openwrt/package/network/services/hostapd/patches/061-0005-SAE-Minimize-timing-differences-in-PWE-derivation.patch
Stefan Lippers-Hollmann af606d077f hostapd: fix CVE-2019-9494
SAE side-channel attacks

Published: April 10, 2019
Identifiers:
- VU#871675
- CVE-2019-9494 (cache attack against SAE)
Latest version available from: https://w1.fi/security/2019-1/

Vulnerability

Number of potential side channel attacks were discovered in the SAE
implementations used by both hostapd (AP) and wpa_supplicant
(infrastructure BSS station/mesh station). SAE (Simultaneous
Authentication of Equals) is also known as WPA3-Personal. The discovered
side channel attacks may be able to leak information about the used
password based on observable timing differences and cache access
patterns. This might result in full password recovery when combined with
an offline dictionary attack and if the password is not strong enough to
protect against dictionary attacks.

Cache attack

A novel cache-based attack against SAE handshake was discovered. This
attack targets SAE with ECC groups. ECC group 19 being the mandatory
group to support and the most likely used group for SAE today, so this
attack applies to the most common SAE use case. Even though the PWE
derivation iteration in SAE has protections against timing attacks, this
new cache-based attack enables an attacker to determine which code
branch is taken in the iteration if the attacker is able to run
unprivileged code on the victim machine (e.g., an app installed on a
smart phone or potentially a JavaScript code on a web site loaded by a
web browser). This depends on the used CPU not providing sufficient
protection to prevent unprivileged applications from observing memory
access patterns through the shared cache (which is the most likely case
with today's designs).

The attacker can use information about the selected branch to learn
information about the password and combine this information from number
of handshake instances with an offline dictionary attack. With
sufficient number of handshakes and sufficiently weak password, this
might result in full discovery of the used password.

This attack requires the attacker to be able to run a program on the
target device. This is not commonly the case on access points, so the
most likely target for this would be a client device using SAE in an
infrastructure BSS or mesh BSS.

The commits listed in the end of this advisory change the SAE
implementation shared by hostapd and wpa_supplicant to perform the PWE
derivation loop using operations that use constant time and memory
access pattern to minimize the externally observable differences from
operations that depend on the password even for the case where the
attacker might be able to run unprivileged code on the same device.

Timing attack

The timing attack applies to the MODP groups 22, 23, and 24 where the
PWE generation algorithm defined for SAE can have sufficient timing
differences for an attacker to be able to determine how many rounds were
needed to find the PWE based on the used password and MAC
addresses. When the attack is repeated with multiple times, the attacker
may be able to gather enough information about the password to be able
to recover it fully using an offline dictionary attack if the password
is not strong enough to protect against dictionary attacks. This attack
could be performed by an attacker in radio range of an access point or a
station enabling the specific MODP groups.

This timing attack requires the applicable MODP groups to be enabled
explicitly in hostapd/wpa_supplicant configuration (sae_groups
parameter). All versions of hostapd/wpa_supplicant have disabled these
groups by default.

While this security advisory lists couple of commits introducing
additional protection for MODP groups in SAE, it should be noted that
the groups 22, 23, and 24 are not considered strong enough to meet the
current expectation for a secure system. As such, their use is
discouraged even if the additional protection mechanisms in the
implementation are included.

Vulnerable versions/configurations

All wpa_supplicant and hostapd versions with SAE support (CONFIG_SAE=y
in the build configuration and SAE being enabled in the runtime
configuration).

Acknowledgments

Thanks to Mathy Vanhoef (New York University Abu Dhabi) and Eyal Ronen
(Tel Aviv University) for discovering the issues and for discussions on
how to address them.

Possible mitigation steps

- Merge the following commits to wpa_supplicant/hostapd and rebuild:

  OpenSSL: Use constant time operations for private bignums
  Add helper functions for constant time operations
  OpenSSL: Use constant time selection for crypto_bignum_legendre()
  SAE: Minimize timing differences in PWE derivation
  SAE: Avoid branches in is_quadratic_residue_blind()
  SAE: Mask timing of MODP groups 22, 23, 24
  SAE: Use const_time selection for PWE in FFC
  SAE: Use constant time operations in sae_test_pwd_seed_ffc()

  These patches are available from https://w1.fi/security/2019-1/

- Update to wpa_supplicant/hostapd v2.8 or newer, once available

- In addition to either of the above alternatives, disable MODP groups
  1, 2, 5, 22, 23, and 24 by removing them from hostapd/wpa_supplicant
  sae_groups runtime configuration parameter, if they were explicitly
  enabled since those groups are not considered strong enough to meet
  current security expectations. The groups 22, 23, and 24 are related
  to the discovered side channel (timing) attack. The other groups in
  the list are consider too weak to provide sufficient security. Note
  that all these groups have been disabled by default in all
  hostapd/wpa_supplicant versions and these would be used only if
  explicitly enabled in the configuration.

