+/**
+ * struct cpr3_debug_corner_info - data structure used by the
+ * cpr3_debugfs_create_corner_int function
+ * @vreg: Pointer to the CPR3 regulator
+ * @index: Pointer to the corner array index
+ * @member_offset: Offset in bytes from the beginning of struct cpr3_corner
+ * to the beginning of the value to be read from
+ * @corner: Pointer to the CPR3 corner array
+ */
+struct cpr3_debug_corner_info {
+ struct cpr3_regulator *vreg;
+ int *index;
+ size_t member_offset;
+ struct cpr3_corner *corner;
+};
+
+static int cpr3_debug_corner_int_get(void *data, u64 *val)
+{
+ struct cpr3_debug_corner_info *info = data;
+ struct cpr3_controller *ctrl = info->vreg->thread->ctrl;
+ int i;
+
+ mutex_lock(&ctrl->lock);
+
+ i = *info->index;
+ if (i < 0)
+ i = 0;
+
+ *val = *(int *)((char *)&info->vreg->corner[i] + info->member_offset);
+
+ mutex_unlock(&ctrl->lock);
+
+ return 0;
+}
+DEFINE_SIMPLE_ATTRIBUTE(cpr3_debug_corner_int_fops, cpr3_debug_corner_int_get,
+ NULL, "%lld\n");
+
+/**
+ * cpr3_debugfs_create_corner_int - create a debugfs file that is used to read
+ * a signed int value out of a CPR3 regulator's corner array
+ * @vreg: Pointer to the CPR3 regulator
+ * @name: Pointer to a string containing the name of the file to
+ * create
+ * @mode: The permissions that the file should have
+ * @parent: Pointer to the parent dentry for this file. This should
+ * be a directory dentry if set. If this parameter is
+ * %NULL, then the file will be created in the root of the
+ * debugfs filesystem.
+ * @index: Pointer to the corner array index
+ * @member_offset: Offset in bytes from the beginning of struct cpr3_corner
+ * to the beginning of the value to be read from
+ *
+ * This function creates a file in debugfs with the given name that
+ * contains the value of the int type variable vreg->corner[index].member
+ * where member_offset == offsetof(struct cpr3_corner, member).
+ */
+static struct dentry *cpr3_debugfs_create_corner_int(
+ struct cpr3_regulator *vreg, const char *name, umode_t mode,
+ struct dentry *parent, int *index, size_t member_offset)
+{
+ struct cpr3_debug_corner_info *info;
+
+ info = devm_kzalloc(vreg->thread->ctrl->dev, sizeof(*info), GFP_KERNEL);
+ if (!info)
+ return NULL;
+
+ info->vreg = vreg;
+ info->index = index;
+ info->member_offset = member_offset;
+
+ return debugfs_create_file(name, mode, parent, info,
+ &cpr3_debug_corner_int_fops);
+}
+
+static int cpr3_debug_quot_open(struct inode *inode, struct file *file)
+{
+ struct cpr3_debug_corner_info *info = inode->i_private;
+ struct cpr3_thread *thread = info->vreg->thread;
+ int size, i, pos;
+ u32 *quot;
+ char *buf;
+
+ /*
+ * Max size:
+ * - 10 digits + ' ' or '\n' = 11 bytes per number
+ * - terminating '\0'
+ */
+ size = CPR3_RO_COUNT * 11;
+ buf = kzalloc(size + 1, GFP_KERNEL);
+ if (!buf)
+ return -ENOMEM;
+
+ file->private_data = buf;
+
+ mutex_lock(&thread->ctrl->lock);
+
+ quot = info->corner[*info->index].target_quot;
+
+ for (i = 0, pos = 0; i < CPR3_RO_COUNT; i++)
+ pos += scnprintf(buf + pos, size - pos, "%u%c",
+ quot[i], i < CPR3_RO_COUNT - 1 ? ' ' : '\n');
+
+ mutex_unlock(&thread->ctrl->lock);
+
+ return nonseekable_open(inode, file);
+}
+
+static ssize_t cpr3_debug_quot_read(struct file *file, char __user *buf,
+ size_t len, loff_t *ppos)
+{
+ return simple_read_from_buffer(buf, len, ppos, file->private_data,
+ strlen(file->private_data));
+}
+
+static int cpr3_debug_quot_release(struct inode *inode, struct file *file)
+{
+ kfree(file->private_data);
+
+ return 0;
+}
+
+static const struct file_operations cpr3_debug_quot_fops = {
+ .owner = THIS_MODULE,
+ .open = cpr3_debug_quot_open,
+ .release = cpr3_debug_quot_release,
+ .read = cpr3_debug_quot_read,
+ .llseek = no_llseek,
+};
+
+/**
+ * cpr3_regulator_debugfs_corner_add() - add debugfs files to expose
+ * configuration data for the CPR corner
+ * @vreg: Pointer to the CPR3 regulator
+ * @corner_dir: Pointer to the parent corner dentry for the new files
+ * @index: Pointer to the corner array index
+ *
+ * Return: none
+ */
+static void cpr3_regulator_debugfs_corner_add(struct cpr3_regulator *vreg,
+ struct dentry *corner_dir, int *index)
+{
+ struct cpr3_debug_corner_info *info;
+ struct dentry *temp;
+
+ temp = cpr3_debugfs_create_corner_int(vreg, "floor_volt", S_IRUGO,
+ corner_dir, index, offsetof(struct cpr3_corner, floor_volt));
+ if (IS_ERR_OR_NULL(temp)) {
+ cpr3_err(vreg, "floor_volt debugfs file creation failed\n");
+ return;
+ }
+
+ temp = cpr3_debugfs_create_corner_int(vreg, "ceiling_volt", S_IRUGO,
+ corner_dir, index, offsetof(struct cpr3_corner, ceiling_volt));
+ if (IS_ERR_OR_NULL(temp)) {
+ cpr3_err(vreg, "ceiling_volt debugfs file creation failed\n");
+ return;
+ }
+
+ temp = cpr3_debugfs_create_corner_int(vreg, "open_loop_volt", S_IRUGO,
+ corner_dir, index,
+ offsetof(struct cpr3_corner, open_loop_volt));
+ if (IS_ERR_OR_NULL(temp)) {
+ cpr3_err(vreg, "open_loop_volt debugfs file creation failed\n");
+ return;
+ }
+
+ temp = cpr3_debugfs_create_corner_int(vreg, "last_volt", S_IRUGO,
+ corner_dir, index, offsetof(struct cpr3_corner, last_volt));
+ if (IS_ERR_OR_NULL(temp)) {
+ cpr3_err(vreg, "last_volt debugfs file creation failed\n");
+ return;
+ }
+
+ info = devm_kzalloc(vreg->thread->ctrl->dev, sizeof(*info), GFP_KERNEL);
+ if (!info)
+ return;
+
+ info->vreg = vreg;
+ info->index = index;
+ info->corner = vreg->corner;
+
+ temp = debugfs_create_file("target_quots", S_IRUGO, corner_dir,
+ info, &cpr3_debug_quot_fops);
+ if (IS_ERR_OR_NULL(temp)) {
+ cpr3_err(vreg, "target_quots debugfs file creation failed\n");
+ return;
+ }
+}
+
+/**
+ * cpr3_debug_corner_index_set() - debugfs callback used to change the
+ * value of the CPR3 regulator debug_corner index
+ * @data: Pointer to private data which is equal to the CPR3
+ * regulator pointer
+ * @val: New value for debug_corner
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_debug_corner_index_set(void *data, u64 val)
+{
+ struct cpr3_regulator *vreg = data;
+
+ if (val < CPR3_CORNER_OFFSET || val > vreg->corner_count) {
+ cpr3_err(vreg, "invalid corner index %llu; allowed values: %d-%d\n",
+ val, CPR3_CORNER_OFFSET, vreg->corner_count);
+ return -EINVAL;
+ }
+
+ mutex_lock(&vreg->thread->ctrl->lock);
+ vreg->debug_corner = val - CPR3_CORNER_OFFSET;
+ mutex_unlock(&vreg->thread->ctrl->lock);
+
+ return 0;
+}
+
+/**
+ * cpr3_debug_corner_index_get() - debugfs callback used to retrieve
+ * the value of the CPR3 regulator debug_corner index
+ * @data: Pointer to private data which is equal to the CPR3
+ * regulator pointer
+ * @val: Output parameter written with the value of
+ * debug_corner
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_debug_corner_index_get(void *data, u64 *val)
+{
+ struct cpr3_regulator *vreg = data;
+
+ *val = vreg->debug_corner + CPR3_CORNER_OFFSET;
+
+ return 0;
+}
+DEFINE_SIMPLE_ATTRIBUTE(cpr3_debug_corner_index_fops,
+ cpr3_debug_corner_index_get,
+ cpr3_debug_corner_index_set,
+ "%llu\n");
+
+/**
+ * cpr3_debug_current_corner_index_get() - debugfs callback used to retrieve
+ * the value of the CPR3 regulator current_corner index
+ * @data: Pointer to private data which is equal to the CPR3
+ * regulator pointer
+ * @val: Output parameter written with the value of
+ * current_corner
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_debug_current_corner_index_get(void *data, u64 *val)
+{
+ struct cpr3_regulator *vreg = data;
+
+ *val = vreg->current_corner + CPR3_CORNER_OFFSET;
+
+ return 0;
+}
+DEFINE_SIMPLE_ATTRIBUTE(cpr3_debug_current_corner_index_fops,
+ cpr3_debug_current_corner_index_get,
+ NULL, "%llu\n");
+
+/**
+ * cpr3_regulator_debugfs_vreg_add() - add debugfs files to expose configuration
+ * data for the CPR3 regulator
+ * @vreg: Pointer to the CPR3 regulator
+ * @thread_dir CPR3 thread debugfs directory handle
+ *
+ * Return: none
+ */
+static void cpr3_regulator_debugfs_vreg_add(struct cpr3_regulator *vreg,
+ struct dentry *thread_dir)
+{
+ struct dentry *temp, *corner_dir, *vreg_dir;
+
+ vreg_dir = debugfs_create_dir(vreg->name, thread_dir);
+ if (IS_ERR_OR_NULL(vreg_dir)) {
+ cpr3_err(vreg, "%s debugfs directory creation failed\n",
+ vreg->name);
+ return;
+ }
+
+ temp = debugfs_create_int("speed_bin_fuse", S_IRUGO, vreg_dir,
+ &vreg->speed_bin_fuse);
+ if (IS_ERR_OR_NULL(temp)) {
+ cpr3_err(vreg, "speed_bin_fuse debugfs file creation failed\n");
+ return;
+ }
+
+ temp = debugfs_create_int("cpr_rev_fuse", S_IRUGO, vreg_dir,
+ &vreg->cpr_rev_fuse);
+ if (IS_ERR_OR_NULL(temp)) {
+ cpr3_err(vreg, "cpr_rev_fuse debugfs file creation failed\n");
+ return;
+ }
+
+ temp = debugfs_create_int("fuse_combo", S_IRUGO, vreg_dir,
+ &vreg->fuse_combo);
+ if (IS_ERR_OR_NULL(temp)) {
+ cpr3_err(vreg, "fuse_combo debugfs file creation failed\n");
+ return;
+ }
+
+ temp = debugfs_create_int("corner_count", S_IRUGO, vreg_dir,
+ &vreg->corner_count);
+ if (IS_ERR_OR_NULL(temp)) {
+ cpr3_err(vreg, "corner_count debugfs file creation failed\n");
+ return;
+ }
+
+ corner_dir = debugfs_create_dir("corner", vreg_dir);
+ if (IS_ERR_OR_NULL(corner_dir)) {
+ cpr3_err(vreg, "corner debugfs directory creation failed\n");
+ return;
+ }
+
+ temp = debugfs_create_file("index", S_IRUGO | S_IWUSR, corner_dir,
+ vreg, &cpr3_debug_corner_index_fops);
+ if (IS_ERR_OR_NULL(temp)) {
+ cpr3_err(vreg, "index debugfs file creation failed\n");
+ return;
+ }
+
+ cpr3_regulator_debugfs_corner_add(vreg, corner_dir,
+ &vreg->debug_corner);
+
+ corner_dir = debugfs_create_dir("current_corner", vreg_dir);
+ if (IS_ERR_OR_NULL(corner_dir)) {
+ cpr3_err(vreg, "current_corner debugfs directory creation failed\n");
+ return;
+ }
+
+ temp = debugfs_create_file("index", S_IRUGO, corner_dir,
+ vreg, &cpr3_debug_current_corner_index_fops);
+ if (IS_ERR_OR_NULL(temp)) {
+ cpr3_err(vreg, "index debugfs file creation failed\n");
+ return;
+ }
+
+ cpr3_regulator_debugfs_corner_add(vreg, corner_dir,
+ &vreg->current_corner);
+}
+
+/**
+ * cpr3_regulator_debugfs_thread_add() - add debugfs files to expose
+ * configuration data for the CPR thread
+ * @thread: Pointer to the CPR3 thread
+ *
+ * Return: none
+ */
+static void cpr3_regulator_debugfs_thread_add(struct cpr3_thread *thread)
+{
+ struct cpr3_controller *ctrl = thread->ctrl;
+ struct dentry *aggr_dir, *temp, *thread_dir;
+ struct cpr3_debug_corner_info *info;
+ char buf[20];
+ int *index;
+ int i;
+
+ scnprintf(buf, sizeof(buf), "thread%u", thread->thread_id);
+ thread_dir = debugfs_create_dir(buf, thread->ctrl->debugfs);
+ if (IS_ERR_OR_NULL(thread_dir)) {
+ cpr3_err(ctrl, "thread %u %s debugfs directory creation failed\n",
+ thread->thread_id, buf);
+ return;
+ }
+
+ aggr_dir = debugfs_create_dir("max_aggregated_params", thread_dir);
+ if (IS_ERR_OR_NULL(aggr_dir)) {
+ cpr3_err(ctrl, "thread %u max_aggregated_params debugfs directory creation failed\n",
+ thread->thread_id);
+ return;
+ }
+
+ temp = debugfs_create_int("floor_volt", S_IRUGO, aggr_dir,
+ &thread->aggr_corner.floor_volt);
+ if (IS_ERR_OR_NULL(temp)) {
+ cpr3_err(ctrl, "thread %u aggr floor_volt debugfs file creation failed\n",
+ thread->thread_id);
+ return;
+ }
+
+ temp = debugfs_create_int("ceiling_volt", S_IRUGO, aggr_dir,
+ &thread->aggr_corner.ceiling_volt);
+ if (IS_ERR_OR_NULL(temp)) {
+ cpr3_err(ctrl, "thread %u aggr ceiling_volt debugfs file creation failed\n",
+ thread->thread_id);
+ return;
+ }
+
+ temp = debugfs_create_int("open_loop_volt", S_IRUGO, aggr_dir,
+ &thread->aggr_corner.open_loop_volt);
+ if (IS_ERR_OR_NULL(temp)) {
+ cpr3_err(ctrl, "thread %u aggr open_loop_volt debugfs file creation failed\n",
+ thread->thread_id);
+ return;
+ }
+
+ temp = debugfs_create_int("last_volt", S_IRUGO, aggr_dir,
+ &thread->aggr_corner.last_volt);
+ if (IS_ERR_OR_NULL(temp)) {
+ cpr3_err(ctrl, "thread %u aggr last_volt debugfs file creation failed\n",
+ thread->thread_id);
+ return;
+ }
+
+ info = devm_kzalloc(thread->ctrl->dev, sizeof(*info), GFP_KERNEL);
+ index = devm_kzalloc(thread->ctrl->dev, sizeof(*index), GFP_KERNEL);
+ if (!info || !index)
+ return;
+ *index = 0;
+ info->vreg = &thread->vreg[0];
+ info->index = index;
+ info->corner = &thread->aggr_corner;
+
+ temp = debugfs_create_file("target_quots", S_IRUGO, aggr_dir,
+ info, &cpr3_debug_quot_fops);
+ if (IS_ERR_OR_NULL(temp)) {
+ cpr3_err(ctrl, "thread %u target_quots debugfs file creation failed\n",
+ thread->thread_id);
+ return;
+ }
+
+ for (i = 0; i < thread->vreg_count; i++)
+ cpr3_regulator_debugfs_vreg_add(&thread->vreg[i], thread_dir);
+}
+
+/**
+ * cpr3_debug_closed_loop_enable_set() - debugfs callback used to change the
+ * value of the CPR controller cpr_allowed_sw flag which enables or
+ * disables closed-loop operation
+ * @data: Pointer to private data which is equal to the CPR
+ * controller pointer
+ * @val: New value for cpr_allowed_sw
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_debug_closed_loop_enable_set(void *data, u64 val)
+{
+ struct cpr3_controller *ctrl = data;
+ bool enable = !!val;
+ int rc;
+
+ mutex_lock(&ctrl->lock);
+
+ if (ctrl->cpr_allowed_sw == enable)
+ goto done;
+
+ if (enable && !ctrl->cpr_allowed_hw) {
+ cpr3_err(ctrl, "CPR closed-loop operation is not allowed\n");
+ goto done;
+ }
+
+ ctrl->cpr_allowed_sw = enable;
+
+ rc = cpr3_regulator_update_ctrl_state(ctrl);
+ if (rc) {
+ cpr3_err(ctrl, "could not change CPR enable state=%u, rc=%d\n",
+ enable, rc);
+ goto done;
+ }
+
+ if (ctrl->proc_clock_throttle && !ctrl->cpr_enabled) {
+ rc = cpr3_clock_enable(ctrl);
+ if (rc) {
+ cpr3_err(ctrl, "clock enable failed, rc=%d\n",
+ rc);
+ goto done;
+ }
+ ctrl->cpr_enabled = true;
+
+ cpr3_write(ctrl, CPR3_REG_PD_THROTTLE,
+ CPR3_PD_THROTTLE_DISABLE);
+
+ cpr3_clock_disable(ctrl);
+ ctrl->cpr_enabled = false;
+ }
+
+ cpr3_debug(ctrl, "closed-loop=%s\n", enable ? "enabled" : "disabled");
+done:
+ mutex_unlock(&ctrl->lock);
+ return 0;
+}
+
+/**
+ * cpr3_debug_closed_loop_enable_get() - debugfs callback used to retrieve
+ * the value of the CPR controller cpr_allowed_sw flag which
+ * indicates if closed-loop operation is enabled
+ * @data: Pointer to private data which is equal to the CPR
+ * controller pointer
+ * @val: Output parameter written with the value of
+ * cpr_allowed_sw
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_debug_closed_loop_enable_get(void *data, u64 *val)
+{
+ struct cpr3_controller *ctrl = data;
+
+ *val = ctrl->cpr_allowed_sw;
+
+ return 0;
+}
+DEFINE_SIMPLE_ATTRIBUTE(cpr3_debug_closed_loop_enable_fops,
+ cpr3_debug_closed_loop_enable_get,
+ cpr3_debug_closed_loop_enable_set,
+ "%llu\n");
+
+/**
+ * cpr3_debug_hw_closed_loop_enable_set() - debugfs callback used to change the
+ * value of the CPR controller use_hw_closed_loop flag which
+ * switches between software closed-loop and hardware closed-loop
+ * operation for CPR3 and CPR4 controllers and between open-loop
+ * and full hardware closed-loop operation for CPRh controllers.
+ * @data: Pointer to private data which is equal to the CPR
+ * controller pointer
+ * @val: New value for use_hw_closed_loop
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_debug_hw_closed_loop_enable_set(void *data, u64 val)
+{
+ struct cpr3_controller *ctrl = data;
+ bool use_hw_closed_loop = !!val;
+ struct cpr3_regulator *vreg;
+ bool cpr_enabled;
+ int i, j, k, rc;
+
+ mutex_lock(&ctrl->lock);
+
+ if (ctrl->use_hw_closed_loop == use_hw_closed_loop)
+ goto done;
+
+ if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) {
+ rc = cpr3_ctrl_clear_cpr4_config(ctrl);
+ if (rc) {
+ cpr3_err(ctrl, "failed to clear CPR4 configuration,rc=%d\n",
+ rc);
+ goto done;
+ }
+ }
+
+ cpr3_ctrl_loop_disable(ctrl);
+
+ ctrl->use_hw_closed_loop = use_hw_closed_loop;
+
+ cpr_enabled = ctrl->cpr_enabled;
+
+ /* Ensure that CPR clocks are enabled before writing to registers. */
+ if (!cpr_enabled) {
+ rc = cpr3_clock_enable(ctrl);
+ if (rc) {
+ cpr3_err(ctrl, "clock enable failed, rc=%d\n", rc);
+ goto done;
+ }
+ ctrl->cpr_enabled = true;
+ }
+
+ if (ctrl->use_hw_closed_loop)
+ cpr3_write(ctrl, CPR3_REG_IRQ_EN, 0);
+
+ if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) {
+ cpr3_masked_write(ctrl, CPR4_REG_MARGIN_ADJ_CTL,
+ CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_EN_MASK,
+ ctrl->use_hw_closed_loop
+ ? CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_ENABLE
+ : CPR4_MARGIN_ADJ_CTL_HW_CLOSED_LOOP_DISABLE);
+ } else if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3) {
+ cpr3_write(ctrl, CPR3_REG_HW_CLOSED_LOOP,
+ ctrl->use_hw_closed_loop
+ ? CPR3_HW_CLOSED_LOOP_ENABLE
+ : CPR3_HW_CLOSED_LOOP_DISABLE);
+ }
+
+ /* Turn off CPR clocks if they were off before this function call. */
+ if (!cpr_enabled) {
+ cpr3_clock_disable(ctrl);
+ ctrl->cpr_enabled = false;
+ }
+
+ if (ctrl->use_hw_closed_loop && ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3) {
+ rc = regulator_enable(ctrl->vdd_limit_regulator);
+ if (rc) {
+ cpr3_err(ctrl, "CPR limit regulator enable failed, rc=%d\n",
+ rc);
+ goto done;
+ }
+ } else if (!ctrl->use_hw_closed_loop
+ && ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3) {
+ rc = regulator_disable(ctrl->vdd_limit_regulator);
+ if (rc) {
+ cpr3_err(ctrl, "CPR limit regulator disable failed, rc=%d\n",
+ rc);
+ goto done;
+ }
+ }
+
+ /*
+ * Due to APM and mem-acc floor restriction constraints,
+ * the closed-loop voltage may be different when using
+ * software closed-loop vs hardware closed-loop. Therefore,
+ * reset the cached closed-loop voltage for all corners to the
+ * corresponding open-loop voltage when switching between
+ * SW and HW closed-loop mode.
+ */
+ for (i = 0; i < ctrl->thread_count; i++) {
+ for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
+ vreg = &ctrl->thread[i].vreg[j];
+ for (k = 0; k < vreg->corner_count; k++)
+ vreg->corner[k].last_volt
+ = vreg->corner[k].open_loop_volt;
+ }
+ }
+
+ /* Skip last_volt caching */
+ ctrl->last_corner_was_closed_loop = false;
+
+ rc = cpr3_regulator_update_ctrl_state(ctrl);
+ if (rc) {
+ cpr3_err(ctrl, "could not change CPR HW closed-loop enable state=%u, rc=%d\n",
+ use_hw_closed_loop, rc);
+ goto done;
+ }
+
+ cpr3_debug(ctrl, "CPR mode=%s\n",
+ use_hw_closed_loop ?
+ "HW closed-loop" : "SW closed-loop");
+done:
+ mutex_unlock(&ctrl->lock);
+ return 0;
+}
+
+/**
+ * cpr3_debug_hw_closed_loop_enable_get() - debugfs callback used to retrieve
+ * the value of the CPR controller use_hw_closed_loop flag which
+ * indicates if hardware closed-loop operation is being used in
+ * place of software closed-loop operation
+ * @data: Pointer to private data which is equal to the CPR
+ * controller pointer
+ * @val: Output parameter written with the value of
+ * use_hw_closed_loop
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_debug_hw_closed_loop_enable_get(void *data, u64 *val)
+{
+ struct cpr3_controller *ctrl = data;
+
+ *val = ctrl->use_hw_closed_loop;
+
+ return 0;
+}
+DEFINE_SIMPLE_ATTRIBUTE(cpr3_debug_hw_closed_loop_enable_fops,
+ cpr3_debug_hw_closed_loop_enable_get,
+ cpr3_debug_hw_closed_loop_enable_set,
+ "%llu\n");
+
+/**
+ * cpr3_debug_trigger_aging_measurement_set() - debugfs callback used to trigger
+ * another CPR measurement
+ * @data: Pointer to private data which is equal to the CPR
+ * controller pointer
+ * @val: Unused
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_debug_trigger_aging_measurement_set(void *data, u64 val)
+{
+ struct cpr3_controller *ctrl = data;
+ int rc;
+
+ mutex_lock(&ctrl->lock);
+
+ if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) {
+ rc = cpr3_ctrl_clear_cpr4_config(ctrl);
+ if (rc) {
+ cpr3_err(ctrl, "failed to clear CPR4 configuration,rc=%d\n",
+ rc);
+ goto done;
+ }
+ }
+
+ cpr3_ctrl_loop_disable(ctrl);
+
+ cpr3_regulator_set_aging_ref_adjustment(ctrl, INT_MAX);
+ ctrl->aging_required = true;
+ ctrl->aging_succeeded = false;
+ ctrl->aging_failed = false;
+
+ rc = cpr3_regulator_update_ctrl_state(ctrl);
+ if (rc) {
+ cpr3_err(ctrl, "could not update the CPR controller state, rc=%d\n",
+ rc);
+ goto done;
+ }
+
+done:
+ mutex_unlock(&ctrl->lock);
+ return 0;
+}
+DEFINE_SIMPLE_ATTRIBUTE(cpr3_debug_trigger_aging_measurement_fops,
+ NULL,
+ cpr3_debug_trigger_aging_measurement_set,
+ "%llu\n");
+
+/**
+ * cpr3_regulator_debugfs_ctrl_add() - add debugfs files to expose configuration
+ * data for the CPR controller
+ * @ctrl: Pointer to the CPR3 controller
+ *
+ * Return: none
+ */
+static void cpr3_regulator_debugfs_ctrl_add(struct cpr3_controller *ctrl)
+{
+ struct dentry *temp, *aggr_dir;
+ int i;
+
+ /* Add cpr3-regulator base directory if it isn't present already. */
+ if (cpr3_debugfs_base == NULL) {
+ cpr3_debugfs_base = debugfs_create_dir("cpr3-regulator", NULL);
+ if (IS_ERR_OR_NULL(cpr3_debugfs_base)) {
+ cpr3_err(ctrl, "cpr3-regulator debugfs base directory creation failed\n");
+ cpr3_debugfs_base = NULL;
+ return;
+ }
+ }
+
+ ctrl->debugfs = debugfs_create_dir(ctrl->name, cpr3_debugfs_base);
+ if (IS_ERR_OR_NULL(ctrl->debugfs)) {
+ cpr3_err(ctrl, "cpr3-regulator controller debugfs directory creation failed\n");
+ return;
+ }
+
+ temp = debugfs_create_file("cpr_closed_loop_enable", S_IRUGO | S_IWUSR,
+ ctrl->debugfs, ctrl,
+ &cpr3_debug_closed_loop_enable_fops);
+ if (IS_ERR_OR_NULL(temp)) {
+ cpr3_err(ctrl, "cpr_closed_loop_enable debugfs file creation failed\n");
+ return;
+ }
+
+ if (ctrl->supports_hw_closed_loop) {
+ temp = debugfs_create_file("use_hw_closed_loop",
+ S_IRUGO | S_IWUSR, ctrl->debugfs, ctrl,
+ &cpr3_debug_hw_closed_loop_enable_fops);
+ if (IS_ERR_OR_NULL(temp)) {
+ cpr3_err(ctrl, "use_hw_closed_loop debugfs file creation failed\n");
+ return;
+ }
+ }
+
+ temp = debugfs_create_int("thread_count", S_IRUGO, ctrl->debugfs,
+ &ctrl->thread_count);
+ if (IS_ERR_OR_NULL(temp)) {
+ cpr3_err(ctrl, "thread_count debugfs file creation failed\n");
+ return;
+ }
+
+ if (ctrl->apm) {
+ temp = debugfs_create_int("apm_threshold_volt", S_IRUGO,
+ ctrl->debugfs, &ctrl->apm_threshold_volt);
+ if (IS_ERR_OR_NULL(temp)) {
+ cpr3_err(ctrl, "apm_threshold_volt debugfs file creation failed\n");
+ return;
+ }
+ }
+
+ if (ctrl->aging_required || ctrl->aging_succeeded
+ || ctrl->aging_failed) {
+ temp = debugfs_create_int("aging_adj_volt", S_IRUGO,
+ ctrl->debugfs, &ctrl->aging_ref_adjust_volt);
+ if (IS_ERR_OR_NULL(temp)) {
+ cpr3_err(ctrl, "aging_adj_volt debugfs file creation failed\n");
+ return;
+ }
+
+ temp = debugfs_create_file("aging_succeeded", S_IRUGO,
+ ctrl->debugfs, &ctrl->aging_succeeded, &fops_bool_ro);
+ if (IS_ERR_OR_NULL(temp)) {
+ cpr3_err(ctrl, "aging_succeeded debugfs file creation failed\n");
+ return;
+ }
+
+ temp = debugfs_create_file("aging_failed", S_IRUGO,
+ ctrl->debugfs, &ctrl->aging_failed, &fops_bool_ro);
+ if (IS_ERR_OR_NULL(temp)) {
+ cpr3_err(ctrl, "aging_failed debugfs file creation failed\n");
+ return;
+ }
+
+ temp = debugfs_create_file("aging_trigger", S_IWUSR,
+ ctrl->debugfs, ctrl,
+ &cpr3_debug_trigger_aging_measurement_fops);
+ if (IS_ERR_OR_NULL(temp)) {
+ cpr3_err(ctrl, "aging_trigger debugfs file creation failed\n");
+ return;
+ }
+ }
+
+ aggr_dir = debugfs_create_dir("max_aggregated_voltages", ctrl->debugfs);
+ if (IS_ERR_OR_NULL(aggr_dir)) {
+ cpr3_err(ctrl, "max_aggregated_voltages debugfs directory creation failed\n");
+ return;
+ }
+
+ temp = debugfs_create_int("floor_volt", S_IRUGO, aggr_dir,
+ &ctrl->aggr_corner.floor_volt);
+ if (IS_ERR_OR_NULL(temp)) {
+ cpr3_err(ctrl, "aggr floor_volt debugfs file creation failed\n");
+ return;
+ }
+
+ temp = debugfs_create_int("ceiling_volt", S_IRUGO, aggr_dir,
+ &ctrl->aggr_corner.ceiling_volt);
+ if (IS_ERR_OR_NULL(temp)) {
+ cpr3_err(ctrl, "aggr ceiling_volt debugfs file creation failed\n");
+ return;
+ }
+
+ temp = debugfs_create_int("open_loop_volt", S_IRUGO, aggr_dir,
+ &ctrl->aggr_corner.open_loop_volt);
+ if (IS_ERR_OR_NULL(temp)) {
+ cpr3_err(ctrl, "aggr open_loop_volt debugfs file creation failed\n");
+ return;
+ }
+
+ temp = debugfs_create_int("last_volt", S_IRUGO, aggr_dir,
+ &ctrl->aggr_corner.last_volt);
+ if (IS_ERR_OR_NULL(temp)) {
+ cpr3_err(ctrl, "aggr last_volt debugfs file creation failed\n");
+ return;
+ }
+
+ for (i = 0; i < ctrl->thread_count; i++)
+ cpr3_regulator_debugfs_thread_add(&ctrl->thread[i]);
+}
+
+/**
+ * cpr3_regulator_debugfs_ctrl_remove() - remove debugfs files for the CPR
+ * controller
+ * @ctrl: Pointer to the CPR3 controller
+ *
+ * Note, this function must be called after the controller has been removed from
+ * cpr3_controller_list and while the cpr3_controller_list_mutex lock is held.
+ *
+ * Return: none
+ */
+static void cpr3_regulator_debugfs_ctrl_remove(struct cpr3_controller *ctrl)
+{
+ if (list_empty(&cpr3_controller_list)) {
+ debugfs_remove_recursive(cpr3_debugfs_base);
+ cpr3_debugfs_base = NULL;
+ } else {
+ debugfs_remove_recursive(ctrl->debugfs);
+ }
+}
+
+/**
+ * cpr3_regulator_init_ctrl_data() - performs initialization of CPR controller
+ * elements
+ * @ctrl: Pointer to the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_regulator_init_ctrl_data(struct cpr3_controller *ctrl)
+{
+ /* Read the initial vdd voltage from hardware. */
+ ctrl->aggr_corner.last_volt
+ = regulator_get_voltage(ctrl->vdd_regulator);
+ if (ctrl->aggr_corner.last_volt < 0) {
+ cpr3_err(ctrl, "regulator_get_voltage(vdd) failed, rc=%d\n",
+ ctrl->aggr_corner.last_volt);
+ return ctrl->aggr_corner.last_volt;
+ }
+ ctrl->aggr_corner.open_loop_volt = ctrl->aggr_corner.last_volt;
+
+ return 0;
+}
+
+/**
+ * cpr3_regulator_init_vreg_data() - performs initialization of common CPR3
+ * regulator elements and validate aging configurations
+ * @vreg: Pointer to the CPR3 regulator
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_regulator_init_vreg_data(struct cpr3_regulator *vreg)
+{
+ int i, j;
+ bool init_aging;
+
+ vreg->current_corner = CPR3_REGULATOR_CORNER_INVALID;
+ vreg->last_closed_loop_corner = CPR3_REGULATOR_CORNER_INVALID;
+
+ init_aging = vreg->aging_allowed && vreg->thread->ctrl->aging_required;
+
+ for (i = 0; i < vreg->corner_count; i++) {
+ vreg->corner[i].last_volt = vreg->corner[i].open_loop_volt;
+ vreg->corner[i].irq_en = CPR3_IRQ_UP | CPR3_IRQ_DOWN;
+
+ vreg->corner[i].ro_mask = 0;
+ for (j = 0; j < CPR3_RO_COUNT; j++) {
+ if (vreg->corner[i].target_quot[j] == 0)
+ vreg->corner[i].ro_mask |= BIT(j);
+ }
+
+ if (init_aging) {
+ vreg->corner[i].unaged_floor_volt
+ = vreg->corner[i].floor_volt;
+ vreg->corner[i].unaged_ceiling_volt
+ = vreg->corner[i].ceiling_volt;
+ vreg->corner[i].unaged_open_loop_volt
+ = vreg->corner[i].open_loop_volt;
+ }
+
+ if (vreg->aging_allowed) {
+ if (vreg->corner[i].unaged_floor_volt <= 0) {
+ cpr3_err(vreg, "invalid unaged_floor_volt[%d] = %d\n",
+ i, vreg->corner[i].unaged_floor_volt);
+ return -EINVAL;
+ }
+ if (vreg->corner[i].unaged_ceiling_volt <= 0) {
+ cpr3_err(vreg, "invalid unaged_ceiling_volt[%d] = %d\n",
+ i, vreg->corner[i].unaged_ceiling_volt);
+ return -EINVAL;
+ }
+ if (vreg->corner[i].unaged_open_loop_volt <= 0) {
+ cpr3_err(vreg, "invalid unaged_open_loop_volt[%d] = %d\n",
+ i, vreg->corner[i].unaged_open_loop_volt);
+ return -EINVAL;
+ }
+ }
+ }
+
+ if (vreg->aging_allowed && vreg->corner[vreg->aging_corner].ceiling_volt
+ > vreg->thread->ctrl->aging_ref_volt) {
+ cpr3_err(vreg, "aging corner %d ceiling voltage = %d > aging ref voltage = %d uV\n",
+ vreg->aging_corner,
+ vreg->corner[vreg->aging_corner].ceiling_volt,
+ vreg->thread->ctrl->aging_ref_volt);
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+/**
+ * cpr3_regulator_suspend() - perform common required CPR3 power down steps
+ * before the system enters suspend
+ * @ctrl: Pointer to the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_regulator_suspend(struct cpr3_controller *ctrl)
+{
+ int rc;
+
+ mutex_lock(&ctrl->lock);
+
+ if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) {
+ rc = cpr3_ctrl_clear_cpr4_config(ctrl);
+ if (rc) {
+ cpr3_err(ctrl, "failed to clear CPR4 configuration,rc=%d\n",
+ rc);
+ mutex_unlock(&ctrl->lock);
+ return rc;
+ }
+ }
+
+ cpr3_ctrl_loop_disable(ctrl);
+
+ rc = cpr3_closed_loop_disable(ctrl);
+ if (rc)
+ cpr3_err(ctrl, "could not disable CPR, rc=%d\n", rc);
+
+ ctrl->cpr_suspended = true;
+
+ mutex_unlock(&ctrl->lock);
+ return 0;
+}
+
+/**
+ * cpr3_regulator_resume() - perform common required CPR3 power up steps after
+ * the system resumes from suspend
+ * @ctrl: Pointer to the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_regulator_resume(struct cpr3_controller *ctrl)
+{
+ int rc;
+
+ mutex_lock(&ctrl->lock);
+
+ ctrl->cpr_suspended = false;
+ rc = cpr3_regulator_update_ctrl_state(ctrl);
+ if (rc)
+ cpr3_err(ctrl, "could not enable CPR, rc=%d\n", rc);
+
+ mutex_unlock(&ctrl->lock);
+ return 0;
+}
+
+/**
+ * cpr3_regulator_validate_controller() - verify the data passed in via the
+ * cpr3_controller data structure
+ * @ctrl: Pointer to the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_regulator_validate_controller(struct cpr3_controller *ctrl)
+{
+ struct cpr3_thread *thread;
+ struct cpr3_regulator *vreg;
+ int i, j, allow_boost_vreg_count = 0;
+
+ if (!ctrl->vdd_regulator) {
+ cpr3_err(ctrl, "vdd regulator missing\n");
+ return -EINVAL;
+ } else if (ctrl->sensor_count <= 0
+ || ctrl->sensor_count > CPR3_MAX_SENSOR_COUNT) {
+ cpr3_err(ctrl, "invalid CPR sensor count=%d\n",
+ ctrl->sensor_count);
+ return -EINVAL;
+ } else if (!ctrl->sensor_owner) {
+ cpr3_err(ctrl, "CPR sensor ownership table missing\n");
+ return -EINVAL;
+ }
+
+ if (ctrl->aging_required) {
+ for (i = 0; i < ctrl->aging_sensor_count; i++) {
+ if (ctrl->aging_sensor[i].sensor_id
+ >= ctrl->sensor_count) {
+ cpr3_err(ctrl, "aging_sensor[%d] id=%u is not in the value range 0-%d",
+ i, ctrl->aging_sensor[i].sensor_id,
+ ctrl->sensor_count - 1);
+ return -EINVAL;
+ }
+ }
+ }
+
+ for (i = 0; i < ctrl->thread_count; i++) {
+ thread = &ctrl->thread[i];
+ for (j = 0; j < thread->vreg_count; j++) {
+ vreg = &thread->vreg[j];
+ if (vreg->allow_boost)
+ allow_boost_vreg_count++;
+ }
+ }
+
+ if (allow_boost_vreg_count > 1) {
+ /*
+ * Boost feature is not allowed to be used for more
+ * than one CPR3 regulator of a CPR3 controller.
