839 lines
26 KiB
C

#include <asm/mach-ifxmips/cgu.h>
#include "common.h"
#include "ifx_ppe_fw.h"
static void set_qsb(struct atm_vcc *vcc, struct atm_qos *qos, unsigned int connection)
{
u32 qsb_clk = cgu_get_fpi_bus_clock(2); /* FPI configuration 2 (slow FPI bus) */
union qsb_queue_parameter_table qsb_queue_parameter_table = {{0}};
union qsb_queue_vbr_parameter_table qsb_queue_vbr_parameter_table = {{0}};
u32 tmp;
/*
* Peak Cell Rate (PCR) Limiter
*/
if ( qos->txtp.max_pcr == 0 )
qsb_queue_parameter_table.bit.tp = 0; /* disable PCR limiter */
else
{
/* peak cell rate would be slightly lower than requested [maximum_rate / pcr = (qsb_clock / 8) * (time_step / 4) / pcr] */
tmp = ((qsb_clk * ppe_dev.qsb.tstepc) >> 5) / qos->txtp.max_pcr + 1;
/* check if overflow takes place */
qsb_queue_parameter_table.bit.tp = tmp > QSB_TP_TS_MAX ? QSB_TP_TS_MAX : tmp;
}
/*
* Weighted Fair Queueing Factor (WFQF)
*/
switch ( qos->txtp.traffic_class )
{
case ATM_CBR:
case ATM_VBR_RT:
/* real time queue gets weighted fair queueing bypass */
qsb_queue_parameter_table.bit.wfqf = 0;
break;
case ATM_VBR_NRT:
case ATM_UBR_PLUS:
/* WFQF calculation here is based on virtual cell rates, to reduce granularity for high rates */
/* WFQF is maximum cell rate / garenteed cell rate */
/* wfqf = qsb_minimum_cell_rate * QSB_WFQ_NONUBR_MAX / requested_minimum_peak_cell_rate */
if ( qos->txtp.min_pcr == 0 )
qsb_queue_parameter_table.bit.wfqf = QSB_WFQ_NONUBR_MAX;
else
{
tmp = QSB_GCR_MIN * QSB_WFQ_NONUBR_MAX / qos->txtp.min_pcr;
if ( tmp == 0 )
qsb_queue_parameter_table.bit.wfqf = 1;
else if ( tmp > QSB_WFQ_NONUBR_MAX )
qsb_queue_parameter_table.bit.wfqf = QSB_WFQ_NONUBR_MAX;
else
qsb_queue_parameter_table.bit.wfqf = tmp;
}
break;
default:
case ATM_UBR:
qsb_queue_parameter_table.bit.wfqf = QSB_WFQ_UBR_BYPASS;
}
/*
* Sustained Cell Rate (SCR) Leaky Bucket Shaper VBR.0/VBR.1
*/
if ( qos->txtp.traffic_class == ATM_VBR_RT || qos->txtp.traffic_class == ATM_VBR_NRT )
{
if ( qos->txtp.scr == 0 )
{
/* disable shaper */
qsb_queue_vbr_parameter_table.bit.taus = 0;
qsb_queue_vbr_parameter_table.bit.ts = 0;
}
else
{
/* Cell Loss Priority (CLP) */
if ( (vcc->atm_options & ATM_ATMOPT_CLP) )
/* CLP1 */
qsb_queue_parameter_table.bit.vbr = 1;
else
/* CLP0 */
qsb_queue_parameter_table.bit.vbr = 0;
/* Rate Shaper Parameter (TS) and Burst Tolerance Parameter for SCR (tauS) */
tmp = ((qsb_clk * ppe_dev.qsb.tstepc) >> 5) / qos->txtp.scr + 1;
qsb_queue_vbr_parameter_table.bit.ts = tmp > QSB_TP_TS_MAX ? QSB_TP_TS_MAX : tmp;
tmp = (qos->txtp.mbs - 1) * (qsb_queue_vbr_parameter_table.bit.ts - qsb_queue_parameter_table.bit.tp) / 64;
if ( tmp == 0 )
qsb_queue_vbr_parameter_table.bit.taus = 1;
else if ( tmp > QSB_TAUS_MAX )