- Use strong passwords to prevent dictionary attacks

Signed-off-by: Stefan Lippers-Hollmann <s.l-h@gmx.de>
[bump PKG_RELEASE]
Signed-off-by: Jo-Philipp Wich <jo@mein.io>
2019-04-11 11:26:01 +02:00

243 lines
7.2 KiB
Diff

From 6513db3e96c43c2e36805cf5ead349765d18eaf7 Mon Sep 17 00:00:00 2001
From: Jouni Malinen <jouni@codeaurora.org>
Date: Tue, 26 Feb 2019 13:05:09 +0200
Subject: [PATCH 05/14] SAE: Minimize timing differences in PWE derivation
The QR test result can provide information about the password to an
attacker, so try to minimize differences in how the
sae_test_pwd_seed_ecc() result is used. (CVE-2019-9494)
Use heap memory for the dummy password to allow the same password length
to be used even with long passwords.
Use constant time selection functions to track the real vs. dummy
variables so that the exact same operations can be performed for both QR
test results.
Signed-off-by: Jouni Malinen <jouni@codeaurora.org>
---
src/common/sae.c | 106 ++++++++++++++++++++++++++++++-------------------------
1 file changed, 57 insertions(+), 49 deletions(-)
--- a/src/common/sae.c
+++ b/src/common/sae.c
@@ -9,6 +9,7 @@
#include "includes.h"
#include "common.h"
+#include "utils/const_time.h"
#include "crypto/crypto.h"
#include "crypto/sha256.h"
#include "crypto/random.h"
@@ -269,15 +270,12 @@ static int sae_test_pwd_seed_ecc(struct
const u8 *prime,
const struct crypto_bignum *qr,
const struct crypto_bignum *qnr,
- struct crypto_bignum **ret_x_cand)
+ u8 *pwd_value)
{
- u8 pwd_value[SAE_MAX_ECC_PRIME_LEN];
struct crypto_bignum *y_sqr, *x_cand;
int res;
size_t bits;
- *ret_x_cand = NULL;
-
wpa_hexdump_key(MSG_DEBUG, "SAE: pwd-seed", pwd_seed, SHA256_MAC_LEN);
/* pwd-value = KDF-z(pwd-seed, "SAE Hunting and Pecking", p) */
@@ -286,7 +284,7 @@ static int sae_test_pwd_seed_ecc(struct
prime, sae->tmp->prime_len, pwd_value, bits) < 0)
return -1;
if (bits % 8)
- buf_shift_right(pwd_value, sizeof(pwd_value), 8 - bits % 8);
+ buf_shift_right(pwd_value, sae->tmp->prime_len, 8 - bits % 8);
wpa_hexdump_key(MSG_DEBUG, "SAE: pwd-value",
pwd_value, sae->tmp->prime_len);
@@ -297,20 +295,13 @@ static int sae_test_pwd_seed_ecc(struct
if (!x_cand)
return -1;
y_sqr = crypto_ec_point_compute_y_sqr(sae->tmp->ec, x_cand);
- if (!y_sqr) {
- crypto_bignum_deinit(x_cand, 1);
+ crypto_bignum_deinit(x_cand, 1);
+ if (!y_sqr)
return -1;
- }
res = is_quadratic_residue_blind(sae, prime, bits, qr, qnr, y_sqr);
crypto_bignum_deinit(y_sqr, 1);
- if (res <= 0) {
- crypto_bignum_deinit(x_cand, 1);
- return res;
- }
-
- *ret_x_cand = x_cand;
- return 1;
+ return res;
}
@@ -431,25 +422,30 @@ static int sae_derive_pwe_ecc(struct sae
const u8 *addr[3];
size_t len[3];
size_t num_elem;
- u8 dummy_password[32];
- size_t dummy_password_len;
+ u8 *dummy_password, *tmp_password;
int pwd_seed_odd = 0;
u8 prime[SAE_MAX_ECC_PRIME_LEN];
size_t prime_len;
- struct crypto_bignum *x = NULL, *qr, *qnr;
+ struct crypto_bignum *x = NULL, *qr = NULL, *qnr = NULL;
+ u8 x_bin[SAE_MAX_ECC_PRIME_LEN];
+ u8 x_cand_bin[SAE_MAX_ECC_PRIME_LEN];
size_t bits;
- int res;
-
- dummy_password_len = password_len;
- if (dummy_password_len > sizeof(dummy_password))
- dummy_password_len = sizeof(dummy_password);
- if (random_get_bytes(dummy_password, dummy_password_len) < 0)
- return -1;
+ int res = -1;
+ u8 found = 0; /* 0 (false) or 0xff (true) to be used as const_time_*
+ * mask */
+
+ os_memset(x_bin, 0, sizeof(x_bin));
+
+ dummy_password = os_malloc(password_len);
+ tmp_password = os_malloc(password_len);
+ if (!dummy_password || !tmp_password ||
+ random_get_bytes(dummy_password, password_len) < 0)