+ */
+ cpr3_err(ctrl, "Boost feature is enabled for more than one regulator\n");
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+/**
+ * cpr3_panic_callback() - panic notification callback function. This function
+ * is invoked when a kernel panic occurs.
+ * @nfb: Notifier block pointer of CPR3 controller
+ * @event: Value passed unmodified to notifier function
+ * @data: Pointer passed unmodified to notifier function
+ *
+ * Return: NOTIFY_OK
+ */
+static int cpr3_panic_callback(struct notifier_block *nfb,
+ unsigned long event, void *data)
+{
+ struct cpr3_controller *ctrl = container_of(nfb,
+ struct cpr3_controller, panic_notifier);
+ struct cpr3_panic_regs_info *regs_info = ctrl->panic_regs_info;
+ struct cpr3_reg_info *reg;
+ int i = 0;
+
+ for (i = 0; i < regs_info->reg_count; i++) {
+ reg = &(regs_info->regs[i]);
+ reg->value = readl_relaxed(reg->virt_addr);
+ pr_err("%s[0x%08x] = 0x%08x\n", reg->name, reg->addr,
+ reg->value);
+ }
+ /*
+ * Barrier to ensure that the information has been updated in the
+ * structure.
+ */
+ mb();
+
+ return NOTIFY_OK;
+}
+
+/**
+ * cpr3_regulator_register() - register the regulators for a CPR3 controller and
+ * perform CPR hardware initialization
+ * @pdev: Platform device pointer for the CPR3 controller
+ * @ctrl: Pointer to the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_regulator_register(struct platform_device *pdev,
+ struct cpr3_controller *ctrl)
+{
+ struct device *dev = &pdev->dev;
+ struct resource *res;
+ int i, j, rc;
+
+ if (!dev->of_node) {
+ dev_err(dev, "%s: Device tree node is missing\n", __func__);
+ return -EINVAL;
+ }
+
+ if (!ctrl || !ctrl->name) {
+ dev_err(dev, "%s: CPR controller data is missing\n", __func__);
+ return -EINVAL;
+ }
+
+ rc = cpr3_regulator_validate_controller(ctrl);
+ if (rc) {
+ cpr3_err(ctrl, "controller validation failed, rc=%d\n", rc);
+ return rc;
+ }
+
+ mutex_init(&ctrl->lock);
+
+ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cpr_ctrl");
+ if (!res || !res->start) {
+ cpr3_err(ctrl, "CPR controller address is missing\n");
+ return -ENXIO;
+ }
+ ctrl->cpr_ctrl_base = devm_ioremap(dev, res->start, resource_size(res));
+
+ if (ctrl->aging_possible_mask) {
+ /*
+ * Aging possible register address is required if an aging
+ * possible mask has been specified.
+ */
+ res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
+ "aging_allowed");
+ if (!res || !res->start) {
+ cpr3_err(ctrl, "CPR aging allowed address is missing\n");
+ return -ENXIO;
+ }
+ ctrl->aging_possible_reg = devm_ioremap(dev, res->start,
+ resource_size(res));
+ }
+
+ ctrl->irq = platform_get_irq_byname(pdev, "cpr");
+ if (ctrl->irq < 0) {
+ cpr3_err(ctrl, "missing CPR interrupt\n");
+ return ctrl->irq;
+ }
+
+ if (ctrl->supports_hw_closed_loop) {
+ if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3) {
+ ctrl->ceiling_irq = platform_get_irq_byname(pdev,
+ "ceiling");
+ if (ctrl->ceiling_irq < 0) {
+ cpr3_err(ctrl, "missing ceiling interrupt\n");
+ return ctrl->ceiling_irq;
+ }
+ }
+ }
+
+ rc = cpr3_regulator_init_ctrl_data(ctrl);
+ if (rc) {
+ cpr3_err(ctrl, "CPR controller data initialization failed, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ for (i = 0; i < ctrl->thread_count; i++) {
+ for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
+ rc = cpr3_regulator_init_vreg_data(
+ &ctrl->thread[i].vreg[j]);
+ if (rc)
+ return rc;
+ cpr3_print_quots(&ctrl->thread[i].vreg[j]);
+ }
+ }
+
+ /*
+ * Add the maximum possible aging voltage margin until it is possible
+ * to perform an aging measurement.
+ */
+ if (ctrl->aging_required)
+ cpr3_regulator_set_aging_ref_adjustment(ctrl, INT_MAX);
+
+ rc = cpr3_regulator_init_ctrl(ctrl);
+ if (rc) {
+ cpr3_err(ctrl, "CPR controller initialization failed, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ /* Register regulator devices for all threads. */
+ for (i = 0; i < ctrl->thread_count; i++) {
+ for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
+ rc = cpr3_regulator_vreg_register(
+ &ctrl->thread[i].vreg[j]);
+ if (rc) {
+ cpr3_err(&ctrl->thread[i].vreg[j], "failed to register regulator, rc=%d\n",
+ rc);
+ goto free_regulators;
+ }
+ }
+ }
+
+ rc = devm_request_threaded_irq(dev, ctrl->irq, NULL,
+ cpr3_irq_handler,
+ IRQF_ONESHOT |
+ IRQF_TRIGGER_RISING,
+ "cpr3", ctrl);
+ if (rc) {
+ cpr3_err(ctrl, "could not request IRQ %d, rc=%d\n",
+ ctrl->irq, rc);
+ goto free_regulators;
+ }
+
+ if (ctrl->supports_hw_closed_loop &&
+ ctrl->ctrl_type == CPR_CTRL_TYPE_CPR3) {
+ rc = devm_request_threaded_irq(dev, ctrl->ceiling_irq, NULL,
+ cpr3_ceiling_irq_handler,
+ IRQF_ONESHOT | IRQF_TRIGGER_RISING,
+ "cpr3_ceiling", ctrl);
+ if (rc) {
+ cpr3_err(ctrl, "could not request ceiling IRQ %d, rc=%d\n",
+ ctrl->ceiling_irq, rc);
+ goto free_regulators;
+ }
+ }
+
+ mutex_lock(&cpr3_controller_list_mutex);
+ cpr3_regulator_debugfs_ctrl_add(ctrl);
+ list_add(&ctrl->list, &cpr3_controller_list);
+ mutex_unlock(&cpr3_controller_list_mutex);
+
+ if (ctrl->panic_regs_info) {
+ /* Register panic notification call back */
+ ctrl->panic_notifier.notifier_call = cpr3_panic_callback;
+ atomic_notifier_chain_register(&panic_notifier_list,
+ &ctrl->panic_notifier);
+ }
+
+ return 0;
+
+free_regulators:
+ for (i = 0; i < ctrl->thread_count; i++)
+ for (j = 0; j < ctrl->thread[i].vreg_count; j++)
+ if (!IS_ERR_OR_NULL(ctrl->thread[i].vreg[j].rdev))
+ regulator_unregister(
+ ctrl->thread[i].vreg[j].rdev);
+ return rc;
+}
+
+/**
+ * cpr3_open_loop_regulator_register() - register the regulators for a CPR3
+ * controller which will always work in Open loop and
+ * won't support close loop.
+ * @pdev: Platform device pointer for the CPR3 controller
+ * @ctrl: Pointer to the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_open_loop_regulator_register(struct platform_device *pdev,
+ struct cpr3_controller *ctrl)
+{
+ struct device *dev = &pdev->dev;
+ struct cpr3_regulator *vreg;
+ int i, j, rc;
+
+ if (!dev->of_node) {
+ dev_err(dev, "%s: Device tree node is missing\n", __func__);
+ return -EINVAL;
+ }
+
+ if (!ctrl || !ctrl->name) {
+ dev_err(dev, "%s: CPR controller data is missing\n", __func__);
+ return -EINVAL;
+ }
+
+ if (!ctrl->vdd_regulator) {
+ cpr3_err(ctrl, "vdd regulator missing\n");
+ return -EINVAL;
+ }
+
+ mutex_init(&ctrl->lock);
+
+ rc = cpr3_regulator_init_ctrl_data(ctrl);
+ if (rc) {
+ cpr3_err(ctrl, "CPR controller data initialization failed, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ for (i = 0; i < ctrl->thread_count; i++) {
+ for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
+ vreg = &ctrl->thread[i].vreg[j];
+ vreg->corner[i].last_volt =
+ vreg->corner[i].open_loop_volt;
+ }
+ }
+
+ /* Register regulator devices for all threads. */
+ for (i = 0; i < ctrl->thread_count; i++) {
+ for (j = 0; j < ctrl->thread[i].vreg_count; j++) {
+ rc = cpr3_regulator_vreg_register(
+ &ctrl->thread[i].vreg[j]);
+ if (rc) {
+ cpr3_err(&ctrl->thread[i].vreg[j], "failed to register regulator, rc=%d\n",
+ rc);
+ goto free_regulators;
+ }
+ }
+ }
+
+ mutex_lock(&cpr3_controller_list_mutex);
+ list_add(&ctrl->list, &cpr3_controller_list);
+ mutex_unlock(&cpr3_controller_list_mutex);
+
+ return 0;
+
+free_regulators:
+ for (i = 0; i < ctrl->thread_count; i++)
+ for (j = 0; j < ctrl->thread[i].vreg_count; j++)
+ if (!IS_ERR_OR_NULL(ctrl->thread[i].vreg[j].rdev))
+ regulator_unregister(
+ ctrl->thread[i].vreg[j].rdev);
+ return rc;
+}
+
+/**
+ * cpr3_regulator_unregister() - unregister the regulators for a CPR3 controller
+ * and perform CPR hardware shutdown
+ * @ctrl: Pointer to the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_regulator_unregister(struct cpr3_controller *ctrl)
+{
+ int i, j, rc = 0;
+
+ mutex_lock(&cpr3_controller_list_mutex);
+ list_del(&ctrl->list);
+ cpr3_regulator_debugfs_ctrl_remove(ctrl);
+ mutex_unlock(&cpr3_controller_list_mutex);
+
+ if (ctrl->ctrl_type == CPR_CTRL_TYPE_CPR4) {
+ rc = cpr3_ctrl_clear_cpr4_config(ctrl);
+ if (rc)
+ cpr3_err(ctrl, "failed to clear CPR4 configuration,rc=%d\n",
+ rc);
+ }
+
+ cpr3_ctrl_loop_disable(ctrl);
+
+ cpr3_closed_loop_disable(ctrl);
+
+ if (ctrl->vdd_limit_regulator) {
+ regulator_disable(ctrl->vdd_limit_regulator);
+ }
+
+ for (i = 0; i < ctrl->thread_count; i++)
+ for (j = 0; j < ctrl->thread[i].vreg_count; j++)
+ regulator_unregister(ctrl->thread[i].vreg[j].rdev);
+
+ if (ctrl->panic_notifier.notifier_call)
+ atomic_notifier_chain_unregister(&panic_notifier_list,
+ &ctrl->panic_notifier);
+
+ return 0;
+}
+
+/**
+ * cpr3_open_loop_regulator_unregister() - unregister the regulators for a CPR3
+ * open loop controller and perform CPR hardware shutdown
+ * @ctrl: Pointer to the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_open_loop_regulator_unregister(struct cpr3_controller *ctrl)
+{
+ int i, j;
+
+ mutex_lock(&cpr3_controller_list_mutex);
+ list_del(&ctrl->list);
+ mutex_unlock(&cpr3_controller_list_mutex);
+
+ if (ctrl->vdd_limit_regulator) {
+ regulator_disable(ctrl->vdd_limit_regulator);
+ }
+
+ for (i = 0; i < ctrl->thread_count; i++)
+ for (j = 0; j < ctrl->thread[i].vreg_count; j++)
+ regulator_unregister(ctrl->thread[i].vreg[j].rdev);
+
+ if (ctrl->panic_notifier.notifier_call)
+ atomic_notifier_chain_unregister(&panic_notifier_list,
+ &ctrl->panic_notifier);
+
+ return 0;
+}
--- /dev/null
+++ b/drivers/regulator/cpr3-regulator.h
@@ -0,0 +1,1211 @@
+/*
+ * Copyright (c) 2015-2017, The Linux Foundation. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 and
+ * only version 2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ */
+
+#ifndef __REGULATOR_CPR3_REGULATOR_H__
+#define __REGULATOR_CPR3_REGULATOR_H__
+
+#include <linux/clk.h>
+#include <linux/mutex.h>
+#include <linux/of.h>
+#include <linux/platform_device.h>
+#include <linux/types.h>
+#include <linux/power/qcom/apm.h>
+#include <linux/regulator/driver.h>
+
+struct cpr3_controller;
+struct cpr3_thread;
+
+/**
+ * struct cpr3_fuse_param - defines one contiguous segment of a fuse parameter
+ * that is contained within a given row.
+ * @row: Fuse row number
+ * @bit_start: The first bit within the row of the fuse parameter segment
+ * @bit_end: The last bit within the row of the fuse parameter segment
+ *
+ * Each fuse row is 64 bits in length. bit_start and bit_end may take values
+ * from 0 to 63. bit_start must be less than or equal to bit_end.
+ */
+struct cpr3_fuse_param {
+ unsigned row;
+ unsigned bit_start;
+ unsigned bit_end;
+};
+
+/* Each CPR3 sensor has 16 ring oscillators */
+#define CPR3_RO_COUNT 16
+
+/* The maximum number of sensors that can be present on a single CPR loop. */
+#define CPR3_MAX_SENSOR_COUNT 256
+
+/* This constant is used when allocating array printing buffers. */
+#define MAX_CHARS_PER_INT 10
+
+/**
+ * struct cpr4_sdelta - CPR4 controller specific data structure for the sdelta
+ * adjustment table which is used to adjust the VDD supply
+ * voltage automatically based upon the temperature and/or
+ * the number of online CPU cores.
+ * @allow_core_count_adj: Core count adjustments are allowed.
+ * @allow_temp_adj: Temperature based adjustments are allowed.
+ * @max_core_count: Maximum number of cores considered for core count
+ * adjustment logic.
+ * @temp_band_count: Number of temperature bands considered for temperature
+ * based adjustment logic.
+ * @cap_volt: CAP in uV to apply to SDELTA margins with multiple
+ * cpr3-regulators defined for single controller.
+ * @table: SDELTA table with per-online-core and temperature based
+ * adjustments of size (max_core_count * temp_band_count)
+ * Outer: core count
+ * Inner: temperature band
+ * Each element has units of VDD supply steps. Positive
+ * values correspond to a reduction in voltage and negative
+ * value correspond to an increase (this follows the SDELTA
+ * register semantics).
+ * @allow_boost: Voltage boost allowed.
+ * @boost_num_cores: The number of online cores at which the boost voltage
+ * adjustments will be applied
+ * @boost_table: SDELTA table with boost voltage adjustments of size
+ * temp_band_count. Each element has units of VDD supply
+ * steps. Positive values correspond to a reduction in
+ * voltage and negative value correspond to an increase
+ * (this follows the SDELTA register semantics).
+ */
+struct cpr4_sdelta {
+ bool allow_core_count_adj;
+ bool allow_temp_adj;
+ int max_core_count;
+ int temp_band_count;
+ int cap_volt;
+ int *table;
+ bool allow_boost;
+ int boost_num_cores;
+ int *boost_table;
+};
+
+/**
+ * struct cpr3_corner - CPR3 virtual voltage corner data structure
+ * @floor_volt: CPR closed-loop floor voltage in microvolts
+ * @ceiling_volt: CPR closed-loop ceiling voltage in microvolts
+ * @open_loop_volt: CPR open-loop voltage (i.e. initial voltage) in
+ * microvolts
+ * @last_volt: Last known settled CPR closed-loop voltage which is used
+ * when switching to a new corner
+ * @abs_ceiling_volt: The absolute CPR closed-loop ceiling voltage in
+ * microvolts. This is used to limit the ceiling_volt
+ * value when it is increased as a result of aging
+ * adjustment.
+ * @unaged_floor_volt: The CPR closed-loop floor voltage in microvolts before
+ * any aging adjustment is performed
+ * @unaged_ceiling_volt: The CPR closed-loop ceiling voltage in microvolts
+ * before any aging adjustment is performed
+ * @unaged_open_loop_volt: The CPR open-loop voltage (i.e. initial voltage) in
+ * microvolts before any aging adjusment is performed
+ * @system_volt: The system-supply voltage in microvolts or corners or
+ * levels
+ * @mem_acc_volt: The mem-acc-supply voltage in corners
+ * @proc_freq: Processor frequency in Hertz. For CPR rev. 3 and 4
+ * conrollers, this field is only used by platform specific
+ * CPR3 driver for interpolation. For CPRh-compliant
+ * controllers, this frequency is also utilized by the
+ * clock driver to determine the corner to CPU clock
+ * frequency mappings.
+ * @cpr_fuse_corner: Fused corner index associated with this virtual corner
+ * (only used by platform specific CPR3 driver for
+ * mapping purposes)
+ * @target_quot: Array of target quotient values to use for each ring
+ * oscillator (RO) for this corner. A value of 0 should be
+ * specified as the target quotient for each RO that is
+ * unused by this corner.
+ * @ro_scale: Array of CPR ring oscillator (RO) scaling factors. The
+ * scaling factor for each RO is defined from RO0 to RO15
+ * with units of QUOT/V. A value of 0 may be specified for
+ * an RO that is unused.
+ * @ro_mask: Bitmap where each of the 16 LSBs indicate if the
+ * corresponding ROs should be masked for this corner
+ * @irq_en: Bitmap of the CPR interrupts to enable for this corner
+ * @aging_derate: The amount to derate the aging voltage adjustment
+ * determined for the reference corner in units of uV/mV.
+ * E.g. a value of 900 would imply that the adjustment for
+ * this corner should be 90% (900/1000) of that for the
+ * reference corner.
+ * @use_open_loop: Boolean indicating that open-loop (i.e CPR disabled) as
+ * opposed to closed-loop operation must be used for this
+ * corner on CPRh controllers.
+ * @sdelta: The CPR4 controller specific data for this corner. This
+ * field is applicable for CPR4 controllers.
+ *
+ * The value of last_volt is initialized inside of the cpr3_regulator_register()
+ * call with the open_loop_volt value. It can later be updated to the settled
+ * VDD supply voltage. The values for unaged_floor_volt, unaged_ceiling_volt,
+ * and unaged_open_loop_volt are initialized inside of cpr3_regulator_register()
+ * if ctrl->aging_required == true. These three values must be pre-initialized
+ * if cpr3_regulator_register() is called with ctrl->aging_required == false and
+ * ctrl->aging_succeeded == true.
+ *
+ * The values of ro_mask and irq_en are initialized inside of the
+ * cpr3_regulator_register() call.
+ */
+struct cpr3_corner {
+ int floor_volt;
+ int ceiling_volt;
+ int cold_temp_open_loop_volt;
+ int normal_temp_open_loop_volt;
+ int open_loop_volt;
+ int last_volt;
+ int abs_ceiling_volt;
+ int unaged_floor_volt;
+ int unaged_ceiling_volt;
+ int unaged_open_loop_volt;
+ int system_volt;
+ int mem_acc_volt;
+ u32 proc_freq;
+ int cpr_fuse_corner;
+ u32 target_quot[CPR3_RO_COUNT];
+ u32 ro_scale[CPR3_RO_COUNT];
+ u32 ro_mask;
+ u32 irq_en;
+ int aging_derate;
+ bool use_open_loop;
+ struct cpr4_sdelta *sdelta;
+};
+
+/**
+ * struct cprh_corner_band - CPRh controller specific data structure which
+ * encapsulates the range of corners and the SDELTA
+ * adjustment table to be applied to the corners within
+ * the min and max bounds of the corner band.
+ * @corner: Corner number which defines the corner band boundary
+ * @sdelta: The SDELTA adjustment table which contains core-count
+ * and temp based margin adjustments that are applicable
+ * to the corner band.
+ */
+struct cprh_corner_band {
+ int corner;
+ struct cpr4_sdelta *sdelta;
+};
+
+/**
+ * struct cpr3_fuse_parameters - CPR4 fuse specific data structure which has
+ * the required fuse parameters need for Close Loop CPR
+ * @(*apss_ro_sel_param)[2]: Pointer to RO select fuse details
+ * @(*apss_init_voltage_param)[2]: Pointer to Target voltage fuse details
+ * @(*apss_target_quot_param)[2]: Pointer to Target quot fuse details
+ * @(*apss_quot_offset_param)[2]: Pointer to quot offset fuse details
+ * @cpr_fusing_rev_param: Pointer to CPR revision fuse details
+ * @apss_speed_bin_param: Pointer to Speed bin fuse details
+ * @cpr_boost_fuse_cfg_param: Pointer to Boost fuse cfg details
+ * @apss_boost_fuse_volt_param: Pointer to Boost fuse volt details
+ * @misc_fuse_volt_adj_param: Pointer to Misc fuse volt fuse details
+ */
+struct cpr3_fuse_parameters {
+ struct cpr3_fuse_param (*apss_ro_sel_param)[2];
+ struct cpr3_fuse_param (*apss_init_voltage_param)[2];
+ struct cpr3_fuse_param (*apss_target_quot_param)[2];
+ struct cpr3_fuse_param (*apss_quot_offset_param)[2];
+ struct cpr3_fuse_param *cpr_fusing_rev_param;
+ struct cpr3_fuse_param *apss_speed_bin_param;
+ struct cpr3_fuse_param *cpr_boost_fuse_cfg_param;
+ struct cpr3_fuse_param *apss_boost_fuse_volt_param;
+ struct cpr3_fuse_param *misc_fuse_volt_adj_param;
+};
+
+struct cpr4_mem_acc_func {
+ void (*set_mem_acc)(struct regulator_dev *);
+ void (*clear_mem_acc)(struct regulator_dev *);
+};
+
+/**
+ * struct cpr4_reg_data - CPR4 regulator specific data structure which is
+ * target specific
+ * @cpr_valid_fuse_count: Number of valid fuse corners
+ * @fuse_ref_volt: Pointer to fuse reference voltage
+ * @fuse_step_volt: CPR step voltage available in fuse
+ * @cpr_clk_rate: CPR clock rate
+ * @boost_fuse_ref_volt: Boost fuse reference voltage
+ * @boost_ceiling_volt: Boost ceiling voltage
+ * @boost_floor_volt: Boost floor voltage
+ * @cpr3_fuse_params: Pointer to CPR fuse parameters
+ * @mem_acc_funcs: Pointer to MEM ACC set/clear functions
+ **/
+struct cpr4_reg_data {
+ u32 cpr_valid_fuse_count;
+ int *fuse_ref_volt;
+ u32 fuse_step_volt;
+ u32 cpr_clk_rate;
+ int boost_fuse_ref_volt;
+ int boost_ceiling_volt;
+ int boost_floor_volt;
+ struct cpr3_fuse_parameters *cpr3_fuse_params;
+ struct cpr4_mem_acc_func *mem_acc_funcs;
+};
+/**
+ * struct cpr3_reg_data - CPR3 regulator specific data structure which is
+ * target specific
+ * @cpr_valid_fuse_count: Number of valid fuse corners
+ * @(*init_voltage_param)[2]: Pointer to Target voltage fuse details
+ * @fuse_ref_volt: Pointer to fuse reference voltage
+ * @fuse_step_volt: CPR step voltage available in fuse
+ * @cpr_clk_rate: CPR clock rate
+ * @cpr3_fuse_params: Pointer to CPR fuse parameters
+ **/
+struct cpr3_reg_data {
+ u32 cpr_valid_fuse_count;
+ struct cpr3_fuse_param (*init_voltage_param)[2];
+ int *fuse_ref_volt;
+ u32 fuse_step_volt;
+ u32 cpr_clk_rate;
+};
+
+/**
+ * struct cpr3_regulator - CPR3 logical regulator instance associated with a
+ * given CPR3 hardware thread
+ * @of_node: Device node associated with the device tree child node
+ * of this CPR3 regulator
+ * @thread: Pointer to the CPR3 thread which manages this CPR3
+ * regulator
+ * @name: Unique name for this CPR3 regulator which is filled
+ * using the device tree regulator-name property
+ * @rdesc: Regulator description for this CPR3 regulator
+ * @rdev: Regulator device pointer for the regulator registered
+ * for this CPR3 regulator
+ * @mem_acc_regulator: Pointer to the optional mem-acc supply regulator used
+ * to manage memory circuitry settings based upon CPR3
+ * regulator output voltage.
+ * @corner: Array of all corners supported by this CPR3 regulator
+ * @corner_count: The number of elements in the corner array
+ * @corner_band: Array of all corner bands supported by CPRh compatible
+ * controllers
+ * @cpr4_regulator_data Target specific cpr4 regulator data
+ * @cpr3_regulator_data Target specific cpr3 regulator data
+ * @corner_band_count: The number of elements in the corner band array
+ * @platform_fuses: Pointer to platform specific CPR fuse data (only used by
+ * platform specific CPR3 driver)
+ * @speed_bin_fuse: Value read from the speed bin fuse parameter
+ * @speed_bins_supported: The number of speed bins supported by the device tree
+ * configuration for this CPR3 regulator
+ * @cpr_rev_fuse: Value read from the CPR fusing revision fuse parameter
+ * @fuse_combo: Platform specific enum value identifying the specific
+ * combination of fuse values found on a given chip
+ * @fuse_combos_supported: The number of fuse combinations supported by the
+ * device tree configuration for this CPR3 regulator
+ * @fuse_corner_count: Number of corners defined by fuse parameters
+ * @fuse_corner_map: Array of length fuse_corner_count which specifies the
+ * highest corner associated with each fuse corner. Note
+ * that each element must correspond to a valid corner
+ * and that element values must be strictly increasing.
+ * Also, it is acceptable for the lowest fuse corner to map
+ * to a corner other than the lowest. Likewise, it is
+ * acceptable for the highest fuse corner to map to a
+ * corner other than the highest.
+ * @fuse_combo_corner_sum: The sum of the corner counts across all fuse combos
+ * @fuse_combo_offset: The device tree property array offset for the selected
+ * fuse combo
+ * @speed_bin_corner_sum: The sum of the corner counts across all speed bins
+ * This may be specified as 0 if per speed bin parsing
+ * support is not required.
+ * @speed_bin_offset: The device tree property array offset for the selected
+ * speed bin
+ * @fuse_combo_corner_band_sum: The sum of the corner band counts across all
+ * fuse combos
+ * @fuse_combo_corner_band_offset: The device tree property array offset for
+ * the corner band count corresponding to the selected
+ * fuse combo
+ * @speed_bin_corner_band_sum: The sum of the corner band counts across all
+ * speed bins. This may be specified as 0 if per speed bin
+ * parsing support is not required
+ * @speed_bin_corner_band_offset: The device tree property array offset for the
+ * corner band count corresponding to the selected speed
+ * bin
+ * @pd_bypass_mask: Bit mask of power domains associated with this CPR3
+ * regulator
+ * @dynamic_floor_corner: Index identifying the voltage corner for the CPR3
+ * regulator whose last_volt value should be used as the
+ * global CPR floor voltage if all of the power domains
+ * associated with this CPR3 regulator are bypassed
+ * @uses_dynamic_floor: Boolean flag indicating that dynamic_floor_corner should
+ * be utilized for the CPR3 regulator
+ * @current_corner: Index identifying the currently selected voltage corner
+ * for the CPR3 regulator or less than 0 if no corner has
+ * been requested
+ * @last_closed_loop_corner: Index identifying the last voltage corner for the
+ * CPR3 regulator which was configured when operating in
+ * CPR closed-loop mode or less than 0 if no corner has
+ * been requested. CPR registers are only written to when
+ * using closed-loop mode.
+ * @aggregated: Boolean flag indicating that this CPR3 regulator
+ * participated in the last aggregation event
+ * @debug_corner: Index identifying voltage corner used for displaying
+ * corner configuration values in debugfs
+ * @vreg_enabled: Boolean defining the enable state of the CPR3
+ * regulator's regulator within the regulator framework.
+ * @aging_allowed: Boolean defining if CPR aging adjustments are allowed
+ * for this CPR3 regulator given the fuse combo of the
+ * device
+ * @aging_allow_open_loop_adj: Boolean defining if the open-loop voltage of each
+ * corner of this regulator should be adjusted as a result
+ * of an aging measurement. This flag can be set to false
+ * when the open-loop voltage adjustments have been
+ * specified such that they include the maximum possible
+ * aging adjustment. This flag is only used if
+ * aging_allowed == true.
+ * @aging_corner: The corner that should be configured for this regulator
+ * when an aging measurement is performed.
+ * @aging_max_adjust_volt: The maximum aging voltage margin in microvolts that
+ * may be added to the target quotients of this regulator.
+ * A value of 0 may be specified if this regulator does not
+ * require any aging adjustment.
+ * @allow_core_count_adj: Core count adjustments are allowed for this regulator.
+ * @allow_temp_adj: Temperature based adjustments are allowed for this
+ * regulator.
+ * @max_core_count: Maximum number of cores considered for core count
+ * adjustment logic.
+ * @allow_boost: Voltage boost allowed for this regulator.
+ *
+ * This structure contains both configuration and runtime state data. The
+ * elements current_corner, last_closed_loop_corner, aggregated, debug_corner,
+ * and vreg_enabled are state variables.
+ */
+struct cpr3_regulator {
+ struct device_node *of_node;
+ struct cpr3_thread *thread;
+ const char *name;
+ struct regulator_desc rdesc;
+ struct regulator_dev *rdev;
+ struct regulator *mem_acc_regulator;
+ struct cpr3_corner *corner;
+ int corner_count;
+ struct cprh_corner_band *corner_band;
+ struct cpr4_reg_data *cpr4_regulator_data;
+ struct cpr3_reg_data *cpr3_regulator_data;
+ u32 corner_band_count;
+
+ void *platform_fuses;
+ int speed_bin_fuse;
+ int speed_bins_supported;
+ int cpr_rev_fuse;
+ int part_type;
+ int part_type_supported;
+ int fuse_combo;
+ int fuse_combos_supported;
+ int fuse_corner_count;
+ int *fuse_corner_map;
+ int fuse_combo_corner_sum;
+ int fuse_combo_offset;
+ int speed_bin_corner_sum;
+ int speed_bin_offset;
+ int fuse_combo_corner_band_sum;
+ int fuse_combo_corner_band_offset;
+ int speed_bin_corner_band_sum;
+ int speed_bin_corner_band_offset;
+ u32 pd_bypass_mask;
+ int dynamic_floor_corner;
+ bool uses_dynamic_floor;
+
+ int current_corner;
+ int last_closed_loop_corner;
+ bool aggregated;
+ int debug_corner;
+ bool vreg_enabled;
+
+ bool aging_allowed;
+ bool aging_allow_open_loop_adj;
+ int aging_corner;
+ int aging_max_adjust_volt;
+
+ bool allow_core_count_adj;
+ bool allow_temp_adj;
+ int max_core_count;
+ bool allow_boost;
+};
+
+/**
+ * struct cpr3_thread - CPR3 hardware thread data structure
+ * @thread_id: Hardware thread ID
+ * @of_node: Device node associated with the device tree child node
+ * of this CPR3 thread
+ * @ctrl: Pointer to the CPR3 controller which manages this thread
+ * @vreg: Array of CPR3 regulators handled by the CPR3 thread
+ * @vreg_count: Number of elements in the vreg array
+ * @aggr_corner: CPR corner containing the in process aggregated voltage
+ * and target quotient configurations which will be applied
+ * @last_closed_loop_aggr_corner: CPR corner containing the most recent
+ * configurations which were written into hardware
+ * registers when operating in closed loop mode (i.e. with
+ * CPR enabled)
+ * @consecutive_up: The number of consecutive CPR step up events needed to
+ * to trigger an up interrupt
+ * @consecutive_down: The number of consecutive CPR step down events needed to
+ * to trigger a down interrupt
+ * @up_threshold: The number CPR error steps required to generate an up
+ * event
+ * @down_threshold: The number CPR error steps required to generate a down
+ * event
+ *
+ * This structure contains both configuration and runtime state data. The
+ * elements aggr_corner and last_closed_loop_aggr_corner are state variables.
+ */
+struct cpr3_thread {
+ u32 thread_id;
+ struct device_node *of_node;
+ struct cpr3_controller *ctrl;
+ struct cpr3_regulator *vreg;
+ int vreg_count;
+ struct cpr3_corner aggr_corner;
+ struct cpr3_corner last_closed_loop_aggr_corner;
+
+ u32 consecutive_up;
+ u32 consecutive_down;
+ u32 up_threshold;
+ u32 down_threshold;
+};
+
+/* Per CPR controller data */
+/**
+ * enum cpr3_mem_acc_corners - Constants which define the number of mem-acc
+ * regulator corners available in the mem-acc corner map array.