qsb_queue_vbr_parameter_table.bit.taus = QSB_TAUS_MAX;
else
qsb_queue_vbr_parameter_table.bit.taus = tmp;
}
}
else
{
qsb_queue_vbr_parameter_table.bit.taus = 0;
qsb_queue_vbr_parameter_table.bit.ts = 0;
}
/* Queue Parameter Table (QPT) */
*QSB_RTM = QSB_RTM_DM_SET(QSB_QPT_SET_MASK);
*QSB_RTD = QSB_RTD_TTV_SET(qsb_queue_parameter_table.dword);
*QSB_RAMAC = QSB_RAMAC_RW_SET(QSB_RAMAC_RW_WRITE) | QSB_RAMAC_TSEL_SET(QSB_RAMAC_TSEL_QPT) | QSB_RAMAC_LH_SET(QSB_RAMAC_LH_LOW) | QSB_RAMAC_TESEL_SET(connection);
/* Queue VBR Paramter Table (QVPT) */
*QSB_RTM = QSB_RTM_DM_SET(QSB_QVPT_SET_MASK);
*QSB_RTD = QSB_RTD_TTV_SET(qsb_queue_vbr_parameter_table.dword);
*QSB_RAMAC = QSB_RAMAC_RW_SET(QSB_RAMAC_RW_WRITE) | QSB_RAMAC_TSEL_SET(QSB_RAMAC_TSEL_VBR) | QSB_RAMAC_LH_SET(QSB_RAMAC_LH_LOW) | QSB_RAMAC_TESEL_SET(connection);
}
static inline void u64_add_u32(ppe_u64_t opt1, u32 opt2,ppe_u64_t *ret)
{
ret->l = opt1.l + opt2;
if ( ret->l < opt1.l || ret->l < opt2 )
ret->h++;
}
int find_vcc(struct atm_vcc *vcc)
{
int i;
struct connection *connection = ppe_dev.connection;
int max_connections = ppe_dev.port[(int)vcc->dev->dev_data].max_connections;
u32 occupation_table = ppe_dev.port[(int)vcc->dev->dev_data].connection_table;
int base = ppe_dev.port[(int)vcc->dev->dev_data].connection_base;
for ( i = 0; i < max_connections; i++, base++ )
if ( (occupation_table & (1 << i))
&& connection[base].vcc == vcc )
return base;
return -1;
}
int find_vpi(unsigned int vpi)
{
int i, j;
struct connection *connection = ppe_dev.connection;
struct port *port;
int base;
port = ppe_dev.port;
for ( i = 0; i < ATM_PORT_NUMBER; i++, port++ )
{
base = port->connection_base;
for ( j = 0; j < port->max_connections; j++, base++ )
if ( (port->connection_table & (1 << j))
&& connection[base].vcc != NULL
&& vpi == connection[base].vcc->vpi )
return base;
}
return -1;
}
int find_vpivci(unsigned int vpi, unsigned int vci)
{
int i, j;
struct connection *connection = ppe_dev.connection;
struct port *port;
int base;
port = ppe_dev.port;
for ( i = 0; i < ATM_PORT_NUMBER; i++, port++ )
{
base = port->connection_base;
for ( j = 0; j < port->max_connections; j++, base++ )
if ( (port->connection_table & (1 << j))
&& connection[base].vcc != NULL
&& vpi == connection[base].vcc->vpi
&& vci == connection[base].vcc->vci )
return base;
}
return -1;
}
static inline void clear_htu_entry(unsigned int connection)
{
HTU_ENTRY(connection - QSB_QUEUE_NUMBER_BASE + OAM_HTU_ENTRY_NUMBER)->vld = 0;
}
static inline void set_htu_entry(unsigned int vpi, unsigned int vci, unsigned int connection, int aal5)
{
struct htu_entry htu_entry = { res1: 0x00,
pid: ppe_dev.connection[connection].port & 0x01,
vpi: vpi,
vci: vci,
pti: 0x00,
vld: 0x01};
