mirror of
https://github.com/openwrt/openwrt.git
synced 2025-01-04 04:54:18 +00:00
3b32c22893
SVN-Revision: 11841
2215 lines
64 KiB
C
2215 lines
64 KiB
C
/* $Id: $ */
|
|
|
|
/*
|
|
* Copyright (c) 2008 Daniel Mueller (daniel@danm.de)
|
|
* Copyright (c) 2007 David McCullough (david_mccullough@securecomputing.com)
|
|
* Copyright (c) 2000 Jason L. Wright (jason@thought.net)
|
|
* Copyright (c) 2000 Theo de Raadt (deraadt@openbsd.org)
|
|
* Copyright (c) 2001 Patrik Lindergren (patrik@ipunplugged.com)
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
|
|
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* Effort sponsored in part by the Defense Advanced Research Projects
|
|
* Agency (DARPA) and Air Force Research Laboratory, Air Force
|
|
* Materiel Command, USAF, under agreement number F30602-01-2-0537.
|
|
*
|
|
*/
|
|
#undef UBSEC_DEBUG
|
|
#undef UBSEC_VERBOSE_DEBUG
|
|
|
|
#ifdef UBSEC_VERBOSE_DEBUG
|
|
#define UBSEC_DEBUG
|
|
#endif
|
|
|
|
/*
|
|
* uBsec BCM5365 hardware crypto accelerator
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/byteorder/swab.h>
|
|
#include <linux/byteorder/generic.h>
|
|
#include <linux/module.h>
|
|
#include <linux/moduleparam.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/types.h>
|
|
#include <linux/init.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/fs.h>
|
|
#include <linux/random.h>
|
|
#include <linux/skbuff.h>
|
|
#include <linux/stat.h>
|
|
#include <asm/io.h>
|
|
|
|
#include <linux/ssb/ssb.h>
|
|
|
|
/*
|
|
* BSD queue
|
|
*/
|
|
#include "bsdqueue.h"
|
|
|
|
/*
|
|
* OCF
|
|
*/
|
|
#include "cryptodev.h"
|
|
#include "uio.h"
|
|
|
|
#define HMAC_HACK 1
|
|
|
|
#ifdef HMAC_HACK
|
|
#include "hmachack.h"
|
|
#include "md5.h"
|
|
#include "md5.c"
|
|
#include "sha1.h"
|
|
#include "sha1.c"
|
|
#endif
|
|
|
|
#include "ubsecreg.h"
|
|
#include "ubsecvar.h"
|
|
|
|
#define DRV_MODULE_NAME "ubsec_ssb"
|
|
#define PFX DRV_MODULE_NAME ": "
|
|
#define DRV_MODULE_VERSION "0.01"
|
|
#define DRV_MODULE_RELDATE "Jan 1, 2008"
|
|
|
|
#if 1
|
|
#define DPRINTF(a...) \
|
|
if (debug) \
|
|
{ \
|
|
printk(DRV_MODULE_NAME ": " a); \
|
|
}
|
|
#else
|
|
#define DPRINTF(a...)
|
|
#endif
|
|
|
|
/*
|
|
* Prototypes
|
|
*/
|
|
static irqreturn_t ubsec_ssb_isr(int, void *, struct pt_regs *);
|
|
static int __devinit ubsec_ssb_probe(struct ssb_device *sdev,
|
|
const struct ssb_device_id *ent);
|
|
static void __devexit ubsec_ssb_remove(struct ssb_device *sdev);
|
|
int ubsec_attach(struct ssb_device *sdev, const struct ssb_device_id *ent,
|
|
struct device *self);
|
|
static void ubsec_setup_mackey(struct ubsec_session *ses, int algo,
|
|
caddr_t key, int klen);
|
|
static int dma_map_skb(struct ubsec_softc *sc,
|
|
struct ubsec_dma_alloc* q_map, struct sk_buff *skb, int *mlen);
|
|
static int dma_map_uio(struct ubsec_softc *sc,
|
|
struct ubsec_dma_alloc *q_map, struct uio *uio, int *mlen);
|
|
static void dma_unmap(struct ubsec_softc *sc,
|
|
struct ubsec_dma_alloc *q_map, int mlen);
|
|
static int ubsec_dmamap_aligned(struct ubsec_softc *sc,
|
|
const struct ubsec_dma_alloc *q_map, int mlen);
|
|
|
|
#ifdef UBSEC_DEBUG
|
|
static int proc_read(char *buf, char **start, off_t offset,
|
|
int size, int *peof, void *data);
|
|
#endif
|
|
|
|
void ubsec_reset_board(struct ubsec_softc *);
|
|
void ubsec_init_board(struct ubsec_softc *);
|
|
void ubsec_cleanchip(struct ubsec_softc *);
|
|
void ubsec_totalreset(struct ubsec_softc *);
|
|
int ubsec_free_q(struct ubsec_softc*, struct ubsec_q *);
|
|
|
|
static int ubsec_newsession(device_t, u_int32_t *, struct cryptoini *);
|
|
static int ubsec_freesession(device_t, u_int64_t);
|
|
static int ubsec_process(device_t, struct cryptop *, int);
|
|
|
|
void ubsec_callback(struct ubsec_softc *, struct ubsec_q *);
|
|
void ubsec_feed(struct ubsec_softc *);
|
|
void ubsec_mcopy(struct sk_buff *, struct sk_buff *, int, int);
|
|
void ubsec_dma_free(struct ubsec_softc *, struct ubsec_dma_alloc *);
|
|
int ubsec_dma_malloc(struct ubsec_softc *, struct ubsec_dma_alloc *,
|
|
size_t, int);
|
|
|
|
/* DEBUG crap... */
|
|
void ubsec_dump_pb(struct ubsec_pktbuf *);
|
|
void ubsec_dump_mcr(struct ubsec_mcr *);
|
|
|
|
#define READ_REG(sc,r) \
|
|
ssb_read32((sc)->sdev, (r));
|
|
#define WRITE_REG(sc,r,val) \
|
|
ssb_write32((sc)->sdev, (r), (val));
|
|
#define READ_REG_SDEV(sdev,r) \
|
|
ssb_read32((sdev), (r));
|
|
#define WRITE_REG_SDEV(sdev,r,val) \
|
|
ssb_write32((sdev), (r), (val));
|
|
|
|
#define SWAP32(x) (x) = htole32(ntohl((x)))
|
|
#define HTOLE32(x) (x) = htole32(x)
|
|
|
|
#ifdef __LITTLE_ENDIAN
|
|
#define letoh16(x) (x)
|
|
#define letoh32(x) (x)
|
|
#endif
|
|
|
|
static int debug;
|
|
module_param(debug, int, 0644);
|
|
MODULE_PARM_DESC(debug, "Enable debug output");
|
|
|
|
#define UBSEC_SSB_MAX_CHIPS 1
|
|
static struct ubsec_softc *ubsec_chip_idx[UBSEC_SSB_MAX_CHIPS];
|
|
static struct ubsec_stats ubsecstats;
|
|
|
|
#ifdef UBSEC_DEBUG
|
|
static struct proc_dir_entry *procdebug;
|
|
#endif
|
|
|
|
static struct ssb_device_id ubsec_ssb_tbl[] = {
|
|
/* Broadcom BCM5365P IPSec Core */
|
|
SSB_DEVICE(SSB_VENDOR_BROADCOM, SSB_DEV_IPSEC, SSB_ANY_REV),
|
|
SSB_DEVTABLE_END
|
|
};
|
|
|
|
static struct ssb_driver ubsec_ssb_driver = {
|
|
.name = DRV_MODULE_NAME,
|
|
.id_table = ubsec_ssb_tbl,
|
|
.probe = ubsec_ssb_probe,
|
|
.remove = __devexit_p(ubsec_ssb_remove),
|
|
/*
|
|
.suspend = ubsec_ssb_suspend,
|
|
.resume = ubsec_ssb_resume
|
|
*/
|
|
};
|
|
|
|
static device_method_t ubsec_ssb_methods = {
|
|
/* crypto device methods */
|
|
DEVMETHOD(cryptodev_newsession, ubsec_newsession),
|
|
DEVMETHOD(cryptodev_freesession,ubsec_freesession),
|
|
DEVMETHOD(cryptodev_process, ubsec_process),
|
|
};
|
|
|
|
#ifdef UBSEC_DEBUG
|
|
static int
|
|
proc_read(char *buf, char **start, off_t offset,
|
|
int size, int *peof, void *data)
|
|
{
|
|
int i = 0, byteswritten = 0, ret;
|
|
unsigned int stat, ctrl;
|
|
#ifdef UBSEC_VERBOSE_DEBUG
|
|
struct ubsec_q *q;
|
|
struct ubsec_dma *dmap;
|
|
#endif
|
|
|
|
while ((i < UBSEC_SSB_MAX_CHIPS) && (ubsec_chip_idx[i] != NULL))
|
|
{
|
|
struct ubsec_softc *sc = ubsec_chip_idx[i];
|
|
|
|
stat = READ_REG(sc, BS_STAT);
|
|
ctrl = READ_REG(sc, BS_CTRL);
|
|
ret = snprintf((buf + byteswritten),
|
|
(size - byteswritten) ,
|
|
"DEV %d, DMASTAT %08x, DMACTRL %08x\n", i, stat, ctrl);
|
|
|
|
byteswritten += ret;
|
|
|
|
#ifdef UBSEC_VERBOSE_DEBUG
|
|
printf("DEV %d, DMASTAT %08x, DMACTRL %08x\n", i, stat, ctrl);
|
|
|
|
/* Dump all queues MCRs */
|
|
if (!BSD_SIMPLEQ_EMPTY(&sc->sc_qchip)) {
|
|
BSD_SIMPLEQ_FOREACH(q, &sc->sc_qchip, q_next)
|
|
{
|
|
dmap = q->q_dma;
|
|
ubsec_dump_mcr(&dmap->d_dma->d_mcr);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
i++;
|
|
}
|
|
|
|
*peof = 1;
|
|
|
|
return byteswritten;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* map in a given sk_buff
|
|
*/
|
|
static int
|
|
dma_map_skb(struct ubsec_softc *sc, struct ubsec_dma_alloc* q_map, struct sk_buff *skb, int *mlen)
|
|
{
|
|
int i = 0;
|
|
dma_addr_t tmp;
|
|
|
|
#ifdef UBSEC_DEBUG
|
|
DPRINTF("%s()\n", __FUNCTION__);
|
|
#endif
|
|
|
|
/*
|
|
* We support only a limited number of fragments.