+ * %CPR3_MEM_ACC_LOW_CORNER: Index in mem-acc corner map array mapping to the
+ * mem-acc regulator corner
+ * to be used for low voltage vdd supply
+ * %CPR3_MEM_ACC_HIGH_CORNER: Index in mem-acc corner map array mapping to the
+ * mem-acc regulator corner to be used for high
+ * voltage vdd supply
+ * %CPR3_MEM_ACC_CORNERS: Number of elements in the mem-acc corner map
+ * array
+ */
+enum cpr3_mem_acc_corners {
+ CPR3_MEM_ACC_LOW_CORNER = 0,
+ CPR3_MEM_ACC_HIGH_CORNER = 1,
+ CPR3_MEM_ACC_CORNERS = 2,
+};
+
+/**
+ * enum cpr3_count_mode - CPR3 controller count mode which defines the
+ * method that CPR sensor data is acquired
+ * %CPR3_COUNT_MODE_ALL_AT_ONCE_MIN: Capture all CPR sensor readings
+ * simultaneously and report the minimum
+ * value seen in successive measurements
+ * %CPR3_COUNT_MODE_ALL_AT_ONCE_MAX: Capture all CPR sensor readings
+ * simultaneously and report the maximum
+ * value seen in successive measurements
+ * %CPR3_COUNT_MODE_STAGGERED: Read one sensor at a time in a
+ * sequential fashion
+ * %CPR3_COUNT_MODE_ALL_AT_ONCE_AGE: Capture all CPR aging sensor readings
+ * simultaneously.
+ */
+enum cpr3_count_mode {
+ CPR3_COUNT_MODE_ALL_AT_ONCE_MIN = 0,
+ CPR3_COUNT_MODE_ALL_AT_ONCE_MAX = 1,
+ CPR3_COUNT_MODE_STAGGERED = 2,
+ CPR3_COUNT_MODE_ALL_AT_ONCE_AGE = 3,
+};
+
+/**
+ * enum cpr_controller_type - supported CPR controller hardware types
+ * %CPR_CTRL_TYPE_CPR3: HW has CPR3 controller
+ * %CPR_CTRL_TYPE_CPR4: HW has CPR4 controller
+ */
+enum cpr_controller_type {
+ CPR_CTRL_TYPE_CPR3,
+ CPR_CTRL_TYPE_CPR4,
+};
+
+/**
+ * cpr_setting - supported CPR global settings
+ * %CPR_DEFAULT: default mode from dts will be used
+ * %CPR_DISABLED: ceiling voltage will be used for all the corners
+ * %CPR_OPEN_LOOP_EN: CPR will work in OL
+ * %CPR_CLOSED_LOOP_EN: CPR will work in CL, if supported
+ */
+enum cpr_setting {
+ CPR_DEFAULT = 0,
+ CPR_DISABLED = 1,
+ CPR_OPEN_LOOP_EN = 2,
+ CPR_CLOSED_LOOP_EN = 3,
+};
+
+/**
+ * struct cpr3_aging_sensor_info - CPR3 aging sensor information
+ * @sensor_id The index of the CPR3 sensor to be used in the aging
+ * measurement.
+ * @ro_scale The CPR ring oscillator (RO) scaling factor for the
+ * aging sensor with units of QUOT/V.
+ * @init_quot_diff: The fused quotient difference between aged and un-aged
+ * paths that was measured at manufacturing time.
+ * @measured_quot_diff: The quotient difference measured at runtime.
+ * @bypass_mask: Bit mask of the CPR sensors that must be bypassed during
+ * the aging measurement for this sensor
+ *
+ * This structure contains both configuration and runtime state data. The
+ * element measured_quot_diff is a state variable.
+ */
+struct cpr3_aging_sensor_info {
+ u32 sensor_id;
+ u32 ro_scale;
+ int init_quot_diff;
+ int measured_quot_diff;
+ u32 bypass_mask[CPR3_MAX_SENSOR_COUNT / 32];
+};
+
+/**
+ * struct cpr3_reg_info - Register information data structure
+ * @name: Register name
+ * @addr: Register physical address
+ * @value: Register content
+ * @virt_addr: Register virtual address
+ *
+ * This data structure is used to dump some critical register contents
+ * when the device crashes due to a kernel panic.
+ */
+struct cpr3_reg_info {
+ const char *name;
+ u32 addr;
+ u32 value;
+ void __iomem *virt_addr;
+};
+
+/**
+ * struct cpr3_panic_regs_info - Data structure to dump critical register
+ * contents.
+ * @reg_count: Number of elements in the regs array
+ * @regs: Array of critical registers information
+ *
+ * This data structure is used to dump critical register contents when
+ * the device crashes due to a kernel panic.
+ */
+struct cpr3_panic_regs_info {
+ int reg_count;
+ struct cpr3_reg_info *regs;
+};
+
+/**
+ * struct cpr3_controller - CPR3 controller data structure
+ * @dev: Device pointer for the CPR3 controller device
+ * @name: Unique name for the CPR3 controller
+ * @ctrl_id: Controller ID corresponding to the VDD supply number
+ * that this CPR3 controller manages.
+ * @cpr_ctrl_base: Virtual address of the CPR3 controller base register
+ * @fuse_base: Virtual address of fuse row 0
+ * @aging_possible_reg: Virtual address of an optional platform-specific
+ * register that must be ready to determine if it is
+ * possible to perform an aging measurement.
+ * @list: list head used in a global cpr3-regulator list so that
+ * cpr3-regulator structs can be found easily in RAM dumps
+ * @thread: Array of CPR3 threads managed by the CPR3 controller
+ * @thread_count: Number of elements in the thread array
+ * @sensor_owner: Array of thread IDs indicating which thread owns a given
+ * CPR sensor
+ * @sensor_count: The number of CPR sensors found on the CPR loop managed
+ * by this CPR controller. Must be equal to the number of
+ * elements in the sensor_owner array
+ * @soc_revision: Revision number of the SoC. This may be unused by
+ * platforms that do not have different behavior for
+ * different SoC revisions.
+ * @lock: Mutex lock used to ensure mutual exclusion between
+ * all of the threads associated with the controller
+ * @vdd_regulator: Pointer to the VDD supply regulator which this CPR3
+ * controller manages
+ * @system_regulator: Pointer to the optional system-supply regulator upon
+ * which the VDD supply regulator depends.
+ * @mem_acc_regulator: Pointer to the optional mem-acc supply regulator used
+ * to manage memory circuitry settings based upon the
+ * VDD supply output voltage.
+ * @vdd_limit_regulator: Pointer to the VDD supply limit regulator which is used
+ * for hardware closed-loop in order specify ceiling and
+ * floor voltage limits (platform specific)
+ * @system_supply_max_volt: Voltage in microvolts which corresponds to the
+ * absolute ceiling voltage of the system-supply
+ * @mem_acc_threshold_volt: mem-acc threshold voltage in microvolts
+ * @mem_acc_corner_map: mem-acc regulator corners mapping to low and high
+ * voltage mem-acc settings for the memories powered by
+ * this CPR3 controller and its associated CPR3 regulators
+ * @mem_acc_crossover_volt: Voltage in microvolts corresponding to the voltage
+ * that the VDD supply must be set to while a MEM ACC
+ * switch is in progress. This element must be initialized
+ * for CPRh controllers when a MEM ACC threshold voltage is
+ * defined.
+ * @core_clk: Pointer to the CPR3 controller core clock
+ * @iface_clk: Pointer to the CPR3 interface clock (platform specific)
+ * @bus_clk: Pointer to the CPR3 bus clock (platform specific)
+ * @irq: CPR interrupt number
+ * @irq_affinity_mask: The cpumask for the CPUs which the CPR interrupt should
+ * have affinity for
+ * @cpu_hotplug_notifier: CPU hotplug notifier used to reset IRQ affinity when a
+ * CPU is brought back online
+ * @ceiling_irq: Interrupt number for the interrupt that is triggered
+ * when hardware closed-loop attempts to exceed the ceiling
+ * voltage
+ * @apm: Handle to the array power mux (APM)
+ * @apm_threshold_volt: Voltage in microvolts which defines the threshold
+ * voltage to determine the APM supply selection for
+ * each corner
+ * @apm_crossover_volt: Voltage in microvolts corresponding to the voltage that
+ * the VDD supply must be set to while an APM switch is in
+ * progress. This element must be initialized for CPRh
+ * controllers when an APM threshold voltage is defined
+ * @apm_adj_volt: Minimum difference between APM threshold voltage and
+ * open-loop voltage which allows the APM threshold voltage
+ * to be used as a ceiling
+ * @apm_high_supply: APM supply to configure if VDD voltage is greater than
+ * or equal to the APM threshold voltage
+ * @apm_low_supply: APM supply to configure if the VDD voltage is less than
+ * the APM threshold voltage
+ * @base_volt: Minimum voltage in microvolts supported by the VDD
+ * supply managed by this CPR controller
+ * @corner_switch_delay_time: The delay time in nanoseconds used by the CPR
+ * controller to wait for voltage settling before
+ * acknowledging the OSM block after corner changes
+ * @cpr_clock_rate: CPR reference clock frequency in Hz.
+ * @sensor_time: The time in nanoseconds that each sensor takes to
+ * perform a measurement.
+ * @loop_time: The time in nanoseconds between consecutive CPR
+ * measurements.
+ * @up_down_delay_time: The time to delay in nanoseconds between consecutive CPR
+ * measurements when the last measurement recommended
+ * increasing or decreasing the vdd-supply voltage.
+ * (platform specific)
+ * @idle_clocks: Number of CPR reference clock ticks that the CPR
+ * controller waits in transitional states.
+ * @step_quot_init_min: The default minimum CPR step quotient value. The step
+ * quotient is the number of additional ring oscillator
+ * ticks observed when increasing one step in vdd-supply
+ * output voltage.
+ * @step_quot_init_max: The default maximum CPR step quotient value.
+ * @step_volt: Step size in microvolts between available set points
+ * of the VDD supply
+ * @down_error_step_limit: CPR4 hardware closed-loop down error step limit which
+ * defines the maximum number of VDD supply regulator steps
+ * that the voltage may be reduced as the result of a
+ * single CPR measurement.
+ * @up_error_step_limit: CPR4 hardware closed-loop up error step limit which
+ * defines the maximum number of VDD supply regulator steps
+ * that the voltage may be increased as the result of a
+ * single CPR measurement.
+ * @count_mode: CPR controller count mode
+ * @count_repeat: Number of times to perform consecutive sensor
+ * measurements when using all-at-once count modes.
+ * @proc_clock_throttle: Defines the processor clock frequency throttling
+ * register value to use. This can be used to reduce the
+ * clock frequency when a power domain exits a low power
+ * mode until CPR settles at a new voltage.
+ * (platform specific)
+ * @cpr_allowed_hw: Boolean which indicates if closed-loop CPR operation is
+ * permitted for a given chip based upon hardware fuse
+ * values
+ * @cpr_allowed_sw: Boolean which indicates if closed-loop CPR operation is
+ * permitted based upon software policies
+ * @supports_hw_closed_loop: Boolean which indicates if this CPR3/4 controller
+ * physically supports hardware closed-loop CPR operation
+ * @use_hw_closed_loop: Boolean which indicates that this controller will be
+ * using hardware closed-loop operation in place of
+ * software closed-loop operation.
+ * @ctrl_type: CPR controller type
+ * @saw_use_unit_mV: Boolean which indicates the unit used in SAW PVC
+ * interface is mV.
+ * @aggr_corner: CPR corner containing the most recently aggregated
+ * voltage configurations which are being used currently
+ * @cpr_enabled: Boolean which indicates that the CPR controller is
+ * enabled and operating in closed-loop mode. CPR clocks
+ * have been prepared and enabled whenever this flag is
+ * true.
+ * @last_corner_was_closed_loop: Boolean indicating if the last known corners
+ * were updated during closed loop operation.
+ * @cpr_suspended: Boolean which indicates that CPR has been temporarily
+ * disabled while enterring system suspend.
+ * @debugfs: Pointer to the debugfs directory of this CPR3 controller
+ * @aging_ref_volt: Reference voltage in microvolts to configure when
+ * performing CPR aging measurements.
+ * @aging_vdd_mode: vdd-supply regulator mode to configure before performing
+ * a CPR aging measurement. It should be one of
+ * REGULATOR_MODE_*.
+ * @aging_complete_vdd_mode: vdd-supply regulator mode to configure after
+ * performing a CPR aging measurement. It should be one of
+ * REGULATOR_MODE_*.
+ * @aging_ref_adjust_volt: The reference aging voltage margin in microvolts that
+ * should be added to the target quotients of the
+ * regulators managed by this controller after derating.
+ * @aging_required: Flag which indicates that a CPR aging measurement still
+ * needs to be performed for this CPR3 controller.
+ * @aging_succeeded: Flag which indicates that a CPR aging measurement has
+ * completed successfully.
+ * @aging_failed: Flag which indicates that a CPR aging measurement has
+ * failed to complete successfully.
+ * @aging_sensor: Array of CPR3 aging sensors which are used to perform
+ * aging measurements at a runtime.
+ * @aging_sensor_count: Number of elements in the aging_sensor array
+ * @aging_possible_mask: Optional bitmask used to mask off the
+ * aging_possible_reg register.
+ * @aging_possible_val: Optional value that the masked aging_possible_reg
+ * register must have in order for a CPR aging measurement
+ * to be possible.
+ * @step_quot_fixed: Fixed step quotient value used for target quotient
+ * adjustment if use_dynamic_step_quot is not set.
+ * This parameter is only relevant for CPR4 controllers
+ * when using the per-online-core or per-temperature
+ * adjustments.
+ * @initial_temp_band: Temperature band used for calculation of base-line
+ * target quotients (fused).
+ * @use_dynamic_step_quot: Boolean value which indicates that margin adjustment
+ * of target quotient will be based on the step quotient
+ * calculated dynamically in hardware for each RO.
+ * @allow_core_count_adj: Core count adjustments are allowed for this controller
+ * @allow_temp_adj: Temperature based adjustments are allowed for
+ * this controller
+ * @allow_boost: Voltage boost allowed for this controller.
+ * @temp_band_count: Number of temperature bands used for temperature based
+ * adjustment logic
+ * @temp_points: Array of temperature points in decidegrees Celsius used
+ * to specify the ranges for selected temperature bands.
+ * The array must have (temp_band_count - 1) elements
+ * allocated.
+ * @temp_sensor_id_start: Start ID of temperature sensors used for temperature
+ * based adjustments.
+ * @temp_sensor_id_end: End ID of temperature sensors used for temperature
+ * based adjustments.
+ * @voltage_settling_time: The time in nanoseconds that it takes for the
+ * VDD supply voltage to settle after being increased or
+ * decreased by step_volt microvolts which is used when
+ * SDELTA voltage margin adjustments are applied.
+ * @cpr_global_setting: Global setting for this CPR controller
+ * @panic_regs_info: Array of panic registers information which provides the
+ * list of registers to dump when the device crashes.
+ * @panic_notifier: Notifier block registered to global panic notifier list.
+ *
+ * This structure contains both configuration and runtime state data. The
+ * elements cpr_allowed_sw, use_hw_closed_loop, aggr_corner, cpr_enabled,
+ * last_corner_was_closed_loop, cpr_suspended, aging_ref_adjust_volt,
+ * aging_required, aging_succeeded, and aging_failed are state variables.
+ *
+ * The apm* elements do not need to be initialized if the VDD supply managed by
+ * the CPR3 controller does not utilize an APM.
+ *
+ * The elements step_quot_fixed, initial_temp_band, allow_core_count_adj,
+ * allow_temp_adj and temp* need to be initialized for CPR4 controllers which
+ * are using per-online-core or per-temperature adjustments.
+ */
+struct cpr3_controller {
+ struct device *dev;
+ const char *name;
+ int ctrl_id;
+ void __iomem *cpr_ctrl_base;
+ void __iomem *fuse_base;
+ void __iomem *aging_possible_reg;
+ struct list_head list;
+ struct cpr3_thread *thread;
+ int thread_count;
+ u8 *sensor_owner;
+ int sensor_count;
+ int soc_revision;
+ struct mutex lock;
+ struct regulator *vdd_regulator;
+ struct regulator *system_regulator;
+ struct regulator *mem_acc_regulator;
+ struct regulator *vdd_limit_regulator;
+ int system_supply_max_volt;
+ int mem_acc_threshold_volt;
+ int mem_acc_corner_map[CPR3_MEM_ACC_CORNERS];
+ int mem_acc_crossover_volt;
+ struct clk *core_clk;
+ struct clk *iface_clk;
+ struct clk *bus_clk;
+ int irq;
+ struct cpumask irq_affinity_mask;
+ struct notifier_block cpu_hotplug_notifier;
+ int ceiling_irq;
+ struct msm_apm_ctrl_dev *apm;
+ int apm_threshold_volt;
+ int apm_crossover_volt;
+ int apm_adj_volt;
+ enum msm_apm_supply apm_high_supply;
+ enum msm_apm_supply apm_low_supply;
+ int base_volt;
+ u32 corner_switch_delay_time;
+ u32 cpr_clock_rate;
+ u32 sensor_time;
+ u32 loop_time;
+ u32 up_down_delay_time;
+ u32 idle_clocks;
+ u32 step_quot_init_min;
+ u32 step_quot_init_max;
+ int step_volt;
+ u32 down_error_step_limit;
+ u32 up_error_step_limit;
+ enum cpr3_count_mode count_mode;
+ u32 count_repeat;
+ u32 proc_clock_throttle;
+ bool cpr_allowed_hw;
+ bool cpr_allowed_sw;
+ bool supports_hw_closed_loop;
+ bool use_hw_closed_loop;
+ enum cpr_controller_type ctrl_type;
+ bool saw_use_unit_mV;
+ struct cpr3_corner aggr_corner;
+ bool cpr_enabled;
+ bool last_corner_was_closed_loop;
+ bool cpr_suspended;
+ struct dentry *debugfs;
+
+ int aging_ref_volt;
+ unsigned int aging_vdd_mode;
+ unsigned int aging_complete_vdd_mode;
+ int aging_ref_adjust_volt;
+ bool aging_required;
+ bool aging_succeeded;
+ bool aging_failed;
+ struct cpr3_aging_sensor_info *aging_sensor;
+ int aging_sensor_count;
+ u32 cur_sensor_state;
+ u32 aging_possible_mask;
+ u32 aging_possible_val;
+
+ u32 step_quot_fixed;
+ u32 initial_temp_band;
+ bool use_dynamic_step_quot;
+ bool allow_core_count_adj;
+ bool allow_temp_adj;
+ bool allow_boost;
+ int temp_band_count;
+ int *temp_points;
+ u32 temp_sensor_id_start;
+ u32 temp_sensor_id_end;
+ u32 voltage_settling_time;
+ enum cpr_setting cpr_global_setting;
+ struct cpr3_panic_regs_info *panic_regs_info;
+ struct notifier_block panic_notifier;
+};
+
+/* Used for rounding voltages to the closest physically available set point. */
+#define CPR3_ROUND(n, d) (DIV_ROUND_UP(n, d) * (d))
+
+#define cpr3_err(cpr3_thread, message, ...) \
+ pr_err("%s: " message, (cpr3_thread)->name, ##__VA_ARGS__)
+#define cpr3_info(cpr3_thread, message, ...) \
+ pr_info("%s: " message, (cpr3_thread)->name, ##__VA_ARGS__)
+#define cpr3_debug(cpr3_thread, message, ...) \
+ pr_debug("%s: " message, (cpr3_thread)->name, ##__VA_ARGS__)
+
+/*
+ * Offset subtracted from voltage corner values passed in from the regulator
+ * framework in order to get internal voltage corner values. This is needed
+ * since the regulator framework treats 0 as an error value at regulator
+ * registration time.
+ */
+#define CPR3_CORNER_OFFSET 1
+
+#ifdef CONFIG_REGULATOR_CPR3
+
+int cpr3_regulator_register(struct platform_device *pdev,
+ struct cpr3_controller *ctrl);
+int cpr3_open_loop_regulator_register(struct platform_device *pdev,
+ struct cpr3_controller *ctrl);
+int cpr3_regulator_unregister(struct cpr3_controller *ctrl);
+int cpr3_open_loop_regulator_unregister(struct cpr3_controller *ctrl);
+int cpr3_regulator_suspend(struct cpr3_controller *ctrl);
+int cpr3_regulator_resume(struct cpr3_controller *ctrl);
+
+int cpr3_allocate_threads(struct cpr3_controller *ctrl, u32 min_thread_id,
+ u32 max_thread_id);
+int cpr3_map_fuse_base(struct cpr3_controller *ctrl,
+ struct platform_device *pdev);
+int cpr3_read_tcsr_setting(struct cpr3_controller *ctrl,
+ struct platform_device *pdev, u8 start, u8 end);
+int cpr3_read_fuse_param(void __iomem *fuse_base_addr,
+ const struct cpr3_fuse_param *param, u64 *param_value);
+int cpr3_convert_open_loop_voltage_fuse(int ref_volt, int step_volt, u32 fuse,
+ int fuse_len);
+u64 cpr3_interpolate(u64 x1, u64 y1, u64 x2, u64 y2, u64 x);
+int cpr3_parse_array_property(struct cpr3_regulator *vreg,
+ const char *prop_name, int tuple_size, u32 *out);
+int cpr3_parse_corner_array_property(struct cpr3_regulator *vreg,
+ const char *prop_name, int tuple_size, u32 *out);
+int cpr3_parse_corner_band_array_property(struct cpr3_regulator *vreg,
+ const char *prop_name, int tuple_size, u32 *out);
+int cpr3_parse_common_corner_data(struct cpr3_regulator *vreg);
+int cpr3_parse_thread_u32(struct cpr3_thread *thread, const char *propname,
+ u32 *out_value, u32 value_min, u32 value_max);
+int cpr3_parse_ctrl_u32(struct cpr3_controller *ctrl, const char *propname,
+ u32 *out_value, u32 value_min, u32 value_max);
+int cpr3_parse_common_thread_data(struct cpr3_thread *thread);
+int cpr3_parse_common_ctrl_data(struct cpr3_controller *ctrl);
+int cpr3_parse_open_loop_common_ctrl_data(struct cpr3_controller *ctrl);
+int cpr3_limit_open_loop_voltages(struct cpr3_regulator *vreg);
+void cpr3_open_loop_voltage_as_ceiling(struct cpr3_regulator *vreg);
+int cpr3_limit_floor_voltages(struct cpr3_regulator *vreg);
+void cpr3_print_quots(struct cpr3_regulator *vreg);
+int cpr3_determine_part_type(struct cpr3_regulator *vreg, int fuse_volt);
+int cpr3_determine_temp_base_open_loop_correction(struct cpr3_regulator *vreg,
+ int *fuse_volt);
+int cpr3_adjust_fused_open_loop_voltages(struct cpr3_regulator *vreg,
+ int *fuse_volt);
+int cpr3_adjust_open_loop_voltages(struct cpr3_regulator *vreg);
+int cpr3_quot_adjustment(int ro_scale, int volt_adjust);
+int cpr3_voltage_adjustment(int ro_scale, int quot_adjust);
+int cpr3_parse_closed_loop_voltage_adjustments(struct cpr3_regulator *vreg,
+ u64 *ro_sel, int *volt_adjust,
+ int *volt_adjust_fuse, int *ro_scale);
+int cpr4_parse_core_count_temp_voltage_adj(struct cpr3_regulator *vreg,
+ bool use_corner_band);
+int cpr3_apm_init(struct cpr3_controller *ctrl);
+int cpr3_mem_acc_init(struct cpr3_regulator *vreg);
+void cprh_adjust_voltages_for_apm(struct cpr3_regulator *vreg);
+void cprh_adjust_voltages_for_mem_acc(struct cpr3_regulator *vreg);
+int cpr3_adjust_target_quotients(struct cpr3_regulator *vreg,
+ int *fuse_volt_adjust);
+int cpr3_handle_temp_open_loop_adjustment(struct cpr3_controller *ctrl,
+ bool is_cold);
+int cpr3_get_cold_temp_threshold(struct cpr3_regulator *vreg, int *cold_temp);
+bool cpr3_can_adjust_cold_temp(struct cpr3_regulator *vreg);
+
+#else
+
+static inline int cpr3_regulator_register(struct platform_device *pdev,
+ struct cpr3_controller *ctrl)
+{
+ return -ENXIO;
+}
+
+static inline int
+cpr3_open_loop_regulator_register(struct platform_device *pdev,
+ struct cpr3_controller *ctrl);
+{
+ return -ENXIO;
+}
+
+static inline int cpr3_regulator_unregister(struct cpr3_controller *ctrl)
+{
+ return -ENXIO;
+}
+
+static inline int
+cpr3_open_loop_regulator_unregister(struct cpr3_controller *ctrl)
+{
+ return -ENXIO;
+}
+
+static inline int cpr3_regulator_suspend(struct cpr3_controller *ctrl)
+{
+ return -ENXIO;
+}
+
+static inline int cpr3_regulator_resume(struct cpr3_controller *ctrl)
+{
+ return -ENXIO;
+}
+
+static inline int cpr3_get_thread_name(struct cpr3_thread *thread,
+ struct device_node *thread_node)
+{
+ return -EPERM;
+}
+
+static inline int cpr3_allocate_threads(struct cpr3_controller *ctrl,
+ u32 min_thread_id, u32 max_thread_id)
+{
+ return -EPERM;
+}
+
+static inline int cpr3_map_fuse_base(struct cpr3_controller *ctrl,
+ struct platform_device *pdev)
+{
+ return -ENXIO;
+}
+
+static inline int cpr3_read_tcsr_setting(struct cpr3_controller *ctrl,
+ struct platform_device *pdev, u8 start, u8 end)
+{
+ return 0;
+}
+
+static inline int cpr3_read_fuse_param(void __iomem *fuse_base_addr,
+ const struct cpr3_fuse_param *param, u64 *param_value)
+{
+ return -EPERM;
+}
+
+static inline int cpr3_convert_open_loop_voltage_fuse(int ref_volt,
+ int step_volt, u32 fuse, int fuse_len)
+{
+ return -EPERM;
+}
+
+static inline u64 cpr3_interpolate(u64 x1, u64 y1, u64 x2, u64 y2, u64 x)
+{
+ return 0;
+}
+
+static inline int cpr3_parse_array_property(struct cpr3_regulator *vreg,
+ const char *prop_name, int tuple_size, u32 *out)
+{
+ return -EPERM;
+}
+
+static inline int cpr3_parse_corner_array_property(struct cpr3_regulator *vreg,
+ const char *prop_name, int tuple_size, u32 *out)
+{
+ return -EPERM;
+}
+
+static inline int cpr3_parse_corner_band_array_property(
+ struct cpr3_regulator *vreg, const char *prop_name,
+ int tuple_size, u32 *out)
+{
+ return -EPERM;
+}
+
+static inline int cpr3_parse_common_corner_data(struct cpr3_regulator *vreg)
+{
+ return -EPERM;
+}
+
+static inline int cpr3_parse_thread_u32(struct cpr3_thread *thread,
+ const char *propname, u32 *out_value, u32 value_min,
+ u32 value_max)
+{
+ return -EPERM;
+}
+
+static inline int cpr3_parse_ctrl_u32(struct cpr3_controller *ctrl,
+ const char *propname, u32 *out_value, u32 value_min,
+ u32 value_max)
+{
+ return -EPERM;
+}
+
+static inline int cpr3_parse_common_thread_data(struct cpr3_thread *thread)
+{
+ return -EPERM;
+}
+
+static inline int cpr3_parse_common_ctrl_data(struct cpr3_controller *ctrl)
+{
+ return -EPERM;
+}
+
+static inline int
+cpr3_parse_open_loop_common_ctrl_data(struct cpr3_controller *ctrl)
+{
+ return -EPERM;
+}
+
+static inline int cpr3_limit_open_loop_voltages(struct cpr3_regulator *vreg)
+{
+ return -EPERM;
+}
+
+static inline void cpr3_open_loop_voltage_as_ceiling(
+ struct cpr3_regulator *vreg)
+{
+ return;
+}
+
+static inline int cpr3_limit_floor_voltages(struct cpr3_regulator *vreg)
+{
+ return -EPERM;
+}
+
+static inline void cpr3_print_quots(struct cpr3_regulator *vreg)
+{
+ return;
+}
+
+static inline int
+cpr3_determine_part_type(struct cpr3_regulator *vreg, int fuse_volt)
+{
+ return -EPERM;
+}
+
+static inline int
+cpr3_determine_temp_base_open_loop_correction(struct cpr3_regulator *vreg,
+ int *fuse_volt)
+{
+ return -EPERM;
+}
+
+static inline int cpr3_adjust_fused_open_loop_voltages(
+ struct cpr3_regulator *vreg, int *fuse_volt)
+{
+ return -EPERM;
+}
+
+static inline int cpr3_adjust_open_loop_voltages(struct cpr3_regulator *vreg)
+{
+ return -EPERM;
+}
+
+static inline int cpr3_quot_adjustment(int ro_scale, int volt_adjust)
+{
+ return 0;
+}
+
+static inline int cpr3_voltage_adjustment(int ro_scale, int quot_adjust)
+{
+ return 0;
+}
+
+static inline int cpr3_parse_closed_loop_voltage_adjustments(
+ struct cpr3_regulator *vreg, u64 *ro_sel,
+ int *volt_adjust, int *volt_adjust_fuse, int *ro_scale)
+{
+ return 0;
+}
+
+static inline int cpr4_parse_core_count_temp_voltage_adj(
+ struct cpr3_regulator *vreg, bool use_corner_band)
+{
+ return 0;
+}
+
+static inline int cpr3_apm_init(struct cpr3_controller *ctrl)
+{
+ return 0;
+}
+
+static inline int cpr3_mem_acc_init(struct cpr3_regulator *vreg)
+{
+ return 0;
+}
+
+static inline void cprh_adjust_voltages_for_apm(struct cpr3_regulator *vreg)
+{
+}
+
+static inline void cprh_adjust_voltages_for_mem_acc(struct cpr3_regulator *vreg)
+{
+}
+
+static inline int cpr3_adjust_target_quotients(struct cpr3_regulator *vreg,
+ int *fuse_volt_adjust)
+{
+ return 0;
+}
+
+static inline int
+cpr3_handle_temp_open_loop_adjustment(struct cpr3_controller *ctrl,
+ bool is_cold)
+{
+ return 0;
+}
+
+static inline bool
+cpr3_can_adjust_cold_temp(struct cpr3_regulator *vreg)
+{
+ return false;
+}
+
+static inline int
+cpr3_get_cold_temp_threshold(struct cpr3_regulator *vreg, int *cold_temp)
+{
+ return 0;
+}
+#endif /* CONFIG_REGULATOR_CPR3 */
+
+#endif /* __REGULATOR_CPR_REGULATOR_H__ */
--- /dev/null
+++ b/drivers/regulator/cpr3-util.c
@@ -0,0 +1,2750 @@
+/*
+ * Copyright (c) 2015-2017, The Linux Foundation. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 and
+ * only version 2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ */
+
+/*
+ * This file contains utility functions to be used by platform specific CPR3
+ * regulator drivers.
+ */
+
+#define pr_fmt(fmt) "%s: " fmt, __func__
+
+#include <linux/cpumask.h>
+#include <linux/device.h>
+#include <linux/io.h>
+#include <linux/kernel.h>
+#include <linux/of.h>
+#include <linux/platform_device.h>
+#include <linux/slab.h>
+#include <linux/types.h>
+
+#include <soc/qcom/socinfo.h>
+
+#include "cpr3-regulator.h"
+
+#define BYTES_PER_FUSE_ROW 8
+#define MAX_FUSE_ROW_BIT 63
+
+#define CPR3_CONSECUTIVE_UP_DOWN_MIN 0
+#define CPR3_CONSECUTIVE_UP_DOWN_MAX 15
+#define CPR3_UP_DOWN_THRESHOLD_MIN 0
+#define CPR3_UP_DOWN_THRESHOLD_MAX 31
+#define CPR3_STEP_QUOT_MIN 0
+#define CPR3_STEP_QUOT_MAX 63
+#define CPR3_IDLE_CLOCKS_MIN 0
+#define CPR3_IDLE_CLOCKS_MAX 31
+
+/* This constant has units of uV/mV so 1000 corresponds to 100%. */
+#define CPR3_AGING_DERATE_UNITY 1000
+
+/**
+ * cpr3_allocate_regulators() - allocate and initialize CPR3 regulators for a
+ * given thread based upon device tree data
+ * @thread: Pointer to the CPR3 thread
+ *
+ * This function allocates the thread->vreg array based upon the number of
+ * device tree regulator subnodes. It also initializes generic elements of each
+ * regulator struct such as name, of_node, and thread.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_allocate_regulators(struct cpr3_thread *thread)
+{
+ struct device_node *node;
+ int i, rc;
+
+ thread->vreg_count = 0;
+
+ for_each_available_child_of_node(thread->of_node, node) {
+ thread->vreg_count++;
+ }
+
+ thread->vreg = devm_kcalloc(thread->ctrl->dev, thread->vreg_count,
+ sizeof(*thread->vreg), GFP_KERNEL);
+ if (!thread->vreg)
+ return -ENOMEM;
+
+ i = 0;
+ for_each_available_child_of_node(thread->of_node, node) {
+ thread->vreg[i].of_node = node;
+ thread->vreg[i].thread = thread;
+
+ rc = of_property_read_string(node, "regulator-name",
+ &thread->vreg[i].name);
+ if (rc) {
+ dev_err(thread->ctrl->dev, "could not find regulator name, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ i++;
+ }
+
+ return 0;
+}
+
+/**
+ * cpr3_allocate_threads() - allocate and initialize CPR3 threads for a given
+ * controller based upon device tree data
+ * @ctrl: Pointer to the CPR3 controller
+ * @min_thread_id: Minimum allowed hardware thread ID for this controller
+ * @max_thread_id: Maximum allowed hardware thread ID for this controller
+ *
+ * This function allocates the ctrl->thread array based upon the number of
+ * device tree thread subnodes. It also initializes generic elements of each
+ * thread struct such as thread_id, of_node, ctrl, and vreg array.