struct htu_mask htu_mask = { set: 0x03,
pid_mask: 0x02,
vpi_mask: 0x00,
vci_mask: 0x0000,
pti_mask: 0x03, // 0xx, user data
clear: 0x00};
struct htu_result htu_result = {res1: 0x00,
cellid: connection,
res2: 0x00,
type: aal5 ? 0x00 : 0x01,
ven: 0x01,
res3: 0x00,
qid: connection};
*HTU_RESULT(connection - QSB_QUEUE_NUMBER_BASE + OAM_HTU_ENTRY_NUMBER) = htu_result;
*HTU_MASK(connection - QSB_QUEUE_NUMBER_BASE + OAM_HTU_ENTRY_NUMBER) = htu_mask;
*HTU_ENTRY(connection - QSB_QUEUE_NUMBER_BASE + OAM_HTU_ENTRY_NUMBER) = htu_entry;
}
int alloc_tx_connection(int connection)
{
unsigned long sys_flag;
int desc_base;
if ( ppe_dev.dma.tx_desc_alloc_pos[connection] == ppe_dev.dma.tx_desc_release_pos[connection] && ppe_dev.dma.tx_desc_alloc_flag[connection] )
return -1;
/* amend descriptor pointer and allocation number */
local_irq_save(sys_flag);
desc_base = ppe_dev.dma.tx_descriptor_number * (connection - QSB_QUEUE_NUMBER_BASE) + ppe_dev.dma.tx_desc_alloc_pos[connection];
if ( ++ppe_dev.dma.tx_desc_alloc_pos[connection] == ppe_dev.dma.tx_descriptor_number )
ppe_dev.dma.tx_desc_alloc_pos[connection] = 0;
ppe_dev.dma.tx_desc_alloc_flag[connection] = 1;
local_irq_restore(sys_flag);
return desc_base;
}
int ppe_open(struct atm_vcc *vcc)
{
int ret;
struct port *port = &ppe_dev.port[(int)vcc->dev->dev_data];
int conn;
int f_enable_irq = 0;
int i;
printk("%s:%s[%d] removed 2 args from signature\n", __FILE__, __func__, __LINE__);
printk("ppe_open");
if ( vcc->qos.aal != ATM_AAL5 && vcc->qos.aal != ATM_AAL0 )
return -EPROTONOSUPPORT;
down(&ppe_dev.sem);
/* check bandwidth */
if ( (vcc->qos.txtp.traffic_class == ATM_CBR && vcc->qos.txtp.max_pcr > (port->tx_max_cell_rate - port->tx_current_cell_rate))
|| (vcc->qos.txtp.traffic_class == ATM_VBR_RT && vcc->qos.txtp.max_pcr > (port->tx_max_cell_rate - port->tx_current_cell_rate))
|| (vcc->qos.txtp.traffic_class == ATM_VBR_NRT && vcc->qos.txtp.pcr > (port->tx_max_cell_rate - port->tx_current_cell_rate))
|| (vcc->qos.txtp.traffic_class == ATM_UBR_PLUS && vcc->qos.txtp.min_pcr > (port->tx_max_cell_rate - port->tx_current_cell_rate)) )
{
ret = -EINVAL;
goto PPE_OPEN_EXIT;
}
printk("alloc vpi = %d, vci = %d\n", vcc->vpi, vcc->vci);
/* check existing vpi,vci */
conn = find_vpivci(vcc->vpi, vcc->vci);
if ( conn >= 0 )
{
ret = -EADDRINUSE;
goto PPE_OPEN_EXIT;
}
/* check whether it need to enable irq */
for ( i = 0; i < ATM_PORT_NUMBER; i++ )
if ( ppe_dev.port[i].max_connections != 0 && ppe_dev.port[i].connection_table != 0 )
break;
if ( i == ATM_PORT_NUMBER )
f_enable_irq = 1;
/* allocate connection */
for ( i = 0, conn = port->connection_base; i < port->max_connections; i++, conn++ )
if ( !(port->connection_table & (1 << i)) )
{
port->connection_table |= 1 << i;