|
|
*/
|
|
if (unlikely((skb_shinfo(skb)->nr_frags + 1) >= UBS_MAX_SCATTER))
|
|
{
|
|
printk(KERN_ERR "Only %d scatter fragments are supported.\n", UBS_MAX_SCATTER);
|
|
return (-ENOMEM);
|
|
}
|
|
|
|
#ifdef UBSEC_VERBOSE_DEBUG
|
|
DPRINTF("%s - map %d 0x%x %d\n", __FUNCTION__, 0, (unsigned int)skb->data, skb_headlen(skb));
|
|
#endif
|
|
|
|
/* first data package */
|
|
tmp = dma_map_single(sc->sc_dv,
|
|
skb->data,
|
|
skb_headlen(skb),
|
|
DMA_BIDIRECTIONAL);
|
|
|
|
q_map[i].dma_paddr = tmp;
|
|
q_map[i].dma_vaddr = skb->data;
|
|
q_map[i].dma_size = skb_headlen(skb);
|
|
|
|
if (unlikely(tmp == 0))
|
|
{
|
|
printk(KERN_ERR "Could not map memory region for dma.\n");
|
|
return (-EINVAL);
|
|
}
|
|
|
|
#ifdef UBSEC_VERBOSE_DEBUG
|
|
DPRINTF("%s - map %d done physical addr 0x%x\n", __FUNCTION__, 0, (unsigned int)tmp);
|
|
#endif
|
|
|
|
|
|
/* all other data packages */
|
|
for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
|
|
|
|
#ifdef UBSEC_VERBOSE_DEBUG
|
|
DPRINTF("%s - map %d 0x%x %d\n", __FUNCTION__, i + 1,
|
|
(unsigned int)page_address(skb_shinfo(skb)->frags[i].page) +
|
|
skb_shinfo(skb)->frags[i].page_offset, skb_shinfo(skb)->frags[i].size);
|
|
#endif
|
|
|
|
tmp = dma_map_single(sc->sc_dv,
|
|
page_address(skb_shinfo(skb)->frags[i].page) +
|
|
skb_shinfo(skb)->frags[i].page_offset,
|
|
skb_shinfo(skb)->frags[i].size,
|
|
DMA_BIDIRECTIONAL);
|
|
|
|
q_map[i + 1].dma_paddr = tmp;
|
|
q_map[i + 1].dma_vaddr = (void*)(page_address(skb_shinfo(skb)->frags[i].page) +
|
|
skb_shinfo(skb)->frags[i].page_offset);
|
|
q_map[i + 1].dma_size = skb_shinfo(skb)->frags[i].size;
|
|
|
|
if (unlikely(tmp == 0))
|
|
{
|
|
printk(KERN_ERR "Could not map memory region for dma.\n");
|
|
return (-EINVAL);
|
|
}
|
|
|
|
#ifdef UBSEC_VERBOSE_DEBUG
|
|
DPRINTF("%s - map %d done physical addr 0x%x\n", __FUNCTION__, i + 1, (unsigned int)tmp);
|
|
#endif
|
|
|
|
}
|
|
*mlen = i + 1;
|
|
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* map in a given uio buffer
|
|
*/
|
|
|
|
static int
|
|
dma_map_uio(struct ubsec_softc *sc, struct ubsec_dma_alloc *q_map, struct uio *uio, int *mlen)
|
|
{
|
|
struct iovec *iov = uio->uio_iov;
|
|
int n;
|
|
dma_addr_t tmp;
|
|
|
|
#ifdef UBSEC_DEBUG
|
|
DPRINTF("%s()\n", __FUNCTION__);
|
|
#endif
|
|
|
|
/*
|
|
* We support only a limited number of fragments.
|
|
*/
|
|
if (unlikely(uio->uio_iovcnt >= UBS_MAX_SCATTER))
|
|
{
|
|
printk(KERN_ERR "Only %d scatter fragments are supported.\n", UBS_MAX_SCATTER);
|
|
return (-ENOMEM);
|
|
}
|
|
|
|
for (n = 0; n < uio->uio_iovcnt; n++) {
|
|
#ifdef UBSEC_VERBOSE_DEBUG
|
|
DPRINTF("%s - map %d 0x%x %d\n", __FUNCTION__, n, (unsigned int)iov->iov_base, iov->iov_len);
|
|
#endif
|
|
tmp = dma_map_single(sc->sc_dv,
|
|
iov->iov_base,
|
|
iov->iov_len,
|
|
DMA_BIDIRECTIONAL);
|
|
|
|
q_map[n].dma_paddr = tmp;
|
|
q_map[n].dma_vaddr = iov->iov_base;
|
|
q_map[n].dma_size = iov->iov_len;
|
|
|
|
if (unlikely(tmp == 0))
|
|
{
|
|
printk(KERN_ERR "Could not map memory region for dma.\n");
|
|
return (-EINVAL);
|
|
}
|
|
|
|
#ifdef UBSEC_VERBOSE_DEBUG
|
|
DPRINTF("%s - map %d done physical addr 0x%x\n", __FUNCTION__, n, (unsigned int)tmp);
|
|
#endif
|
|
|
|
iov++;
|
|
}
|
|
*mlen = n;
|
|
|
|
return(0);
|
|
}
|
|
|
|
static void
|
|
dma_unmap(struct ubsec_softc *sc, struct ubsec_dma_alloc *q_map, int mlen)
|
|
{
|
|
int i;
|
|
|
|
#ifdef UBSEC_DEBUG
|
|
DPRINTF("%s()\n", __FUNCTION__);
|
|
#endif
|
|
|
|
for(i = 0; i < mlen; i++)
|
|
{
|
|
#ifdef UBSEC_VERBOSE_DEBUG
|
|
DPRINTF("%s - unmap %d 0x%x %d\n", __FUNCTION__, i, (unsigned int)q_map[i].dma_paddr, q_map[i].dma_size);
|
|
#endif
|
|
dma_unmap_single(sc->sc_dv,
|
|
q_map[i].dma_paddr,
|
|
q_map[i].dma_size,
|
|
DMA_BIDIRECTIONAL);
|
|
}
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Is the operand suitable aligned for direct DMA. Each
|
|
* segment must be aligned on a 32-bit boundary and all
|
|
* but the last segment must be a multiple of 4 bytes.