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_allocate_threads(struct cpr3_controller *ctrl, u32 min_thread_id,
+ u32 max_thread_id)
+{
+ struct device *dev = ctrl->dev;
+ struct device_node *thread_node;
+ int i, j, rc;
+
+ ctrl->thread_count = 0;
+
+ for_each_available_child_of_node(dev->of_node, thread_node) {
+ ctrl->thread_count++;
+ }
+
+ ctrl->thread = devm_kcalloc(dev, ctrl->thread_count,
+ sizeof(*ctrl->thread), GFP_KERNEL);
+ if (!ctrl->thread)
+ return -ENOMEM;
+
+ i = 0;
+ for_each_available_child_of_node(dev->of_node, thread_node) {
+ ctrl->thread[i].of_node = thread_node;
+ ctrl->thread[i].ctrl = ctrl;
+
+ rc = of_property_read_u32(thread_node, "qcom,cpr-thread-id",
+ &ctrl->thread[i].thread_id);
+ if (rc) {
+ dev_err(dev, "could not read DT property qcom,cpr-thread-id, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ if (ctrl->thread[i].thread_id < min_thread_id ||
+ ctrl->thread[i].thread_id > max_thread_id) {
+ dev_err(dev, "invalid thread id = %u; not within [%u, %u]\n",
+ ctrl->thread[i].thread_id, min_thread_id,
+ max_thread_id);
+ return -EINVAL;
+ }
+
+ /* Verify that the thread ID is unique for all child nodes. */
+ for (j = 0; j < i; j++) {
+ if (ctrl->thread[j].thread_id
+ == ctrl->thread[i].thread_id) {
+ dev_err(dev, "duplicate thread id = %u found\n",
+ ctrl->thread[i].thread_id);
+ return -EINVAL;
+ }
+ }
+
+ rc = cpr3_allocate_regulators(&ctrl->thread[i]);
+ if (rc)
+ return rc;
+
+ i++;
+ }
+
+ return 0;
+}
+
+/**
+ * cpr3_map_fuse_base() - ioremap the base address of the fuse region
+ * @ctrl: Pointer to the CPR3 controller
+ * @pdev: Platform device pointer for the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_map_fuse_base(struct cpr3_controller *ctrl,
+ struct platform_device *pdev)
+{
+ struct resource *res;
+
+ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fuse_base");
+ if (!res || !res->start) {
+ dev_err(&pdev->dev, "fuse base address is missing\n");
+ return -ENXIO;
+ }
+
+ ctrl->fuse_base = devm_ioremap(&pdev->dev, res->start,
+ resource_size(res));
+
+ return 0;
+}
+
+/**
+ * cpr3_read_tcsr_setting - reads the CPR setting bits from TCSR register
+ * @ctrl: Pointer to the CPR3 controller
+ * @pdev: Platform device pointer for the CPR3 controller
+ * @start: start bit in TCSR register
+ * @end: end bit in TCSR register
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_read_tcsr_setting(struct cpr3_controller *ctrl,
+ struct platform_device *pdev, u8 start, u8 end)
+{
+ struct resource *res;
+ void __iomem *tcsr_reg;
+ u32 val;
+
+ res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
+ "cpr_tcsr_reg");
+ if (!res || !res->start)
+ return 0;
+
+ tcsr_reg = ioremap(res->start, resource_size(res));
+ if (!tcsr_reg) {
+ dev_err(&pdev->dev, "tcsr ioremap failed\n");
+ return 0;
+ }
+
+ val = readl_relaxed(tcsr_reg);
+ val &= GENMASK(end, start);
+ val >>= start;
+
+ switch (val) {
+ case 1:
+ ctrl->cpr_global_setting = CPR_DISABLED;
+ break;
+ case 2:
+ ctrl->cpr_global_setting = CPR_OPEN_LOOP_EN;
+ break;
+ case 3:
+ ctrl->cpr_global_setting = CPR_CLOSED_LOOP_EN;
+ break;
+ default:
+ ctrl->cpr_global_setting = CPR_DEFAULT;
+ }
+
+ iounmap(tcsr_reg);
+
+ return 0;
+}
+
+/**
+ * cpr3_read_fuse_param() - reads a CPR3 fuse parameter out of eFuses
+ * @fuse_base_addr: Virtual memory address of the eFuse base address
+ * @param: Null terminated array of fuse param segments to read
+ * from
+ * @param_value: Output with value read from the eFuses
+ *
+ * This function reads from each of the parameter segments listed in the param
+ * array and concatenates their values together. Reading stops when an element
+ * is reached which has all 0 struct values. The total number of bits specified
+ * for the fuse parameter across all segments must be less than or equal to 64.
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_read_fuse_param(void __iomem *fuse_base_addr,
+ const struct cpr3_fuse_param *param, u64 *param_value)
+{
+ u64 fuse_val, val;
+ int bits;
+ int bits_total = 0;
+
+ *param_value = 0;
+
+ while (param->row || param->bit_start || param->bit_end) {
+ if (param->bit_start > param->bit_end
+ || param->bit_end > MAX_FUSE_ROW_BIT) {
+ pr_err("Invalid fuse parameter segment: row=%u, start=%u, end=%u\n",
+ param->row, param->bit_start, param->bit_end);
+ return -EINVAL;
+ }
+
+ bits = param->bit_end - param->bit_start + 1;
+ if (bits_total + bits > 64) {
+ pr_err("Invalid fuse parameter segments; total bits = %d\n",
+ bits_total + bits);
+ return -EINVAL;
+ }
+
+ fuse_val = readq_relaxed(fuse_base_addr
+ + param->row * BYTES_PER_FUSE_ROW);
+ val = (fuse_val >> param->bit_start) & ((1ULL << bits) - 1);
+ *param_value |= val << bits_total;
+ bits_total += bits;
+
+ param++;
+ }
+
+ return 0;
+}
+
+/**
+ * cpr3_convert_open_loop_voltage_fuse() - converts an open loop voltage fuse
+ * value into an absolute voltage with units of microvolts
+ * @ref_volt: Reference voltage in microvolts
+ * @step_volt: The step size in microvolts of the fuse LSB
+ * @fuse: Open loop voltage fuse value
+ * @fuse_len: The bit length of the fuse value
+ *
+ * The MSB of the fuse parameter corresponds to a sign bit. If it is set, then
+ * the lower bits correspond to the number of steps to go down from the
+ * reference voltage. If it is not set, then the lower bits correspond to the
+ * number of steps to go up from the reference voltage.
+ */
+int cpr3_convert_open_loop_voltage_fuse(int ref_volt, int step_volt, u32 fuse,
+ int fuse_len)
+{
+ int sign, steps;
+
+ sign = (fuse & (1 << (fuse_len - 1))) ? -1 : 1;
+ steps = fuse & ((1 << (fuse_len - 1)) - 1);
+
+ return ref_volt + sign * steps * step_volt;
+}
+
+/**
+ * cpr3_interpolate() - performs linear interpolation
+ * @x1 Lower known x value
+ * @y1 Lower known y value
+ * @x2 Upper known x value
+ * @y2 Upper known y value
+ * @x Intermediate x value
+ *
+ * Returns y where (x, y) falls on the line between (x1, y1) and (x2, y2).
+ * It is required that x1 < x2, y1 <= y2, and x1 <= x <= x2. If these
+ * conditions are not met, then y2 will be returned.
+ */
+u64 cpr3_interpolate(u64 x1, u64 y1, u64 x2, u64 y2, u64 x)
+{
+ u64 temp;
+
+ if (x1 >= x2 || y1 > y2 || x1 > x || x > x2)
+ return y2;
+
+ temp = (x2 - x) * (y2 - y1);
+ do_div(temp, (u32)(x2 - x1));
+
+ return y2 - temp;
+}
+
+/**
+ * cpr3_parse_array_property() - fill an array from a portion of the values
+ * specified for a device tree property
+ * @vreg: Pointer to the CPR3 regulator
+ * @prop_name: The name of the device tree property to read from
+ * @tuple_size: The number of elements in each tuple
+ * @out: Output data array which must be of size tuple_size
+ *
+ * cpr3_parse_common_corner_data() must be called for vreg before this function
+ * is called so that fuse combo and speed bin size elements are initialized.
+ *
+ * Three formats are supported for the device tree property:
+ * 1. Length == tuple_size
+ * (reading begins at index 0)
+ * 2. Length == tuple_size * vreg->fuse_combos_supported
+ * (reading begins at index tuple_size * vreg->fuse_combo)
+ * 3. Length == tuple_size * vreg->speed_bins_supported
+ * (reading begins at index tuple_size * vreg->speed_bin_fuse)
+ *
+ * All other property lengths are treated as errors.
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_parse_array_property(struct cpr3_regulator *vreg,
+ const char *prop_name, int tuple_size, u32 *out)
+{
+ struct device_node *node = vreg->of_node;
+ int len = 0;
+ int i, offset, rc;
+
+ if (!of_find_property(node, prop_name, &len)) {
+ cpr3_err(vreg, "property %s is missing\n", prop_name);
+ return -EINVAL;
+ }
+
+ if (len == tuple_size * sizeof(u32)) {
+ offset = 0;
+ } else if (len == tuple_size * vreg->fuse_combos_supported
+ * sizeof(u32)) {
+ offset = tuple_size * vreg->fuse_combo;
+ } else if (vreg->speed_bins_supported > 0 &&
+ len == tuple_size * vreg->speed_bins_supported * sizeof(u32)) {
+ offset = tuple_size * vreg->speed_bin_fuse;
+ } else {
+ if (vreg->speed_bins_supported > 0)
+ cpr3_err(vreg, "property %s has invalid length=%d, should be %zu, %zu, or %zu\n",
+ prop_name, len,
+ tuple_size * sizeof(u32),
+ tuple_size * vreg->speed_bins_supported
+ * sizeof(u32),
+ tuple_size * vreg->fuse_combos_supported
+ * sizeof(u32));
+ else
+ cpr3_err(vreg, "property %s has invalid length=%d, should be %zu or %zu\n",
+ prop_name, len,
+ tuple_size * sizeof(u32),
+ tuple_size * vreg->fuse_combos_supported
+ * sizeof(u32));
+ return -EINVAL;
+ }
+
+ for (i = 0; i < tuple_size; i++) {
+ rc = of_property_read_u32_index(node, prop_name, offset + i,
+ &out[i]);
+ if (rc) {
+ cpr3_err(vreg, "error reading property %s, rc=%d\n",
+ prop_name, rc);
+ return rc;
+ }
+ }
+
+ return 0;
+}
+
+/**
+ * cpr3_parse_corner_array_property() - fill a per-corner array from a portion
+ * of the values specified for a device tree property
+ * @vreg: Pointer to the CPR3 regulator
+ * @prop_name: The name of the device tree property to read from
+ * @tuple_size: The number of elements in each per-corner tuple
+ * @out: Output data array which must be of size:
+ * tuple_size * vreg->corner_count
+ *
+ * cpr3_parse_common_corner_data() must be called for vreg before this function
+ * is called so that fuse combo and speed bin size elements are initialized.
+ *
+ * Three formats are supported for the device tree property:
+ * 1. Length == tuple_size * vreg->corner_count
+ * (reading begins at index 0)
+ * 2. Length == tuple_size * vreg->fuse_combo_corner_sum
+ * (reading begins at index tuple_size * vreg->fuse_combo_offset)
+ * 3. Length == tuple_size * vreg->speed_bin_corner_sum
+ * (reading begins at index tuple_size * vreg->speed_bin_offset)
+ *
+ * All other property lengths are treated as errors.
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_parse_corner_array_property(struct cpr3_regulator *vreg,
+ const char *prop_name, int tuple_size, u32 *out)
+{
+ struct device_node *node = vreg->of_node;
+ int len = 0;
+ int i, offset, rc;
+
+ if (!of_find_property(node, prop_name, &len)) {
+ cpr3_err(vreg, "property %s is missing\n", prop_name);
+ return -EINVAL;
+ }
+
+ if (len == tuple_size * vreg->corner_count * sizeof(u32)) {
+ offset = 0;
+ } else if (len == tuple_size * vreg->fuse_combo_corner_sum
+ * sizeof(u32)) {
+ offset = tuple_size * vreg->fuse_combo_offset;
+ } else if (vreg->speed_bin_corner_sum > 0 &&
+ len == tuple_size * vreg->speed_bin_corner_sum * sizeof(u32)) {
+ offset = tuple_size * vreg->speed_bin_offset;
+ } else {
+ if (vreg->speed_bin_corner_sum > 0)
+ cpr3_err(vreg, "property %s has invalid length=%d, should be %zu, %zu, or %zu\n",
+ prop_name, len,
+ tuple_size * vreg->corner_count * sizeof(u32),
+ tuple_size * vreg->speed_bin_corner_sum
+ * sizeof(u32),
+ tuple_size * vreg->fuse_combo_corner_sum
+ * sizeof(u32));
+ else
+ cpr3_err(vreg, "property %s has invalid length=%d, should be %zu or %zu\n",
+ prop_name, len,
+ tuple_size * vreg->corner_count * sizeof(u32),
+ tuple_size * vreg->fuse_combo_corner_sum
+ * sizeof(u32));
+ return -EINVAL;
+ }
+
+ for (i = 0; i < tuple_size * vreg->corner_count; i++) {
+ rc = of_property_read_u32_index(node, prop_name, offset + i,
+ &out[i]);
+ if (rc) {
+ cpr3_err(vreg, "error reading property %s, rc=%d\n",
+ prop_name, rc);
+ return rc;
+ }
+ }
+
+ return 0;
+}
+
+/**
+ * cpr3_parse_corner_band_array_property() - fill a per-corner band array
+ * from a portion of the values specified for a device tree
+ * property
+ * @vreg: Pointer to the CPR3 regulator
+ * @prop_name: The name of the device tree property to read from
+ * @tuple_size: The number of elements in each per-corner band tuple
+ * @out: Output data array which must be of size:
+ * tuple_size * vreg->corner_band_count
+ *
+ * cpr3_parse_common_corner_data() must be called for vreg before this function
+ * is called so that fuse combo and speed bin size elements are initialized.
+ * In addition, corner band fuse combo and speed bin sum and offset elements
+ * must be initialized prior to executing this function.
+ *
+ * Three formats are supported for the device tree property:
+ * 1. Length == tuple_size * vreg->corner_band_count
+ * (reading begins at index 0)
+ * 2. Length == tuple_size * vreg->fuse_combo_corner_band_sum
+ * (reading begins at index tuple_size *
+ * vreg->fuse_combo_corner_band_offset)
+ * 3. Length == tuple_size * vreg->speed_bin_corner_band_sum
+ * (reading begins at index tuple_size *
+ * vreg->speed_bin_corner_band_offset)
+ *
+ * All other property lengths are treated as errors.
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_parse_corner_band_array_property(struct cpr3_regulator *vreg,
+ const char *prop_name, int tuple_size, u32 *out)
+{
+ struct device_node *node = vreg->of_node;
+ int len = 0;
+ int i, offset, rc;
+
+ if (!of_find_property(node, prop_name, &len)) {
+ cpr3_err(vreg, "property %s is missing\n", prop_name);
+ return -EINVAL;
+ }
+
+ if (len == tuple_size * vreg->corner_band_count * sizeof(u32)) {
+ offset = 0;
+ } else if (len == tuple_size * vreg->fuse_combo_corner_band_sum
+ * sizeof(u32)) {
+ offset = tuple_size * vreg->fuse_combo_corner_band_offset;
+ } else if (vreg->speed_bin_corner_band_sum > 0 &&
+ len == tuple_size * vreg->speed_bin_corner_band_sum *
+ sizeof(u32)) {
+ offset = tuple_size * vreg->speed_bin_corner_band_offset;
+ } else {
+ if (vreg->speed_bin_corner_band_sum > 0)
+ cpr3_err(vreg, "property %s has invalid length=%d, should be %zu, %zu, or %zu\n",
+ prop_name, len,
+ tuple_size * vreg->corner_band_count *
+ sizeof(u32),
+ tuple_size * vreg->speed_bin_corner_band_sum
+ * sizeof(u32),
+ tuple_size * vreg->fuse_combo_corner_band_sum
+ * sizeof(u32));
+ else
+ cpr3_err(vreg, "property %s has invalid length=%d, should be %zu or %zu\n",
+ prop_name, len,
+ tuple_size * vreg->corner_band_count *
+ sizeof(u32),
+ tuple_size * vreg->fuse_combo_corner_band_sum
+ * sizeof(u32));
+ return -EINVAL;
+ }
+
+ for (i = 0; i < tuple_size * vreg->corner_band_count; i++) {
+ rc = of_property_read_u32_index(node, prop_name, offset + i,
+ &out[i]);
+ if (rc) {
+ cpr3_err(vreg, "error reading property %s, rc=%d\n",
+ prop_name, rc);
+ return rc;
+ }
+ }
+
+ return 0;
+}
+
+/**
+ * cpr3_parse_common_corner_data() - parse common CPR3 properties relating to
+ * the corners supported by a CPR3 regulator from device tree
+ * @vreg: Pointer to the CPR3 regulator
+ *
+ * This function reads, validates, and utilizes the following device tree
+ * properties: qcom,cpr-fuse-corners, qcom,cpr-fuse-combos, qcom,cpr-speed-bins,
+ * qcom,cpr-speed-bin-corners, qcom,cpr-corners, qcom,cpr-voltage-ceiling,
+ * qcom,cpr-voltage-floor, qcom,corner-frequencies,
+ * and qcom,cpr-corner-fmax-map.
+ *
+ * It initializes these CPR3 regulator elements: corner, corner_count,
+ * fuse_combos_supported, fuse_corner_map, and speed_bins_supported. It
+ * initializes these elements for each corner: ceiling_volt, floor_volt,
+ * proc_freq, and cpr_fuse_corner.
+ *
+ * It requires that the following CPR3 regulator elements be initialized before
+ * being called: fuse_corner_count, fuse_combo, and speed_bin_fuse.
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_parse_common_corner_data(struct cpr3_regulator *vreg)
+{
+ struct device_node *node = vreg->of_node;
+ struct cpr3_controller *ctrl = vreg->thread->ctrl;
+ u32 max_fuse_combos, fuse_corners, aging_allowed = 0;
+ u32 max_speed_bins = 0;
+ u32 *combo_corners;
+ u32 *speed_bin_corners;
+ u32 *temp;
+ int i, j, rc;
+
+ rc = of_property_read_u32(node, "qcom,cpr-fuse-corners", &fuse_corners);
+ if (rc) {
+ cpr3_err(vreg, "error reading property qcom,cpr-fuse-corners, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ if (vreg->fuse_corner_count != fuse_corners) {
+ cpr3_err(vreg, "device tree config supports %d fuse corners but the hardware has %d fuse corners\n",
+ fuse_corners, vreg->fuse_corner_count);
+ return -EINVAL;
+ }
+
+ rc = of_property_read_u32(node, "qcom,cpr-fuse-combos",
+ &max_fuse_combos);
+ if (rc) {
+ cpr3_err(vreg, "error reading property qcom,cpr-fuse-combos, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ /*
+ * Sanity check against arbitrarily large value to avoid excessive
+ * memory allocation.
+ */
+ if (max_fuse_combos > 100 || max_fuse_combos == 0) {
+ cpr3_err(vreg, "qcom,cpr-fuse-combos is invalid: %u\n",
+ max_fuse_combos);
+ return -EINVAL;
+ }
+
+ if (vreg->fuse_combo >= max_fuse_combos) {
+ cpr3_err(vreg, "device tree config supports fuse combos 0-%u but the hardware has combo %d\n",
+ max_fuse_combos - 1, vreg->fuse_combo);
+ BUG_ON(1);
+ return -EINVAL;
+ }
+
+ vreg->fuse_combos_supported = max_fuse_combos;
+
+ of_property_read_u32(node, "qcom,cpr-speed-bins", &max_speed_bins);
+
+ /*
+ * Sanity check against arbitrarily large value to avoid excessive
+ * memory allocation.
+ */
+ if (max_speed_bins > 100) {
+ cpr3_err(vreg, "qcom,cpr-speed-bins is invalid: %u\n",
+ max_speed_bins);
+ return -EINVAL;
+ }
+
+ if (max_speed_bins && vreg->speed_bin_fuse >= max_speed_bins) {
+ cpr3_err(vreg, "device tree config supports speed bins 0-%u but the hardware has speed bin %d\n",
+ max_speed_bins - 1, vreg->speed_bin_fuse);
+ BUG();
+ return -EINVAL;
+ }
+
+ vreg->speed_bins_supported = max_speed_bins;
+
+ combo_corners = kcalloc(vreg->fuse_combos_supported,
+ sizeof(*combo_corners), GFP_KERNEL);
+ if (!combo_corners)
+ return -ENOMEM;
+
+ rc = of_property_read_u32_array(node, "qcom,cpr-corners", combo_corners,
+ vreg->fuse_combos_supported);
+ if (rc == -EOVERFLOW) {
+ /* Single value case */
+ rc = of_property_read_u32(node, "qcom,cpr-corners",
+ combo_corners);
+ for (i = 1; i < vreg->fuse_combos_supported; i++)
+ combo_corners[i] = combo_corners[0];
+ }
+ if (rc) {
+ cpr3_err(vreg, "error reading property qcom,cpr-corners, rc=%d\n",
+ rc);
+ kfree(combo_corners);
+ return rc;
+ }
+
+ vreg->fuse_combo_offset = 0;
+ vreg->fuse_combo_corner_sum = 0;
+ for (i = 0; i < vreg->fuse_combos_supported; i++) {
+ vreg->fuse_combo_corner_sum += combo_corners[i];
+ if (i < vreg->fuse_combo)
+ vreg->fuse_combo_offset += combo_corners[i];
+ }
+
+ vreg->corner_count = combo_corners[vreg->fuse_combo];
+
+ kfree(combo_corners);
+
+ vreg->speed_bin_offset = 0;
+ vreg->speed_bin_corner_sum = 0;
+ if (vreg->speed_bins_supported > 0) {
+ speed_bin_corners = kcalloc(vreg->speed_bins_supported,
+ sizeof(*speed_bin_corners), GFP_KERNEL);
+ if (!speed_bin_corners)
+ return -ENOMEM;
+
+ rc = of_property_read_u32_array(node,
+ "qcom,cpr-speed-bin-corners", speed_bin_corners,
+ vreg->speed_bins_supported);
+ if (rc) {
+ cpr3_err(vreg, "error reading property qcom,cpr-speed-bin-corners, rc=%d\n",
+ rc);
+ kfree(speed_bin_corners);
+ return rc;
+ }
+
+ for (i = 0; i < vreg->speed_bins_supported; i++) {
+ vreg->speed_bin_corner_sum += speed_bin_corners[i];
+ if (i < vreg->speed_bin_fuse)
+ vreg->speed_bin_offset += speed_bin_corners[i];
+ }
+
+ if (speed_bin_corners[vreg->speed_bin_fuse]
+ != vreg->corner_count) {
+ cpr3_err(vreg, "qcom,cpr-corners and qcom,cpr-speed-bin-corners conflict on number of corners: %d vs %u\n",
+ vreg->corner_count,
+ speed_bin_corners[vreg->speed_bin_fuse]);
+ kfree(speed_bin_corners);
+ return -EINVAL;
+ }
+
+ kfree(speed_bin_corners);
+ }
+
+ vreg->corner = devm_kcalloc(ctrl->dev, vreg->corner_count,
+ sizeof(*vreg->corner), GFP_KERNEL);
+ temp = kcalloc(vreg->corner_count, sizeof(*temp), GFP_KERNEL);
+ if (!vreg->corner || !temp)
+ return -ENOMEM;
+
+ rc = cpr3_parse_corner_array_property(vreg, "qcom,cpr-voltage-ceiling",
+ 1, temp);
+ if (rc)
+ goto free_temp;
+ for (i = 0; i < vreg->corner_count; i++) {
+ vreg->corner[i].ceiling_volt
+ = CPR3_ROUND(temp[i], ctrl->step_volt);
+ vreg->corner[i].abs_ceiling_volt = vreg->corner[i].ceiling_volt;
+ }
+
+ rc = cpr3_parse_corner_array_property(vreg, "qcom,cpr-voltage-floor",
+ 1, temp);
+ if (rc)
+ goto free_temp;
+ for (i = 0; i < vreg->corner_count; i++)
+ vreg->corner[i].floor_volt
+ = CPR3_ROUND(temp[i], ctrl->step_volt);
+
+ /* Validate ceiling and floor values */
+ for (i = 0; i < vreg->corner_count; i++) {
+ if (vreg->corner[i].floor_volt
+ > vreg->corner[i].ceiling_volt) {
+ cpr3_err(vreg, "CPR floor[%d]=%d > ceiling[%d]=%d uV\n",
+ i, vreg->corner[i].floor_volt,
+ i, vreg->corner[i].ceiling_volt);
+ rc = -EINVAL;
+ goto free_temp;
+ }
+ }
+
+ /* Load optional system-supply voltages */
+ if (of_find_property(vreg->of_node, "qcom,system-voltage", NULL)) {
+ rc = cpr3_parse_corner_array_property(vreg,
+ "qcom,system-voltage", 1, temp);
+ if (rc)
+ goto free_temp;
+ for (i = 0; i < vreg->corner_count; i++)
+ vreg->corner[i].system_volt = temp[i];
+ }
+
+ rc = cpr3_parse_corner_array_property(vreg, "qcom,corner-frequencies",
+ 1, temp);
+ if (rc)
+ goto free_temp;
+ for (i = 0; i < vreg->corner_count; i++)
+ vreg->corner[i].proc_freq = temp[i];
+
+ /* Validate frequencies */
+ for (i = 1; i < vreg->corner_count; i++) {
+ if (vreg->corner[i].proc_freq
+ < vreg->corner[i - 1].proc_freq) {
+ cpr3_err(vreg, "invalid frequency: freq[%d]=%u < freq[%d]=%u\n",
+ i, vreg->corner[i].proc_freq, i - 1,
+ vreg->corner[i - 1].proc_freq);
+ rc = -EINVAL;
+ goto free_temp;
+ }
+ }
+
+ vreg->fuse_corner_map = devm_kcalloc(ctrl->dev, vreg->fuse_corner_count,
+ sizeof(*vreg->fuse_corner_map), GFP_KERNEL);
+ if (!vreg->fuse_corner_map) {
+ rc = -ENOMEM;
+ goto free_temp;
+ }
+
+ rc = cpr3_parse_array_property(vreg, "qcom,cpr-corner-fmax-map",
+ vreg->fuse_corner_count, temp);
+ if (rc)
+ goto free_temp;
+ for (i = 0; i < vreg->fuse_corner_count; i++) {
+ vreg->fuse_corner_map[i] = temp[i] - CPR3_CORNER_OFFSET;
+ if (temp[i] < CPR3_CORNER_OFFSET
+ || temp[i] > vreg->corner_count + CPR3_CORNER_OFFSET) {
+ cpr3_err(vreg, "invalid corner value specified in qcom,cpr-corner-fmax-map: %u\n",
+ temp[i]);
+ rc = -EINVAL;
+ goto free_temp;
+ } else if (i > 0 && temp[i - 1] >= temp[i]) {
+ cpr3_err(vreg, "invalid corner %u less than or equal to previous corner %u\n",
+ temp[i], temp[i - 1]);
+ rc = -EINVAL;
+ goto free_temp;
+ }
+ }
+ if (temp[vreg->fuse_corner_count - 1] != vreg->corner_count)
+ cpr3_debug(vreg, "Note: highest Fmax corner %u in qcom,cpr-corner-fmax-map does not match highest supported corner %d\n",
+ temp[vreg->fuse_corner_count - 1],
+ vreg->corner_count);
+
+ for (i = 0; i < vreg->corner_count; i++) {
+ for (j = 0; j < vreg->fuse_corner_count; j++) {
+ if (i + CPR3_CORNER_OFFSET <= temp[j]) {
+ vreg->corner[i].cpr_fuse_corner = j;
+ break;
+ }
+ }
+ if (j == vreg->fuse_corner_count) {
+ /*
+ * Handle the case where the highest fuse corner maps
+ * to a corner below the highest corner.
+ */
+ vreg->corner[i].cpr_fuse_corner
+ = vreg->fuse_corner_count - 1;
+ }
+ }
+
+ if (of_find_property(vreg->of_node,
+ "qcom,allow-aging-voltage-adjustment", NULL)) {
+ rc = cpr3_parse_array_property(vreg,
+ "qcom,allow-aging-voltage-adjustment",
+ 1, &aging_allowed);
+ if (rc)
+ goto free_temp;
+
+ vreg->aging_allowed = aging_allowed;
+ }
+
+ if (of_find_property(vreg->of_node,
+ "qcom,allow-aging-open-loop-voltage-adjustment", NULL)) {
+ rc = cpr3_parse_array_property(vreg,
+ "qcom,allow-aging-open-loop-voltage-adjustment",
+ 1, &aging_allowed);
+ if (rc)
+ goto free_temp;
+
+ vreg->aging_allow_open_loop_adj = aging_allowed;
+ }
+
+ if (vreg->aging_allowed) {
+ if (ctrl->aging_ref_volt <= 0) {
+ cpr3_err(ctrl, "qcom,cpr-aging-ref-voltage must be specified\n");
+ rc = -EINVAL;
+ goto free_temp;
+ }
+
+ rc = cpr3_parse_array_property(vreg,
+ "qcom,cpr-aging-max-voltage-adjustment",
+ 1, &vreg->aging_max_adjust_volt);
+ if (rc)
+ goto free_temp;
+
+ rc = cpr3_parse_array_property(vreg,
+ "qcom,cpr-aging-ref-corner", 1, &vreg->aging_corner);
+ if (rc) {
+ goto free_temp;
+ } else if (vreg->aging_corner < CPR3_CORNER_OFFSET
+ || vreg->aging_corner > vreg->corner_count - 1
+ + CPR3_CORNER_OFFSET) {
+ cpr3_err(vreg, "aging reference corner=%d not in range [%d, %d]\n",
+ vreg->aging_corner, CPR3_CORNER_OFFSET,
+ vreg->corner_count - 1 + CPR3_CORNER_OFFSET);
+ rc = -EINVAL;
+ goto free_temp;
+ }
+ vreg->aging_corner -= CPR3_CORNER_OFFSET;
+
+ if (of_find_property(vreg->of_node, "qcom,cpr-aging-derate",
+ NULL)) {
+ rc = cpr3_parse_corner_array_property(vreg,
+ "qcom,cpr-aging-derate", 1, temp);
+ if (rc)
+ goto free_temp;
+
+ for (i = 0; i < vreg->corner_count; i++)
+ vreg->corner[i].aging_derate = temp[i];
+ } else {
+ for (i = 0; i < vreg->corner_count; i++)
+ vreg->corner[i].aging_derate
+ = CPR3_AGING_DERATE_UNITY;
+ }
+ }
+
+free_temp:
+ kfree(temp);
+ return rc;
+}
+
+/**
+ * cpr3_parse_thread_u32() - parse the specified property from the CPR3 thread's
+ * device tree node and verify that it is within the allowed limits
+ * @thread: Pointer to the CPR3 thread
+ * @propname: The name of the device tree property to read
+ * @out_value: The output pointer to fill with the value read
+ * @value_min: The minimum allowed property value
+ * @value_max: The maximum allowed property value
+ *
+ * This function prints a verbose error message if the property is missing or
+ * has a value which is not within the specified range.
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_parse_thread_u32(struct cpr3_thread *thread, const char *propname,
+ u32 *out_value, u32 value_min, u32 value_max)
+{
+ int rc;
+
+ rc = of_property_read_u32(thread->of_node, propname, out_value);
+ if (rc) {
+ cpr3_err(thread->ctrl, "thread %u error reading property %s, rc=%d\n",
+ thread->thread_id, propname, rc);
+ return rc;
+ }
+
+ if (*out_value < value_min || *out_value > value_max) {
+ cpr3_err(thread->ctrl, "thread %u %s=%u is invalid; allowed range: [%u, %u]\n",
+ thread->thread_id, propname, *out_value, value_min,
+ value_max);
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+/**
+ * cpr3_parse_ctrl_u32() - parse the specified property from the CPR3
+ * controller's device tree node and verify that it is within the
+ * allowed limits
+ * @ctrl: Pointer to the CPR3 controller
+ * @propname: The name of the device tree property to read
+ * @out_value: The output pointer to fill with the value read
+ * @value_min: The minimum allowed property value
+ * @value_max: The maximum allowed property value
+ *
+ * This function prints a verbose error message if the property is missing or
+ * has a value which is not within the specified range.