ppe_dev.connection[conn].vcc = vcc;
break;
}
if ( i == port->max_connections )
{
ret = -EINVAL;
goto PPE_OPEN_EXIT;
}
#if defined(ENABLE_RX_QOS) && ENABLE_RX_QOS
/* assign DMA channel and setup weight value for RX QoS */
switch ( vcc->qos.rxtp.traffic_class )
{
case ATM_CBR:
ppe_dev.connection[conn].rx_dma_channel = RX_DMA_CH_CBR;
break;
case ATM_VBR_RT:
ppe_dev.connection[conn].rx_dma_channel = RX_DMA_CH_VBR_RT;
ppe_dev.dma.rx_default_weight[RX_DMA_CH_VBR_RT] += vcc->qos.rxtp.max_pcr;
ppe_dev.dma.rx_weight[RX_DMA_CH_VBR_RT] += vcc->qos.rxtp.max_pcr;
break;
case ATM_VBR_NRT:
ppe_dev.connection[conn].rx_dma_channel = RX_DMA_CH_VBR_NRT;
ppe_dev.dma.rx_default_weight[RX_DMA_CH_VBR_NRT] += vcc->qos.rxtp.pcr;
ppe_dev.dma.rx_weight[RX_DMA_CH_VBR_NRT] += vcc->qos.rxtp.pcr;
break;
case ATM_ABR:
ppe_dev.connection[conn].rx_dma_channel = RX_DMA_CH_AVR;
ppe_dev.dma.rx_default_weight[RX_DMA_CH_AVR] += vcc->qos.rxtp.min_pcr;
ppe_dev.dma.rx_weight[RX_DMA_CH_AVR] += vcc->qos.rxtp.min_pcr;
break;
case ATM_UBR_PLUS:
default:
ppe_dev.connection[conn].rx_dma_channel = RX_DMA_CH_UBR;
break;
}
/* update RX queue configuration table */
WRX_QUEUE_CONFIG(conn)->dmach = ppe_dev.connection[conn].rx_dma_channel;
printk("ppe_open: QID %d, DMA %d\n", conn, WRX_QUEUE_CONFIG(conn)->dmach);
printk("conn = %d, dmach = %d", conn, WRX_QUEUE_CONFIG(conn)->dmach);
#endif // defined(ENABLE_RX_QOS) && ENABLE_RX_QOS
/* reserve bandwidth */
switch ( vcc->qos.txtp.traffic_class )
{
case ATM_CBR:
case ATM_VBR_RT:
port->tx_current_cell_rate += vcc->qos.txtp.max_pcr;
break;
case ATM_VBR_NRT:
port->tx_current_cell_rate += vcc->qos.txtp.pcr;
break;
case ATM_UBR_PLUS:
port->tx_current_cell_rate += vcc->qos.txtp.min_pcr;
break;
}
/* set qsb */
set_qsb(vcc, &vcc->qos, conn);
/* update atm_vcc structure */
vcc->itf = (int)vcc->dev->dev_data;
set_bit(ATM_VF_READY, &vcc->flags);
/* enable irq */
printk("ppe_open: enable_irq\n");
if ( f_enable_irq )
enable_irq(IFXMIPS_PPE_MBOX_INT);
/* enable mailbox */
*MBOX_IGU1_ISRC = (1 << conn) | (1 << (conn + 16));
*MBOX_IGU1_IER |= (1 << conn) | (1 << (conn + 16));
*MBOX_IGU3_ISRC = (1 << conn) | (1 << (conn + 16));
*MBOX_IGU3_IER |= (1 << conn) | (1 << (conn + 16));
/* set htu entry */
set_htu_entry(vcc->vpi, vcc->vci, conn, vcc->qos.aal == ATM_AAL5 ? 1 : 0);
ret = 0;
printk("ppe_open(%d.%d): conn = %d, ppe_dev.dma = %08X\n", vcc->vpi, vcc->vci, conn, (u32)&ppe_dev.dma.rx_descriptor_number);
PPE_OPEN_EXIT:
up(&ppe_dev.sem);
printk("open ATM itf = %d, vpi = %d, vci = %d, ret = %d", (int)vcc->dev->dev_data, (int)vcc->vpi, vcc->vci, ret);
return ret;
}
void ppe_close(struct atm_vcc *vcc)
{
int conn;
struct port *port;
struct connection *connection;
int i;
if ( vcc == NULL )