|
|
*/
|
|
static int
|
|
ubsec_dmamap_aligned(struct ubsec_softc *sc, const struct ubsec_dma_alloc *q_map, int mlen)
|
|
{
|
|
int i;
|
|
|
|
#ifdef UBSEC_DEBUG
|
|
DPRINTF("%s()\n", __FUNCTION__);
|
|
#endif
|
|
|
|
for (i = 0; i < mlen; i++) {
|
|
if (q_map[i].dma_paddr & 3)
|
|
return (0);
|
|
if (i != (mlen - 1) && (q_map[i].dma_size & 3))
|
|
return (0);
|
|
}
|
|
return (1);
|
|
}
|
|
|
|
|
|
#define N(a) (sizeof(a) / sizeof (a[0]))
|
|
static void
|
|
ubsec_setup_mackey(struct ubsec_session *ses, int algo, caddr_t key, int klen)
|
|
{
|
|
#ifdef HMAC_HACK
|
|
MD5_CTX md5ctx;
|
|
SHA1_CTX sha1ctx;
|
|
int i;
|
|
|
|
#ifdef UBSEC_DEBUG
|
|
DPRINTF("%s()\n", __FUNCTION__);
|
|
#endif
|
|
|
|
for (i = 0; i < klen; i++)
|
|
key[i] ^= HMAC_IPAD_VAL;
|
|
|
|
if (algo == CRYPTO_MD5_HMAC) {
|
|
MD5Init(&md5ctx);
|
|
MD5Update(&md5ctx, key, klen);
|
|
MD5Update(&md5ctx, hmac_ipad_buffer, MD5_HMAC_BLOCK_LEN - klen);
|
|
bcopy(md5ctx.md5_st8, ses->ses_hminner, sizeof(md5ctx.md5_st8));
|
|
} else {
|
|
SHA1Init(&sha1ctx);
|
|
SHA1Update(&sha1ctx, key, klen);
|
|
SHA1Update(&sha1ctx, hmac_ipad_buffer,
|
|
SHA1_HMAC_BLOCK_LEN - klen);
|
|
bcopy(sha1ctx.h.b32, ses->ses_hminner, sizeof(sha1ctx.h.b32));
|
|
}
|
|
|
|
for (i = 0; i < klen; i++)
|
|
key[i] ^= (HMAC_IPAD_VAL ^ HMAC_OPAD_VAL);
|
|
|
|
if (algo == CRYPTO_MD5_HMAC) {
|
|
MD5Init(&md5ctx);
|
|
MD5Update(&md5ctx, key, klen);
|
|
MD5Update(&md5ctx, hmac_opad_buffer, MD5_HMAC_BLOCK_LEN - klen);
|
|
bcopy(md5ctx.md5_st8, ses->ses_hmouter, sizeof(md5ctx.md5_st8));
|
|
} else {
|
|
SHA1Init(&sha1ctx);
|
|
SHA1Update(&sha1ctx, key, klen);
|
|
SHA1Update(&sha1ctx, hmac_opad_buffer,
|
|
SHA1_HMAC_BLOCK_LEN - klen);
|
|
bcopy(sha1ctx.h.b32, ses->ses_hmouter, sizeof(sha1ctx.h.b32));
|
|
}
|
|
|
|
for (i = 0; i < klen; i++)
|
|
key[i] ^= HMAC_OPAD_VAL;
|
|
|
|
#else /* HMAC_HACK */
|
|
DPRINTF("md5/sha not implemented\n");
|
|
#endif /* HMAC_HACK */
|
|
}
|
|
#undef N
|
|
|
|
static int
|
|
__devinit ubsec_ssb_probe(struct ssb_device *sdev,
|
|
const struct ssb_device_id *ent)
|
|
{
|
|
int err;
|
|
|
|
#ifdef UBSEC_DEBUG
|
|
DPRINTF("%s()\n", __FUNCTION__);
|
|
#endif
|
|
|
|
err = ssb_bus_powerup(sdev->bus, 0);
|
|
if (err) {
|
|
dev_err(sdev->dev, "Failed to powerup the bus\n");
|
|
goto err_powerup;
|
|
}
|
|
|
|
err = request_irq(sdev->irq, (irq_handler_t)ubsec_ssb_isr,
|
|
IRQF_DISABLED | IRQF_SHARED, DRV_MODULE_NAME, sdev);
|
|
if (err) {
|
|
dev_err(sdev->dev, "Could not request irq\n");
|
|
goto err_out_powerdown;
|
|
}
|
|
|
|
err = ssb_dma_set_mask(sdev, DMA_32BIT_MASK);
|
|
if (err) {
|
|
dev_err(sdev->dev,
|
|
"Required 32BIT DMA mask unsupported by the system.\n");
|
|
goto err_out_powerdown;
|
|
}
|
|
|
|
printk(KERN_INFO "Sentry5(tm) ROBOGateway(tm) IPSec Core at IRQ %u\n",
|
|
sdev->irq);
|
|
|
|
DPRINTF("Vendor: %x, core id: %x, revision: %x\n",
|
|
sdev->id.vendor, sdev->id.coreid, sdev->id.revision);
|
|
|
|
ssb_device_enable(sdev, 0);
|
|
|
|
if (ubsec_attach(sdev, ent, sdev->dev) != 0)
|
|
goto err_disable_interrupt;
|
|
|
|
#ifdef UBSEC_DEBUG
|
|
procdebug = create_proc_entry(DRV_MODULE_NAME, S_IRUSR, NULL);
|
|
if (procdebug)
|
|
{
|
|
procdebug->read_proc = proc_read;
|
|
procdebug->data = NULL;
|
|
} else
|
|
DPRINTF("Unable to create proc file.\n");
|
|
#endif
|
|
|
|
return 0;
|
|
|
|
err_disable_interrupt:
|
|
free_irq(sdev->irq, sdev);
|
|
|
|
err_out_powerdown:
|
|
ssb_bus_may_powerdown(sdev->bus);
|
|
|
|
err_powerup:
|
|
ssb_device_disable(sdev, 0);
|
|
return err;
|
|
}
|
|
|
|
static void __devexit ubsec_ssb_remove(struct ssb_device *sdev) {
|
|
|
|
struct ubsec_softc *sc;
|
|
unsigned int ctrlflgs;
|
|
struct ubsec_dma *dmap;
|
|
u_int32_t i;
|
|
|
|
#ifdef UBSEC_DEBUG
|
|
DPRINTF("%s()\n", __FUNCTION__);
|
|
#endif
|
|
|
|
ctrlflgs = READ_REG_SDEV(sdev, BS_CTRL);
|
|
/* disable all IPSec Core interrupts globally */
|
|
ctrlflgs ^= (BS_CTRL_MCR1INT | BS_CTRL_MCR2INT |
|
|
BS_CTRL_DMAERR);
|
|
WRITE_REG_SDEV(sdev, BS_CTRL, ctrlflgs);
|
|
|
|
free_irq(sdev->irq, sdev);
|
|
|
|
sc = (struct ubsec_softc *)ssb_get_drvdata(sdev);
|
|
|
|
/* unregister all crypto algorithms */
|
|
crypto_unregister_all(sc->sc_cid);
|
|
|
|
/* Free queue / dma memory */
|
|
for (i = 0; i < UBS_MAX_NQUEUE; i++) {
|
|
struct ubsec_q *q;
|
|
|
|
q = sc->sc_queuea[i];
|
|
if (q != NULL)
|
|
{
|
|
dmap = q->q_dma;
|
|
if (dmap != NULL)
|
|
{
|
|
ubsec_dma_free(sc, &dmap->d_alloc);
|
|
q->q_dma = NULL;
|
|
}
|
|
kfree(q);
|
|
}
|
|
sc->sc_queuea[i] = NULL;
|
|
}
|
|
|
|
ssb_bus_may_powerdown(sdev->bus);
|
|
ssb_device_disable(sdev, 0);
|
|
ssb_set_drvdata(sdev, NULL);
|
|
|
|
#ifdef UBSEC_DEBUG
|
|
if (procdebug)
|
|
remove_proc_entry(DRV_MODULE_NAME, NULL);
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
int
|
|
ubsec_attach(struct ssb_device *sdev, const struct ssb_device_id *ent,
|
|
struct device *self)
|
|
{
|
|
struct ubsec_softc *sc = NULL;
|
|
struct ubsec_dma *dmap;
|
|
u_int32_t i;
|
|
static int num_chips = 0;
|
|
|
|
#ifdef UBSEC_DEBUG
|
|
DPRINTF("%s()\n", __FUNCTION__);
|
|
#endif
|
|
|
|
sc = (struct ubsec_softc *) kmalloc(sizeof(*sc), GFP_KERNEL);
|
|
if (!sc)
|
|
return(-ENOMEM);
|
|
memset(sc, 0, sizeof(*sc));
|
|
|
|
sc->sc_dv = sdev->dev;
|
|
sc->sdev = sdev;
|
|
|
|
spin_lock_init(&sc->sc_ringmtx);
|
|
|
|
softc_device_init(sc, "ubsec_ssb", num_chips, ubsec_ssb_methods);
|
|
|
|
/* Maybe someday there are boards with more than one chip available */
|
|
if (num_chips < UBSEC_SSB_MAX_CHIPS) {
|
|
ubsec_chip_idx[device_get_unit(sc->sc_dev)] = sc;
|
|
num_chips++;
|
|
}
|
|
|
|
ssb_set_drvdata(sdev, sc);
|
|
|
|
BSD_SIMPLEQ_INIT(&sc->sc_queue);
|
|
BSD_SIMPLEQ_INIT(&sc->sc_qchip);
|
|
BSD_SIMPLEQ_INIT(&sc->sc_queue2);
|
|
BSD_SIMPLEQ_INIT(&sc->sc_qchip2);
|
|
BSD_SIMPLEQ_INIT(&sc->sc_q2free);
|
|
|
|
sc->sc_statmask = BS_STAT_MCR1_DONE | BS_STAT_DMAERR;
|
|
|
|
sc->sc_cid = crypto_get_driverid(softc_get_device(sc), CRYPTOCAP_F_HARDWARE);
|
|
if (sc->sc_cid < 0) {
|
|
device_printf(sc->sc_dev, "could not get crypto driver id\n");
|
|
return -1;
|
|
}
|
|
|
|
BSD_SIMPLEQ_INIT(&sc->sc_freequeue);
|
|
dmap = sc->sc_dmaa;
|
|
for (i = 0; i < UBS_MAX_NQUEUE; i++, dmap++) {
|
|
struct ubsec_q *q;
|
|
|
|
q = (struct ubsec_q *)kmalloc(sizeof(struct ubsec_q), GFP_KERNEL);
|
|
if (q == NULL) {
|
|
printf(": can't allocate queue buffers\n");
|
|
break;
|
|
}
|
|
|
|
if (ubsec_dma_malloc(sc, &dmap->d_alloc, sizeof(struct ubsec_dmachunk),0)) {
|
|
printf(": can't allocate dma buffers\n");
|
|
kfree(q);
|
|
break;
|
|
}
|
|
dmap->d_dma = (struct ubsec_dmachunk *)dmap->d_alloc.dma_vaddr;
|
|
|
|
q->q_dma = dmap;
|
|
sc->sc_queuea[i] = q;
|
|
|
|
BSD_SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
|
|
}
|
|
|
|
/*
|
|
* Reset Broadcom chip
|
|
*/
|
|
ubsec_reset_board(sc);
|
|
|
|
/*
|
|
* Init Broadcom chip
|
|
*/
|
|
ubsec_init_board(sc);
|
|
|
|
/* supported crypto algorithms */
|
|
crypto_register(sc->sc_cid, CRYPTO_3DES_CBC, 0, 0);