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_parse_ctrl_u32(struct cpr3_controller *ctrl, const char *propname,
+ u32 *out_value, u32 value_min, u32 value_max)
+{
+ int rc;
+
+ rc = of_property_read_u32(ctrl->dev->of_node, propname, out_value);
+ if (rc) {
+ cpr3_err(ctrl, "error reading property %s, rc=%d\n",
+ propname, rc);
+ return rc;
+ }
+
+ if (*out_value < value_min || *out_value > value_max) {
+ cpr3_err(ctrl, "%s=%u is invalid; allowed range: [%u, %u]\n",
+ propname, *out_value, value_min, value_max);
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+/**
+ * cpr3_parse_common_thread_data() - parse common CPR3 thread properties from
+ * device tree
+ * @thread: Pointer to the CPR3 thread
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_parse_common_thread_data(struct cpr3_thread *thread)
+{
+ int rc;
+
+ rc = cpr3_parse_thread_u32(thread, "qcom,cpr-consecutive-up",
+ &thread->consecutive_up, CPR3_CONSECUTIVE_UP_DOWN_MIN,
+ CPR3_CONSECUTIVE_UP_DOWN_MAX);
+ if (rc)
+ return rc;
+
+ rc = cpr3_parse_thread_u32(thread, "qcom,cpr-consecutive-down",
+ &thread->consecutive_down, CPR3_CONSECUTIVE_UP_DOWN_MIN,
+ CPR3_CONSECUTIVE_UP_DOWN_MAX);
+ if (rc)
+ return rc;
+
+ rc = cpr3_parse_thread_u32(thread, "qcom,cpr-up-threshold",
+ &thread->up_threshold, CPR3_UP_DOWN_THRESHOLD_MIN,
+ CPR3_UP_DOWN_THRESHOLD_MAX);
+ if (rc)
+ return rc;
+
+ rc = cpr3_parse_thread_u32(thread, "qcom,cpr-down-threshold",
+ &thread->down_threshold, CPR3_UP_DOWN_THRESHOLD_MIN,
+ CPR3_UP_DOWN_THRESHOLD_MAX);
+ if (rc)
+ return rc;
+
+ return rc;
+}
+
+/**
+ * cpr3_parse_irq_affinity() - parse CPR IRQ affinity information
+ * @ctrl: Pointer to the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_parse_irq_affinity(struct cpr3_controller *ctrl)
+{
+ struct device_node *cpu_node;
+ int i, cpu;
+ int len = 0;
+
+ if (!of_find_property(ctrl->dev->of_node, "qcom,cpr-interrupt-affinity",
+ &len)) {
+ /* No IRQ affinity required */
+ return 0;
+ }
+
+ len /= sizeof(u32);
+
+ for (i = 0; i < len; i++) {
+ cpu_node = of_parse_phandle(ctrl->dev->of_node,
+ "qcom,cpr-interrupt-affinity", i);
+ if (!cpu_node) {
+ cpr3_err(ctrl, "could not find CPU node %d\n", i);
+ return -EINVAL;
+ }
+
+ for_each_possible_cpu(cpu) {
+ if (of_get_cpu_node(cpu, NULL) == cpu_node) {
+ cpumask_set_cpu(cpu, &ctrl->irq_affinity_mask);
+ break;
+ }
+ }
+ of_node_put(cpu_node);
+ }
+
+ return 0;
+}
+
+static int cpr3_panic_notifier_init(struct cpr3_controller *ctrl)
+{
+ struct device_node *node = ctrl->dev->of_node;
+ struct cpr3_panic_regs_info *panic_regs_info;
+ struct cpr3_reg_info *regs;
+ int i, reg_count, len, rc = 0;
+
+ if (!of_find_property(node, "qcom,cpr-panic-reg-addr-list", &len)) {
+ /* panic register address list not specified */
+ return rc;
+ }
+
+ reg_count = len / sizeof(u32);
+ if (!reg_count) {
+ cpr3_err(ctrl, "qcom,cpr-panic-reg-addr-list has invalid len = %d\n",
+ len);
+ return -EINVAL;
+ }
+
+ if (!of_find_property(node, "qcom,cpr-panic-reg-name-list", NULL)) {
+ cpr3_err(ctrl, "property qcom,cpr-panic-reg-name-list not specified\n");
+ return -EINVAL;
+ }
+
+ len = of_property_count_strings(node, "qcom,cpr-panic-reg-name-list");
+ if (reg_count != len) {
+ cpr3_err(ctrl, "qcom,cpr-panic-reg-name-list should have %d strings\n",
+ reg_count);
+ return -EINVAL;
+ }
+
+ panic_regs_info = devm_kzalloc(ctrl->dev, sizeof(*panic_regs_info),
+ GFP_KERNEL);
+ if (!panic_regs_info)
+ return -ENOMEM;
+
+ regs = devm_kcalloc(ctrl->dev, reg_count, sizeof(*regs), GFP_KERNEL);
+ if (!regs)
+ return -ENOMEM;
+
+ for (i = 0; i < reg_count; i++) {
+ rc = of_property_read_string_index(node,
+ "qcom,cpr-panic-reg-name-list", i,
+ &(regs[i].name));
+ if (rc) {
+ cpr3_err(ctrl, "error reading property qcom,cpr-panic-reg-name-list, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ rc = of_property_read_u32_index(node,
+ "qcom,cpr-panic-reg-addr-list", i,
+ &(regs[i].addr));
+ if (rc) {
+ cpr3_err(ctrl, "error reading property qcom,cpr-panic-reg-addr-list, rc=%d\n",
+ rc);
+ return rc;
+ }
+ regs[i].virt_addr = devm_ioremap(ctrl->dev, regs[i].addr, 0x4);
+ if (!regs[i].virt_addr) {
+ pr_err("Unable to map panic register addr 0x%08x\n",
+ regs[i].addr);
+ return -EINVAL;
+ }
+ regs[i].value = 0xFFFFFFFF;
+ }
+
+ panic_regs_info->reg_count = reg_count;
+ panic_regs_info->regs = regs;
+ ctrl->panic_regs_info = panic_regs_info;
+
+ return rc;
+}
+
+/**
+ * cpr3_parse_common_ctrl_data() - parse common CPR3 controller properties from
+ * device tree
+ * @ctrl: Pointer to the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_parse_common_ctrl_data(struct cpr3_controller *ctrl)
+{
+ int rc;
+
+ rc = cpr3_parse_ctrl_u32(ctrl, "qcom,cpr-sensor-time",
+ &ctrl->sensor_time, 0, UINT_MAX);
+ if (rc)
+ return rc;
+
+ rc = cpr3_parse_ctrl_u32(ctrl, "qcom,cpr-loop-time",
+ &ctrl->loop_time, 0, UINT_MAX);
+ if (rc)
+ return rc;
+
+ rc = cpr3_parse_ctrl_u32(ctrl, "qcom,cpr-idle-cycles",
+ &ctrl->idle_clocks, CPR3_IDLE_CLOCKS_MIN,
+ CPR3_IDLE_CLOCKS_MAX);
+ if (rc)
+ return rc;
+
+ rc = cpr3_parse_ctrl_u32(ctrl, "qcom,cpr-step-quot-init-min",
+ &ctrl->step_quot_init_min, CPR3_STEP_QUOT_MIN,
+ CPR3_STEP_QUOT_MAX);
+ if (rc)
+ return rc;
+
+ rc = cpr3_parse_ctrl_u32(ctrl, "qcom,cpr-step-quot-init-max",
+ &ctrl->step_quot_init_max, CPR3_STEP_QUOT_MIN,
+ CPR3_STEP_QUOT_MAX);
+ if (rc)
+ return rc;
+
+ rc = of_property_read_u32(ctrl->dev->of_node, "qcom,voltage-step",
+ &ctrl->step_volt);
+ if (rc) {
+ cpr3_err(ctrl, "error reading property qcom,voltage-step, rc=%d\n",
+ rc);
+ return rc;
+ }
+ if (ctrl->step_volt <= 0) {
+ cpr3_err(ctrl, "qcom,voltage-step=%d is invalid\n",
+ ctrl->step_volt);
+ return -EINVAL;
+ }
+
+ rc = cpr3_parse_ctrl_u32(ctrl, "qcom,cpr-count-mode",
+ &ctrl->count_mode, CPR3_COUNT_MODE_ALL_AT_ONCE_MIN,
+ CPR3_COUNT_MODE_STAGGERED);
+ if (rc)
+ return rc;
+
+ /* Count repeat is optional */
+ ctrl->count_repeat = 0;
+ of_property_read_u32(ctrl->dev->of_node, "qcom,cpr-count-repeat",
+ &ctrl->count_repeat);
+
+ ctrl->cpr_allowed_sw =
+ of_property_read_bool(ctrl->dev->of_node, "qcom,cpr-enable") ||
+ ctrl->cpr_global_setting == CPR_CLOSED_LOOP_EN;
+
+ rc = cpr3_parse_irq_affinity(ctrl);
+ if (rc)
+ return rc;
+
+ /* Aging reference voltage is optional */
+ ctrl->aging_ref_volt = 0;
+ of_property_read_u32(ctrl->dev->of_node, "qcom,cpr-aging-ref-voltage",
+ &ctrl->aging_ref_volt);
+
+ /* Aging possible bitmask is optional */
+ ctrl->aging_possible_mask = 0;
+ of_property_read_u32(ctrl->dev->of_node,
+ "qcom,cpr-aging-allowed-reg-mask",
+ &ctrl->aging_possible_mask);
+
+ if (ctrl->aging_possible_mask) {
+ /*
+ * Aging possible register value required if bitmask is
+ * specified
+ */
+ rc = cpr3_parse_ctrl_u32(ctrl,
+ "qcom,cpr-aging-allowed-reg-value",
+ &ctrl->aging_possible_val, 0, UINT_MAX);
+ if (rc)
+ return rc;
+ }
+
+ if (of_find_property(ctrl->dev->of_node, "clock-names", NULL)) {
+ ctrl->core_clk = devm_clk_get(ctrl->dev, "core_clk");
+ if (IS_ERR(ctrl->core_clk)) {
+ rc = PTR_ERR(ctrl->core_clk);
+ if (rc != -EPROBE_DEFER)
+ cpr3_err(ctrl, "unable request core clock, rc=%d\n",
+ rc);
+ return rc;
+ }
+ }
+
+ rc = cpr3_panic_notifier_init(ctrl);
+ if (rc)
+ return rc;
+
+ if (of_find_property(ctrl->dev->of_node, "vdd-supply", NULL)) {
+ ctrl->vdd_regulator = devm_regulator_get(ctrl->dev, "vdd");
+ if (IS_ERR(ctrl->vdd_regulator)) {
+ rc = PTR_ERR(ctrl->vdd_regulator);
+ if (rc != -EPROBE_DEFER)
+ cpr3_err(ctrl, "unable to request vdd regulator, rc=%d\n",
+ rc);
+ return rc;
+ }
+ } else {
+ cpr3_err(ctrl, "vdd supply is not defined\n");
+ return -ENODEV;
+ }
+
+ ctrl->system_regulator = devm_regulator_get_optional(ctrl->dev,
+ "system");
+ if (IS_ERR(ctrl->system_regulator)) {
+ rc = PTR_ERR(ctrl->system_regulator);
+ if (rc != -EPROBE_DEFER) {
+ rc = 0;
+ ctrl->system_regulator = NULL;
+ } else {
+ return rc;
+ }
+ }
+
+ ctrl->mem_acc_regulator = devm_regulator_get_optional(ctrl->dev,
+ "mem-acc");
+ if (IS_ERR(ctrl->mem_acc_regulator)) {
+ rc = PTR_ERR(ctrl->mem_acc_regulator);
+ if (rc != -EPROBE_DEFER) {
+ rc = 0;
+ ctrl->mem_acc_regulator = NULL;
+ } else {
+ return rc;
+ }
+ }
+
+ return rc;
+}
+
+/**
+ * cpr3_parse_open_loop_common_ctrl_data() - parse common open loop CPR3
+ * controller properties from device tree
+ * @ctrl: Pointer to the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_parse_open_loop_common_ctrl_data(struct cpr3_controller *ctrl)
+{
+ int rc;
+
+ rc = of_property_read_u32(ctrl->dev->of_node, "qcom,voltage-step",
+ &ctrl->step_volt);
+ if (rc) {
+ cpr3_err(ctrl, "error reading property qcom,voltage-step, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ if (ctrl->step_volt <= 0) {
+ cpr3_err(ctrl, "qcom,voltage-step=%d is invalid\n",
+ ctrl->step_volt);
+ return -EINVAL;
+ }
+
+ if (of_find_property(ctrl->dev->of_node, "vdd-supply", NULL)) {
+ ctrl->vdd_regulator = devm_regulator_get(ctrl->dev, "vdd");
+ if (IS_ERR(ctrl->vdd_regulator)) {
+ rc = PTR_ERR(ctrl->vdd_regulator);
+ if (rc != -EPROBE_DEFER)
+ cpr3_err(ctrl, "unable to request vdd regulator, rc=%d\n",
+ rc);
+ return rc;
+ }
+ } else {
+ cpr3_err(ctrl, "vdd supply is not defined\n");
+ return -ENODEV;
+ }
+
+ ctrl->system_regulator = devm_regulator_get_optional(ctrl->dev,
+ "system");
+ if (IS_ERR(ctrl->system_regulator)) {
+ rc = PTR_ERR(ctrl->system_regulator);
+ if (rc != -EPROBE_DEFER) {
+ rc = 0;
+ ctrl->system_regulator = NULL;
+ } else {
+ return rc;
+ }
+ } else {
+ rc = regulator_enable(ctrl->system_regulator);
+ }
+
+ ctrl->mem_acc_regulator = devm_regulator_get_optional(ctrl->dev,
+ "mem-acc");
+ if (IS_ERR(ctrl->mem_acc_regulator)) {
+ rc = PTR_ERR(ctrl->mem_acc_regulator);
+ if (rc != -EPROBE_DEFER) {
+ rc = 0;
+ ctrl->mem_acc_regulator = NULL;
+ } else {
+ return rc;
+ }
+ }
+
+ return rc;
+}
+
+/**
+ * cpr3_limit_open_loop_voltages() - modify the open-loop voltage of each corner
+ * so that it fits within the floor to ceiling
+ * voltage range of the corner
+ * @vreg: Pointer to the CPR3 regulator
+ *
+ * This function clips the open-loop voltage for each corner so that it is
+ * limited to the floor to ceiling range. It also rounds each open-loop voltage
+ * so that it corresponds to a set point available to the underlying regulator.
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_limit_open_loop_voltages(struct cpr3_regulator *vreg)
+{
+ int i, volt;
+
+ cpr3_debug(vreg, "open-loop voltages after trimming and rounding:\n");
+ for (i = 0; i < vreg->corner_count; i++) {
+ volt = CPR3_ROUND(vreg->corner[i].open_loop_volt,
+ vreg->thread->ctrl->step_volt);
+ if (volt < vreg->corner[i].floor_volt)
+ volt = vreg->corner[i].floor_volt;
+ else if (volt > vreg->corner[i].ceiling_volt)
+ volt = vreg->corner[i].ceiling_volt;
+ vreg->corner[i].open_loop_volt = volt;
+ cpr3_debug(vreg, "corner[%2d]: open-loop=%d uV\n", i, volt);
+ }
+
+ return 0;
+}
+
+/**
+ * cpr3_open_loop_voltage_as_ceiling() - configures the ceiling voltage for each
+ * corner to equal the open-loop voltage if the relevant device
+ * tree property is found for the CPR3 regulator
+ * @vreg: Pointer to the CPR3 regulator
+ *
+ * This function assumes that the the open-loop voltage for each corner has
+ * already been rounded to the nearest allowed set point and that it falls
+ * within the floor to ceiling range.
+ *
+ * Return: none
+ */
+void cpr3_open_loop_voltage_as_ceiling(struct cpr3_regulator *vreg)
+{
+ int i;
+
+ if (!of_property_read_bool(vreg->of_node,
+ "qcom,cpr-scaled-open-loop-voltage-as-ceiling"))
+ return;
+
+ for (i = 0; i < vreg->corner_count; i++)
+ vreg->corner[i].ceiling_volt
+ = vreg->corner[i].open_loop_volt;
+}
+
+/**
+ * cpr3_limit_floor_voltages() - raise the floor voltage of each corner so that
+ * the optional maximum floor to ceiling voltage range specified in
+ * device tree is satisfied
+ * @vreg: Pointer to the CPR3 regulator
+ *
+ * This function also ensures that the open-loop voltage for each corner falls
+ * within the final floor to ceiling voltage range and that floor voltages
+ * increase monotonically.
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_limit_floor_voltages(struct cpr3_regulator *vreg)
+{
+ char *prop = "qcom,cpr-floor-to-ceiling-max-range";
+ int i, floor_new;
+ u32 *floor_range;
+ int rc = 0;
+
+ if (!of_find_property(vreg->of_node, prop, NULL))
+ goto enforce_monotonicity;
+
+ floor_range = kcalloc(vreg->corner_count, sizeof(*floor_range),
+ GFP_KERNEL);
+ if (!floor_range)
+ return -ENOMEM;
+
+ rc = cpr3_parse_corner_array_property(vreg, prop, 1, floor_range);
+ if (rc)
+ goto free_floor_adjust;
+
+ for (i = 0; i < vreg->corner_count; i++) {
+ if ((s32)floor_range[i] >= 0) {
+ floor_new = CPR3_ROUND(vreg->corner[i].ceiling_volt
+ - floor_range[i],
+ vreg->thread->ctrl->step_volt);
+
+ vreg->corner[i].floor_volt = max(floor_new,
+ vreg->corner[i].floor_volt);
+ if (vreg->corner[i].open_loop_volt
+ < vreg->corner[i].floor_volt)
+ vreg->corner[i].open_loop_volt
+ = vreg->corner[i].floor_volt;
+ }
+ }
+
+free_floor_adjust:
+ kfree(floor_range);
+
+enforce_monotonicity:
+ /* Ensure that floor voltages increase monotonically. */
+ for (i = 1; i < vreg->corner_count; i++) {
+ if (vreg->corner[i].floor_volt
+ < vreg->corner[i - 1].floor_volt) {
+ cpr3_debug(vreg, "corner %d floor voltage=%d uV < corner %d voltage=%d uV; overriding: corner %d voltage=%d\n",
+ i, vreg->corner[i].floor_volt,
+ i - 1, vreg->corner[i - 1].floor_volt,
+ i, vreg->corner[i - 1].floor_volt);
+ vreg->corner[i].floor_volt
+ = vreg->corner[i - 1].floor_volt;
+
+ if (vreg->corner[i].open_loop_volt
+ < vreg->corner[i].floor_volt)
+ vreg->corner[i].open_loop_volt
+ = vreg->corner[i].floor_volt;
+ if (vreg->corner[i].ceiling_volt
+ < vreg->corner[i].floor_volt)
+ vreg->corner[i].ceiling_volt
+ = vreg->corner[i].floor_volt;
+ }
+ }
+
+ return rc;
+}
+
+/**
+ * cpr3_print_quots() - print CPR target quotients into the kernel log for
+ * debugging purposes
+ * @vreg: Pointer to the CPR3 regulator
+ *
+ * Return: none
+ */
+void cpr3_print_quots(struct cpr3_regulator *vreg)
+{
+ int i, j, pos;
+ size_t buflen;
+ char *buf;
+
+ buflen = sizeof(*buf) * CPR3_RO_COUNT * (MAX_CHARS_PER_INT + 2);
+ buf = kzalloc(buflen, GFP_KERNEL);
+ if (!buf)
+ return;
+
+ for (i = 0; i < vreg->corner_count; i++) {
+ for (j = 0, pos = 0; j < CPR3_RO_COUNT; j++)
+ pos += scnprintf(buf + pos, buflen - pos, " %u",
+ vreg->corner[i].target_quot[j]);
+ cpr3_debug(vreg, "target quots[%2d]:%s\n", i, buf);
+ }
+
+ kfree(buf);
+}
+
+/**
+ * cpr3_determine_part_type() - determine the part type (SS/TT/FF).
+ *
+ * qcom,cpr-part-types prop tells the number of part types for which correction
+ * voltages are different. Another prop qcom,cpr-parts-voltage will contain the
+ * open loop fuse voltage which will be compared with this part voltage
+ * and accordingly part type will de determined.
+ *
+ * if qcom,cpr-part-types has value n, then qcom,cpr-parts-voltage will be
+ * array of n - 1 elements which will contain the voltage in increasing order.
+ * This function compares the fused volatge with all these voltage and returns
+ * the first index for which the fused volatge is greater.
+ *
+ * @vreg: Pointer to the CPR3 regulator
+ * @fuse_volt: fused open loop voltage which will be compared with
+ * qcom,cpr-parts-voltage array
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_determine_part_type(struct cpr3_regulator *vreg, int fuse_volt)
+{
+ int i, rc, len;
+ u32 volt;
+ int soc_version_major;
+ char prop_name[100];
+ const char prop_name_def[] = "qcom,cpr-parts-voltage";
+ const char prop_name_v2[] = "qcom,cpr-parts-voltage-v2";
+
+ soc_version_major = read_ipq_soc_version_major();
+ BUG_ON(soc_version_major <= 0);
+
+ if (of_property_read_u32(vreg->of_node, "qcom,cpr-part-types",
+ &vreg->part_type_supported))
+ return 0;
+
+ if (soc_version_major > 1)
+ strlcpy(prop_name, prop_name_v2, sizeof(prop_name_v2));
+ else
+ strlcpy(prop_name, prop_name_def, sizeof(prop_name_def));
+
+ if (!of_find_property(vreg->of_node, prop_name, &len)) {
+ cpr3_err(vreg, "property %s is missing\n", prop_name);
+ return -EINVAL;
+ }
+
+ if (len != (vreg->part_type_supported - 1) * sizeof(u32)) {
+ cpr3_err(vreg, "wrong len in qcom,cpr-parts-voltage\n");
+ return -EINVAL;
+ }
+
+ for (i = 0; i < vreg->part_type_supported - 1; i++) {
+ rc = of_property_read_u32_index(vreg->of_node,
+ prop_name, i, &volt);
+ if (rc) {
+ cpr3_err(vreg, "error reading property %s, rc=%d\n",
+ prop_name, rc);
+ return rc;
+ }
+
+ if (fuse_volt < volt)
+ break;
+ }
+
+ vreg->part_type = i;
+ return 0;
+}
+
+int cpr3_determine_temp_base_open_loop_correction(struct cpr3_regulator *vreg,
+ int *fuse_volt)
+{
+ int i, rc, prev_volt;
+ int *volt_adjust;
+ char prop_str[75];
+ int soc_version_major = read_ipq_soc_version_major();
+
+ BUG_ON(soc_version_major <= 0);
+
+ if (vreg->part_type_supported) {
+ if (soc_version_major > 1)
+ snprintf(prop_str, sizeof(prop_str),
+ "qcom,cpr-cold-temp-voltage-adjustment-v2-%d",
+ vreg->part_type);
+ else
+ snprintf(prop_str, sizeof(prop_str),
+ "qcom,cpr-cold-temp-voltage-adjustment-%d",
+ vreg->part_type);
+ } else {
+ strlcpy(prop_str, "qcom,cpr-cold-temp-voltage-adjustment",
+ sizeof(prop_str));
+ }
+
+ if (!of_find_property(vreg->of_node, prop_str, NULL)) {
+ /* No adjustment required. */
+ cpr3_info(vreg, "No cold temperature adjustment required.\n");
+ return 0;
+ }
+
+ volt_adjust = kcalloc(vreg->fuse_corner_count, sizeof(*volt_adjust),
+ GFP_KERNEL);
+ if (!volt_adjust)
+ return -ENOMEM;
+
+ rc = cpr3_parse_array_property(vreg, prop_str,
+ vreg->fuse_corner_count, volt_adjust);
+ if (rc) {
+ cpr3_err(vreg, "could not load cold temp voltage adjustments, rc=%d\n",
+ rc);
+ goto done;
+ }
+
+ for (i = 0; i < vreg->fuse_corner_count; i++) {
+ if (volt_adjust[i]) {
+ prev_volt = fuse_volt[i];
+ fuse_volt[i] += volt_adjust[i];
+ cpr3_debug(vreg,
+ "adjusted fuse corner %d open-loop voltage: %d -> %d uV\n",
+ i, prev_volt, fuse_volt[i]);
+ }
+ }
+
+done:
+ kfree(volt_adjust);
+ return rc;
+}
+
+/**
+ * cpr3_can_adjust_cold_temp() - Is cold temperature adjustment available
+ *
+ * @vreg: Pointer to the CPR3 regulator
+ *
+ * This function checks the cold temperature threshold is available
+ *
+ * Return: true on cold temperature threshold is available, else false
+ */
+bool cpr3_can_adjust_cold_temp(struct cpr3_regulator *vreg)
+{
+ char prop_str[75];
+ int soc_version_major = read_ipq_soc_version_major();
+
+ BUG_ON(soc_version_major <= 0);
+
+ if (soc_version_major > 1)
+ strlcpy(prop_str, "qcom,cpr-cold-temp-threshold-v2",
+ sizeof(prop_str));
+ else
+ strlcpy(prop_str, "qcom,cpr-cold-temp-threshold",
+ sizeof(prop_str));
+
+ if (!of_find_property(vreg->of_node, prop_str, NULL)) {
+ /* No adjustment required. */
+ return false;
+ } else
+ return true;
+}
+
+/**
+ * cpr3_get_cold_temp_threshold() - get cold temperature threshold
+ *
+ * @vreg: Pointer to the CPR3 regulator
+ * @cold_temp: cold temperature read.
+ *
+ * This function reads the cold temperature threshold below which
+ * cold temperature adjustment margins will be applied.
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_get_cold_temp_threshold(struct cpr3_regulator *vreg, int *cold_temp)
+{
+ int rc;
+ u32 temp;
+ char req_prop_str[75], prop_str[75];
+ int soc_version_major = read_ipq_soc_version_major();
+
+ BUG_ON(soc_version_major <= 0);
+
+ if (vreg->part_type_supported) {
+ if (soc_version_major > 1)
+ snprintf(req_prop_str, sizeof(req_prop_str),
+ "qcom,cpr-cold-temp-voltage-adjustment-v2-%d",
+ vreg->part_type);
+ else
+ snprintf(req_prop_str, sizeof(req_prop_str),
+ "qcom,cpr-cold-temp-voltage-adjustment-%d",
+ vreg->part_type);
+ } else {
+ strlcpy(req_prop_str, "qcom,cpr-cold-temp-voltage-adjustment",
+ sizeof(req_prop_str));
+ }
+
+ if (soc_version_major > 1)
+ strlcpy(prop_str, "qcom,cpr-cold-temp-threshold-v2",
+ sizeof(prop_str));
+ else
+ strlcpy(prop_str, "qcom,cpr-cold-temp-threshold",
+ sizeof(prop_str));
+
+ if (!of_find_property(vreg->of_node, req_prop_str, NULL)) {
+ /* No adjustment required. */
+ cpr3_info(vreg, "Cold temperature adjustment not required.\n");
+ return 0;
+ }
+
+ if (!of_find_property(vreg->of_node, prop_str, NULL)) {
+ /* No adjustment required. */
+ cpr3_err(vreg, "Missing %s required for %s\n",
+ prop_str, req_prop_str);
+ return -EINVAL;
+ }
+
+ rc = of_property_read_u32(vreg->of_node, prop_str, &temp);
+ if (rc) {
+ cpr3_err(vreg, "error reading property %s, rc=%d\n",
+ prop_str, rc);
+ return rc;
+ }
+
+ *cold_temp = temp;
+ return 0;
+}
+
+/**
+ * cpr3_adjust_fused_open_loop_voltages() - adjust the fused open-loop voltages
+ * for each fuse corner according to device tree values
+ * @vreg: Pointer to the CPR3 regulator
+ * @fuse_volt: Pointer to an array of the fused open-loop voltage
+ * values
+ *
+ * Voltage values in fuse_volt are modified in place.
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_adjust_fused_open_loop_voltages(struct cpr3_regulator *vreg,
+ int *fuse_volt)
+{
+ int i, rc, prev_volt;
+ int *volt_adjust;
+ char prop_str[75];
+ int soc_version_major = read_ipq_soc_version_major();
+
+ BUG_ON(soc_version_major <= 0);
+
+ if (vreg->part_type_supported) {
+ if (soc_version_major > 1)
+ snprintf(prop_str, sizeof(prop_str),
+ "qcom,cpr-open-loop-voltage-fuse-adjustment-v2-%d",
+ vreg->part_type);
+ else
+ snprintf(prop_str, sizeof(prop_str),
+ "qcom,cpr-open-loop-voltage-fuse-adjustment-%d",
+ vreg->part_type);
+ } else {
+ strlcpy(prop_str, "qcom,cpr-open-loop-voltage-fuse-adjustment",
+ sizeof(prop_str));
+ }
+
+ if (!of_find_property(vreg->of_node, prop_str, NULL)) {
+ /* No adjustment required. */
+ return 0;
+ }
+
+ volt_adjust = kcalloc(vreg->fuse_corner_count, sizeof(*volt_adjust),
+ GFP_KERNEL);
+ if (!volt_adjust)
+ return -ENOMEM;
+
+ rc = cpr3_parse_array_property(vreg,
+ prop_str, vreg->fuse_corner_count, volt_adjust);
+ if (rc) {
+ cpr3_err(vreg, "could not load open-loop fused voltage adjustments, rc=%d\n",
+ rc);
+ goto done;
+ }
+
+ for (i = 0; i < vreg->fuse_corner_count; i++) {
+ if (volt_adjust[i]) {
+ prev_volt = fuse_volt[i];
+ fuse_volt[i] += volt_adjust[i];
+ cpr3_debug(vreg, "adjusted fuse corner %d open-loop voltage: %d --> %d uV\n",
+ i, prev_volt, fuse_volt[i]);
+ }
+ }
+
+done:
+ kfree(volt_adjust);
+ return rc;
+}
+
+/**
+ * cpr3_adjust_open_loop_voltages() - adjust the open-loop voltages for each
+ * corner according to device tree values
+ * @vreg: Pointer to the CPR3 regulator
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_adjust_open_loop_voltages(struct cpr3_regulator *vreg)
+{
+ int i, rc, prev_volt, min_volt;
+ int *volt_adjust, *volt_diff;
+
+ if (!of_find_property(vreg->of_node,
+ "qcom,cpr-open-loop-voltage-adjustment", NULL)) {
+ /* No adjustment required. */
+ return 0;
+ }
+
+ volt_adjust = kcalloc(vreg->corner_count, sizeof(*volt_adjust),
+ GFP_KERNEL);
+ volt_diff = kcalloc(vreg->corner_count, sizeof(*volt_diff), GFP_KERNEL);
+ if (!volt_adjust || !volt_diff) {
+ rc = -ENOMEM;
+ goto done;
+ }
+
+ rc = cpr3_parse_corner_array_property(vreg,
+ "qcom,cpr-open-loop-voltage-adjustment", 1, volt_adjust);
+ if (rc) {
+ cpr3_err(vreg, "could not load open-loop voltage adjustments, rc=%d\n",
+ rc);
+ goto done;
+ }
+
+ for (i = 0; i < vreg->corner_count; i++) {
+ if (volt_adjust[i]) {
+ prev_volt = vreg->corner[i].open_loop_volt;
+ vreg->corner[i].open_loop_volt += volt_adjust[i];
+ cpr3_debug(vreg, "adjusted corner %d open-loop voltage: %d --> %d uV\n",
+ i, prev_volt, vreg->corner[i].open_loop_volt);
+ }
+ }
+
+ if (of_find_property(vreg->of_node,
+ "qcom,cpr-open-loop-voltage-min-diff", NULL)) {
+ rc = cpr3_parse_corner_array_property(vreg,
+ "qcom,cpr-open-loop-voltage-min-diff", 1, volt_diff);
+ if (rc) {
+ cpr3_err(vreg, "could not load minimum open-loop voltage differences, rc=%d\n",
+ rc);
+ goto done;
+ }
+ }
+
+ /*
+ * Ensure that open-loop voltages increase monotonically with respect
+ * to configurable minimum allowed differences.
+ */
+ for (i = 1; i < vreg->corner_count; i++) {
+ min_volt = vreg->corner[i - 1].open_loop_volt + volt_diff[i];
+ if (vreg->corner[i].open_loop_volt < min_volt) {
+ cpr3_debug(vreg, "adjusted corner %d open-loop voltage=%d uV < corner %d voltage=%d uV + min diff=%d uV; overriding: corner %d voltage=%d\n",
+ i, vreg->corner[i].open_loop_volt,
+ i - 1, vreg->corner[i - 1].open_loop_volt,
+ volt_diff[i], i, min_volt);
+ vreg->corner[i].open_loop_volt = min_volt;
+ }
+ }
+
+done:
+ kfree(volt_diff);
+ kfree(volt_adjust);
+ return rc;
+}
+
+/**
+ * cpr3_quot_adjustment() - returns the quotient adjustment value resulting from
+ * the specified voltage adjustment and RO scaling factor
+ * @ro_scale: The CPR ring oscillator (RO) scaling factor with units
+ * of QUOT/V
+ * @volt_adjust: The amount to adjust the voltage by in units of
+ * microvolts. This value may be positive or negative.
+ */
+int cpr3_quot_adjustment(int ro_scale, int volt_adjust)
+{
+ unsigned long long temp;
+ int quot_adjust;
+ int sign = 1;
+
+ if (ro_scale < 0) {
+ sign = -sign;
+ ro_scale = -ro_scale;
+ }
+
+ if (volt_adjust < 0) {
+ sign = -sign;
+ volt_adjust = -volt_adjust;
+ }
+
+ temp = (unsigned long long)ro_scale * (unsigned long long)volt_adjust;
+ do_div(temp, 1000000);
+
+ quot_adjust = temp;
+ quot_adjust *= sign;
+
+ return quot_adjust;
+}
+
+/**
+ * cpr3_voltage_adjustment() - returns the voltage adjustment value resulting
+ * from the specified quotient adjustment and RO scaling factor
+ * @ro_scale: The CPR ring oscillator (RO) scaling factor with units
+ * of QUOT/V
+ * @quot_adjust: The amount to adjust the quotient by in units of
+ * QUOT. This value may be positive or negative.
+ */
+int cpr3_voltage_adjustment(int ro_scale, int quot_adjust)
+{
+ unsigned long long temp;
+ int volt_adjust;
+ int sign = 1;
+
+ if (ro_scale < 0) {
+ sign = -sign;
+ ro_scale = -ro_scale;
+ }
+
+ if (quot_adjust < 0) {
+ sign = -sign;
+ quot_adjust = -quot_adjust;
+ }
+
+ if (ro_scale == 0)
+ return 0;
+
+ temp = (unsigned long long)quot_adjust * 1000000;
+ do_div(temp, ro_scale);
+
+ volt_adjust = temp;
+ volt_adjust *= sign;
+
+ return volt_adjust;
+}
+
+/**
+ * cpr3_parse_closed_loop_voltage_adjustments() - load per-fuse-corner and
+ * per-corner closed-loop adjustment values from device tree
+ * @vreg: Pointer to the CPR3 regulator
+ * @ro_sel: Array of ring oscillator values selected for each
+ * fuse corner
+ * @volt_adjust: Pointer to array which will be filled with the
+ * per-corner closed-loop adjustment voltages
+ * @volt_adjust_fuse: Pointer to array which will be filled with the
+ * per-fuse-corner closed-loop adjustment voltages
+ * @ro_scale: Pointer to array which will be filled with the
+ * per-fuse-corner RO scaling factor values with units of
+ * QUOT/V
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_parse_closed_loop_voltage_adjustments(
+ struct cpr3_regulator *vreg, u64 *ro_sel,
+ int *volt_adjust, int *volt_adjust_fuse, int *ro_scale)
+{
+ int i, rc;
+ u32 *ro_all_scale;
+
+ char volt_adj[] = "qcom,cpr-closed-loop-voltage-adjustment";
+ char volt_fuse_adj[] = "qcom,cpr-closed-loop-voltage-fuse-adjustment";
+ char ro_scaling[] = "qcom,cpr-ro-scaling-factor";
+
+ if (!of_find_property(vreg->of_node, volt_adj, NULL)
+ && !of_find_property(vreg->of_node, volt_fuse_adj, NULL)
+ && !vreg->aging_allowed) {
+ /* No adjustment required. */
+ return 0;
+ } else if (!of_find_property(vreg->of_node, ro_scaling, NULL)) {
+ cpr3_err(vreg, "Missing %s required for closed-loop voltage adjustment.\n",
+ ro_scaling);
+ return -EINVAL;
+ }
+
+ ro_all_scale = kcalloc(vreg->fuse_corner_count * CPR3_RO_COUNT,
+ sizeof(*ro_all_scale), GFP_KERNEL);
+ if (!ro_all_scale)
+ return -ENOMEM;
+
+ rc = cpr3_parse_array_property(vreg, ro_scaling,
+ vreg->fuse_corner_count * CPR3_RO_COUNT, ro_all_scale);
+ if (rc) {
+ cpr3_err(vreg, "could not load RO scaling factors, rc=%d\n",
+ rc);
+ goto done;
+ }
+
+ for (i = 0; i < vreg->fuse_corner_count; i++)
+ ro_scale[i] = ro_all_scale[i * CPR3_RO_COUNT + ro_sel[i]];
+
+ for (i = 0; i < vreg->corner_count; i++)
+ memcpy(vreg->corner[i].ro_scale,
+ &ro_all_scale[vreg->corner[i].cpr_fuse_corner * CPR3_RO_COUNT],
+ sizeof(*ro_all_scale) * CPR3_RO_COUNT);
+
+ if (of_find_property(vreg->of_node, volt_fuse_adj, NULL)) {
+ rc = cpr3_parse_array_property(vreg, volt_fuse_adj,
+ vreg->fuse_corner_count, volt_adjust_fuse);
+ if (rc) {
+ cpr3_err(vreg, "could not load closed-loop fused voltage adjustments, rc=%d\n",
+ rc);
+ goto done;
+ }
+ }
+
+ if (of_find_property(vreg->of_node, volt_adj, NULL)) {
+ rc = cpr3_parse_corner_array_property(vreg, volt_adj,
+ 1, volt_adjust);
+ if (rc) {
+ cpr3_err(vreg, "could not load closed-loop voltage adjustments, rc=%d\n",
+ rc);
+ goto done;
+ }
+ }
+
+done:
+ kfree(ro_all_scale);
+ return rc;
+}
+
+/**
+ * cpr3_apm_init() - initialize APM data for a CPR3 controller
+ * @ctrl: Pointer to the CPR3 controller
+ *
+ * This function loads memory array power mux (APM) data from device tree
+ * if it is present and requests a handle to the appropriate APM controller
+ * device.
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_apm_init(struct cpr3_controller *ctrl)
+{
+ struct device_node *node = ctrl->dev->of_node;
+ int rc;
+
+ if (!of_find_property(node, "qcom,apm-ctrl", NULL)) {
+ /* No APM used */
+ return 0;
+ }
+
+ ctrl->apm = msm_apm_ctrl_dev_get(ctrl->dev);
+ if (IS_ERR(ctrl->apm)) {
+ rc = PTR_ERR(ctrl->apm);
+ if (rc != -EPROBE_DEFER)
+ cpr3_err(ctrl, "APM get failed, rc=%d\n", rc);
+ return rc;
+ }
+
+ rc = of_property_read_u32(node, "qcom,apm-threshold-voltage",
+ &ctrl->apm_threshold_volt);
+ if (rc) {
+ cpr3_err(ctrl, "error reading qcom,apm-threshold-voltage, rc=%d\n",
+ rc);
+ return rc;
+ }
+ ctrl->apm_threshold_volt
+ = CPR3_ROUND(ctrl->apm_threshold_volt, ctrl->step_volt);
+
+ /* No error check since this is an optional property. */
+ of_property_read_u32(node, "qcom,apm-hysteresis-voltage",
+ &ctrl->apm_adj_volt);
+ ctrl->apm_adj_volt = CPR3_ROUND(ctrl->apm_adj_volt, ctrl->step_volt);
+
+ ctrl->apm_high_supply = MSM_APM_SUPPLY_APCC;
+ ctrl->apm_low_supply = MSM_APM_SUPPLY_MX;
+
+ return 0;
+}
+
+/**
+ * cpr3_mem_acc_init() - initialize mem-acc regulator data for
+ * a CPR3 regulator
+ * @ctrl: Pointer to the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_mem_acc_init(struct cpr3_regulator *vreg)
+{
+ struct cpr3_controller *ctrl = vreg->thread->ctrl;
+ u32 *temp;
+ int i, rc;
+
+ if (!ctrl->mem_acc_regulator) {
+ cpr3_info(ctrl, "not using memory accelerator regulator\n");
+ return 0;
+ }
+
+ temp = kcalloc(vreg->corner_count, sizeof(*temp), GFP_KERNEL);
+ if (!temp)
+ return -ENOMEM;
+
+ rc = cpr3_parse_corner_array_property(vreg, "qcom,mem-acc-voltage",
+ 1, temp);
+ if (rc) {
+ cpr3_err(ctrl, "could not load mem-acc corners, rc=%d\n", rc);
+ } else {
+ for (i = 0; i < vreg->corner_count; i++)
+ vreg->corner[i].mem_acc_volt = temp[i];
+ }
+
+ kfree(temp);
+ return rc;
+}
+
+/**
+ * cpr4_load_core_and_temp_adj() - parse amount of voltage adjustment for
+ * per-online-core and per-temperature voltage adjustment for a
+ * given corner or corner band from device tree.