return;
down(&ppe_dev.sem);
/* get connection id */
conn = find_vcc(vcc);
if ( conn < 0 )
{
printk("can't find vcc\n");
goto PPE_CLOSE_EXIT;
}
if(!((Atm_Priv *)vcc)->on)
goto PPE_CLOSE_EXIT;
connection = &ppe_dev.connection[conn];
port = &ppe_dev.port[connection->port];
/* clear htu */
clear_htu_entry(conn);
/* release connection */
port->connection_table &= ~(1 << (conn - port->connection_base));
connection->vcc = NULL;
connection->access_time.tv_sec = 0;
connection->access_time.tv_nsec = 0;
connection->aal5_vcc_crc_err = 0;
connection->aal5_vcc_oversize_sdu = 0;
/* disable irq */
for ( i = 0; i < ATM_PORT_NUMBER; i++ )
if ( ppe_dev.port[i].max_connections != 0 && ppe_dev.port[i].connection_table != 0 )
break;
if ( i == ATM_PORT_NUMBER )
disable_irq(IFXMIPS_PPE_MBOX_INT);
*MBOX_IGU1_ISRC = (1 << conn) | (1 << (conn + 16));
#if defined(ENABLE_RX_QOS) && ENABLE_RX_QOS
/* remove weight value from RX DMA channel */
switch ( vcc->qos.rxtp.traffic_class )
{
case ATM_VBR_RT:
ppe_dev.dma.rx_default_weight[RX_DMA_CH_VBR_RT] -= vcc->qos.rxtp.max_pcr;
if ( ppe_dev.dma.rx_weight[RX_DMA_CH_VBR_RT] > ppe_dev.dma.rx_default_weight[RX_DMA_CH_VBR_RT] )
ppe_dev.dma.rx_weight[RX_DMA_CH_VBR_RT] = ppe_dev.dma.rx_default_weight[RX_DMA_CH_VBR_RT];
break;
case ATM_VBR_NRT:
ppe_dev.dma.rx_default_weight[RX_DMA_CH_VBR_NRT] -= vcc->qos.rxtp.pcr;
if ( ppe_dev.dma.rx_weight[RX_DMA_CH_VBR_NRT] > ppe_dev.dma.rx_default_weight[RX_DMA_CH_VBR_NRT] )
ppe_dev.dma.rx_weight[RX_DMA_CH_VBR_NRT] = ppe_dev.dma.rx_default_weight[RX_DMA_CH_VBR_NRT];
break;
case ATM_ABR:
ppe_dev.dma.rx_default_weight[RX_DMA_CH_AVR] -= vcc->qos.rxtp.min_pcr;
if ( ppe_dev.dma.rx_weight[RX_DMA_CH_AVR] > ppe_dev.dma.rx_default_weight[RX_DMA_CH_AVR] )
ppe_dev.dma.rx_weight[RX_DMA_CH_AVR] = ppe_dev.dma.rx_default_weight[RX_DMA_CH_AVR];
break;
case ATM_CBR:
case ATM_UBR_PLUS:
default:
break;
}
#endif // defined(ENABLE_RX_QOS) && ENABLE_RX_QOS
/* release bandwidth */
switch ( vcc->qos.txtp.traffic_class )
{
case ATM_CBR:
case ATM_VBR_RT:
port->tx_current_cell_rate -= vcc->qos.txtp.max_pcr;
break;
case ATM_VBR_NRT:
port->tx_current_cell_rate -= vcc->qos.txtp.pcr;
break;
case ATM_UBR_PLUS:
port->tx_current_cell_rate -= vcc->qos.txtp.min_pcr;
break;
}
/* idle for a while to let parallel operation finish */
for ( i = 0; i < IDLE_CYCLE_NUMBER; i++ );
((Atm_Priv *)vcc)->on = 0;
PPE_CLOSE_EXIT:
up(&ppe_dev.sem);
}
int ppe_ioctl(struct atm_dev *dev, unsigned int cmd, void *arg)
{
return -ENOTTY;
}
int ppe_send(struct atm_vcc *vcc, struct sk_buff *skb)
{
int ret;
int conn;
int desc_base;
register struct tx_descriptor reg_desc;
struct tx_descriptor *desc;
printk("ppe_send");
printk("ppe_send\n");
printk("skb->users = %d\n", skb->users.counter);