|
|
crypto_register(sc->sc_cid, CRYPTO_DES_CBC, 0, 0);
|
|
|
|
if (sc->sc_flags & UBS_FLAGS_AES) {
|
|
crypto_register(sc->sc_cid, CRYPTO_AES_CBC, 0, 0);
|
|
printf(KERN_INFO DRV_MODULE_NAME ": DES 3DES AES128 AES192 AES256 MD5_HMAC SHA1_HMAC\n");
|
|
}
|
|
else
|
|
printf(KERN_INFO DRV_MODULE_NAME ": DES 3DES MD5_HMAC SHA1_HMAC\n");
|
|
|
|
crypto_register(sc->sc_cid, CRYPTO_MD5_HMAC, 0, 0);
|
|
crypto_register(sc->sc_cid, CRYPTO_SHA1_HMAC, 0, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* UBSEC Interrupt routine
|
|
*/
|
|
static irqreturn_t
|
|
ubsec_ssb_isr(int irq, void *arg, struct pt_regs *regs)
|
|
{
|
|
struct ubsec_softc *sc = NULL;
|
|
volatile u_int32_t stat;
|
|
struct ubsec_q *q;
|
|
struct ubsec_dma *dmap;
|
|
int npkts = 0, i;
|
|
|
|
#ifdef UBSEC_VERBOSE_DEBUG
|
|
DPRINTF("%s()\n", __FUNCTION__);
|
|
#endif
|
|
|
|
sc = (struct ubsec_softc *)ssb_get_drvdata(arg);
|
|
|
|
stat = READ_REG(sc, BS_STAT);
|
|
|
|
stat &= sc->sc_statmask;
|
|
if (stat == 0)
|
|
return IRQ_NONE;
|
|
|
|
WRITE_REG(sc, BS_STAT, stat); /* IACK */
|
|
|
|
/*
|
|
* Check to see if we have any packets waiting for us
|
|
*/
|
|
if ((stat & BS_STAT_MCR1_DONE)) {
|
|
while (!BSD_SIMPLEQ_EMPTY(&sc->sc_qchip)) {
|
|
q = BSD_SIMPLEQ_FIRST(&sc->sc_qchip);
|
|
dmap = q->q_dma;
|
|
|
|
if ((dmap->d_dma->d_mcr.mcr_flags & htole16(UBS_MCR_DONE)) == 0)
|
|
{
|
|
DPRINTF("error while processing MCR. Flags = %x\n", dmap->d_dma->d_mcr.mcr_flags);
|
|
break;
|
|
}
|
|
|
|
BSD_SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, q_next);
|
|
|
|
npkts = q->q_nstacked_mcrs;
|
|
/*
|
|
* search for further sc_qchip ubsec_q's that share
|
|
* the same MCR, and complete them too, they must be
|
|
* at the top.
|
|
*/
|
|
for (i = 0; i < npkts; i++) {
|
|
if(q->q_stacked_mcr[i])
|
|
ubsec_callback(sc, q->q_stacked_mcr[i]);
|
|
else
|
|
break;
|
|
}
|
|
ubsec_callback(sc, q);
|
|
}
|
|
|
|
/*
|
|
* Don't send any more packet to chip if there has been
|
|
* a DMAERR.
|
|
*/
|
|
if (likely(!(stat & BS_STAT_DMAERR)))
|
|
ubsec_feed(sc);
|
|
else
|
|
DPRINTF("DMA error occurred. Stop feeding crypto chip.\n");
|
|
}
|
|
|
|
/*
|
|
* Check to see if we got any DMA Error
|
|
*/
|
|
if (stat & BS_STAT_DMAERR) {
|
|
volatile u_int32_t a = READ_REG(sc, BS_ERR);
|
|
|
|
printf(KERN_ERR "%s: dmaerr %s@%08x\n", DRV_MODULE_NAME,
|
|
(a & BS_ERR_READ) ? "read" : "write", a & BS_ERR_ADDR);
|
|
|
|
ubsecstats.hst_dmaerr++;
|
|
ubsec_totalreset(sc);
|
|
ubsec_feed(sc);
|
|
}
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
/*
|
|
* ubsec_feed() - aggregate and post requests to chip
|
|
* It is assumed that the caller set splnet()
|
|
*/
|
|
void
|
|
ubsec_feed(struct ubsec_softc *sc)
|
|
{
|
|
#ifdef UBSEC_VERBOSE_DEBUG
|
|
static int max;
|
|
#endif
|
|
struct ubsec_q *q, *q2;
|
|
int npkts, i;
|
|
void *v;
|
|
u_int32_t stat;
|
|
|
|
npkts = sc->sc_nqueue;
|
|
if (npkts > UBS_MAX_AGGR)
|
|
npkts = UBS_MAX_AGGR;
|
|
if (npkts < 2)
|
|
goto feed1;
|
|
|
|
stat = READ_REG(sc, BS_STAT);
|
|
|
|
if (stat & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
|
|
if(stat & BS_STAT_DMAERR) {
|
|
ubsec_totalreset(sc);
|
|
ubsecstats.hst_dmaerr++;
|
|
}
|
|
return;
|
|
}
|
|
|
|
#ifdef UBSEC_VERBOSE_DEBUG
|
|
DPRINTF("merging %d records\n", npkts);
|
|
|
|
/* XXX temporary aggregation statistics reporting code */
|
|
if (max < npkts) {
|
|
max = npkts;
|
|
DPRINTF("%s: new max aggregate %d\n", DRV_MODULE_NAME, max);
|
|
}
|
|
#endif /* UBSEC_VERBOSE_DEBUG */
|
|
|
|
q = BSD_SIMPLEQ_FIRST(&sc->sc_queue);
|
|
BSD_SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q_next);
|
|
--sc->sc_nqueue;
|
|
|
|
#if 0
|
|
/*
|
|
* XXX
|
|
* We use dma_map_single() - no sync required!
|
|
*/
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
|
|
0, q->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
|
|
if (q->q_dst_map != NULL)
|
|
bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
|
|
0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
|
|
#endif
|
|
|
|
q->q_nstacked_mcrs = npkts - 1; /* Number of packets stacked */
|
|
|
|
for (i = 0; i < q->q_nstacked_mcrs; i++) {
|
|
q2 = BSD_SIMPLEQ_FIRST(&sc->sc_queue);
|
|
|
|
#if 0
|
|
bus_dmamap_sync(sc->sc_dmat, q2->q_src_map,
|
|
0, q2->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
|
|
if (q2->q_dst_map != NULL)
|
|
bus_dmamap_sync(sc->sc_dmat, q2->q_dst_map,
|
|
0, q2->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
|
|
#endif
|
|
BSD_SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q_next);
|
|
--sc->sc_nqueue;
|
|
|
|
v = ((char *)&q2->q_dma->d_dma->d_mcr) + sizeof(struct ubsec_mcr) -
|
|
sizeof(struct ubsec_mcr_add);
|
|
bcopy(v, &q->q_dma->d_dma->d_mcradd[i], sizeof(struct ubsec_mcr_add));
|
|
q->q_stacked_mcr[i] = q2;
|
|
}
|
|
q->q_dma->d_dma->d_mcr.mcr_pkts = htole16(npkts);
|
|
BSD_SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
|
|
#if 0
|
|
bus_dmamap_sync(sc->sc_dmat, q->q_dma->d_alloc.dma_map,
|
|
0, q->q_dma->d_alloc.dma_map->dm_mapsize,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
#endif
|
|
WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
|
|
offsetof(struct ubsec_dmachunk, d_mcr));
|
|
#ifdef UBSEC_VERBOSE_DEBUG
|
|
DPRINTF("feed (1): q->chip %p %08x %08x\n", q,
|
|
(u_int32_t)q->q_dma->d_alloc.dma_paddr,
|
|
(u_int32_t)(q->q_dma->d_alloc.dma_paddr +
|
|
offsetof(struct ubsec_dmachunk, d_mcr)));
|
|
#endif /* UBSEC_DEBUG */
|
|
return;
|
|
|
|
feed1:
|
|
while (!BSD_SIMPLEQ_EMPTY(&sc->sc_queue)) {
|
|
stat = READ_REG(sc, BS_STAT);
|
|
|
|
if (stat & (BS_STAT_MCR1_FULL | BS_STAT_DMAERR)) {
|
|
if(stat & BS_STAT_DMAERR) {
|
|
ubsec_totalreset(sc);
|
|
ubsecstats.hst_dmaerr++;
|
|
}
|
|
break;
|
|
}
|
|
|
|
q = BSD_SIMPLEQ_FIRST(&sc->sc_queue);
|
|
|
|
#if 0
|
|
bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
|
|
0, q->q_src_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
|
|
if (q->q_dst_map != NULL)
|
|
bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
|
|
0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_PREREAD);
|
|
bus_dmamap_sync(sc->sc_dmat, q->q_dma->d_alloc.dma_map,
|
|
0, q->q_dma->d_alloc.dma_map->dm_mapsize,
|
|
BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
|
|
#endif
|
|
|
|
WRITE_REG(sc, BS_MCR1, q->q_dma->d_alloc.dma_paddr +
|
|
offsetof(struct ubsec_dmachunk, d_mcr));
|
|
#ifdef UBSEC_VERBOSE_DEBUG
|
|
DPRINTF("feed (2): q->chip %p %08x %08x\n", q,
|
|
(u_int32_t)q->q_dma->d_alloc.dma_paddr,
|
|
(u_int32_t)(q->q_dma->d_alloc.dma_paddr +
|
|
offsetof(struct ubsec_dmachunk, d_mcr)));
|
|
#endif /* UBSEC_DEBUG */
|
|
BSD_SIMPLEQ_REMOVE_HEAD(&sc->sc_queue, q_next);
|
|
--sc->sc_nqueue;
|
|
BSD_SIMPLEQ_INSERT_TAIL(&sc->sc_qchip, q, q_next);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Allocate a new 'session' and return an encoded session id. 'sidp'
|
|
* contains our registration id, and should contain an encoded session
|
|
* id on successful allocation.
