Roland Reinl b3ce08e0b6 mediatek: filogic: Add support for D-Link AQUILA PRO AI M60
Specification:
 - MT7986 CPU using 2.4GHz and 5GHz WiFi (both AX)
 - MT7531 switch
 - 512MB RAM
 - 128MB NAND flash (MX35LF1GE4AB-Z4I) with two UBI partitions with identical size
 - 1 multi color LED (red, green, blue, white) connected via GCA230718 (Same as D-Link M30 A1)
 - 3 buttons (WPS, reset, LED on/off)
 - 1x 2.5 Gbit WAN port with Maxlinear GPY211C
 - 4x 1 Gbit LAN ports

Disassembly:
 - There are five screws at the bottom: 2 under the rubber feet, 3 under the label.
 - After removing the screws, the white plastic part can be shifted out of the blue part.
 - Be careful because the antennas are mounted on the side and the top of the white part.

Serial Interface
 - The serial interface can be connected to the 4 pin holes next to/under the antenna cables.
 - Note that there is another set of 4 pin holes on the side of the board, it's not used.
 - Pins (from front to rear):
   - 3.3V (do not connect)
   - TX
   - RX
   - GND
 - Settings: 115200, 8N1

MAC addresses:
 - MAC address is stored in partition "Odm" at offset 0x81 (for example XX:XX:XX:XX:XX:52)
 - MAC address on the device label is ODM + 1 (for example XX:XX:XX:XX:XX:53)
 - WAN MAC is the one from the ODM partition (for example XX:XX:XX:XX:XX:52)
 - LAN MAC is the one from the ODM partition + 1 (for example XX:XX:XX:XX:XX:53)
 - WLAN MAC (2.4 GHz) is the one from the ODM partition + 2 (for example (XX:XX:XX:XX:XX:54)
 - WLAN MAC (5 GHz) is the one from the ODM partition + 5 (for example (XX:XX:XX:XX:XX:57)

Flashing via OEM web interface:
 - Currently not supported because image crypto is not known

Flashing via recovery web interface:
 - This is only working if the first partition is active because recovery images are always flashed to the active partition and OpenWrt can only be executed from the first partition
 - Use a Chromium based browser, otherwise firmware upgrade might not work
 - Recovery web interface is accessible via 192.168.200.1 after keeping the reset button pressed during start of the device until the LED blinks red
 - Upload the recovery image, this will take some time. LED will continue flashing red during the update process
 - The after flashing, the recovery web interface redirects to http://192.168.0.1. This can be ignored. OpenWrt is accessible via 192.168.1.1 after flashing
 - If the first partition isn't the active partition, OpenWrt will hang during the boot process. In this case:
   - Download the recovery image from https://github.com/RolandoMagico/openwrt/releases/tag/M60-Recovery-UBI-Switch (UBI switch image)
   - Enable recovery web interface again and load the UBI switch image. This image works on the second partition of the M60
   - OpenWrt should boot now as expected. After booting, flash the normal OpenWrt sysupgrade image (for example in the OpenWrt web interface)
   - Flashing a sysupgrade image from the UBI switch image will make the first partition the active partition and from now on, default OpenWrt images can be used

Flashing via Initramfs:
- Before switching to OpenWrt, ensure that both partitions contain OEM firmware.
  - This can be achieved by re-flashing the same OEM firmware version again via the OEM web interface.
  - Flashing via OEM web interface will automatically flash the currently not active partition.
- Open router, connect serial interface
- Start a TFTP server at 192.168.200.2 and provide the initramfs image there
- When starting the router, select "7. Load Image" in U-Boot
- Settings for load address, load method can be kept as they are
- Specify host and router IP address if you use different ones than the default (Router 192.168.200.1, TFTP server 192.168.200.2)
- Enter the file name of the initramfs image
- Confirm "Run loaded data now?" question after loading the image with "Y"
- OpenWrt initramfs will start now
- Before flashing OpenWrt, create a backup of the "ubi" partition. It is required when reverting back to OEM
- Flash sysupgrade image to flash, during flashing the U-Boot variable sw_tryactive will be set to 0
  - During next boot, U-Boot tries to boot from the ubi partition. If it fails, it will switch to the ubi1 partition