+ * @vreg: Pointer to the CPR3 regulator
+ * @num: Corner number or corner band number
+ * @use_corner_band: Boolean indicating if the CPR3 regulator supports
+ * adjustments per corner band
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr4_load_core_and_temp_adj(struct cpr3_regulator *vreg,
+ int num, bool use_corner_band)
+{
+ struct cpr3_controller *ctrl = vreg->thread->ctrl;
+ struct cpr4_sdelta *sdelta;
+ int sdelta_size, i, j, pos, rc = 0;
+ char str[75];
+ size_t buflen;
+ char *buf;
+
+ sdelta = use_corner_band ? vreg->corner_band[num].sdelta :
+ vreg->corner[num].sdelta;
+
+ if (!sdelta->allow_core_count_adj && !sdelta->allow_temp_adj) {
+ /* corner doesn't need sdelta table */
+ sdelta->max_core_count = 0;
+ sdelta->temp_band_count = 0;
+ return rc;
+ }
+
+ sdelta_size = sdelta->max_core_count * sdelta->temp_band_count;
+ if (use_corner_band)
+ snprintf(str, sizeof(str),
+ "corner_band=%d core_config_count=%d temp_band_count=%d sdelta_size=%d\n",
+ num, sdelta->max_core_count,
+ sdelta->temp_band_count, sdelta_size);
+ else
+ snprintf(str, sizeof(str),
+ "corner=%d core_config_count=%d temp_band_count=%d sdelta_size=%d\n",
+ num, sdelta->max_core_count,
+ sdelta->temp_band_count, sdelta_size);
+
+ cpr3_debug(vreg, "%s", str);
+
+ sdelta->table = devm_kcalloc(ctrl->dev, sdelta_size,
+ sizeof(*sdelta->table), GFP_KERNEL);
+ if (!sdelta->table)
+ return -ENOMEM;
+
+ if (use_corner_band)
+ snprintf(str, sizeof(str),
+ "qcom,cpr-corner-band%d-temp-core-voltage-adjustment",
+ num + CPR3_CORNER_OFFSET);
+ else
+ snprintf(str, sizeof(str),
+ "qcom,cpr-corner%d-temp-core-voltage-adjustment",
+ num + CPR3_CORNER_OFFSET);
+
+ rc = cpr3_parse_array_property(vreg, str, sdelta_size,
+ sdelta->table);
+ if (rc) {
+ cpr3_err(vreg, "could not load %s, rc=%d\n", str, rc);
+ return rc;
+ }
+
+ /*
+ * Convert sdelta margins from uV to PMIC steps and apply negation to
+ * follow the SDELTA register semantics.
+ */
+ for (i = 0; i < sdelta_size; i++)
+ sdelta->table[i] = -(sdelta->table[i] / ctrl->step_volt);
+
+ buflen = sizeof(*buf) * sdelta_size * (MAX_CHARS_PER_INT + 2);
+ buf = kzalloc(buflen, GFP_KERNEL);
+ if (!buf)
+ return rc;
+
+ for (i = 0; i < sdelta->max_core_count; i++) {
+ for (j = 0, pos = 0; j < sdelta->temp_band_count; j++)
+ pos += scnprintf(buf + pos, buflen - pos, " %u",
+ sdelta->table[i * sdelta->temp_band_count + j]);
+ cpr3_debug(vreg, "sdelta[%d]:%s\n", i, buf);
+ }
+
+ kfree(buf);
+ return rc;
+}
+
+/**
+ * cpr4_parse_core_count_temp_voltage_adj() - parse configuration data for
+ * per-online-core and per-temperature voltage adjustment for
+ * a CPR3 regulator from device tree.
+ * @vreg: Pointer to the CPR3 regulator
+ * @use_corner_band: Boolean indicating if the CPR3 regulator supports
+ * adjustments per corner band
+ *
+ * This function supports parsing of per-online-core and per-temperature
+ * adjustments per corner or per corner band. CPR controllers which support
+ * corner bands apply the same adjustments to all corners within a corner band.
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr4_parse_core_count_temp_voltage_adj(
+ struct cpr3_regulator *vreg, bool use_corner_band)
+{
+ struct cpr3_controller *ctrl = vreg->thread->ctrl;
+ struct device_node *node = vreg->of_node;
+ struct cpr3_corner *corner;
+ struct cpr4_sdelta *sdelta;
+ int i, sdelta_table_count, rc = 0;
+ int *allow_core_count_adj = NULL, *allow_temp_adj = NULL;
+ char prop_str[75];
+
+ if (of_find_property(node, use_corner_band ?
+ "qcom,corner-band-allow-temp-adjustment"
+ : "qcom,corner-allow-temp-adjustment", NULL)) {
+ if (!ctrl->allow_temp_adj) {
+ cpr3_err(ctrl, "Temperature adjustment configurations missing\n");
+ return -EINVAL;
+ }
+
+ vreg->allow_temp_adj = true;
+ }
+
+ if (of_find_property(node, use_corner_band ?
+ "qcom,corner-band-allow-core-count-adjustment"
+ : "qcom,corner-allow-core-count-adjustment",
+ NULL)) {
+ rc = of_property_read_u32(node, "qcom,max-core-count",
+ &vreg->max_core_count);
+ if (rc) {
+ cpr3_err(vreg, "error reading qcom,max-core-count, rc=%d\n",
+ rc);
+ return -EINVAL;
+ }
+
+ vreg->allow_core_count_adj = true;
+ ctrl->allow_core_count_adj = true;
+ }
+
+ if (!vreg->allow_temp_adj && !vreg->allow_core_count_adj) {
+ /*
+ * Both per-online-core and temperature based adjustments are
+ * disabled for this regulator.
+ */
+ return 0;
+ } else if (!vreg->allow_core_count_adj) {
+ /*
+ * Only per-temperature voltage adjusments are allowed.
+ * Keep max core count value as 1 to allocate SDELTA.
+ */
+ vreg->max_core_count = 1;
+ }
+
+ if (vreg->allow_core_count_adj) {
+ allow_core_count_adj = kcalloc(vreg->corner_count,
+ sizeof(*allow_core_count_adj),
+ GFP_KERNEL);
+ if (!allow_core_count_adj)
+ return -ENOMEM;
+
+ snprintf(prop_str, sizeof(prop_str), "%s", use_corner_band ?
+ "qcom,corner-band-allow-core-count-adjustment" :
+ "qcom,corner-allow-core-count-adjustment");
+
+ rc = use_corner_band ?
+ cpr3_parse_corner_band_array_property(vreg, prop_str,
+ 1, allow_core_count_adj) :
+ cpr3_parse_corner_array_property(vreg, prop_str,
+ 1, allow_core_count_adj);
+ if (rc) {
+ cpr3_err(vreg, "error reading %s, rc=%d\n", prop_str,
+ rc);
+ goto done;
+ }
+ }
+
+ if (vreg->allow_temp_adj) {
+ allow_temp_adj = kcalloc(vreg->corner_count,
+ sizeof(*allow_temp_adj), GFP_KERNEL);
+ if (!allow_temp_adj) {
+ rc = -ENOMEM;
+ goto done;
+ }
+
+ snprintf(prop_str, sizeof(prop_str), "%s", use_corner_band ?
+ "qcom,corner-band-allow-temp-adjustment" :
+ "qcom,corner-allow-temp-adjustment");
+
+ rc = use_corner_band ?
+ cpr3_parse_corner_band_array_property(vreg, prop_str,
+ 1, allow_temp_adj) :
+ cpr3_parse_corner_array_property(vreg, prop_str,
+ 1, allow_temp_adj);
+ if (rc) {
+ cpr3_err(vreg, "error reading %s, rc=%d\n", prop_str,
+ rc);
+ goto done;
+ }
+ }
+
+ sdelta_table_count = use_corner_band ? vreg->corner_band_count :
+ vreg->corner_count;
+
+ for (i = 0; i < sdelta_table_count; i++) {
+ sdelta = devm_kzalloc(ctrl->dev, sizeof(*corner->sdelta),
+ GFP_KERNEL);
+ if (!sdelta) {
+ rc = -ENOMEM;
+ goto done;
+ }
+
+ if (allow_core_count_adj)
+ sdelta->allow_core_count_adj = allow_core_count_adj[i];
+ if (allow_temp_adj)
+ sdelta->allow_temp_adj = allow_temp_adj[i];
+ sdelta->max_core_count = vreg->max_core_count;
+ sdelta->temp_band_count = ctrl->temp_band_count;
+
+ if (use_corner_band)
+ vreg->corner_band[i].sdelta = sdelta;
+ else
+ vreg->corner[i].sdelta = sdelta;
+
+ rc = cpr4_load_core_and_temp_adj(vreg, i, use_corner_band);
+ if (rc) {
+ cpr3_err(vreg, "corner/band %d core and temp adjustment loading failed, rc=%d\n",
+ i, rc);
+ goto done;
+ }
+ }
+
+done:
+ kfree(allow_core_count_adj);
+ kfree(allow_temp_adj);
+
+ return rc;
+}
+
+/**
+ * cprh_adjust_voltages_for_apm() - adjust per-corner floor and ceiling voltages
+ * so that they do not overlap the APM threshold voltage.
+ * @vreg: Pointer to the CPR3 regulator
+ *
+ * The memory array power mux (APM) must be configured for a specific supply
+ * based upon where the VDD voltage lies with respect to the APM threshold
+ * voltage. When using CPR hardware closed-loop, the voltage may vary anywhere
+ * between the floor and ceiling voltage without software notification.
+ * Therefore, it is required that the floor to ceiling range for every corner
+ * not intersect the APM threshold voltage. This function adjusts the floor to
+ * ceiling range for each corner which violates this requirement.
+ *
+ * The following algorithm is applied:
+ * if floor < threshold <= ceiling:
+ * if open_loop >= threshold, then floor = threshold - adj
+ * else ceiling = threshold - step
+ * where:
+ * adj = APM hysteresis voltage established to minimize the number of
+ * corners with artificially increased floor voltages
+ * step = voltage in microvolts of a single step of the VDD supply
+ *
+ * The open-loop voltage is also bounded by the new floor or ceiling value as
+ * needed.
+ *
+ * Return: none
+ */
+void cprh_adjust_voltages_for_apm(struct cpr3_regulator *vreg)
+{
+ struct cpr3_controller *ctrl = vreg->thread->ctrl;
+ struct cpr3_corner *corner;
+ int i, adj, threshold, prev_ceiling, prev_floor, prev_open_loop;
+
+ if (!ctrl->apm_threshold_volt) {
+ /* APM not being used. */
+ return;
+ }
+
+ ctrl->apm_threshold_volt = CPR3_ROUND(ctrl->apm_threshold_volt,
+ ctrl->step_volt);
+ ctrl->apm_adj_volt = CPR3_ROUND(ctrl->apm_adj_volt, ctrl->step_volt);
+
+ threshold = ctrl->apm_threshold_volt;
+ adj = ctrl->apm_adj_volt;
+
+ for (i = 0; i < vreg->corner_count; i++) {
+ corner = &vreg->corner[i];
+
+ if (threshold <= corner->floor_volt
+ || threshold > corner->ceiling_volt)
+ continue;
+
+ prev_floor = corner->floor_volt;
+ prev_ceiling = corner->ceiling_volt;
+ prev_open_loop = corner->open_loop_volt;
+
+ if (corner->open_loop_volt >= threshold) {
+ corner->floor_volt = max(corner->floor_volt,
+ threshold - adj);
+ if (corner->open_loop_volt < corner->floor_volt)
+ corner->open_loop_volt = corner->floor_volt;
+ } else {
+ corner->ceiling_volt = threshold - ctrl->step_volt;
+ }
+
+ if (corner->floor_volt != prev_floor
+ || corner->ceiling_volt != prev_ceiling
+ || corner->open_loop_volt != prev_open_loop)
+ cpr3_debug(vreg, "APM threshold=%d, APM adj=%d changed corner %d voltages; prev: floor=%d, ceiling=%d, open-loop=%d; new: floor=%d, ceiling=%d, open-loop=%d\n",
+ threshold, adj, i, prev_floor, prev_ceiling,
+ prev_open_loop, corner->floor_volt,
+ corner->ceiling_volt, corner->open_loop_volt);
+ }
+}
+
+/**
+ * cprh_adjust_voltages_for_mem_acc() - adjust per-corner floor and ceiling
+ * voltages so that they do not intersect the MEM ACC threshold
+ * voltage
+ * @vreg: Pointer to the CPR3 regulator
+ *
+ * The following algorithm is applied:
+ * if floor < threshold <= ceiling:
+ * if open_loop >= threshold, then floor = threshold
+ * else ceiling = threshold - step
+ * where:
+ * step = voltage in microvolts of a single step of the VDD supply
+ *
+ * The open-loop voltage is also bounded by the new floor or ceiling value as
+ * needed.
+ *
+ * Return: none
+ */
+void cprh_adjust_voltages_for_mem_acc(struct cpr3_regulator *vreg)
+{
+ struct cpr3_controller *ctrl = vreg->thread->ctrl;
+ struct cpr3_corner *corner;
+ int i, threshold, prev_ceiling, prev_floor, prev_open_loop;
+
+ if (!ctrl->mem_acc_threshold_volt) {
+ /* MEM ACC not being used. */
+ return;
+ }
+
+ ctrl->mem_acc_threshold_volt = CPR3_ROUND(ctrl->mem_acc_threshold_volt,
+ ctrl->step_volt);
+
+ threshold = ctrl->mem_acc_threshold_volt;
+
+ for (i = 0; i < vreg->corner_count; i++) {
+ corner = &vreg->corner[i];
+
+ if (threshold <= corner->floor_volt
+ || threshold > corner->ceiling_volt)
+ continue;
+
+ prev_floor = corner->floor_volt;
+ prev_ceiling = corner->ceiling_volt;
+ prev_open_loop = corner->open_loop_volt;
+
+ if (corner->open_loop_volt >= threshold) {
+ corner->floor_volt = max(corner->floor_volt, threshold);
+ if (corner->open_loop_volt < corner->floor_volt)
+ corner->open_loop_volt = corner->floor_volt;
+ } else {
+ corner->ceiling_volt = threshold - ctrl->step_volt;
+ }
+
+ if (corner->floor_volt != prev_floor
+ || corner->ceiling_volt != prev_ceiling
+ || corner->open_loop_volt != prev_open_loop)
+ cpr3_debug(vreg, "MEM ACC threshold=%d changed corner %d voltages; prev: floor=%d, ceiling=%d, open-loop=%d; new: floor=%d, ceiling=%d, open-loop=%d\n",
+ threshold, i, prev_floor, prev_ceiling,
+ prev_open_loop, corner->floor_volt,
+ corner->ceiling_volt, corner->open_loop_volt);
+ }
+}
+
+/**
+ * cpr3_apply_closed_loop_offset_voltages() - modify the closed-loop voltage
+ * adjustments by the amounts that are needed for this
+ * fuse combo
+ * @vreg: Pointer to the CPR3 regulator
+ * @volt_adjust: Array of closed-loop voltage adjustment values of length
+ * vreg->corner_count which is further adjusted based upon
+ * offset voltage fuse values.
+ * @fuse_volt_adjust: Fused closed-loop voltage adjustment values of length
+ * vreg->fuse_corner_count.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr3_apply_closed_loop_offset_voltages(struct cpr3_regulator *vreg,
+ int *volt_adjust, int *fuse_volt_adjust)
+{
+ u32 *corner_map;
+ int rc = 0, i;
+
+ if (!of_find_property(vreg->of_node,
+ "qcom,cpr-fused-closed-loop-voltage-adjustment-map", NULL)) {
+ /* No closed-loop offset required. */
+ return 0;
+ }
+
+ corner_map = kcalloc(vreg->corner_count, sizeof(*corner_map),
+ GFP_KERNEL);
+ if (!corner_map)
+ return -ENOMEM;
+
+ rc = cpr3_parse_corner_array_property(vreg,
+ "qcom,cpr-fused-closed-loop-voltage-adjustment-map",
+ 1, corner_map);
+ if (rc)
+ goto done;
+
+ for (i = 0; i < vreg->corner_count; i++) {
+ if (corner_map[i] == 0) {
+ continue;
+ } else if (corner_map[i] > vreg->fuse_corner_count) {
+ cpr3_err(vreg, "corner %d mapped to invalid fuse corner: %u\n",
+ i, corner_map[i]);
+ rc = -EINVAL;
+ goto done;
+ }
+
+ volt_adjust[i] += fuse_volt_adjust[corner_map[i] - 1];
+ }
+
+done:
+ kfree(corner_map);
+ return rc;
+}
+
+/**
+ * cpr3_enforce_inc_quotient_monotonicity() - Ensure that target quotients
+ * increase monotonically from lower to higher corners
+ * @vreg: Pointer to the CPR3 regulator
+ *
+ * Return: 0 on success, errno on failure
+ */
+static void cpr3_enforce_inc_quotient_monotonicity(struct cpr3_regulator *vreg)
+{
+ int i, j;
+
+ for (i = 1; i < vreg->corner_count; i++) {
+ for (j = 0; j < CPR3_RO_COUNT; j++) {
+ if (vreg->corner[i].target_quot[j]
+ && vreg->corner[i].target_quot[j]
+ < vreg->corner[i - 1].target_quot[j]) {
+ cpr3_debug(vreg, "corner %d RO%u target quot=%u < corner %d RO%u target quot=%u; overriding: corner %d RO%u target quot=%u\n",
+ i, j,
+ vreg->corner[i].target_quot[j],
+ i - 1, j,
+ vreg->corner[i - 1].target_quot[j],
+ i, j,
+ vreg->corner[i - 1].target_quot[j]);
+ vreg->corner[i].target_quot[j]
+ = vreg->corner[i - 1].target_quot[j];
+ }
+ }
+ }
+}
+
+/**
+ * cpr3_enforce_dec_quotient_monotonicity() - Ensure that target quotients
+ * decrease monotonically from higher to lower corners
+ * @vreg: Pointer to the CPR3 regulator
+ *
+ * Return: 0 on success, errno on failure
+ */
+static void cpr3_enforce_dec_quotient_monotonicity(struct cpr3_regulator *vreg)
+{
+ int i, j;
+
+ for (i = vreg->corner_count - 2; i >= 0; i--) {
+ for (j = 0; j < CPR3_RO_COUNT; j++) {
+ if (vreg->corner[i + 1].target_quot[j]
+ && vreg->corner[i].target_quot[j]
+ > vreg->corner[i + 1].target_quot[j]) {
+ cpr3_debug(vreg, "corner %d RO%u target quot=%u > corner %d RO%u target quot=%u; overriding: corner %d RO%u target quot=%u\n",
+ i, j,
+ vreg->corner[i].target_quot[j],
+ i + 1, j,
+ vreg->corner[i + 1].target_quot[j],
+ i, j,
+ vreg->corner[i + 1].target_quot[j]);
+ vreg->corner[i].target_quot[j]
+ = vreg->corner[i + 1].target_quot[j];
+ }
+ }
+ }
+}
+
+/**
+ * _cpr3_adjust_target_quotients() - adjust the target quotients for each
+ * corner of the regulator according to input adjustment and
+ * scaling arrays
+ * @vreg: Pointer to the CPR3 regulator
+ * @volt_adjust: Pointer to an array of closed-loop voltage adjustments
+ * with units of microvolts. The array must have
+ * vreg->corner_count number of elements.
+ * @ro_scale: Pointer to a flattened 2D array of RO scaling factors.
+ * The array must have an inner dimension of CPR3_RO_COUNT
+ * and an outer dimension of vreg->corner_count
+ * @label: Null terminated string providing a label for the type
+ * of adjustment.
+ *
+ * Return: true if any corners received a positive voltage adjustment (> 0),
+ * else false
+ */
+static bool _cpr3_adjust_target_quotients(struct cpr3_regulator *vreg,
+ const int *volt_adjust, const int *ro_scale, const char *label)
+{
+ int i, j, quot_adjust;
+ bool is_increasing = false;
+ u32 prev_quot;
+
+ for (i = 0; i < vreg->corner_count; i++) {
+ for (j = 0; j < CPR3_RO_COUNT; j++) {
+ if (vreg->corner[i].target_quot[j]) {
+ quot_adjust = cpr3_quot_adjustment(
+ ro_scale[i * CPR3_RO_COUNT + j],
+ volt_adjust[i]);
+ if (quot_adjust) {
+ prev_quot = vreg->corner[i].
+ target_quot[j];
+ vreg->corner[i].target_quot[j]
+ += quot_adjust;
+ cpr3_debug(vreg, "adjusted corner %d RO%d target quot %s: %u --> %u (%d uV)\n",
+ i, j, label, prev_quot,
+ vreg->corner[i].target_quot[j],
+ volt_adjust[i]);
+ }
+ }
+ }
+ if (volt_adjust[i] > 0)
+ is_increasing = true;
+ }
+
+ return is_increasing;
+}
+
+/**
+ * cpr3_adjust_target_quotients() - adjust the target quotients for each
+ * corner according to device tree values and fuse values
+ * @vreg: Pointer to the CPR3 regulator
+ * @fuse_volt_adjust: Fused closed-loop voltage adjustment values of length
+ * vreg->fuse_corner_count. This parameter could be null
+ * pointer when no fused adjustments are needed.
+ *
+ * Return: 0 on success, errno on failure
+ */
+int cpr3_adjust_target_quotients(struct cpr3_regulator *vreg,
+ int *fuse_volt_adjust)
+{
+ int i, rc;
+ int *volt_adjust, *ro_scale;
+ bool explicit_adjustment, fused_adjustment, is_increasing;
+
+ explicit_adjustment = of_find_property(vreg->of_node,
+ "qcom,cpr-closed-loop-voltage-adjustment", NULL);
+ fused_adjustment = of_find_property(vreg->of_node,
+ "qcom,cpr-fused-closed-loop-voltage-adjustment-map", NULL);
+
+ if (!explicit_adjustment && !fused_adjustment && !vreg->aging_allowed) {
+ /* No adjustment required. */
+ return 0;
+ } else if (!of_find_property(vreg->of_node,
+ "qcom,cpr-ro-scaling-factor", NULL)) {
+ cpr3_err(vreg, "qcom,cpr-ro-scaling-factor is required for closed-loop voltage adjustment, but is missing\n");
+ return -EINVAL;
+ }
+
+ volt_adjust = kcalloc(vreg->corner_count, sizeof(*volt_adjust),
+ GFP_KERNEL);
+ ro_scale = kcalloc(vreg->corner_count * CPR3_RO_COUNT,
+ sizeof(*ro_scale), GFP_KERNEL);
+ if (!volt_adjust || !ro_scale) {
+ rc = -ENOMEM;
+ goto done;
+ }
+
+ rc = cpr3_parse_corner_array_property(vreg,
+ "qcom,cpr-ro-scaling-factor", CPR3_RO_COUNT, ro_scale);
+ if (rc) {
+ cpr3_err(vreg, "could not load RO scaling factors, rc=%d\n",
+ rc);
+ goto done;
+ }
+
+ for (i = 0; i < vreg->corner_count; i++)
+ memcpy(vreg->corner[i].ro_scale, &ro_scale[i * CPR3_RO_COUNT],
+ sizeof(*ro_scale) * CPR3_RO_COUNT);
+
+ if (explicit_adjustment) {
+ rc = cpr3_parse_corner_array_property(vreg,
+ "qcom,cpr-closed-loop-voltage-adjustment",
+ 1, volt_adjust);
+ if (rc) {
+ cpr3_err(vreg, "could not load closed-loop voltage adjustments, rc=%d\n",
+ rc);
+ goto done;
+ }
+
+ _cpr3_adjust_target_quotients(vreg, volt_adjust, ro_scale,
+ "from DT");
+ cpr3_enforce_inc_quotient_monotonicity(vreg);
+ }
+
+ if (fused_adjustment && fuse_volt_adjust) {
+ memset(volt_adjust, 0,
+ sizeof(*volt_adjust) * vreg->corner_count);
+
+ rc = cpr3_apply_closed_loop_offset_voltages(vreg, volt_adjust,
+ fuse_volt_adjust);
+ if (rc) {
+ cpr3_err(vreg, "could not apply fused closed-loop voltage reductions, rc=%d\n",
+ rc);
+ goto done;
+ }
+
+ is_increasing = _cpr3_adjust_target_quotients(vreg, volt_adjust,
+ ro_scale, "from fuse");
+ if (is_increasing)
+ cpr3_enforce_inc_quotient_monotonicity(vreg);
+ else
+ cpr3_enforce_dec_quotient_monotonicity(vreg);
+ }
+
+done:
+ kfree(volt_adjust);
+ kfree(ro_scale);
+ return rc;
+}
--- /dev/null
+++ b/drivers/regulator/cpr4-apss-regulator.c
@@ -0,0 +1,1819 @@
+/*
+ * Copyright (c) 2015-2016, The Linux Foundation. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 and
+ * only version 2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ */
+
+#define pr_fmt(fmt) "%s: " fmt, __func__
+
+#include <linux/bitops.h>
+#include <linux/debugfs.h>
+#include <linux/err.h>
+#include <linux/init.h>
+#include <linux/interrupt.h>
+#include <linux/io.h>
+#include <linux/kernel.h>
+#include <linux/list.h>
+#include <linux/module.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+#include <linux/platform_device.h>
+#include <linux/pm_opp.h>
+#include <linux/slab.h>
+#include <linux/string.h>
+#include <linux/uaccess.h>
+#include <linux/regulator/driver.h>
+#include <linux/regulator/machine.h>
+#include <linux/regulator/of_regulator.h>
+
+#include "cpr3-regulator.h"
+
+#define IPQ807x_APSS_FUSE_CORNERS 4
+#define IPQ817x_APPS_FUSE_CORNERS 2
+#define IPQ6018_APSS_FUSE_CORNERS 4
+#define IPQ9574_APSS_FUSE_CORNERS 4
+
+u32 g_valid_fuse_count = IPQ807x_APSS_FUSE_CORNERS;
+
+/**
+ * struct cpr4_ipq807x_apss_fuses - APSS specific fuse data for IPQ807x
+ * @ro_sel: Ring oscillator select fuse parameter value for each
+ * fuse corner
+ * @init_voltage: Initial (i.e. open-loop) voltage fuse parameter value
+ * for each fuse corner (raw, not converted to a voltage)
+ * @target_quot: CPR target quotient fuse parameter value for each fuse
+ * corner
+ * @quot_offset: CPR target quotient offset fuse parameter value for each
+ * fuse corner (raw, not unpacked) used for target quotient
+ * interpolation
+ * @speed_bin: Application processor speed bin fuse parameter value for
+ * the given chip
+ * @cpr_fusing_rev: CPR fusing revision fuse parameter value
+ * @boost_cfg: CPR boost configuration fuse parameter value
+ * @boost_voltage: CPR boost voltage fuse parameter value (raw, not
+ * converted to a voltage)
+ *
+ * This struct holds the values for all of the fuses read from memory.
+ */
+struct cpr4_ipq807x_apss_fuses {
+ u64 ro_sel[IPQ807x_APSS_FUSE_CORNERS];
+ u64 init_voltage[IPQ807x_APSS_FUSE_CORNERS];
+ u64 target_quot[IPQ807x_APSS_FUSE_CORNERS];
+ u64 quot_offset[IPQ807x_APSS_FUSE_CORNERS];
+ u64 speed_bin;
+ u64 cpr_fusing_rev;
+ u64 boost_cfg;
+ u64 boost_voltage;
+ u64 misc;
+};
+
+/*
+ * fuse combo = fusing revision + 8 * (speed bin)
+ * where: fusing revision = 0 - 7 and speed bin = 0 - 7
+ */
+#define CPR4_IPQ807x_APSS_FUSE_COMBO_COUNT 64
+
+/*
+ * Constants which define the name of each fuse corner.
+ */
+enum cpr4_ipq807x_apss_fuse_corner {
+ CPR4_IPQ807x_APSS_FUSE_CORNER_SVS = 0,
+ CPR4_IPQ807x_APSS_FUSE_CORNER_NOM = 1,
+ CPR4_IPQ807x_APSS_FUSE_CORNER_TURBO = 2,
+ CPR4_IPQ807x_APSS_FUSE_CORNER_STURBO = 3,
+};
+
+static const char * const cpr4_ipq807x_apss_fuse_corner_name[] = {
+ [CPR4_IPQ807x_APSS_FUSE_CORNER_SVS] = "SVS",
+ [CPR4_IPQ807x_APSS_FUSE_CORNER_NOM] = "NOM",
+ [CPR4_IPQ807x_APSS_FUSE_CORNER_TURBO] = "TURBO",
+ [CPR4_IPQ807x_APSS_FUSE_CORNER_STURBO] = "STURBO",
+};
+
+/*
+ * IPQ807x APSS fuse parameter locations:
+ *
+ * Structs are organized with the following dimensions:
+ * Outer: 0 to 3 for fuse corners from lowest to highest corner
+ * Inner: large enough to hold the longest set of parameter segments which
+ * fully defines a fuse parameter, +1 (for NULL termination).
+ * Each segment corresponds to a contiguous group of bits from a
+ * single fuse row. These segments are concatentated together in
+ * order to form the full fuse parameter value. The segments for
+ * a given parameter may correspond to different fuse rows.
+ */
+static struct cpr3_fuse_param
+ipq807x_apss_ro_sel_param[IPQ807x_APSS_FUSE_CORNERS][2] = {
+ {{73, 8, 11}, {} },
+ {{73, 4, 7}, {} },
+ {{73, 0, 3}, {} },
+ {{73, 12, 15}, {} },
+};
+
+static struct cpr3_fuse_param
+ipq807x_apss_init_voltage_param[IPQ807x_APSS_FUSE_CORNERS][2] = {
+ {{71, 18, 23}, {} },
+ {{71, 12, 17}, {} },
+ {{71, 6, 11}, {} },
+ {{71, 0, 5}, {} },
+};
+
+static struct cpr3_fuse_param
+ipq807x_apss_target_quot_param[IPQ807x_APSS_FUSE_CORNERS][2] = {
+ {{72, 32, 43}, {} },
+ {{72, 20, 31}, {} },
+ {{72, 8, 19}, {} },
+ {{72, 44, 55}, {} },
+};
+
+static struct cpr3_fuse_param
+ipq807x_apss_quot_offset_param[IPQ807x_APSS_FUSE_CORNERS][2] = {
+ {{} },
+ {{71, 46, 52}, {} },
+ {{71, 39, 45}, {} },
+ {{71, 32, 38}, {} },
+};
+
+static struct cpr3_fuse_param ipq807x_cpr_fusing_rev_param[] = {
+ {71, 53, 55},
+ {},
+};
+
+static struct cpr3_fuse_param ipq807x_apss_speed_bin_param[] = {
+ {36, 40, 42},
+ {},
+};
+
+static struct cpr3_fuse_param ipq807x_cpr_boost_fuse_cfg_param[] = {
+ {36, 43, 45},
+ {},
+};
+
+static struct cpr3_fuse_param ipq807x_apss_boost_fuse_volt_param[] = {
+ {71, 0, 5},
+ {},
+};
+
+static struct cpr3_fuse_param ipq807x_misc_fuse_volt_adj_param[] = {
+ {36, 54, 54},
+ {},
+};
+
+static struct cpr3_fuse_parameters ipq807x_fuse_params = {
+ .apss_ro_sel_param = ipq807x_apss_ro_sel_param,
+ .apss_init_voltage_param = ipq807x_apss_init_voltage_param,
+ .apss_target_quot_param = ipq807x_apss_target_quot_param,
+ .apss_quot_offset_param = ipq807x_apss_quot_offset_param,
+ .cpr_fusing_rev_param = ipq807x_cpr_fusing_rev_param,
+ .apss_speed_bin_param = ipq807x_apss_speed_bin_param,
+ .cpr_boost_fuse_cfg_param = ipq807x_cpr_boost_fuse_cfg_param,
+ .apss_boost_fuse_volt_param = ipq807x_apss_boost_fuse_volt_param,
+ .misc_fuse_volt_adj_param = ipq807x_misc_fuse_volt_adj_param
+};
+
+/*
+ * The number of possible values for misc fuse is
+ * 2^(#bits defined for misc fuse)
+ */
+#define IPQ807x_MISC_FUSE_VAL_COUNT BIT(1)
+
+/*
+ * Open loop voltage fuse reference voltages in microvolts for IPQ807x
+ */
+static int ipq807x_apss_fuse_ref_volt
+ [IPQ807x_APSS_FUSE_CORNERS] = {
+ 720000,
+ 864000,
+ 992000,
+ 1064000,
+};
+
+#define IPQ807x_APSS_FUSE_STEP_VOLT 8000
+#define IPQ807x_APSS_VOLTAGE_FUSE_SIZE 6
+#define IPQ807x_APSS_QUOT_OFFSET_SCALE 5
+
+#define IPQ807x_APSS_CPR_SENSOR_COUNT 6
+
+#define IPQ807x_APSS_CPR_CLOCK_RATE 19200000
+
+#define IPQ807x_APSS_MAX_TEMP_POINTS 3
+#define IPQ807x_APSS_TEMP_SENSOR_ID_START 4
+#define IPQ807x_APSS_TEMP_SENSOR_ID_END 13
+/*
+ * Boost voltage fuse reference and ceiling voltages in microvolts for
+ * IPQ807x.
+ */
+#define IPQ807x_APSS_BOOST_FUSE_REF_VOLT 1140000
+#define IPQ807x_APSS_BOOST_CEILING_VOLT 1140000
+#define IPQ807x_APSS_BOOST_FLOOR_VOLT 900000
+#define MAX_BOOST_CONFIG_FUSE_VALUE 8
+
+#define IPQ807x_APSS_CPR_SDELTA_CORE_COUNT 15
+
+#define IPQ807x_APSS_CPR_TCSR_START 8
+#define IPQ807x_APSS_CPR_TCSR_END 9
+
+/*
+ * Array of integer values mapped to each of the boost config fuse values to
+ * indicate boost enable/disable status.