|
|
*/
|
|
static int
|
|
ubsec_newsession(device_t dev, u_int32_t *sidp, struct cryptoini *cri)
|
|
{
|
|
struct cryptoini *c, *encini = NULL, *macini = NULL;
|
|
struct ubsec_softc *sc = NULL;
|
|
struct ubsec_session *ses = NULL;
|
|
int sesn, i;
|
|
|
|
#ifdef UBSEC_DEBUG
|
|
DPRINTF("%s()\n", __FUNCTION__);
|
|
#endif
|
|
|
|
if (sidp == NULL || cri == NULL)
|
|
return (EINVAL);
|
|
|
|
sc = device_get_softc(dev);
|
|
|
|
if (sc == NULL)
|
|
return (EINVAL);
|
|
|
|
for (c = cri; c != NULL; c = c->cri_next) {
|
|
if (c->cri_alg == CRYPTO_MD5_HMAC ||
|
|
c->cri_alg == CRYPTO_SHA1_HMAC) {
|
|
if (macini)
|
|
return (EINVAL);
|
|
macini = c;
|
|
} else if (c->cri_alg == CRYPTO_DES_CBC ||
|
|
c->cri_alg == CRYPTO_3DES_CBC ||
|
|
c->cri_alg == CRYPTO_AES_CBC) {
|
|
if (encini)
|
|
return (EINVAL);
|
|
encini = c;
|
|
} else
|
|
return (EINVAL);
|
|
}
|
|
if (encini == NULL && macini == NULL)
|
|
return (EINVAL);
|
|
|
|
if (sc->sc_sessions == NULL) {
|
|
ses = sc->sc_sessions = (struct ubsec_session *)kmalloc(
|
|
sizeof(struct ubsec_session), SLAB_ATOMIC);
|
|
if (ses == NULL)
|
|
return (ENOMEM);
|
|
memset(ses, 0, sizeof(struct ubsec_session));
|
|
sesn = 0;
|
|
sc->sc_nsessions = 1;
|
|
} else {
|
|
for (sesn = 0; sesn < sc->sc_nsessions; sesn++) {
|
|
if (sc->sc_sessions[sesn].ses_used == 0) {
|
|
ses = &sc->sc_sessions[sesn];
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (ses == NULL) {
|
|
sesn = sc->sc_nsessions;
|
|
ses = (struct ubsec_session *)kmalloc((sesn + 1) *
|
|
sizeof(struct ubsec_session), SLAB_ATOMIC);
|
|
if (ses == NULL)
|
|
return (ENOMEM);
|
|
memset(ses, 0, (sesn + 1) * sizeof(struct ubsec_session));
|
|
bcopy(sc->sc_sessions, ses, sesn *
|
|
sizeof(struct ubsec_session));
|
|
bzero(sc->sc_sessions, sesn *
|
|
sizeof(struct ubsec_session));
|
|
kfree(sc->sc_sessions);
|
|
sc->sc_sessions = ses;
|
|
ses = &sc->sc_sessions[sesn];
|
|
sc->sc_nsessions++;
|
|
}
|
|
}
|
|
|
|
bzero(ses, sizeof(struct ubsec_session));
|
|
ses->ses_used = 1;
|
|
if (encini) {
|
|
/* get an IV */
|
|
/* XXX may read fewer than requested */
|
|
read_random(ses->ses_iv, sizeof(ses->ses_iv));
|
|
|
|
/* Go ahead and compute key in ubsec's byte order */
|
|
if (encini->cri_alg == CRYPTO_DES_CBC) {
|
|
/* DES uses the same key three times:
|
|
* 1st encrypt -> 2nd decrypt -> 3nd encrypt */
|
|
bcopy(encini->cri_key, &ses->ses_key[0], 8);
|
|
bcopy(encini->cri_key, &ses->ses_key[2], 8);
|
|
bcopy(encini->cri_key, &ses->ses_key[4], 8);
|
|
ses->ses_keysize = 192; /* Fake! Actually its only 64bits ..
|
|
oh no it is even less: 54bits. */
|
|
} else if(encini->cri_alg == CRYPTO_3DES_CBC) {
|
|
bcopy(encini->cri_key, ses->ses_key, 24);
|
|
ses->ses_keysize = 192;
|
|
} else if(encini->cri_alg == CRYPTO_AES_CBC) {
|
|
ses->ses_keysize = encini->cri_klen;
|
|
|
|
if (ses->ses_keysize != 128 &&
|
|
ses->ses_keysize != 192 &&
|
|
ses->ses_keysize != 256)
|
|
{
|
|
DPRINTF("unsupported AES key size: %d\n", ses->ses_keysize);
|
|
return (EINVAL);
|
|
}
|
|
bcopy(encini->cri_key, ses->ses_key, (ses->ses_keysize / 8));
|
|
}
|
|
|
|
/* Hardware requires the keys in little endian byte order */
|
|
for (i=0; i < (ses->ses_keysize / 32); i++)
|
|
SWAP32(ses->ses_key[i]);
|
|
}
|
|
|
|
if (macini) {
|
|
ses->ses_mlen = macini->cri_mlen;
|
|
|
|
if (ses->ses_mlen == 0 ||
|
|
ses->ses_mlen > SHA1_HASH_LEN) {
|
|
|
|
if (macini->cri_alg == CRYPTO_MD5_HMAC ||
|
|
macini->cri_alg == CRYPTO_SHA1_HMAC)
|
|
{
|
|
ses->ses_mlen = DEFAULT_HMAC_LEN;
|
|
} else
|
|
{
|
|
/*
|
|
* Reserved for future usage. MD5/SHA1 calculations have
|
|
* different hash sizes.
|
|
*/
|
|
printk(KERN_ERR DRV_MODULE_NAME ": unsupported hash operation with mac/hash len: %d\n", ses->ses_mlen);
|
|
return (EINVAL);
|
|
}
|
|
|
|
}
|
|
|
|
if (macini->cri_key != NULL) {
|
|
ubsec_setup_mackey(ses, macini->cri_alg, macini->cri_key,
|
|
macini->cri_klen / 8);
|
|
}
|
|
}
|
|
|
|
*sidp = UBSEC_SID(device_get_unit(sc->sc_dev), sesn);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Deallocate a session.