Reverting back to OEM:
- Boot the initramfs image as described in "Flashing via Initramfs" above
- Copy the backed up ubi partition to /tmp (e.g. by using SCP)
- Write the backup to the UBI partition: mtd write /tmp/OpenWrt.mtd4.ubi.bin /dev/mtd4
- Reboot the device, OEM firmware will start now

Signed-off-by: Roland Reinl <reinlroland+github@gmail.com>
Link: https://github.com/openwrt/openwrt/pull/17296
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
2024-12-23 23:23:18 +01:00
2024-11-24 22:51:14 +01:00
2024-12-10 21:14:48 +01:00
2024-05-17 22:03:06 +03:00

OpenWrt logo

OpenWrt Project is a Linux operating system targeting embedded devices. Instead of trying to create a single, static firmware, OpenWrt provides a fully writable filesystem with package management. This frees you from the application selection and configuration provided by the vendor and allows you to customize the device through the use of packages to suit any application. For developers, OpenWrt is the framework to build an application without having to build a complete firmware around it; for users this means the ability for full customization, to use the device in ways never envisioned.

Sunshine!

Download

Built firmware images are available for many architectures and come with a package selection to be used as WiFi home router. To quickly find a factory image usable to migrate from a vendor stock firmware to OpenWrt, try the Firmware Selector.

If your device is supported, please follow the Info link to see install instructions or consult the support resources listed below.

An advanced user may require additional or specific package. (Toolchain, SDK, ...) For everything else than simple firmware download, try the wiki download page:

Development

To build your own firmware you need a GNU/Linux, BSD or macOS system (case sensitive filesystem required). Cygwin is unsupported because of the lack of a case sensitive file system.

Requirements

You need the following tools to compile OpenWrt, the package names vary between distributions. A complete list with distribution specific packages is found in the Build System Setup documentation.

binutils bzip2 diff find flex gawk gcc-6+ getopt grep install libc-dev libz-dev
make4.1+ perl python3.7+ rsync subversion unzip which

Quickstart

  1. Run ./scripts/feeds update -a to obtain all the latest package definitions defined in feeds.conf / feeds.conf.default

  2. Run ./scripts/feeds install -a to install symlinks for all obtained packages into package/feeds/

  3. Run make menuconfig to select your preferred configuration for the toolchain, target system & firmware packages.

  4. Run make to build your firmware. This will download all sources, build the cross-compile toolchain and then cross-compile the GNU/Linux kernel & all chosen applications for your target system.

The main repository uses multiple sub-repositories to manage packages of different categories. All packages are installed via the OpenWrt package manager called opkg. If you're looking to develop the web interface or port packages to OpenWrt, please find the fitting repository below.

  • LuCI Web Interface: Modern and modular interface to control the device via a web browser.

  • OpenWrt Packages: Community repository of ported packages.

  • OpenWrt Routing: Packages specifically focused on (mesh) routing.

  • OpenWrt Video: Packages specifically focused on display servers and clients (Xorg and Wayland).

Support Information

For a list of supported devices see the OpenWrt Hardware Database

Documentation

Support Community

  • Forum: For usage, projects, discussions and hardware advise.
  • Support Chat: Channel #openwrt on oftc.net.

Developer Community

License

OpenWrt is licensed under GPL-2.0

Description
This repository is a mirror of https://git.openwrt.org/openwrt/openwrt.git It is for reference only and is not active for check-ins. We will continue to accept Pull Requests here. They will be merged via staging trees then into openwrt.git.
Readme
Languages
C 61.4%
Makefile 19.1%
Shell 6.8%
Roff 6.7%
Perl 2.5%
Other 3.3%