if ( vcc == NULL || skb == NULL )
return -EINVAL;
// down(&ppe_dev.sem);
ATM_SKB(skb)->vcc = vcc;
conn = find_vcc(vcc);
// if ( conn != 1 )
printk("ppe_send: conn = %d\n", conn);
if ( conn < 0 )
{
ret = -EINVAL;
goto FIND_VCC_FAIL;
}
printk("find_vcc");
if ( vcc->qos.aal == ATM_AAL5 )
{
int byteoff;
int datalen;
struct tx_inband_header *header;
/* allocate descriptor */
desc_base = alloc_tx_connection(conn);
if ( desc_base < 0 )
{
ret = -EIO;
//goto ALLOC_TX_CONNECTION_FAIL;
}
desc = &ppe_dev.dma.tx_descriptor_base[desc_base];
/* load descriptor from memory */
reg_desc = *desc;
datalen = skb->len;
byteoff = (u32)skb->data & (DMA_ALIGNMENT - 1);
if ( skb_headroom(skb) < byteoff + TX_INBAND_HEADER_LENGTH )
{
struct sk_buff *new_skb;
printk("skb_headroom(skb) < byteoff + TX_INBAND_HEADER_LENGTH");
printk("skb_headroom(skb 0x%08X, skb->data 0x%08X) (%d) < byteoff (%d) + TX_INBAND_HEADER_LENGTH (%d)\n", (u32)skb, (u32)skb->data, skb_headroom(skb), byteoff, TX_INBAND_HEADER_LENGTH);
new_skb = alloc_skb_tx(datalen);
if ( new_skb == NULL )
{
printk("alloc_skb_tx: fail\n");
ret = -ENOMEM;
goto ALLOC_SKB_TX_FAIL;
}
ATM_SKB(new_skb)->vcc = NULL;
skb_put(new_skb, datalen);
memcpy(new_skb->data, skb->data, datalen);
atm_free_tx_skb_vcc(skb);
skb = new_skb;
byteoff = (u32)skb->data & (DMA_ALIGNMENT - 1);
}
else
{
printk("skb_headroom(skb) >= byteoff + TX_INBAND_HEADER_LENGTH");
}
printk("before skb_push, skb->data = 0x%08X", (u32)skb->data);
skb_push(skb, byteoff + TX_INBAND_HEADER_LENGTH);
printk("after skb_push, skb->data = 0x%08X", (u32)skb->data);
header = (struct tx_inband_header *)(u32)skb->data;
printk("header = 0x%08X", (u32)header);
/* setup inband trailer */
header->uu = 0;
header->cpi = 0;
header->pad = ppe_dev.aal5.padding_byte;
header->res1 = 0;
/* setup cell header */
header->clp = (vcc->atm_options & ATM_ATMOPT_CLP) ? 1 : 0;
header->pti = ATM_PTI_US0;
header->vci = vcc->vci;
header->vpi = vcc->vpi;
header->gfc = 0;
/* setup descriptor */
reg_desc.dataptr = (u32)skb->data >> 2;
reg_desc.datalen = datalen;
reg_desc.byteoff = byteoff;
reg_desc.iscell = 0;
printk("setup header, datalen = %d, byteoff = %d", reg_desc.datalen, reg_desc.byteoff);
UPDATE_VCC_STAT(conn, tx_pdu, 1);
if ( vcc->stats )
atomic_inc(&vcc->stats->tx);
}
else
{
/* allocate descriptor */
desc_base = alloc_tx_connection(conn);
if ( desc_base < 0 )
{
ret = -EIO;
goto ALLOC_TX_CONNECTION_FAIL;
}
desc = &ppe_dev.dma.tx_descriptor_base[desc_base];
/* load descriptor from memory */
reg_desc = *desc;
/* if data pointer is not aligned, allocate new sk_buff */
if ( ((u32)skb->data & (DMA_ALIGNMENT - 1)) )
{
struct sk_buff *new_skb;
printk("skb->data not aligned\n");
new_skb = alloc_skb_tx(skb->len);