|
|
*/
|
|
static int
|
|
ubsec_freesession(device_t dev, u_int64_t tid)
|
|
{
|
|
struct ubsec_softc *sc = device_get_softc(dev);
|
|
int session;
|
|
u_int32_t sid = ((u_int32_t)tid) & 0xffffffff;
|
|
|
|
#ifdef UBSEC_DEBUG
|
|
DPRINTF("%s()\n", __FUNCTION__);
|
|
#endif
|
|
|
|
if (sc == NULL)
|
|
return (EINVAL);
|
|
|
|
session = UBSEC_SESSION(sid);
|
|
if (session < sc->sc_nsessions) {
|
|
bzero(&sc->sc_sessions[session], sizeof(sc->sc_sessions[session]));
|
|
return (0);
|
|
} else
|
|
return (EINVAL);
|
|
}
|
|
|
|
static int
|
|
ubsec_process(device_t dev, struct cryptop *crp, int hint)
|
|
{
|
|
struct ubsec_q *q = NULL;
|
|
int err = 0, i, j, nicealign;
|
|
struct ubsec_softc *sc = device_get_softc(dev);
|
|
struct cryptodesc *crd1, *crd2, *maccrd, *enccrd;
|
|
int encoffset = 0, macoffset = 0, cpskip, cpoffset;
|
|
int sskip, dskip, stheend, dtheend, ivsize = 8;
|
|
int16_t coffset;
|
|
struct ubsec_session *ses;
|
|
struct ubsec_generic_ctx ctx;
|
|
struct ubsec_dma *dmap = NULL;
|
|
unsigned long flags;
|
|
|
|
#ifdef UBSEC_DEBUG
|
|
DPRINTF("%s()\n", __FUNCTION__);
|
|
#endif
|
|
|
|
if (unlikely(crp == NULL || crp->crp_callback == NULL)) {
|
|
ubsecstats.hst_invalid++;
|
|
return (EINVAL);
|
|
}
|
|
|
|
if (unlikely(sc == NULL))
|
|
return (EINVAL);
|
|
|
|
#ifdef UBSEC_VERBOSE_DEBUG
|
|
DPRINTF("spin_lock_irqsave\n");
|
|
#endif
|
|
spin_lock_irqsave(&sc->sc_ringmtx, flags);
|
|
//spin_lock_irq(&sc->sc_ringmtx);
|
|
|
|
if (BSD_SIMPLEQ_EMPTY(&sc->sc_freequeue)) {
|
|
ubsecstats.hst_queuefull++;
|
|
#ifdef UBSEC_VERBOSE_DEBUG
|
|
DPRINTF("spin_unlock_irqrestore\n");
|
|
#endif
|
|
spin_unlock_irqrestore(&sc->sc_ringmtx, flags);
|
|
//spin_unlock_irq(&sc->sc_ringmtx);
|
|
err = ENOMEM;
|
|
goto errout2;
|
|
}
|
|
|
|
q = BSD_SIMPLEQ_FIRST(&sc->sc_freequeue);
|
|
BSD_SIMPLEQ_REMOVE_HEAD(&sc->sc_freequeue, q_next);
|
|
#ifdef UBSEC_VERBOSE_DEBUG
|
|
DPRINTF("spin_unlock_irqrestore\n");
|
|
#endif
|
|
spin_unlock_irqrestore(&sc->sc_ringmtx, flags);
|
|
//spin_unlock_irq(&sc->sc_ringmtx);
|
|
|
|
dmap = q->q_dma; /* Save dma pointer */
|
|
bzero(q, sizeof(struct ubsec_q));
|
|
bzero(&ctx, sizeof(ctx));
|
|
|
|
q->q_sesn = UBSEC_SESSION(crp->crp_sid);
|
|
q->q_dma = dmap;
|
|
ses = &sc->sc_sessions[q->q_sesn];
|
|
|
|
if (crp->crp_flags & CRYPTO_F_SKBUF) {
|
|
q->q_src_m = (struct sk_buff *)crp->crp_buf;
|
|
q->q_dst_m = (struct sk_buff *)crp->crp_buf;
|
|
} else if (crp->crp_flags & CRYPTO_F_IOV) {
|
|
q->q_src_io = (struct uio *)crp->crp_buf;
|
|
q->q_dst_io = (struct uio *)crp->crp_buf;
|
|
} else {
|
|
err = EINVAL;
|
|
goto errout; /* XXX we don't handle contiguous blocks! */
|
|
}
|
|
|
|
bzero(&dmap->d_dma->d_mcr, sizeof(struct ubsec_mcr));
|
|
|
|
dmap->d_dma->d_mcr.mcr_pkts = htole16(1);
|
|
dmap->d_dma->d_mcr.mcr_flags = 0;
|
|
q->q_crp = crp;
|
|
|
|
crd1 = crp->crp_desc;
|
|
if (crd1 == NULL) {
|
|
err = EINVAL;
|
|
goto errout;
|
|
}
|
|
crd2 = crd1->crd_next;
|
|
|
|
if (crd2 == NULL) {
|
|
if (crd1->crd_alg == CRYPTO_MD5_HMAC ||
|
|
crd1->crd_alg == CRYPTO_SHA1_HMAC) {
|
|
maccrd = crd1;
|
|
enccrd = NULL;
|
|
} else if (crd1->crd_alg == CRYPTO_DES_CBC ||
|
|
crd1->crd_alg == CRYPTO_3DES_CBC ||
|
|
crd1->crd_alg == CRYPTO_AES_CBC) {
|
|
maccrd = NULL;
|
|
enccrd = crd1;
|
|
} else {
|
|
err = EINVAL;
|
|
goto errout;
|
|
}
|
|
} else {
|
|
if ((crd1->crd_alg == CRYPTO_MD5_HMAC ||
|
|
crd1->crd_alg == CRYPTO_SHA1_HMAC) &&
|
|
(crd2->crd_alg == CRYPTO_DES_CBC ||
|
|
crd2->crd_alg == CRYPTO_3DES_CBC ||
|
|
crd2->crd_alg == CRYPTO_AES_CBC) &&
|
|
((crd2->crd_flags & CRD_F_ENCRYPT) == 0)) {
|
|
maccrd = crd1;
|
|
enccrd = crd2;
|
|
} else if ((crd1->crd_alg == CRYPTO_DES_CBC ||
|
|
crd1->crd_alg == CRYPTO_3DES_CBC ||
|
|
crd1->crd_alg == CRYPTO_AES_CBC) &&
|
|
(crd2->crd_alg == CRYPTO_MD5_HMAC ||
|
|
crd2->crd_alg == CRYPTO_SHA1_HMAC) &&
|
|
(crd1->crd_flags & CRD_F_ENCRYPT)) {
|
|
enccrd = crd1;
|
|
maccrd = crd2;
|
|
} else {
|
|
/*
|
|
* We cannot order the ubsec as requested
|
|
*/
|
|
printk(KERN_ERR DRV_MODULE_NAME ": got wrong algorithm/signature order.\n");
|
|
err = EINVAL;
|
|
goto errout;
|
|
}
|
|
}
|
|
|
|
/* Encryption/Decryption requested */
|
|
if (enccrd) {
|
|
encoffset = enccrd->crd_skip;
|
|
|
|
if (enccrd->crd_alg == CRYPTO_DES_CBC ||
|
|
enccrd->crd_alg == CRYPTO_3DES_CBC)
|
|
{
|
|
ctx.pc_flags |= htole16(UBS_PKTCTX_ENC_3DES);
|
|
ctx.pc_type = htole16(UBS_PKTCTX_TYPE_IPSEC_DES);
|
|
ivsize = 8; /* [3]DES uses 64bit IVs */
|
|
} else {
|
|
ctx.pc_flags |= htole16(UBS_PKTCTX_ENC_AES);
|
|
ctx.pc_type = htole16(UBS_PKTCTX_TYPE_IPSEC_AES);
|
|
ivsize = 16; /* AES uses 128bit IVs / [3]DES 64bit IVs */
|
|
|
|
switch(ses->ses_keysize)
|
|
{
|
|
case 128:
|
|
ctx.pc_flags |= htole16(UBS_PKTCTX_AES128);
|
|
break;
|
|
case 192:
|
|
ctx.pc_flags |= htole16(UBS_PKTCTX_AES192);
|
|
break;
|
|
case 256:
|
|
ctx.pc_flags |= htole16(UBS_PKTCTX_AES256);
|
|
break;
|
|
default:
|
|
DPRINTF("invalid AES key size: %d\n", ses->ses_keysize);
|
|
err = EINVAL;
|
|
goto errout;
|
|
}
|
|
}
|
|
|
|
if (enccrd->crd_flags & CRD_F_ENCRYPT) {
|
|
/* Direction: Outbound */
|
|
|
|
q->q_flags |= UBSEC_QFLAGS_COPYOUTIV;
|
|
|
|
if (enccrd->crd_flags & CRD_F_IV_EXPLICIT) {
|
|
bcopy(enccrd->crd_iv, ctx.pc_iv, ivsize);
|
|
} else {
|
|
for(i=0; i < (ivsize / 4); i++)
|
|
ctx.pc_iv[i] = ses->ses_iv[i];
|
|
}
|
|
|
|
/* If there is no IV in the buffer -> copy it here */
|
|
if ((enccrd->crd_flags & CRD_F_IV_PRESENT) == 0) {
|
|
if (crp->crp_flags & CRYPTO_F_SKBUF)
|
|
/*
|
|
m_copyback(q->q_src_m,
|
|
enccrd->crd_inject,
|
|
8, ctx.pc_iv);
|
|
*/
|
|
crypto_copyback(crp->crp_flags, (caddr_t)q->q_src_m,
|
|
enccrd->crd_inject, ivsize, (caddr_t)ctx.pc_iv);
|
|
else if (crp->crp_flags & CRYPTO_F_IOV)
|
|
/*
|
|
cuio_copyback(q->q_src_io,
|
|
enccrd->crd_inject,
|
|
8, ctx.pc_iv);
|
|
*/
|
|
crypto_copyback(crp->crp_flags, (caddr_t)q->q_src_io,
|
|
enccrd->crd_inject, ivsize, (caddr_t)ctx.pc_iv);
|
|
}
|
|
} else {
|
|
/* Direction: Inbound */
|
|
|
|
ctx.pc_flags |= htole16(UBS_PKTCTX_INBOUND);
|
|
|
|
if (enccrd->crd_flags & CRD_F_IV_EXPLICIT)
|
|
bcopy(enccrd->crd_iv, ctx.pc_iv, ivsize);
|
|
else if (crp->crp_flags & CRYPTO_F_SKBUF)
|
|
/*
|
|
m_copydata(q->q_src_m, enccrd->crd_inject,
|
|
8, (caddr_t)ctx.pc_iv);
|
|
*/
|
|
crypto_copydata(crp->crp_flags, (caddr_t)q->q_src_m,
|
|
enccrd->crd_inject, ivsize,
|
|
(caddr_t)ctx.pc_iv);
|
|
else if (crp->crp_flags & CRYPTO_F_IOV)
|
|
/*
|
|
cuio_copydata(q->q_src_io,
|
|
enccrd->crd_inject, 8,
|
|
(caddr_t)ctx.pc_iv);
|
|
*/
|
|
crypto_copydata(crp->crp_flags, (caddr_t)q->q_src_io,
|
|
enccrd->crd_inject, ivsize,
|
|
(caddr_t)ctx.pc_iv);
|
|
|
|
}
|
|
|
|
/* Even though key & IV sizes differ from cipher to cipher
|
|
* copy / swap the full array lengths. Let the compiler unroll
|
|
* the loop to increase the cpu pipeline performance... */
|
|
for(i=0; i < 8; i++)
|
|
ctx.pc_key[i] = ses->ses_key[i];
|
|
for(i=0; i < 4; i++)
|
|
SWAP32(ctx.pc_iv[i]);
|
|
}
|
|
|
|
/* Authentication requested */
|
|
if (maccrd) {
|
|
macoffset = maccrd->crd_skip;
|
|
|
|
if (maccrd->crd_alg == CRYPTO_MD5_HMAC)
|
|
ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_MD5);
|
|
else
|
|
ctx.pc_flags |= htole16(UBS_PKTCTX_AUTH_SHA1);
|
|
|
|
for (i = 0; i < 5; i++) {
|
|
ctx.pc_hminner[i] = ses->ses_hminner[i];
|
|
ctx.pc_hmouter[i] = ses->ses_hmouter[i];
|
|
|
|
HTOLE32(ctx.pc_hminner[i]);
|
|
HTOLE32(ctx.pc_hmouter[i]);
|
|
}
|
|
}
|
|
|
|
if (enccrd && maccrd) {
|
|
/*
|
|
* ubsec cannot handle packets where the end of encryption
|
|
* and authentication are not the same, or where the
|
|
* encrypted part begins before the authenticated part.