+ */
+static bool boost_fuse[MAX_BOOST_CONFIG_FUSE_VALUE] = {0, 1, 1, 1, 1, 1, 1, 1};
+
+/*
+ * IPQ6018 (Few parameters are changed, remaining are same as IPQ807x)
+ */
+#define IPQ6018_APSS_FUSE_STEP_VOLT 12500
+#define IPQ6018_APSS_CPR_CLOCK_RATE 24000000
+
+static struct cpr3_fuse_param
+ipq6018_apss_ro_sel_param[IPQ6018_APSS_FUSE_CORNERS][2] = {
+ {{75, 8, 11}, {} },
+ {{75, 4, 7}, {} },
+ {{75, 0, 3}, {} },
+ {{75, 12, 15}, {} },
+};
+
+static struct cpr3_fuse_param
+ipq6018_apss_init_voltage_param[IPQ6018_APSS_FUSE_CORNERS][2] = {
+ {{73, 18, 23}, {} },
+ {{73, 12, 17}, {} },
+ {{73, 6, 11}, {} },
+ {{73, 0, 5}, {} },
+};
+
+static struct cpr3_fuse_param
+ipq6018_apss_target_quot_param[IPQ6018_APSS_FUSE_CORNERS][2] = {
+ {{74, 32, 43}, {} },
+ {{74, 20, 31}, {} },
+ {{74, 8, 19}, {} },
+ {{74, 44, 55}, {} },
+};
+
+static struct cpr3_fuse_param
+ipq6018_apss_quot_offset_param[IPQ6018_APSS_FUSE_CORNERS][2] = {
+ {{} },
+ {{73, 48, 55}, {} },
+ {{73, 40, 47}, {} },
+ {{73, 32, 39}, {} },
+};
+
+static struct cpr3_fuse_param ipq6018_cpr_fusing_rev_param[] = {
+ {75, 16, 18},
+ {},
+};
+
+static struct cpr3_fuse_param ipq6018_apss_speed_bin_param[] = {
+ {36, 40, 42},
+ {},
+};
+
+static struct cpr3_fuse_param ipq6018_cpr_boost_fuse_cfg_param[] = {
+ {36, 43, 45},
+ {},
+};
+
+static struct cpr3_fuse_param ipq6018_apss_boost_fuse_volt_param[] = {
+ {73, 0, 5},
+ {},
+};
+
+static struct cpr3_fuse_param ipq6018_misc_fuse_volt_adj_param[] = {
+ {36, 54, 54},
+ {},
+};
+
+static struct cpr3_fuse_parameters ipq6018_fuse_params = {
+ .apss_ro_sel_param = ipq6018_apss_ro_sel_param,
+ .apss_init_voltage_param = ipq6018_apss_init_voltage_param,
+ .apss_target_quot_param = ipq6018_apss_target_quot_param,
+ .apss_quot_offset_param = ipq6018_apss_quot_offset_param,
+ .cpr_fusing_rev_param = ipq6018_cpr_fusing_rev_param,
+ .apss_speed_bin_param = ipq6018_apss_speed_bin_param,
+ .cpr_boost_fuse_cfg_param = ipq6018_cpr_boost_fuse_cfg_param,
+ .apss_boost_fuse_volt_param = ipq6018_apss_boost_fuse_volt_param,
+ .misc_fuse_volt_adj_param = ipq6018_misc_fuse_volt_adj_param
+};
+
+
+/*
+ * Boost voltage fuse reference and ceiling voltages in microvolts for
+ * IPQ6018.
+ */
+#define IPQ6018_APSS_BOOST_FUSE_REF_VOLT 1140000
+#define IPQ6018_APSS_BOOST_CEILING_VOLT 1140000
+#define IPQ6018_APSS_BOOST_FLOOR_VOLT 900000
+
+/*
+ * Open loop voltage fuse reference voltages in microvolts for IPQ807x
+ */
+static int ipq6018_apss_fuse_ref_volt
+ [IPQ6018_APSS_FUSE_CORNERS] = {
+ 725000,
+ 862500,
+ 987500,
+ 1062500,
+};
+
+/*
+ * IPQ6018 Memory ACC settings on TCSR
+ *
+ * Turbo_L1: write TCSR_MEM_ACC_SW_OVERRIDE_LEGACY_APC0 0x10
+ * write TCSR_CUSTOM_VDDAPC0_ACC_1 0x1
+ * Other modes: write TCSR_MEM_ACC_SW_OVERRIDE_LEGACY_APC0 0x0
+ * write TCSR_CUSTOM_VDDAPC0_ACC_1 0x0
+ *
+ */
+#define IPQ6018_APSS_MEM_ACC_TCSR_COUNT 2
+#define TCSR_MEM_ACC_SW_OVERRIDE_LEGACY_APC0 0x1946178
+#define TCSR_CUSTOM_VDDAPC0_ACC_1 0x1946124
+
+struct mem_acc_tcsr {
+ u32 phy_addr;
+ void __iomem *ioremap_addr;
+ u32 value;
+};
+
+static struct mem_acc_tcsr ipq6018_mem_acc_tcsr[IPQ6018_APSS_MEM_ACC_TCSR_COUNT] = {
+ {TCSR_MEM_ACC_SW_OVERRIDE_LEGACY_APC0, NULL, 0x10},
+ {TCSR_CUSTOM_VDDAPC0_ACC_1, NULL, 0x1},
+};
+
+/*
+ * IPQ9574 (Few parameters are changed, remaining are same as IPQ6018)
+ */
+#define IPQ9574_APSS_FUSE_STEP_VOLT 10000
+
+static struct cpr3_fuse_param
+ipq9574_apss_ro_sel_param[IPQ9574_APSS_FUSE_CORNERS][2] = {
+ {{107, 4, 7}, {} },
+ {{107, 0, 3}, {} },
+ {{106, 4, 7}, {} },
+ {{106, 0, 3}, {} },
+};
+
+static struct cpr3_fuse_param
+ipq9574_apss_init_voltage_param[IPQ9574_APSS_FUSE_CORNERS][2] = {
+ {{104, 24, 29}, {} },
+ {{104, 18, 23}, {} },
+ {{104, 12, 17}, {} },
+ {{104, 6, 11}, {} },
+};
+
+static struct cpr3_fuse_param
+ipq9574_apss_target_quot_param[IPQ9574_APSS_FUSE_CORNERS][2] = {
+ {{106, 32, 43}, {} },
+ {{106, 20, 31}, {} },
+ {{106, 8, 19}, {} },
+ {{106, 44, 55}, {} },
+};
+
+static struct cpr3_fuse_param
+ipq9574_apss_quot_offset_param[IPQ9574_APSS_FUSE_CORNERS][2] = {
+ {{} },
+ {{105, 48, 55}, {} },
+ {{105, 40, 47}, {} },
+ {{105, 32, 39}, {} },
+};
+
+static struct cpr3_fuse_param ipq9574_cpr_fusing_rev_param[] = {
+ {107, 8, 10},
+ {},
+};
+
+static struct cpr3_fuse_param ipq9574_apss_speed_bin_param[] = {
+ {0, 40, 42},
+ {},
+};
+
+static struct cpr3_fuse_param ipq9574_cpr_boost_fuse_cfg_param[] = {
+ {0, 43, 45},
+ {},
+};
+
+static struct cpr3_fuse_param ipq9574_apss_boost_fuse_volt_param[] = {
+ {104, 0, 5},
+ {},
+};
+
+static struct cpr3_fuse_param ipq9574_misc_fuse_volt_adj_param[] = {
+ {0, 54, 54},
+ {},
+};
+
+static struct cpr3_fuse_parameters ipq9574_fuse_params = {
+ .apss_ro_sel_param = ipq9574_apss_ro_sel_param,
+ .apss_init_voltage_param = ipq9574_apss_init_voltage_param,
+ .apss_target_quot_param = ipq9574_apss_target_quot_param,
+ .apss_quot_offset_param = ipq9574_apss_quot_offset_param,
+ .cpr_fusing_rev_param = ipq9574_cpr_fusing_rev_param,
+ .apss_speed_bin_param = ipq9574_apss_speed_bin_param,
+ .cpr_boost_fuse_cfg_param = ipq9574_cpr_boost_fuse_cfg_param,
+ .apss_boost_fuse_volt_param = ipq9574_apss_boost_fuse_volt_param,
+ .misc_fuse_volt_adj_param = ipq9574_misc_fuse_volt_adj_param
+};
+
+/*
+ * Open loop voltage fuse reference voltages in microvolts for IPQ9574
+ */
+static int ipq9574_apss_fuse_ref_volt
+ [IPQ9574_APSS_FUSE_CORNERS] = {
+ 725000,
+ 862500,
+ 987500,
+ 1062500,
+};
+
+/**
+ * cpr4_ipq807x_apss_read_fuse_data() - load APSS specific fuse parameter values
+ * @vreg: Pointer to the CPR3 regulator
+ *
+ * This function allocates a cpr4_ipq807x_apss_fuses struct, fills it with
+ * values read out of hardware fuses, and finally copies common fuse values
+ * into the CPR3 regulator struct.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr4_ipq807x_apss_read_fuse_data(struct cpr3_regulator *vreg)
+{
+ void __iomem *base = vreg->thread->ctrl->fuse_base;
+ struct cpr4_ipq807x_apss_fuses *fuse;
+ int i, rc;
+
+ fuse = devm_kzalloc(vreg->thread->ctrl->dev, sizeof(*fuse), GFP_KERNEL);
+ if (!fuse)
+ return -ENOMEM;
+
+ rc = cpr3_read_fuse_param(base, vreg->cpr4_regulator_data->cpr3_fuse_params->apss_speed_bin_param,
+ &fuse->speed_bin);
+ if (rc) {
+ cpr3_err(vreg, "Unable to read speed bin fuse, rc=%d\n", rc);
+ return rc;
+ }
+ cpr3_info(vreg, "speed bin = %llu\n", fuse->speed_bin);
+
+ rc = cpr3_read_fuse_param(base, vreg->cpr4_regulator_data->cpr3_fuse_params->cpr_fusing_rev_param,
+ &fuse->cpr_fusing_rev);
+ if (rc) {
+ cpr3_err(vreg, "Unable to read CPR fusing revision fuse, rc=%d\n",
+ rc);
+ return rc;
+ }
+ cpr3_info(vreg, "CPR fusing revision = %llu\n", fuse->cpr_fusing_rev);
+
+ rc = cpr3_read_fuse_param(base, vreg->cpr4_regulator_data->cpr3_fuse_params->misc_fuse_volt_adj_param,
+ &fuse->misc);
+ if (rc) {
+ cpr3_err(vreg, "Unable to read misc voltage adjustment fuse, rc=%d\n",
+ rc);
+ return rc;
+ }
+ cpr3_info(vreg, "CPR misc fuse value = %llu\n", fuse->misc);
+ if (fuse->misc >= IPQ807x_MISC_FUSE_VAL_COUNT) {
+ cpr3_err(vreg, "CPR misc fuse value = %llu, should be < %lu\n",
+ fuse->misc, IPQ807x_MISC_FUSE_VAL_COUNT);
+ return -EINVAL;
+ }
+
+ for (i = 0; i < g_valid_fuse_count; i++) {
+ rc = cpr3_read_fuse_param(base,
+ vreg->cpr4_regulator_data->cpr3_fuse_params->apss_init_voltage_param[i],
+ &fuse->init_voltage[i]);
+ if (rc) {
+ cpr3_err(vreg, "Unable to read fuse-corner %d initial voltage fuse, rc=%d\n",
+ i, rc);
+ return rc;
+ }
+
+ rc = cpr3_read_fuse_param(base,
+ vreg->cpr4_regulator_data->cpr3_fuse_params->apss_target_quot_param[i],
+ &fuse->target_quot[i]);
+ if (rc) {
+ cpr3_err(vreg, "Unable to read fuse-corner %d target quotient fuse, rc=%d\n",
+ i, rc);
+ return rc;
+ }
+
+ rc = cpr3_read_fuse_param(base,
+ vreg->cpr4_regulator_data->cpr3_fuse_params->apss_ro_sel_param[i],
+ &fuse->ro_sel[i]);
+ if (rc) {
+ cpr3_err(vreg, "Unable to read fuse-corner %d RO select fuse, rc=%d\n",
+ i, rc);
+ return rc;
+ }
+
+ rc = cpr3_read_fuse_param(base,
+ vreg->cpr4_regulator_data->cpr3_fuse_params->apss_quot_offset_param[i],
+ &fuse->quot_offset[i]);
+ if (rc) {
+ cpr3_err(vreg, "Unable to read fuse-corner %d quotient offset fuse, rc=%d\n",
+ i, rc);
+ return rc;
+ }
+ }
+
+ rc = cpr3_read_fuse_param(base, vreg->cpr4_regulator_data->cpr3_fuse_params->cpr_boost_fuse_cfg_param,
+ &fuse->boost_cfg);
+ if (rc) {
+ cpr3_err(vreg, "Unable to read CPR boost config fuse, rc=%d\n",
+ rc);
+ return rc;
+ }
+ cpr3_info(vreg, "Voltage boost fuse config = %llu boost = %s\n",
+ fuse->boost_cfg, boost_fuse[fuse->boost_cfg]
+ ? "enable" : "disable");
+
+ rc = cpr3_read_fuse_param(base,
+ vreg->cpr4_regulator_data->cpr3_fuse_params->apss_boost_fuse_volt_param,
+ &fuse->boost_voltage);
+ if (rc) {
+ cpr3_err(vreg, "failed to read boost fuse voltage, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ vreg->fuse_combo = fuse->cpr_fusing_rev + 8 * fuse->speed_bin;
+ if (vreg->fuse_combo >= CPR4_IPQ807x_APSS_FUSE_COMBO_COUNT) {
+ cpr3_err(vreg, "invalid CPR fuse combo = %d found\n",
+ vreg->fuse_combo);
+ return -EINVAL;
+ }
+
+ vreg->speed_bin_fuse = fuse->speed_bin;
+ vreg->cpr_rev_fuse = fuse->cpr_fusing_rev;
+ vreg->fuse_corner_count = g_valid_fuse_count;
+ vreg->platform_fuses = fuse;
+
+ return 0;
+}
+
+/**
+ * cpr4_apss_parse_corner_data() - parse APSS corner data from device tree
+ * properties of the CPR3 regulator's device node
+ * @vreg: Pointer to the CPR3 regulator
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr4_apss_parse_corner_data(struct cpr3_regulator *vreg)
+{
+ struct device_node *node = vreg->of_node;
+ struct cpr4_ipq807x_apss_fuses *fuse = vreg->platform_fuses;
+ u32 *temp = NULL;
+ int i, rc;
+
+ rc = cpr3_parse_common_corner_data(vreg);
+ if (rc) {
+ cpr3_err(vreg, "error reading corner data, rc=%d\n", rc);
+ return rc;
+ }
+
+ /* If fuse has incorrect RO Select values and dtsi has "qcom,cpr-ro-sel"
+ * entry with RO select values other than zero, then dtsi values will
+ * be used.
+ */
+ if (of_find_property(node, "qcom,cpr-ro-sel", NULL)) {
+ temp = kcalloc(vreg->fuse_corner_count, sizeof(*temp),
+ GFP_KERNEL);
+ if (!temp)
+ return -ENOMEM;
+
+ rc = cpr3_parse_array_property(vreg, "qcom,cpr-ro-sel",
+ vreg->fuse_corner_count, temp);
+ if (rc)
+ goto done;
+
+ for (i = 0; i < vreg->fuse_corner_count; i++) {
+ if (temp[i] != 0)
+ fuse->ro_sel[i] = temp[i];
+ }
+ }
+done:
+ kfree(temp);
+ return rc;
+}
+
+/**
+ * cpr4_apss_parse_misc_fuse_voltage_adjustments() - fill an array from a
+ * portion of the voltage adjustments specified based on
+ * miscellaneous fuse bits.
+ * @vreg: Pointer to the CPR3 regulator
+ * @volt_adjust: Voltage adjustment output data array which must be
+ * of size vreg->corner_count
+ *
+ * cpr3_parse_common_corner_data() must be called for vreg before this function
+ * is called so that speed bin size elements are initialized.
+ *
+ * Two formats are supported for the device tree property:
+ * 1. Length == tuple_list_size * vreg->corner_count
+ * (reading begins at index 0)
+ * 2. Length == tuple_list_size * vreg->speed_bin_corner_sum
+ * (reading begins at index tuple_list_size * vreg->speed_bin_offset)
+ *
+ * Here, tuple_list_size is the number of possible values for misc fuse.
+ * All other property lengths are treated as errors.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr4_apss_parse_misc_fuse_voltage_adjustments(
+ struct cpr3_regulator *vreg, u32 *volt_adjust)
+{
+ struct device_node *node = vreg->of_node;
+ struct cpr4_ipq807x_apss_fuses *fuse = vreg->platform_fuses;
+ int tuple_list_size = IPQ807x_MISC_FUSE_VAL_COUNT;
+ int i, offset, rc, len = 0;
+ const char *prop_name = "qcom,cpr-misc-fuse-voltage-adjustment";
+
+ if (!of_find_property(node, prop_name, &len)) {
+ cpr3_err(vreg, "property %s is missing\n", prop_name);
+ return -EINVAL;
+ }
+
+ if (len == tuple_list_size * vreg->corner_count * sizeof(u32)) {
+ offset = 0;
+ } else if (vreg->speed_bin_corner_sum > 0 &&
+ len == tuple_list_size * vreg->speed_bin_corner_sum
+ * sizeof(u32)) {
+ offset = tuple_list_size * vreg->speed_bin_offset
+ + fuse->misc * vreg->corner_count;
+ } else {
+ if (vreg->speed_bin_corner_sum > 0)
+ cpr3_err(vreg, "property %s has invalid length=%d, should be %zu or %zu\n",
+ prop_name, len,
+ tuple_list_size * vreg->corner_count
+ * sizeof(u32),
+ tuple_list_size * vreg->speed_bin_corner_sum
+ * sizeof(u32));
+ else
+ cpr3_err(vreg, "property %s has invalid length=%d, should be %zu\n",
+ prop_name, len,
+ tuple_list_size * vreg->corner_count
+ * sizeof(u32));
+ return -EINVAL;
+ }
+
+ for (i = 0; i < vreg->corner_count; i++) {
+ rc = of_property_read_u32_index(node, prop_name, offset + i,
+ &volt_adjust[i]);
+ if (rc) {
+ cpr3_err(vreg, "error reading property %s, rc=%d\n",
+ prop_name, rc);
+ return rc;
+ }
+ }
+
+ return 0;
+}
+
+/**
+ * cpr4_ipq807x_apss_calculate_open_loop_voltages() - calculate the open-loop
+ * voltage for each corner of a CPR3 regulator
+ * @vreg: Pointer to the CPR3 regulator
+ *
+ * If open-loop voltage interpolation is allowed in device tree, then
+ * this function calculates the open-loop voltage for a given corner using
+ * linear interpolation. This interpolation is performed using the processor
+ * frequencies of the lower and higher Fmax corners along with their fused
+ * open-loop voltages.
+ *
+ * If open-loop voltage interpolation is not allowed, then this function uses
+ * the Fmax fused open-loop voltage for all of the corners associated with a
+ * given fuse corner.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr4_ipq807x_apss_calculate_open_loop_voltages(
+ struct cpr3_regulator *vreg)
+{
+ struct device_node *node = vreg->of_node;
+ struct cpr4_ipq807x_apss_fuses *fuse = vreg->platform_fuses;
+ struct cpr3_controller *ctrl = vreg->thread->ctrl;
+ int i, j, rc = 0;
+ bool allow_interpolation;
+ u64 freq_low, volt_low, freq_high, volt_high;
+ int *fuse_volt, *misc_adj_volt;
+ int *fmax_corner;
+
+ fuse_volt = kcalloc(vreg->fuse_corner_count, sizeof(*fuse_volt),
+ GFP_KERNEL);
+ fmax_corner = kcalloc(vreg->fuse_corner_count, sizeof(*fmax_corner),
+ GFP_KERNEL);
+ if (!fuse_volt || !fmax_corner) {
+ rc = -ENOMEM;
+ goto done;
+ }
+
+ for (i = 0; i < vreg->fuse_corner_count; i++) {
+ if (ctrl->cpr_global_setting == CPR_DISABLED)
+ fuse_volt[i] = vreg->cpr4_regulator_data->fuse_ref_volt[i];
+ else
+ fuse_volt[i] = cpr3_convert_open_loop_voltage_fuse(
+ vreg->cpr4_regulator_data->fuse_ref_volt[i],
+ vreg->cpr4_regulator_data->fuse_step_volt,
+ fuse->init_voltage[i],
+ IPQ807x_APSS_VOLTAGE_FUSE_SIZE);
+
+ /* Log fused open-loop voltage values for debugging purposes. */
+ cpr3_info(vreg, "fused %8s: open-loop=%7d uV\n",
+ cpr4_ipq807x_apss_fuse_corner_name[i],
+ fuse_volt[i]);
+ }
+
+ rc = cpr3_determine_part_type(vreg,
+ fuse_volt[vreg->fuse_corner_count - 1]);
+ if (rc) {
+ cpr3_err(vreg, "fused part type detection failed failed, rc=%d\n",
+ rc);
+ goto done;
+ }
+
+ rc = cpr3_adjust_fused_open_loop_voltages(vreg, fuse_volt);
+ if (rc) {
+ cpr3_err(vreg, "fused open-loop voltage adjustment failed, rc=%d\n",
+ rc);
+ goto done;
+ }
+
+ allow_interpolation = of_property_read_bool(node,
+ "qcom,allow-voltage-interpolation");
+
+ for (i = 1; i < vreg->fuse_corner_count; i++) {
+ if (fuse_volt[i] < fuse_volt[i - 1]) {
+ cpr3_info(vreg, "fuse corner %d voltage=%d uV < fuse corner %d voltage=%d uV; overriding: fuse corner %d voltage=%d\n",
+ i, fuse_volt[i], i - 1, fuse_volt[i - 1],
+ i, fuse_volt[i - 1]);
+ fuse_volt[i] = fuse_volt[i - 1];
+ }
+ }
+
+ if (!allow_interpolation) {
+ /* Use fused open-loop voltage for lower frequencies. */
+ for (i = 0; i < vreg->corner_count; i++)
+ vreg->corner[i].open_loop_volt
+ = fuse_volt[vreg->corner[i].cpr_fuse_corner];
+ goto done;
+ }
+
+ /* Determine highest corner mapped to each fuse corner */
+ j = vreg->fuse_corner_count - 1;
+ for (i = vreg->corner_count - 1; i >= 0; i--) {
+ if (vreg->corner[i].cpr_fuse_corner == j) {
+ fmax_corner[j] = i;
+ j--;
+ }
+ }
+ if (j >= 0) {
+ cpr3_err(vreg, "invalid fuse corner mapping\n");
+ rc = -EINVAL;
+ goto done;
+ }
+
+ /*
+ * Interpolation is not possible for corners mapped to the lowest fuse
+ * corner so use the fuse corner value directly.
+ */
+ for (i = 0; i <= fmax_corner[0]; i++)
+ vreg->corner[i].open_loop_volt = fuse_volt[0];
+
+ /* Interpolate voltages for the higher fuse corners. */
+ for (i = 1; i < vreg->fuse_corner_count; i++) {
+ freq_low = vreg->corner[fmax_corner[i - 1]].proc_freq;
+ volt_low = fuse_volt[i - 1];
+ freq_high = vreg->corner[fmax_corner[i]].proc_freq;
+ volt_high = fuse_volt[i];
+
+ for (j = fmax_corner[i - 1] + 1; j <= fmax_corner[i]; j++)
+ vreg->corner[j].open_loop_volt = cpr3_interpolate(
+ freq_low, volt_low, freq_high, volt_high,
+ vreg->corner[j].proc_freq);
+ }
+
+done:
+ if (rc == 0) {
+ cpr3_debug(vreg, "unadjusted per-corner open-loop voltages:\n");
+ for (i = 0; i < vreg->corner_count; i++)
+ cpr3_debug(vreg, "open-loop[%2d] = %d uV\n", i,
+ vreg->corner[i].open_loop_volt);
+
+ rc = cpr3_adjust_open_loop_voltages(vreg);
+ if (rc)
+ cpr3_err(vreg, "open-loop voltage adjustment failed, rc=%d\n",
+ rc);
+
+ if (of_find_property(node,
+ "qcom,cpr-misc-fuse-voltage-adjustment",
+ NULL)) {
+ misc_adj_volt = kcalloc(vreg->corner_count,
+ sizeof(*misc_adj_volt), GFP_KERNEL);
+ if (!misc_adj_volt) {
+ rc = -ENOMEM;
+ goto _exit;
+ }
+
+ rc = cpr4_apss_parse_misc_fuse_voltage_adjustments(vreg,
+ misc_adj_volt);
+ if (rc) {
+ cpr3_err(vreg, "qcom,cpr-misc-fuse-voltage-adjustment reading failed, rc=%d\n",
+ rc);
+ kfree(misc_adj_volt);
+ goto _exit;
+ }
+
+ for (i = 0; i < vreg->corner_count; i++)
+ vreg->corner[i].open_loop_volt
+ += misc_adj_volt[i];
+ kfree(misc_adj_volt);
+ }
+ }
+
+_exit:
+ kfree(fuse_volt);
+ kfree(fmax_corner);
+ return rc;
+}
+
+/**
+ * cpr4_ipq807x_apss_set_no_interpolation_quotients() - use the fused target
+ * quotient values for lower frequencies.
+ * @vreg: Pointer to the CPR3 regulator
+ * @volt_adjust: Pointer to array of per-corner closed-loop adjustment
+ * voltages
+ * @volt_adjust_fuse: Pointer to array of per-fuse-corner closed-loop
+ * adjustment voltages
+ * @ro_scale: Pointer to array of per-fuse-corner RO scaling factor
+ * values with units of QUOT/V
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr4_ipq807x_apss_set_no_interpolation_quotients(
+ struct cpr3_regulator *vreg, int *volt_adjust,
+ int *volt_adjust_fuse, int *ro_scale)
+{
+ struct cpr4_ipq807x_apss_fuses *fuse = vreg->platform_fuses;
+ u32 quot, ro;
+ int quot_adjust;
+ int i, fuse_corner;
+
+ for (i = 0; i < vreg->corner_count; i++) {
+ fuse_corner = vreg->corner[i].cpr_fuse_corner;
+ quot = fuse->target_quot[fuse_corner];
+ quot_adjust = cpr3_quot_adjustment(ro_scale[fuse_corner],
+ volt_adjust_fuse[fuse_corner] +
+ volt_adjust[i]);
+ ro = fuse->ro_sel[fuse_corner];
+ vreg->corner[i].target_quot[ro] = quot + quot_adjust;
+ cpr3_debug(vreg, "corner=%d RO=%u target quot=%u\n",
+ i, ro, quot);
+
+ if (quot_adjust)
+ cpr3_debug(vreg, "adjusted corner %d RO%u target quot: %u --> %u (%d uV)\n",
+ i, ro, quot, vreg->corner[i].target_quot[ro],
+ volt_adjust_fuse[fuse_corner] +
+ volt_adjust[i]);
+ }
+
+ return 0;
+}
+
+/**
+ * cpr4_ipq807x_apss_calculate_target_quotients() - calculate the CPR target
+ * quotient for each corner of a CPR3 regulator
+ * @vreg: Pointer to the CPR3 regulator
+ *
+ * If target quotient interpolation is allowed in device tree, then this
+ * function calculates the target quotient for a given corner using linear
+ * interpolation. This interpolation is performed using the processor
+ * frequencies of the lower and higher Fmax corners along with the fused
+ * target quotient and quotient offset of the higher Fmax corner.
+ *
+ * If target quotient interpolation is not allowed, then this function uses
+ * the Fmax fused target quotient for all of the corners associated with a
+ * given fuse corner.
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr4_ipq807x_apss_calculate_target_quotients(
+ struct cpr3_regulator *vreg)
+{
+ struct cpr4_ipq807x_apss_fuses *fuse = vreg->platform_fuses;
+ int rc;
+ bool allow_interpolation;
+ u64 freq_low, freq_high, prev_quot;
+ u64 *quot_low;
+ u64 *quot_high;
+ u32 quot, ro;
+ int i, j, fuse_corner, quot_adjust;
+ int *fmax_corner;
+ int *volt_adjust, *volt_adjust_fuse, *ro_scale;
+ int *voltage_adj_misc;
+
+ /* Log fused quotient values for debugging purposes. */
+ for (i = CPR4_IPQ807x_APSS_FUSE_CORNER_SVS;
+ i < vreg->fuse_corner_count; i++)
+ cpr3_info(vreg, "fused %8s: quot[%2llu]=%4llu, quot_offset[%2llu]=%4llu\n",
+ cpr4_ipq807x_apss_fuse_corner_name[i],
+ fuse->ro_sel[i], fuse->target_quot[i],
+ fuse->ro_sel[i], fuse->quot_offset[i] *
+ IPQ807x_APSS_QUOT_OFFSET_SCALE);
+
+ allow_interpolation = of_property_read_bool(vreg->of_node,
+ "qcom,allow-quotient-interpolation");
+
+ volt_adjust = kcalloc(vreg->corner_count, sizeof(*volt_adjust),
+ GFP_KERNEL);
+ volt_adjust_fuse = kcalloc(vreg->fuse_corner_count,
+ sizeof(*volt_adjust_fuse), GFP_KERNEL);
+ ro_scale = kcalloc(vreg->fuse_corner_count, sizeof(*ro_scale),
+ GFP_KERNEL);
+ fmax_corner = kcalloc(vreg->fuse_corner_count, sizeof(*fmax_corner),
+ GFP_KERNEL);
+ quot_low = kcalloc(vreg->fuse_corner_count, sizeof(*quot_low),
+ GFP_KERNEL);
+ quot_high = kcalloc(vreg->fuse_corner_count, sizeof(*quot_high),
+ GFP_KERNEL);
+ if (!volt_adjust || !volt_adjust_fuse || !ro_scale ||
+ !fmax_corner || !quot_low || !quot_high) {
+ rc = -ENOMEM;
+ goto done;
+ }
+
+ rc = cpr3_parse_closed_loop_voltage_adjustments(vreg, &fuse->ro_sel[0],
+ volt_adjust, volt_adjust_fuse, ro_scale);
+ if (rc) {
+ cpr3_err(vreg, "could not load closed-loop voltage adjustments, rc=%d\n",
+ rc);
+ goto done;
+ }
+
+ if (of_find_property(vreg->of_node,
+ "qcom,cpr-misc-fuse-voltage-adjustment", NULL)) {
+ voltage_adj_misc = kcalloc(vreg->corner_count,
+ sizeof(*voltage_adj_misc), GFP_KERNEL);
+ if (!voltage_adj_misc) {
+ rc = -ENOMEM;
+ goto done;
+ }
+
+ rc = cpr4_apss_parse_misc_fuse_voltage_adjustments(vreg,
+ voltage_adj_misc);
+ if (rc) {
+ cpr3_err(vreg, "qcom,cpr-misc-fuse-voltage-adjustment reading failed, rc=%d\n",
+ rc);
+ kfree(voltage_adj_misc);
+ goto done;
+ }
+
+ for (i = 0; i < vreg->corner_count; i++)
+ volt_adjust[i] += voltage_adj_misc[i];
+
+ kfree(voltage_adj_misc);
+ }
+
+ if (!allow_interpolation) {
+ /* Use fused target quotients for lower frequencies. */
+ return cpr4_ipq807x_apss_set_no_interpolation_quotients(
+ vreg, volt_adjust, volt_adjust_fuse, ro_scale);
+ }
+
+ /* Determine highest corner mapped to each fuse corner */
+ j = vreg->fuse_corner_count - 1;
+ for (i = vreg->corner_count - 1; i >= 0; i--) {
+ if (vreg->corner[i].cpr_fuse_corner == j) {
+ fmax_corner[j] = i;
+ j--;
+ }
+ }
+ if (j >= 0) {
+ cpr3_err(vreg, "invalid fuse corner mapping\n");
+ rc = -EINVAL;
+ goto done;
+ }
+
+ /*
+ * Interpolation is not possible for corners mapped to the lowest fuse
+ * corner so use the fuse corner value directly.
+ */
+ i = CPR4_IPQ807x_APSS_FUSE_CORNER_SVS;
+ quot_adjust = cpr3_quot_adjustment(ro_scale[i], volt_adjust_fuse[i]);
+ quot = fuse->target_quot[i] + quot_adjust;
+ quot_high[i] = quot_low[i] = quot;
+ ro = fuse->ro_sel[i];
+ if (quot_adjust)
+ cpr3_debug(vreg, "adjusted fuse corner %d RO%u target quot: %llu --> %u (%d uV)\n",
+ i, ro, fuse->target_quot[i], quot, volt_adjust_fuse[i]);
+
+ for (i = 0; i <= fmax_corner[CPR4_IPQ807x_APSS_FUSE_CORNER_SVS];
+ i++)
+ vreg->corner[i].target_quot[ro] = quot;
+
+ for (i = CPR4_IPQ807x_APSS_FUSE_CORNER_NOM;
+ i < vreg->fuse_corner_count; i++) {
+ quot_high[i] = fuse->target_quot[i];
+ if (fuse->ro_sel[i] == fuse->ro_sel[i - 1])
+ quot_low[i] = quot_high[i - 1];
+ else
+ quot_low[i] = quot_high[i]
+ - fuse->quot_offset[i]
+ * IPQ807x_APSS_QUOT_OFFSET_SCALE;
+ if (quot_high[i] < quot_low[i]) {
+ cpr3_debug(vreg, "quot_high[%d]=%llu < quot_low[%d]=%llu; overriding: quot_high[%d]=%llu\n",
+ i, quot_high[i], i, quot_low[i],
+ i, quot_low[i]);
+ quot_high[i] = quot_low[i];
+ }
+ }
+
+ /* Perform per-fuse-corner target quotient adjustment */
+ for (i = 1; i < vreg->fuse_corner_count; i++) {
+ quot_adjust = cpr3_quot_adjustment(ro_scale[i],
+ volt_adjust_fuse[i]);
+ if (quot_adjust) {
+ prev_quot = quot_high[i];
+ quot_high[i] += quot_adjust;
+ cpr3_debug(vreg, "adjusted fuse corner %d RO%llu target quot: %llu --> %llu (%d uV)\n",
+ i, fuse->ro_sel[i], prev_quot, quot_high[i],
+ volt_adjust_fuse[i]);
+ }
+
+ if (fuse->ro_sel[i] == fuse->ro_sel[i - 1])
+ quot_low[i] = quot_high[i - 1];
+ else
+ quot_low[i] += cpr3_quot_adjustment(ro_scale[i],
+ volt_adjust_fuse[i - 1]);
+
+ if (quot_high[i] < quot_low[i]) {
+ cpr3_debug(vreg, "quot_high[%d]=%llu < quot_low[%d]=%llu after adjustment; overriding: quot_high[%d]=%llu\n",
+ i, quot_high[i], i, quot_low[i],
+ i, quot_low[i]);
+ quot_high[i] = quot_low[i];
+ }
+ }
+
+ /* Interpolate voltages for the higher fuse corners. */
+ for (i = 1; i < vreg->fuse_corner_count; i++) {
+ freq_low = vreg->corner[fmax_corner[i - 1]].proc_freq;
+ freq_high = vreg->corner[fmax_corner[i]].proc_freq;
+
+ ro = fuse->ro_sel[i];
+ for (j = fmax_corner[i - 1] + 1; j <= fmax_corner[i]; j++)
+ vreg->corner[j].target_quot[ro] = cpr3_interpolate(
+ freq_low, quot_low[i], freq_high, quot_high[i],
+ vreg->corner[j].proc_freq);
+ }
+
+ /* Perform per-corner target quotient adjustment */
+ for (i = 0; i < vreg->corner_count; i++) {
+ fuse_corner = vreg->corner[i].cpr_fuse_corner;
+ ro = fuse->ro_sel[fuse_corner];
+ quot_adjust = cpr3_quot_adjustment(ro_scale[fuse_corner],
+ volt_adjust[i]);
+ if (quot_adjust) {
+ prev_quot = vreg->corner[i].target_quot[ro];
+ vreg->corner[i].target_quot[ro] += quot_adjust;
+ cpr3_debug(vreg, "adjusted corner %d RO%u target quot: %llu --> %u (%d uV)\n",
+ i, ro, prev_quot,
+ vreg->corner[i].target_quot[ro],
+ volt_adjust[i]);
+ }
+ }
+
+ /* Ensure that target quotients increase monotonically */
+ for (i = 1; i < vreg->corner_count; i++) {
+ ro = fuse->ro_sel[vreg->corner[i].cpr_fuse_corner];
+ if (fuse->ro_sel[vreg->corner[i - 1].cpr_fuse_corner] == ro
+ && vreg->corner[i].target_quot[ro]
+ < vreg->corner[i - 1].target_quot[ro]) {
+ cpr3_debug(vreg, "adjusted corner %d RO%u target quot=%u < adjusted corner %d RO%u target quot=%u; overriding: corner %d RO%u target quot=%u\n",
+ i, ro, vreg->corner[i].target_quot[ro],
+ i - 1, ro, vreg->corner[i - 1].target_quot[ro],
+ i, ro, vreg->corner[i - 1].target_quot[ro]);
+ vreg->corner[i].target_quot[ro]
+ = vreg->corner[i - 1].target_quot[ro];
+ }
+ }
+
+done:
+ kfree(volt_adjust);
+ kfree(volt_adjust_fuse);
+ kfree(ro_scale);
+ kfree(fmax_corner);
+ kfree(quot_low);
+ kfree(quot_high);
+ return rc;
+}
+
+/**
+ * cpr4_apss_print_settings() - print out APSS CPR configuration settings into
+ * the kernel log for debugging purposes
+ * @vreg: Pointer to the CPR3 regulator
+ */
+static void cpr4_apss_print_settings(struct cpr3_regulator *vreg)
+{
+ struct cpr3_corner *corner;
+ int i;
+
+ cpr3_debug(vreg, "Corner: Frequency (Hz), Fuse Corner, Floor (uV), Open-Loop (uV), Ceiling (uV)\n");
+ for (i = 0; i < vreg->corner_count; i++) {
+ corner = &vreg->corner[i];
+ cpr3_debug(vreg, "%3d: %10u, %2d, %7d, %7d, %7d\n",
+ i, corner->proc_freq, corner->cpr_fuse_corner,
+ corner->floor_volt, corner->open_loop_volt,
+ corner->ceiling_volt);
+ }
+
+ if (vreg->thread->ctrl->apm)
+ cpr3_debug(vreg, "APM threshold = %d uV, APM adjust = %d uV\n",
+ vreg->thread->ctrl->apm_threshold_volt,
+ vreg->thread->ctrl->apm_adj_volt);
+}
+
+/**
+ * cpr4_apss_init_thread() - perform steps necessary to initialize the
+ * configuration data for a CPR3 thread
+ * @thread: Pointer to the CPR3 thread
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr4_apss_init_thread(struct cpr3_thread *thread)
+{
+ int rc;
+
+ rc = cpr3_parse_common_thread_data(thread);
+ if (rc) {
+ cpr3_err(thread->ctrl, "thread %u unable to read CPR thread data from device tree, rc=%d\n",
+ thread->thread_id, rc);
+ return rc;
+ }
+
+ return 0;
+}
+
+/**
+ * cpr4_apss_parse_temp_adj_properties() - parse temperature based
+ * adjustment properties from device tree.