if ( new_skb == NULL )
{
ret = -ENOMEM;
goto ALLOC_SKB_TX_FAIL;
}
ATM_SKB(new_skb)->vcc = NULL;
skb_put(new_skb, skb->len);
memcpy(new_skb->data, skb->data, skb->len);
atm_free_tx_skb_vcc(skb);
skb = new_skb;
}
reg_desc.dataptr = (u32)skb->data >> 2;
reg_desc.datalen = skb->len;
reg_desc.byteoff = 0;
reg_desc.iscell = 1;
if ( vcc->stats )
atomic_inc(&vcc->stats->tx);
}
reg_desc.own = 1;
reg_desc.c = 1;
printk("update descriptor send pointer, desc = 0x%08X", (u32)desc);
ppe_dev.dma.tx_skb_pointers[desc_base] = skb;
*desc = reg_desc;
dma_cache_wback((unsigned long)skb->data, skb->len);
mailbox_signal(conn, 1);
printk("ppe_send: success");
// up(&ppe_dev.sem);
return 0;
FIND_VCC_FAIL:
printk("FIND_VCC_FAIL\n");
// up(&ppe_dev.sem);
ppe_dev.mib.wtx_err_pdu++;
atm_free_tx_skb_vcc(skb);
return ret;
ALLOC_SKB_TX_FAIL:
printk("ALLOC_SKB_TX_FAIL\n");
// up(&ppe_dev.sem);
if ( vcc->qos.aal == ATM_AAL5 )
{
UPDATE_VCC_STAT(conn, tx_err_pdu, 1);
ppe_dev.mib.wtx_err_pdu++;
}
if ( vcc->stats )
atomic_inc(&vcc->stats->tx_err);
atm_free_tx_skb_vcc(skb);
return ret;
ALLOC_TX_CONNECTION_FAIL:
printk("ALLOC_TX_CONNECTION_FAIL\n");
// up(&ppe_dev.sem);
if ( vcc->qos.aal == ATM_AAL5 )
{
UPDATE_VCC_STAT(conn, tx_sw_drop_pdu, 1);
ppe_dev.mib.wtx_drop_pdu++;
}
if ( vcc->stats )
atomic_inc(&vcc->stats->tx_err);
atm_free_tx_skb_vcc(skb);
return ret;
}
int ppe_send_oam(struct atm_vcc *vcc, void *cell, int flags)
{
int conn;
struct uni_cell_header *uni_cell_header = (struct uni_cell_header *)cell;
int desc_base;
struct sk_buff *skb;
register struct tx_descriptor reg_desc;
struct tx_descriptor *desc;
printk("ppe_send_oam");
if ( ((uni_cell_header->pti == ATM_PTI_SEGF5 || uni_cell_header->pti == ATM_PTI_E2EF5)
&& find_vpivci(uni_cell_header->vpi, uni_cell_header->vci) < 0)
|| ((uni_cell_header->vci == 0x03 || uni_cell_header->vci == 0x04)
&& find_vpi(uni_cell_header->vpi) < 0) )
return -EINVAL;
#if OAM_TX_QUEUE_NUMBER_PER_PORT != 0
/* get queue ID of OAM TX queue, and the TX DMA channel ID is the same as queue ID */
conn = ppe_dev.port[(int)vcc->dev->dev_data].oam_tx_queue;
#else
/* find queue ID */
conn = find_vcc(vcc);
if ( conn < 0 )
{
printk("OAM not find queue\n");
// up(&ppe_dev.sem);
return -EINVAL;
}
#endif // OAM_TX_QUEUE_NUMBER_PER_PORT != 0
/* allocate descriptor */
desc_base = alloc_tx_connection(conn);
if ( desc_base < 0 )
{
printk("OAM not alloc tx connection\n");
// up(&ppe_dev.sem);
return -EIO;
}
desc = &ppe_dev.dma.tx_descriptor_base[desc_base];
/* load descriptor from memory */
reg_desc = *(struct tx_descriptor *)desc;
/* allocate sk_buff */
skb = alloc_skb_tx(CELL_SIZE);
if ( skb == NULL )
{
// up(&ppe_dev.sem);
return -ENOMEM;
}
#if OAM_TX_QUEUE_NUMBER_PER_PORT != 0