|
|
*/
|
|
if (((encoffset + enccrd->crd_len) !=
|
|
(macoffset + maccrd->crd_len)) ||
|
|
(enccrd->crd_skip < maccrd->crd_skip)) {
|
|
err = EINVAL;
|
|
goto errout;
|
|
}
|
|
sskip = maccrd->crd_skip;
|
|
cpskip = dskip = enccrd->crd_skip;
|
|
stheend = maccrd->crd_len;
|
|
dtheend = enccrd->crd_len;
|
|
coffset = enccrd->crd_skip - maccrd->crd_skip;
|
|
cpoffset = cpskip + dtheend;
|
|
#ifdef UBSEC_DEBUG
|
|
DPRINTF("mac: skip %d, len %d, inject %d\n",
|
|
maccrd->crd_skip, maccrd->crd_len, maccrd->crd_inject);
|
|
DPRINTF("enc: skip %d, len %d, inject %d\n",
|
|
enccrd->crd_skip, enccrd->crd_len, enccrd->crd_inject);
|
|
DPRINTF("src: skip %d, len %d\n", sskip, stheend);
|
|
DPRINTF("dst: skip %d, len %d\n", dskip, dtheend);
|
|
DPRINTF("ubs: coffset %d, pktlen %d, cpskip %d, cpoffset %d\n",
|
|
coffset, stheend, cpskip, cpoffset);
|
|
#endif
|
|
} else {
|
|
cpskip = dskip = sskip = macoffset + encoffset;
|
|
dtheend = stheend = (enccrd)?enccrd->crd_len:maccrd->crd_len;
|
|
cpoffset = cpskip + dtheend;
|
|
coffset = 0;
|
|
}
|
|
ctx.pc_offset = htole16(coffset >> 2);
|
|
|
|
#if 0
|
|
if (bus_dmamap_create(sc->sc_dmat, 0xfff0, UBS_MAX_SCATTER,
|
|
0xfff0, 0, BUS_DMA_NOWAIT, &q->q_src_map) != 0) {
|
|
err = ENOMEM;
|
|
goto errout;
|
|
}
|
|
#endif
|
|
|
|
if (crp->crp_flags & CRYPTO_F_SKBUF) {
|
|
#if 0
|
|
if (bus_dmamap_load_mbuf(sc->sc_dmat, q->q_src_map,
|
|
q->q_src_m, BUS_DMA_NOWAIT) != 0) {
|
|
bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
|
|
q->q_src_map = NULL;
|
|
err = ENOMEM;
|
|
goto errout;
|
|
}
|
|
#endif
|
|
err = dma_map_skb(sc, q->q_src_map, q->q_src_m, &q->q_src_len);
|
|
if (unlikely(err != 0))
|
|
goto errout;
|
|
|
|
} else if (crp->crp_flags & CRYPTO_F_IOV) {
|
|
#if 0
|
|
if (bus_dmamap_load_uio(sc->sc_dmat, q->q_src_map,
|
|
q->q_src_io, BUS_DMA_NOWAIT) != 0) {
|
|
bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
|
|
q->q_src_map = NULL;
|
|
err = ENOMEM;
|
|
goto errout;
|
|
}
|
|
#endif
|
|
err = dma_map_uio(sc, q->q_src_map, q->q_src_io, &q->q_src_len);
|
|
if (unlikely(err != 0))
|
|
goto errout;
|
|
}
|
|
|
|
/*
|
|
* Check alignment
|
|
*/
|
|
nicealign = ubsec_dmamap_aligned(sc, q->q_src_map, q->q_src_len);
|
|
|
|
dmap->d_dma->d_mcr.mcr_pktlen = htole16(stheend);
|
|
|
|
#ifdef UBSEC_DEBUG
|
|
DPRINTF("src skip: %d\n", sskip);
|
|
#endif
|
|
for (i = j = 0; i < q->q_src_len; i++) {
|
|
struct ubsec_pktbuf *pb;
|
|
size_t packl = q->q_src_map[i].dma_size;
|
|
dma_addr_t packp = q->q_src_map[i].dma_paddr;
|
|
|
|
if (sskip >= packl) {
|
|
sskip -= packl;
|
|
continue;
|
|
}
|
|
|
|
packl -= sskip;
|
|
packp += sskip;
|
|
sskip = 0;
|
|
|
|
/* maximum fragment size is 0xfffc */
|
|
if (packl > 0xfffc) {
|
|
DPRINTF("Error: fragment size is bigger than 0xfffc.\n");
|
|
err = EIO;
|
|
goto errout;
|
|
}
|
|
|
|
if (j == 0)
|
|
pb = &dmap->d_dma->d_mcr.mcr_ipktbuf;
|
|
else
|
|
pb = &dmap->d_dma->d_sbuf[j - 1];
|
|
|
|
pb->pb_addr = htole32(packp);
|
|
|
|
if (stheend) {
|
|
if (packl > stheend) {
|
|
pb->pb_len = htole32(stheend);
|
|
stheend = 0;
|
|
} else {
|
|
pb->pb_len = htole32(packl);
|
|
stheend -= packl;
|
|
}
|
|
} else
|
|
pb->pb_len = htole32(packl);
|
|
|
|
if ((i + 1) == q->q_src_len)
|
|
pb->pb_next = 0;
|
|
else
|
|
pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
|
|
offsetof(struct ubsec_dmachunk, d_sbuf[j]));
|
|
j++;
|
|
}
|
|
|
|
if (enccrd == NULL && maccrd != NULL) {
|
|
/* Authentication only */
|
|
dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr = 0;
|
|
dmap->d_dma->d_mcr.mcr_opktbuf.pb_len = 0;
|
|
dmap->d_dma->d_mcr.mcr_opktbuf.pb_next =
|
|
htole32(dmap->d_alloc.dma_paddr +
|
|
offsetof(struct ubsec_dmachunk, d_macbuf[0]));
|
|
#ifdef UBSEC_DEBUG
|
|
DPRINTF("opkt: %x %x %x\n",
|
|
dmap->d_dma->d_mcr.mcr_opktbuf.pb_addr,
|
|
dmap->d_dma->d_mcr.mcr_opktbuf.pb_len,
|
|
dmap->d_dma->d_mcr.mcr_opktbuf.pb_next);
|
|
#endif
|
|
} else {
|
|
if (crp->crp_flags & CRYPTO_F_IOV) {
|
|
if (!nicealign) {
|
|
err = EINVAL;
|
|
goto errout;
|
|
}
|
|
#if 0
|
|
if (bus_dmamap_create(sc->sc_dmat, 0xfff0,
|
|
UBS_MAX_SCATTER, 0xfff0, 0, BUS_DMA_NOWAIT,
|
|
&q->q_dst_map) != 0) {
|
|
err = ENOMEM;
|
|
goto errout;
|
|
}
|
|
if (bus_dmamap_load_uio(sc->sc_dmat, q->q_dst_map,
|
|
q->q_dst_io, BUS_DMA_NOWAIT) != 0) {
|
|
bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
|
|
q->q_dst_map = NULL;
|
|
goto errout;
|
|
}
|
|
#endif
|
|
|
|
/* HW shall copy the result into the source memory */
|
|
for(i = 0; i < q->q_src_len; i++)
|
|
q->q_dst_map[i] = q->q_src_map[i];
|
|
|
|
q->q_dst_len = q->q_src_len;
|
|
q->q_has_dst = 0;
|
|
|
|
} else if (crp->crp_flags & CRYPTO_F_SKBUF) {
|
|
if (nicealign) {
|
|
|
|
/* HW shall copy the result into the source memory */
|
|
q->q_dst_m = q->q_src_m;
|
|
for(i = 0; i < q->q_src_len; i++)
|
|