+ * @ctrl: Pointer to the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr4_apss_parse_temp_adj_properties(struct cpr3_controller *ctrl)
+{
+ struct device_node *of_node = ctrl->dev->of_node;
+ int rc, i, len, temp_point_count;
+
+ if (!of_find_property(of_node, "qcom,cpr-temp-point-map", &len)) {
+ /*
+ * Temperature based adjustments are not defined. Single
+ * temperature band is still valid for per-online-core
+ * adjustments.
+ */
+ ctrl->temp_band_count = 1;
+ return 0;
+ }
+
+ temp_point_count = len / sizeof(u32);
+ if (temp_point_count <= 0 ||
+ temp_point_count > IPQ807x_APSS_MAX_TEMP_POINTS) {
+ cpr3_err(ctrl, "invalid number of temperature points %d > %d (max)\n",
+ temp_point_count, IPQ807x_APSS_MAX_TEMP_POINTS);
+ return -EINVAL;
+ }
+
+ ctrl->temp_points = devm_kcalloc(ctrl->dev, temp_point_count,
+ sizeof(*ctrl->temp_points), GFP_KERNEL);
+ if (!ctrl->temp_points)
+ return -ENOMEM;
+
+ rc = of_property_read_u32_array(of_node, "qcom,cpr-temp-point-map",
+ ctrl->temp_points, temp_point_count);
+ if (rc) {
+ cpr3_err(ctrl, "error reading property qcom,cpr-temp-point-map, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ for (i = 0; i < temp_point_count; i++)
+ cpr3_debug(ctrl, "Temperature Point %d=%d\n", i,
+ ctrl->temp_points[i]);
+
+ /*
+ * If t1, t2, and t3 are the temperature points, then the temperature
+ * bands are: (-inf, t1], (t1, t2], (t2, t3], and (t3, inf).
+ */
+ ctrl->temp_band_count = temp_point_count + 1;
+ cpr3_debug(ctrl, "Number of temp bands =%d\n", ctrl->temp_band_count);
+
+ rc = of_property_read_u32(of_node, "qcom,cpr-initial-temp-band",
+ &ctrl->initial_temp_band);
+ if (rc) {
+ cpr3_err(ctrl, "error reading qcom,cpr-initial-temp-band, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ if (ctrl->initial_temp_band >= ctrl->temp_band_count) {
+ cpr3_err(ctrl, "Initial temperature band value %d should be in range [0 - %d]\n",
+ ctrl->initial_temp_band, ctrl->temp_band_count - 1);
+ return -EINVAL;
+ }
+
+ ctrl->temp_sensor_id_start = IPQ807x_APSS_TEMP_SENSOR_ID_START;
+ ctrl->temp_sensor_id_end = IPQ807x_APSS_TEMP_SENSOR_ID_END;
+ ctrl->allow_temp_adj = true;
+ return rc;
+}
+
+/**
+ * cpr4_apss_parse_boost_properties() - parse configuration data for boost
+ * voltage adjustment for CPR3 regulator from device tree.
+ * @vreg: Pointer to the CPR3 regulator
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr4_apss_parse_boost_properties(struct cpr3_regulator *vreg)
+{
+ struct cpr3_controller *ctrl = vreg->thread->ctrl;
+ struct cpr4_ipq807x_apss_fuses *fuse = vreg->platform_fuses;
+ struct cpr3_corner *corner;
+ int i, boost_voltage, final_boost_volt, rc = 0;
+ int *boost_table = NULL, *boost_temp_adj = NULL;
+ int boost_voltage_adjust = 0, boost_num_cores = 0;
+ u32 boost_allowed = 0;
+
+ if (!boost_fuse[fuse->boost_cfg])
+ /* Voltage boost is disabled in fuse */
+ return 0;
+
+ if (of_find_property(vreg->of_node, "qcom,allow-boost", NULL)) {
+ rc = cpr3_parse_array_property(vreg, "qcom,allow-boost", 1,
+ &boost_allowed);
+ if (rc)
+ return rc;
+ }
+
+ if (!boost_allowed) {
+ /* Voltage boost is not enabled for this regulator */
+ return 0;
+ }
+
+ boost_voltage = cpr3_convert_open_loop_voltage_fuse(
+ vreg->cpr4_regulator_data->boost_fuse_ref_volt,
+ vreg->cpr4_regulator_data->fuse_step_volt,
+ fuse->boost_voltage,
+ IPQ807x_APSS_VOLTAGE_FUSE_SIZE);
+
+ /* Log boost voltage value for debugging purposes. */
+ cpr3_info(vreg, "Boost open-loop=%7d uV\n", boost_voltage);
+
+ if (of_find_property(vreg->of_node,
+ "qcom,cpr-boost-voltage-fuse-adjustment", NULL)) {
+ rc = cpr3_parse_array_property(vreg,
+ "qcom,cpr-boost-voltage-fuse-adjustment",
+ 1, &boost_voltage_adjust);
+ if (rc) {
+ cpr3_err(vreg, "qcom,cpr-boost-voltage-fuse-adjustment reading failed, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ boost_voltage += boost_voltage_adjust;
+ /* Log boost voltage value for debugging purposes. */
+ cpr3_info(vreg, "Adjusted boost open-loop=%7d uV\n",
+ boost_voltage);
+ }
+
+ /* Limit boost voltage value between ceiling and floor voltage limits */
+ boost_voltage = min(boost_voltage, vreg->cpr4_regulator_data->boost_ceiling_volt);
+ boost_voltage = max(boost_voltage, vreg->cpr4_regulator_data->boost_floor_volt);
+
+ /*
+ * The boost feature can only be used for the highest voltage corner.
+ * Also, keep core-count adjustments disabled when the boost feature
+ * is enabled.
+ */
+ corner = &vreg->corner[vreg->corner_count - 1];
+ if (!corner->sdelta) {
+ /*
+ * If core-count/temp adjustments are not defined, the cpr4
+ * sdelta for this corner will not be allocated. Allocate it
+ * here for boost configuration.
+ */
+ corner->sdelta = devm_kzalloc(ctrl->dev,
+ sizeof(*corner->sdelta), GFP_KERNEL);
+ if (!corner->sdelta)
+ return -ENOMEM;
+ }
+ corner->sdelta->temp_band_count = ctrl->temp_band_count;
+
+ rc = of_property_read_u32(vreg->of_node, "qcom,cpr-num-boost-cores",
+ &boost_num_cores);
+ if (rc) {
+ cpr3_err(vreg, "qcom,cpr-num-boost-cores reading failed, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ if (boost_num_cores <= 0 ||
+ boost_num_cores > IPQ807x_APSS_CPR_SDELTA_CORE_COUNT) {
+ cpr3_err(vreg, "Invalid boost number of cores = %d\n",
+ boost_num_cores);
+ return -EINVAL;
+ }
+ corner->sdelta->boost_num_cores = boost_num_cores;
+
+ boost_table = devm_kcalloc(ctrl->dev, corner->sdelta->temp_band_count,
+ sizeof(*boost_table), GFP_KERNEL);
+ if (!boost_table)
+ return -ENOMEM;
+
+ if (of_find_property(vreg->of_node,
+ "qcom,cpr-boost-temp-adjustment", NULL)) {
+ boost_temp_adj = kcalloc(corner->sdelta->temp_band_count,
+ sizeof(*boost_temp_adj), GFP_KERNEL);
+ if (!boost_temp_adj)
+ return -ENOMEM;
+
+ rc = cpr3_parse_array_property(vreg,
+ "qcom,cpr-boost-temp-adjustment",
+ corner->sdelta->temp_band_count,
+ boost_temp_adj);
+ if (rc) {
+ cpr3_err(vreg, "qcom,cpr-boost-temp-adjustment reading failed, rc=%d\n",
+ rc);
+ goto done;
+ }
+ }
+
+ for (i = 0; i < corner->sdelta->temp_band_count; i++) {
+ /* Apply static adjustments to boost voltage */
+ final_boost_volt = boost_voltage + (boost_temp_adj == NULL
+ ? 0 : boost_temp_adj[i]);
+ /*
+ * Limit final adjusted boost voltage value between ceiling
+ * and floor voltage limits
+ */
+ final_boost_volt = min(final_boost_volt,
+ vreg->cpr4_regulator_data->boost_ceiling_volt);
+ final_boost_volt = max(final_boost_volt,
+ vreg->cpr4_regulator_data->boost_floor_volt);
+
+ boost_table[i] = (corner->open_loop_volt - final_boost_volt)
+ / ctrl->step_volt;
+ cpr3_debug(vreg, "Adjusted boost voltage margin for temp band %d = %d steps\n",
+ i, boost_table[i]);
+ }
+
+ corner->ceiling_volt = vreg->cpr4_regulator_data->boost_ceiling_volt;
+ corner->sdelta->boost_table = boost_table;
+ corner->sdelta->allow_boost = true;
+ corner->sdelta->allow_core_count_adj = false;
+ vreg->allow_boost = true;
+ ctrl->allow_boost = true;
+done:
+ kfree(boost_temp_adj);
+ return rc;
+}
+
+/**
+ * cpr4_apss_init_regulator() - perform all steps necessary to initialize the
+ * configuration data for a CPR3 regulator
+ * @vreg: Pointer to the CPR3 regulator
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr4_apss_init_regulator(struct cpr3_regulator *vreg)
+{
+ struct cpr4_ipq807x_apss_fuses *fuse;
+ int rc;
+
+ rc = cpr4_ipq807x_apss_read_fuse_data(vreg);
+ if (rc) {
+ cpr3_err(vreg, "unable to read CPR fuse data, rc=%d\n", rc);
+ return rc;
+ }
+
+ fuse = vreg->platform_fuses;
+
+ rc = cpr4_apss_parse_corner_data(vreg);
+ if (rc) {
+ cpr3_err(vreg, "unable to read CPR corner data from device tree, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ rc = cpr3_mem_acc_init(vreg);
+ if (rc) {
+ if (rc != -EPROBE_DEFER)
+ cpr3_err(vreg, "unable to initialize mem-acc regulator settings, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ rc = cpr4_ipq807x_apss_calculate_open_loop_voltages(vreg);
+ if (rc) {
+ cpr3_err(vreg, "unable to calculate open-loop voltages, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ rc = cpr3_limit_open_loop_voltages(vreg);
+ if (rc) {
+ cpr3_err(vreg, "unable to limit open-loop voltages, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ cpr3_open_loop_voltage_as_ceiling(vreg);
+
+ rc = cpr3_limit_floor_voltages(vreg);
+ if (rc) {
+ cpr3_err(vreg, "unable to limit floor voltages, rc=%d\n", rc);
+ return rc;
+ }
+
+ rc = cpr4_ipq807x_apss_calculate_target_quotients(vreg);
+ if (rc) {
+ cpr3_err(vreg, "unable to calculate target quotients, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ rc = cpr4_parse_core_count_temp_voltage_adj(vreg, false);
+ if (rc) {
+ cpr3_err(vreg, "unable to parse temperature and core count voltage adjustments, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ if (vreg->allow_core_count_adj && (vreg->max_core_count <= 0
+ || vreg->max_core_count >
+ IPQ807x_APSS_CPR_SDELTA_CORE_COUNT)) {
+ cpr3_err(vreg, "qcom,max-core-count has invalid value = %d\n",
+ vreg->max_core_count);
+ return -EINVAL;
+ }
+
+ rc = cpr4_apss_parse_boost_properties(vreg);
+ if (rc) {
+ cpr3_err(vreg, "unable to parse boost adjustments, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ cpr4_apss_print_settings(vreg);
+
+ return rc;
+}
+
+/**
+ * cpr4_apss_init_controller() - perform APSS CPR4 controller specific
+ * initializations
+ * @ctrl: Pointer to the CPR3 controller
+ *
+ * Return: 0 on success, errno on failure
+ */
+static int cpr4_apss_init_controller(struct cpr3_controller *ctrl)
+{
+ int rc;
+
+ rc = cpr3_parse_common_ctrl_data(ctrl);
+ if (rc) {
+ if (rc != -EPROBE_DEFER)
+ cpr3_err(ctrl, "unable to parse common controller data, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ rc = of_property_read_u32(ctrl->dev->of_node,
+ "qcom,cpr-down-error-step-limit",
+ &ctrl->down_error_step_limit);
+ if (rc) {
+ cpr3_err(ctrl, "error reading qcom,cpr-down-error-step-limit, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ rc = of_property_read_u32(ctrl->dev->of_node,
+ "qcom,cpr-up-error-step-limit",
+ &ctrl->up_error_step_limit);
+ if (rc) {
+ cpr3_err(ctrl, "error reading qcom,cpr-up-error-step-limit, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ /*
+ * Use fixed step quotient if specified otherwise use dynamic
+ * calculated per RO step quotient
+ */
+ of_property_read_u32(ctrl->dev->of_node, "qcom,cpr-step-quot-fixed",
+ &ctrl->step_quot_fixed);
+ ctrl->use_dynamic_step_quot = ctrl->step_quot_fixed ? false : true;
+
+ ctrl->saw_use_unit_mV = of_property_read_bool(ctrl->dev->of_node,
+ "qcom,cpr-saw-use-unit-mV");
+
+ of_property_read_u32(ctrl->dev->of_node,
+ "qcom,cpr-voltage-settling-time",
+ &ctrl->voltage_settling_time);
+
+ if (of_find_property(ctrl->dev->of_node, "vdd-limit-supply", NULL)) {
+ ctrl->vdd_limit_regulator =
+ devm_regulator_get(ctrl->dev, "vdd-limit");
+ if (IS_ERR(ctrl->vdd_limit_regulator)) {
+ rc = PTR_ERR(ctrl->vdd_limit_regulator);
+ if (rc != -EPROBE_DEFER)
+ cpr3_err(ctrl, "unable to request vdd-limit regulator, rc=%d\n",
+ rc);
+ return rc;
+ }
+ }
+
+ rc = cpr3_apm_init(ctrl);
+ if (rc) {
+ if (rc != -EPROBE_DEFER)
+ cpr3_err(ctrl, "unable to initialize APM settings, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ rc = cpr4_apss_parse_temp_adj_properties(ctrl);
+ if (rc) {
+ cpr3_err(ctrl, "unable to parse temperature adjustment properties, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ ctrl->sensor_count = IPQ807x_APSS_CPR_SENSOR_COUNT;
+
+ /*
+ * APSS only has one thread (0) per controller so the zeroed
+ * array does not need further modification.
+ */
+ ctrl->sensor_owner = devm_kcalloc(ctrl->dev, ctrl->sensor_count,
+ sizeof(*ctrl->sensor_owner), GFP_KERNEL);
+ if (!ctrl->sensor_owner)
+ return -ENOMEM;
+
+ ctrl->ctrl_type = CPR_CTRL_TYPE_CPR4;
+ ctrl->supports_hw_closed_loop = false;
+ ctrl->use_hw_closed_loop = of_property_read_bool(ctrl->dev->of_node,
+ "qcom,cpr-hw-closed-loop");
+ return 0;
+}
+
+static int cpr4_apss_regulator_suspend(struct platform_device *pdev,
+ pm_message_t state)
+{
+ struct cpr3_controller *ctrl = platform_get_drvdata(pdev);
+
+ return cpr3_regulator_suspend(ctrl);
+}
+
+static int cpr4_apss_regulator_resume(struct platform_device *pdev)
+{
+ struct cpr3_controller *ctrl = platform_get_drvdata(pdev);
+
+ return cpr3_regulator_resume(ctrl);
+}
+
+static void ipq6018_set_mem_acc(struct regulator_dev *rdev)
+{
+ struct cpr3_regulator *vreg = rdev_get_drvdata(rdev);
+
+ ipq6018_mem_acc_tcsr[0].ioremap_addr =
+ ioremap(ipq6018_mem_acc_tcsr[0].phy_addr, 0x4);
+ ipq6018_mem_acc_tcsr[1].ioremap_addr =
+ ioremap(ipq6018_mem_acc_tcsr[1].phy_addr, 0x4);
+
+ if ((ipq6018_mem_acc_tcsr[0].ioremap_addr != NULL) &&
+ (ipq6018_mem_acc_tcsr[1].ioremap_addr != NULL) &&
+ (vreg->current_corner == (vreg->corner_count - CPR3_CORNER_OFFSET))) {
+
+ writel_relaxed(ipq6018_mem_acc_tcsr[0].value,
+ ipq6018_mem_acc_tcsr[0].ioremap_addr);
+ writel_relaxed(ipq6018_mem_acc_tcsr[1].value,
+ ipq6018_mem_acc_tcsr[1].ioremap_addr);
+ }
+}
+
+static void ipq6018_clr_mem_acc(struct regulator_dev *rdev)
+{
+ struct cpr3_regulator *vreg = rdev_get_drvdata(rdev);
+
+ if ((ipq6018_mem_acc_tcsr[0].ioremap_addr != NULL) &&
+ (ipq6018_mem_acc_tcsr[1].ioremap_addr != NULL) &&
+ (vreg->current_corner != vreg->corner_count - CPR3_CORNER_OFFSET)) {
+ writel_relaxed(0x0, ipq6018_mem_acc_tcsr[0].ioremap_addr);
+ writel_relaxed(0x0, ipq6018_mem_acc_tcsr[1].ioremap_addr);
+ }
+
+ iounmap(ipq6018_mem_acc_tcsr[0].ioremap_addr);
+ iounmap(ipq6018_mem_acc_tcsr[1].ioremap_addr);
+}
+
+static struct cpr4_mem_acc_func ipq6018_mem_acc_funcs = {
+ .set_mem_acc = ipq6018_set_mem_acc,
+ .clear_mem_acc = ipq6018_clr_mem_acc
+};
+
+static const struct cpr4_reg_data ipq807x_cpr_apss = {
+ .cpr_valid_fuse_count = IPQ807x_APSS_FUSE_CORNERS,
+ .fuse_ref_volt = ipq807x_apss_fuse_ref_volt,
+ .fuse_step_volt = IPQ807x_APSS_FUSE_STEP_VOLT,
+ .cpr_clk_rate = IPQ807x_APSS_CPR_CLOCK_RATE,
+ .boost_fuse_ref_volt= IPQ807x_APSS_BOOST_FUSE_REF_VOLT,
+ .boost_ceiling_volt= IPQ807x_APSS_BOOST_CEILING_VOLT,
+ .boost_floor_volt= IPQ807x_APSS_BOOST_FLOOR_VOLT,
+ .cpr3_fuse_params = &ipq807x_fuse_params,
+ .mem_acc_funcs = NULL,
+};
+
+static const struct cpr4_reg_data ipq817x_cpr_apss = {
+ .cpr_valid_fuse_count = IPQ817x_APPS_FUSE_CORNERS,
+ .fuse_ref_volt = ipq807x_apss_fuse_ref_volt,
+ .fuse_step_volt = IPQ807x_APSS_FUSE_STEP_VOLT,
+ .cpr_clk_rate = IPQ807x_APSS_CPR_CLOCK_RATE,
+ .boost_fuse_ref_volt= IPQ807x_APSS_BOOST_FUSE_REF_VOLT,
+ .boost_ceiling_volt= IPQ807x_APSS_BOOST_CEILING_VOLT,
+ .boost_floor_volt= IPQ807x_APSS_BOOST_FLOOR_VOLT,
+ .cpr3_fuse_params = &ipq807x_fuse_params,
+ .mem_acc_funcs = NULL,
+};
+
+static const struct cpr4_reg_data ipq6018_cpr_apss = {
+ .cpr_valid_fuse_count = IPQ6018_APSS_FUSE_CORNERS,
+ .fuse_ref_volt = ipq6018_apss_fuse_ref_volt,
+ .fuse_step_volt = IPQ6018_APSS_FUSE_STEP_VOLT,
+ .cpr_clk_rate = IPQ6018_APSS_CPR_CLOCK_RATE,
+ .boost_fuse_ref_volt = IPQ6018_APSS_BOOST_FUSE_REF_VOLT,
+ .boost_ceiling_volt = IPQ6018_APSS_BOOST_CEILING_VOLT,
+ .boost_floor_volt = IPQ6018_APSS_BOOST_FLOOR_VOLT,
+ .cpr3_fuse_params = &ipq6018_fuse_params,
+ .mem_acc_funcs = &ipq6018_mem_acc_funcs,
+};
+
+static const struct cpr4_reg_data ipq9574_cpr_apss = {
+ .cpr_valid_fuse_count = IPQ9574_APSS_FUSE_CORNERS,
+ .fuse_ref_volt = ipq9574_apss_fuse_ref_volt,
+ .fuse_step_volt = IPQ9574_APSS_FUSE_STEP_VOLT,
+ .cpr_clk_rate = IPQ6018_APSS_CPR_CLOCK_RATE,
+ .boost_fuse_ref_volt = IPQ6018_APSS_BOOST_FUSE_REF_VOLT,
+ .boost_ceiling_volt = IPQ6018_APSS_BOOST_CEILING_VOLT,
+ .boost_floor_volt = IPQ6018_APSS_BOOST_FLOOR_VOLT,
+ .cpr3_fuse_params = &ipq9574_fuse_params,
+ .mem_acc_funcs = NULL,
+};
+
+static struct of_device_id cpr4_regulator_match_table[] = {
+ {
+ .compatible = "qcom,cpr4-ipq807x-apss-regulator",
+ .data = &ipq807x_cpr_apss
+ },
+ {
+ .compatible = "qcom,cpr4-ipq817x-apss-regulator",
+ .data = &ipq817x_cpr_apss
+ },
+ {
+ .compatible = "qcom,cpr4-ipq6018-apss-regulator",
+ .data = &ipq6018_cpr_apss
+ },
+ {
+ .compatible = "qcom,cpr4-ipq9574-apss-regulator",
+ .data = &ipq9574_cpr_apss
+ },
+ {}
+};
+
+static int cpr4_apss_regulator_probe(struct platform_device *pdev)
+{
+ struct device *dev = &pdev->dev;
+ struct cpr3_controller *ctrl;
+ const struct of_device_id *match;
+ struct cpr4_reg_data *cpr_data;
+ int i, rc;
+
+ if (!dev->of_node) {
+ dev_err(dev, "Device tree node is missing\n");
+ return -EINVAL;
+ }
+
+ ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL);
+ if (!ctrl)
+ return -ENOMEM;
+
+ match = of_match_device(cpr4_regulator_match_table, &pdev->dev);
+ if (!match)
+ return -ENODEV;
+
+ cpr_data = (struct cpr4_reg_data *)match->data;
+ g_valid_fuse_count = cpr_data->cpr_valid_fuse_count;
+ dev_info(dev, "CPR valid fuse count: %d\n", g_valid_fuse_count);
+ ctrl->cpr_clock_rate = cpr_data->cpr_clk_rate;
+
+ ctrl->dev = dev;
+ /* Set to false later if anything precludes CPR operation. */
+ ctrl->cpr_allowed_hw = true;
+
+ rc = of_property_read_string(dev->of_node, "qcom,cpr-ctrl-name",
+ &ctrl->name);
+ if (rc) {
+ cpr3_err(ctrl, "unable to read qcom,cpr-ctrl-name, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ rc = cpr3_map_fuse_base(ctrl, pdev);
+ if (rc) {
+ cpr3_err(ctrl, "could not map fuse base address\n");
+ return rc;
+ }
+
+ rc = cpr3_read_tcsr_setting(ctrl, pdev, IPQ807x_APSS_CPR_TCSR_START,
+ IPQ807x_APSS_CPR_TCSR_END);
+ if (rc) {
+ cpr3_err(ctrl, "could not read CPR tcsr setting\n");
+ return rc;
+ }
+
+ rc = cpr3_allocate_threads(ctrl, 0, 0);
+ if (rc) {
+ cpr3_err(ctrl, "failed to allocate CPR thread array, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ if (ctrl->thread_count != 1) {
+ cpr3_err(ctrl, "expected 1 thread but found %d\n",
+ ctrl->thread_count);
+ return -EINVAL;
+ }
+
+ rc = cpr4_apss_init_controller(ctrl);
+ if (rc) {
+ if (rc != -EPROBE_DEFER)
+ cpr3_err(ctrl, "failed to initialize CPR controller parameters, rc=%d\n",
+ rc);
+ return rc;
+ }
+
+ rc = cpr4_apss_init_thread(&ctrl->thread[0]);
+ if (rc) {
+ cpr3_err(ctrl, "thread initialization failed, rc=%d\n", rc);
+ return rc;
+ }
+
+ for (i = 0; i < ctrl->thread[0].vreg_count; i++) {
+ ctrl->thread[0].vreg[i].cpr4_regulator_data = cpr_data;
+ rc = cpr4_apss_init_regulator(&ctrl->thread[0].vreg[i]);
+ if (rc) {
+ cpr3_err(&ctrl->thread[0].vreg[i], "regulator initialization failed, rc=%d\n",
+ rc);
+ return rc;
+ }
+ }
+
+ platform_set_drvdata(pdev, ctrl);
+
+ return cpr3_regulator_register(pdev, ctrl);
+}
+
+static int cpr4_apss_regulator_remove(struct platform_device *pdev)
+{
+ struct cpr3_controller *ctrl = platform_get_drvdata(pdev);
+
+ return cpr3_regulator_unregister(ctrl);
+}
+
+static struct platform_driver cpr4_apss_regulator_driver = {
+ .driver = {
+ .name = "qcom,cpr4-apss-regulator",
+ .of_match_table = cpr4_regulator_match_table,
+ .owner = THIS_MODULE,
+ },
+ .probe = cpr4_apss_regulator_probe,
+ .remove = cpr4_apss_regulator_remove,
+ .suspend = cpr4_apss_regulator_suspend,
+ .resume = cpr4_apss_regulator_resume,
+};
+
+static int cpr4_regulator_init(void)
+{
+ return platform_driver_register(&cpr4_apss_regulator_driver);
+}
+
+static void cpr4_regulator_exit(void)
+{
+ platform_driver_unregister(&cpr4_apss_regulator_driver);
+}
+
+MODULE_DESCRIPTION("CPR4 APSS regulator driver");
+MODULE_LICENSE("GPL v2");
+
+arch_initcall(cpr4_regulator_init);
+module_exit(cpr4_regulator_exit);
--- /dev/null
+++ b/include/soc/qcom/socinfo.h
@@ -0,0 +1,463 @@
+/* Copyright (c) 2009-2014, 2016, 2020, The Linux Foundation. All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 and
+ * only version 2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ */
+
+#ifndef _ARCH_ARM_MACH_MSM_SOCINFO_H_
+#define _ARCH_ARM_MACH_MSM_SOCINFO_H_
+
+#include <linux/of.h>
+
+#define CPU_IPQ8074 323
+#define CPU_IPQ8072 342
+#define CPU_IPQ8076 343
+#define CPU_IPQ8078 344
+#define CPU_IPQ8070 375
+#define CPU_IPQ8071 376
+
+#define CPU_IPQ8072A 389
+#define CPU_IPQ8074A 390
+#define CPU_IPQ8076A 391
+#define CPU_IPQ8078A 392
+#define CPU_IPQ8070A 395
+#define CPU_IPQ8071A 396
+
+#define CPU_IPQ8172 397
+#define CPU_IPQ8173 398
+#define CPU_IPQ8174 399
+
+#define CPU_IPQ6018 402
+#define CPU_IPQ6028 403
+#define CPU_IPQ6000 421
+#define CPU_IPQ6010 422
+#define CPU_IPQ6005 453
+
+#define CPU_IPQ5010 446
+#define CPU_IPQ5018 447
+#define CPU_IPQ5028 448
+#define CPU_IPQ5000 503
+#define CPU_IPQ0509 504
+#define CPU_IPQ0518 505
+
+#define CPU_IPQ9514 510
+#define CPU_IPQ9554 512
+#define CPU_IPQ9570 513
+#define CPU_IPQ9574 514
+#define CPU_IPQ9550 511
+#define CPU_IPQ9510 521
+
+static inline int read_ipq_soc_version_major(void)
+{
+ const int *prop;
+ prop = of_get_property(of_find_node_by_path("/"), "soc_version_major",
+ NULL);
+
+ if (!prop)
+ return -EINVAL;
+
+ return le32_to_cpu(*prop);
+}
+
+static inline int read_ipq_cpu_type(void)
+{
+ const int *prop;
+ prop = of_get_property(of_find_node_by_path("/"), "cpu_type", NULL);
+ /*
+ * Return Default CPU type if "cpu_type" property is not found in DTSI
+ */
+ if (!prop)
+ return CPU_IPQ8074;
+
+ return le32_to_cpu(*prop);
+}
+
+static inline int cpu_is_ipq8070(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return read_ipq_cpu_type() == CPU_IPQ8070;
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq8071(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return read_ipq_cpu_type() == CPU_IPQ8071;
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq8072(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return read_ipq_cpu_type() == CPU_IPQ8072;
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq8074(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return read_ipq_cpu_type() == CPU_IPQ8074;
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq8076(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return read_ipq_cpu_type() == CPU_IPQ8076;
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq8078(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return read_ipq_cpu_type() == CPU_IPQ8078;
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq8072a(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return read_ipq_cpu_type() == CPU_IPQ8072A;
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq8074a(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return read_ipq_cpu_type() == CPU_IPQ8074A;
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq8076a(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return read_ipq_cpu_type() == CPU_IPQ8076A;
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq8078a(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return read_ipq_cpu_type() == CPU_IPQ8078A;
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq8070a(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return read_ipq_cpu_type() == CPU_IPQ8070A;
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq8071a(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return read_ipq_cpu_type() == CPU_IPQ8071A;
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq8172(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return read_ipq_cpu_type() == CPU_IPQ8172;
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq8173(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return read_ipq_cpu_type() == CPU_IPQ8173;
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq8174(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return read_ipq_cpu_type() == CPU_IPQ8174;
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq6018(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return read_ipq_cpu_type() == CPU_IPQ6018;
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq6028(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return read_ipq_cpu_type() == CPU_IPQ6028;
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq6000(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return read_ipq_cpu_type() == CPU_IPQ6000;
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq6010(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return read_ipq_cpu_type() == CPU_IPQ6010;
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq6005(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return read_ipq_cpu_type() == CPU_IPQ6005;
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq5010(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return read_ipq_cpu_type() == CPU_IPQ5010;
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq5018(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return read_ipq_cpu_type() == CPU_IPQ5018;
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq5028(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return read_ipq_cpu_type() == CPU_IPQ5028;
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq5000(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return read_ipq_cpu_type() == CPU_IPQ5000;
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq0509(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return read_ipq_cpu_type() == CPU_IPQ0509;
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq0518(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return read_ipq_cpu_type() == CPU_IPQ0518;
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq9514(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return read_ipq_cpu_type() == CPU_IPQ9514;
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq9554(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return read_ipq_cpu_type() == CPU_IPQ9554;
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq9570(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return read_ipq_cpu_type() == CPU_IPQ9570;
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq9574(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return read_ipq_cpu_type() == CPU_IPQ9574;
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq9550(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return read_ipq_cpu_type() == CPU_IPQ9550;
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq9510(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return read_ipq_cpu_type() == CPU_IPQ9510;
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq807x(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return cpu_is_ipq8072() || cpu_is_ipq8074() ||
+ cpu_is_ipq8076() || cpu_is_ipq8078() ||
+ cpu_is_ipq8070() || cpu_is_ipq8071() ||
+ cpu_is_ipq8072a() || cpu_is_ipq8074a() ||
+ cpu_is_ipq8076a() || cpu_is_ipq8078a() ||
+ cpu_is_ipq8070a() || cpu_is_ipq8071a() ||
+ cpu_is_ipq8172() || cpu_is_ipq8173() ||
+ cpu_is_ipq8174();
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq60xx(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return cpu_is_ipq6018() || cpu_is_ipq6028() ||
+ cpu_is_ipq6000() || cpu_is_ipq6010() ||
+ cpu_is_ipq6005();
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq50xx(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return cpu_is_ipq5010() || cpu_is_ipq5018() ||
+ cpu_is_ipq5028() || cpu_is_ipq5000() ||
+ cpu_is_ipq0509() || cpu_is_ipq0518();
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_ipq95xx(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return cpu_is_ipq9514() || cpu_is_ipq9554() ||
+ cpu_is_ipq9570() || cpu_is_ipq9574() ||
+ cpu_is_ipq9550() || cpu_is_ipq9510();
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_nss_crypto_enabled(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return cpu_is_ipq807x() || cpu_is_ipq60xx() ||
+ cpu_is_ipq50xx() || cpu_is_ipq9570() ||
+ cpu_is_ipq9550() || cpu_is_ipq9574() ||
+ cpu_is_ipq9554();
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_internal_wifi_enabled(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return cpu_is_ipq807x() || cpu_is_ipq60xx() ||
+ cpu_is_ipq50xx() || cpu_is_ipq9514() ||
+ cpu_is_ipq9554() || cpu_is_ipq9574();
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_uniphy1_enabled(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return cpu_is_ipq807x() || cpu_is_ipq60xx() ||
+ cpu_is_ipq9554() || cpu_is_ipq9570() ||
+ cpu_is_ipq9574() || cpu_is_ipq9550();
+#else
+ return 0;
+#endif
+}
+
+static inline int cpu_is_uniphy2_enabled(void)
+{
+#ifdef CONFIG_ARCH_QCOM
+ return cpu_is_ipq807x() || cpu_is_ipq9570() ||
+ cpu_is_ipq9574();
+#else
+ return 0;
+#endif
+}
+
+#endif /* _ARCH_ARM_MACH_MSM_SOCINFO_H_ */