ATM_SKB(skb)->vcc = NULL;
#else
ATM_SKB(skb)->vcc = vcc;
#endif // OAM_TX_QUEUE_NUMBER_PER_PORT != 0
/* copy data */
skb_put(skb, CELL_SIZE);
memcpy(skb->data, cell, CELL_SIZE);
/* setup descriptor */
reg_desc.dataptr = (u32)skb->data >> 2;
reg_desc.datalen = CELL_SIZE;
reg_desc.byteoff = 0;
reg_desc.iscell = 1;
reg_desc.own = 1;
reg_desc.c = 1;
/* update descriptor send pointer */
ppe_dev.dma.tx_skb_pointers[desc_base] = skb;
/* write discriptor to memory and write back cache */
*(struct tx_descriptor *)desc = reg_desc;
dma_cache_wback((unsigned long)skb->data, skb->len);
/* signal PPE */
mailbox_signal(conn, 1);
return 0;
}
int ppe_change_qos(struct atm_vcc *vcc, struct atm_qos *qos, int flags)
{
int conn;
printk("%s:%s[%d]\n", __FILE__, __func__, __LINE__);
if(vcc == NULL || qos == NULL )
return -EINVAL;
conn = find_vcc(vcc);
if ( conn < 0 )
return -EINVAL;
set_qsb(vcc, qos, conn);
return 0;
}
static inline void init_chip(void)
{
/* enable PPE module in PMU */
*(unsigned long *)0xBF10201C &= ~((1 << 15) | (1 << 13) | (1 << 9));
*EMA_CMDCFG = (EMA_CMD_BUF_LEN << 16) | (EMA_CMD_BASE_ADDR >> 2);
*EMA_DATACFG = (EMA_DATA_BUF_LEN << 16) | (EMA_DATA_BASE_ADDR >> 2);
*EMA_IER = 0x000000FF;
*EMA_CFG = EMA_READ_BURST | (EMA_WRITE_BURST << 2);
/* enable mailbox */
*MBOX_IGU1_ISRC = 0xFFFFFFFF;
*MBOX_IGU1_IER = 0x00000000;
*MBOX_IGU3_ISRC = 0xFFFFFFFF;
*MBOX_IGU3_IER = 0x00000000;
}
int pp32_download_code(u32 *code_src, unsigned int code_dword_len, u32 *data_src, unsigned int data_dword_len)
{
u32 reg_old_value;
volatile u32 *dest;
if ( code_src == 0 || ((unsigned long)code_src & 0x03) != 0
|| data_src == 0 || ((unsigned long)data_src & 0x03) )
return -EINVAL;
/* save the old value of CDM_CFG and set PPE code memory to FPI bus access mode */
reg_old_value = *CDM_CFG;
if ( code_dword_len <= 4096 )
*CDM_CFG = CDM_CFG_RAM1_SET(0x00) | CDM_CFG_RAM0_SET(0x00);
else
*CDM_CFG = CDM_CFG_RAM1_SET(0x01) | CDM_CFG_RAM0_SET(0x00);
/* copy code */
dest = CDM_CODE_MEMORY_RAM0_ADDR(0);
while ( code_dword_len-- > 0 )
*dest++ = *code_src++;
/* copy data */
dest = PP32_DATA_MEMORY_RAM1_ADDR(0);
while ( data_dword_len-- > 0 )
*dest++ = *data_src++;
return 0;
}
int pp32_start(void)
{
int ret;
register int i;
init_chip();
/* download firmware */
ret = pp32_download_code(firmware_binary_code, sizeof(firmware_binary_code) / sizeof(*firmware_binary_code), firmware_binary_data, sizeof(firmware_binary_data) / sizeof(*firmware_binary_data));
if ( ret )
return ret;
/* run PP32 */
*PP32_DBG_CTRL = DBG_CTRL_START_SET(1);
/* idle for a while to let PP32 init itself */
for ( i = 0; i < IDLE_CYCLE_NUMBER; i++ );
return 0;
}
void pp32_stop(void)
{
/* halt PP32 */
*PP32_DBG_CTRL = DBG_CTRL_STOP_SET(1);
}