+ goto fail;
prime_len = sae->tmp->prime_len;
if (crypto_bignum_to_bin(sae->tmp->prime, prime, sizeof(prime),
prime_len) < 0)
- return -1;
+ goto fail;
bits = crypto_ec_prime_len_bits(sae->tmp->ec);
/*
@@ -458,7 +454,7 @@ static int sae_derive_pwe_ecc(struct sae
*/
if (get_random_qr_qnr(prime, prime_len, sae->tmp->prime, bits,
&qr, &qnr) < 0)
- return -1;
+ goto fail;
wpa_hexdump_ascii_key(MSG_DEBUG, "SAE: password",
password, password_len);
@@ -474,7 +470,7 @@ static int sae_derive_pwe_ecc(struct sae
*/
sae_pwd_seed_key(addr1, addr2, addrs);
- addr[0] = password;
+ addr[0] = tmp_password;
len[0] = password_len;
num_elem = 1;
if (identifier) {
@@ -491,9 +487,8 @@ static int sae_derive_pwe_ecc(struct sae
* attacks that attempt to determine the number of iterations required
* in the loop.
*/
- for (counter = 1; counter <= k || !x; counter++) {
+ for (counter = 1; counter <= k || !found; counter++) {
u8 pwd_seed[SHA256_MAC_LEN];
- struct crypto_bignum *x_cand;
if (counter > 200) {
/* This should not happen in practice */
@@ -501,40 +496,49 @@ static int sae_derive_pwe_ecc(struct sae
break;
}
- wpa_printf(MSG_DEBUG, "SAE: counter = %u", counter);
+ wpa_printf(MSG_DEBUG, "SAE: counter = %03u", counter);
+ const_time_select_bin(found, dummy_password, password,
+ password_len, tmp_password);
if (hmac_sha256_vector(addrs, sizeof(addrs), num_elem,
addr, len, pwd_seed) < 0)
break;
res = sae_test_pwd_seed_ecc(sae, pwd_seed,
- prime, qr, qnr, &x_cand);
+ prime, qr, qnr, x_cand_bin);
+ const_time_select_bin(found, x_bin, x_cand_bin, prime_len,
+ x_bin);
+ pwd_seed_odd = const_time_select_u8(
+ found, pwd_seed_odd,
+ pwd_seed[SHA256_MAC_LEN - 1] & 0x01);
+ os_memset(pwd_seed, 0, sizeof(pwd_seed));
if (res < 0)
goto fail;
- if (res > 0 && !x) {
- wpa_printf(MSG_DEBUG,
- "SAE: Selected pwd-seed with counter %u",
- counter);
- x = x_cand;
- pwd_seed_odd = pwd_seed[SHA256_MAC_LEN - 1] & 0x01;
- os_memset(pwd_seed, 0, sizeof(pwd_seed));
-
- /*
- * Use a dummy password for the following rounds, if
- * any.
- */
- addr[0] = dummy_password;
- len[0] = dummy_password_len;
- } else if (res > 0) {
- crypto_bignum_deinit(x_cand, 1);
- }
+ /* Need to minimize differences in handling res == 0 and 1 here
+ * to avoid differences in timing and instruction cache access,
+ * so use const_time_select_*() to make local copies of the
+ * values based on whether this loop iteration was the one that
+ * found the pwd-seed/x. */
+
+ /* found is 0 or 0xff here and res is 0 or 1. Bitwise OR of them
+ * (with res converted to 0/0xff) handles this in constant time.
+ */
+ found |= res * 0xff;
+ wpa_printf(MSG_DEBUG, "SAE: pwd-seed result %d found=0x%02x",
+ res, found);
}
- if (!x) {
+ if (!found) {
wpa_printf(MSG_DEBUG, "SAE: Could not generate PWE");
res = -1;
goto fail;
}
+ x = crypto_bignum_init_set(x_bin, prime_len);
+ if (!x) {
+ res = -1;
+ goto fail;
+ }
+
if (!sae->tmp->pwe_ecc)
sae->tmp->pwe_ecc = crypto_ec_point_init(sae->tmp->ec);
if (!sae->tmp->pwe_ecc)
@@ -543,7 +547,6 @@ static int sae_derive_pwe_ecc(struct sae
res = crypto_ec_point_solve_y_coord(sae->tmp->ec,
sae->tmp->pwe_ecc, x,
pwd_seed_odd);
- crypto_bignum_deinit(x, 1);
if (res < 0) {
/*
* This should not happen since we already checked that there
@@ -555,6 +558,11 @@ static int sae_derive_pwe_ecc(struct sae
fail:
crypto_bignum_deinit(qr, 0);
crypto_bignum_deinit(qnr, 0);
+ os_free(dummy_password);
+ bin_clear_free(tmp_password, password_len);
+ crypto_bignum_deinit(x, 1);
+ os_memset(x_bin, 0, sizeof(x_bin));
+ os_memset(x_cand_bin, 0, sizeof(x_cand_bin));
return res;
}