q->q_dst_map[i] = q->q_src_map[i];
|
|
|
|
q->q_dst_len = q->q_src_len;
|
|
q->q_has_dst = 0;
|
|
|
|
} else {
|
|
#ifdef NOTYET
|
|
int totlen, len;
|
|
struct sk_buff *m, *top, **mp;
|
|
|
|
totlen = q->q_src_map->dm_mapsize;
|
|
if (q->q_src_m->m_flags & M_PKTHDR) {
|
|
len = MHLEN;
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
} else {
|
|
len = MLEN;
|
|
MGET(m, M_DONTWAIT, MT_DATA);
|
|
}
|
|
if (m == NULL) {
|
|
err = ENOMEM;
|
|
goto errout;
|
|
}
|
|
if (len == MHLEN)
|
|
M_DUP_PKTHDR(m, q->q_src_m);
|
|
if (totlen >= MINCLSIZE) {
|
|
MCLGET(m, M_DONTWAIT);
|
|
if (m->m_flags & M_EXT)
|
|
len = MCLBYTES;
|
|
}
|
|
m->m_len = len;
|
|
top = NULL;
|
|
mp = ⊤
|
|
|
|
while (totlen > 0) {
|
|
if (top) {
|
|
MGET(m, M_DONTWAIT, MT_DATA);
|
|
if (m == NULL) {
|
|
m_freem(top);
|
|
err = ENOMEM;
|
|
goto errout;
|
|
}
|
|
len = MLEN;
|
|
}
|
|
if (top && totlen >= MINCLSIZE) {
|
|
MCLGET(m, M_DONTWAIT);
|
|
if (m->m_flags & M_EXT)
|
|
len = MCLBYTES;
|
|
}
|
|
m->m_len = len = min(totlen, len);
|
|
totlen -= len;
|
|
*mp = m;
|
|
mp = &m->m_next;
|
|
}
|
|
q->q_dst_m = top;
|
|
ubsec_mcopy(q->q_src_m, q->q_dst_m,
|
|
cpskip, cpoffset);
|
|
if (bus_dmamap_create(sc->sc_dmat, 0xfff0,
|
|
UBS_MAX_SCATTER, 0xfff0, 0, BUS_DMA_NOWAIT,
|
|
&q->q_dst_map) != 0) {
|
|
err = ENOMEM;
|
|
goto errout;
|
|
}
|
|
if (bus_dmamap_load_mbuf(sc->sc_dmat,
|
|
q->q_dst_map, q->q_dst_m,
|
|
BUS_DMA_NOWAIT) != 0) {
|
|
bus_dmamap_destroy(sc->sc_dmat,
|
|
q->q_dst_map);
|
|
q->q_dst_map = NULL;
|
|
err = ENOMEM;
|
|
goto errout;
|
|
}
|
|
#else
|
|
device_printf(sc->sc_dev,
|
|
"%s,%d: CRYPTO_F_SKBUF unaligned not implemented\n",
|
|
__FILE__, __LINE__);
|
|
err = EINVAL;
|
|
goto errout;
|
|
#endif
|
|
}
|
|
} else {
|
|
err = EINVAL;
|
|
goto errout;
|
|
}
|
|
|
|
#ifdef UBSEC_DEBUG
|
|
DPRINTF("dst skip: %d\n", dskip);
|
|
#endif
|
|
for (i = j = 0; i < q->q_dst_len; i++) {
|
|
struct ubsec_pktbuf *pb;
|
|
size_t packl = q->q_dst_map[i].dma_size;
|
|
dma_addr_t packp = q->q_dst_map[i].dma_paddr;
|
|
|
|
if (dskip >= packl) {
|
|
dskip -= packl;
|
|
continue;
|
|
}
|
|
|
|
packl -= dskip;
|
|
packp += dskip;
|
|
dskip = 0;
|
|
|
|
if (packl > 0xfffc) {
|
|
DPRINTF("Error: fragment size is bigger than 0xfffc.\n");
|
|
err = EIO;
|
|
goto errout;
|
|
}
|
|
|
|
if (j == 0)
|
|
pb = &dmap->d_dma->d_mcr.mcr_opktbuf;
|
|
else
|
|
pb = &dmap->d_dma->d_dbuf[j - 1];
|
|
|
|
pb->pb_addr = htole32(packp);
|
|
|
|
if (dtheend) {
|
|
if (packl > dtheend) {
|
|
pb->pb_len = htole32(dtheend);
|
|
dtheend = 0;
|
|
} else {
|
|
pb->pb_len = htole32(packl);
|
|
dtheend -= packl;
|
|
}
|
|
} else
|
|
pb->pb_len = htole32(packl);
|
|
|
|
if ((i + 1) == q->q_dst_len) {
|
|
if (maccrd)
|
|
/* Authentication:
|
|
* The last fragment of the output buffer
|
|
* contains the HMAC. */
|
|
pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
|
|
offsetof(struct ubsec_dmachunk, d_macbuf[0]));
|
|
else
|
|
pb->pb_next = 0;
|
|
} else
|
|
pb->pb_next = htole32(dmap->d_alloc.dma_paddr +
|
|
offsetof(struct ubsec_dmachunk, d_dbuf[j]));
|
|
j++;
|
|
}
|
|
}
|
|
|
|
dmap->d_dma->d_mcr.mcr_cmdctxp = htole32(dmap->d_alloc.dma_paddr +
|
|
offsetof(struct ubsec_dmachunk, d_ctx));
|
|
|
|
if (sc->sc_flags & UBS_FLAGS_LONGCTX) {
|
|
/* new Broadcom cards with dynamic long command context structure */
|
|
|
|
if (enccrd != NULL &&
|
|
enccrd->crd_alg == CRYPTO_AES_CBC)
|
|
{
|
|
struct ubsec_pktctx_aes128 *ctxaes128;
|
|
struct ubsec_pktctx_aes192 *ctxaes192;
|
|
struct ubsec_pktctx_aes256 *ctxaes256;
|
|
|
|
switch(ses->ses_keysize)
|
|
{
|
|
/* AES 128bit */
|
|
case 128:
|
|
ctxaes128 = (struct ubsec_pktctx_aes128 *)
|
|
(dmap->d_alloc.dma_vaddr +
|
|
offsetof(struct ubsec_dmachunk, d_ctx));
|
|
|
|
ctxaes128->pc_len = htole16(sizeof(struct ubsec_pktctx_aes128));
|
|
ctxaes128->pc_type = ctx.pc_type;
|
|
ctxaes128->pc_flags = ctx.pc_flags;
|
|
ctxaes128->pc_offset = ctx.pc_offset;
|
|
for (i = 0; i < 4; i++)
|
|
ctxaes128->pc_aeskey[i] = ctx.pc_key[i];
|
|
for (i = 0; i < 5; i++)
|
|
ctxaes128->pc_hminner[i] = ctx.pc_hminner[i];
|
|
for (i = 0; i < 5; i++)
|
|
ctxaes128->pc_hmouter[i] = ctx.pc_hmouter[i];
|
|
for (i = 0; i < 4; i++)
|
|
ctxaes128->pc_iv[i] = ctx.pc_iv[i];
|
|
break;
|
|
|
|
/* AES 192bit */
|
|
case 192:
|
|
ctxaes192 = (struct ubsec_pktctx_aes192 *)
|
|
(dmap->d_alloc.dma_vaddr +
|
|
offsetof(struct ubsec_dmachunk, d_ctx));
|
|
|
|
ctxaes192->pc_len = htole16(sizeof(struct ubsec_pktctx_aes192));
|
|
ctxaes192->pc_type = ctx.pc_type;
|
|
ctxaes192->pc_flags = ctx.pc_flags;
|
|
ctxaes192->pc_offset = ctx.pc_offset;
|
|
for (i = 0; i < 6; i++)
|
|
ctxaes192->pc_aeskey[i] = ctx.pc_key[i];
|
|
for (i = 0; i < 5; i++)
|
|
ctxaes192->pc_hminner[i] = ctx.pc_hminner[i];
|
|
for (i = 0; i < 5; i++)
|
|
ctxaes192->pc_hmouter[i] = ctx.pc_hmouter[i];
|
|
for (i = 0; i < 4; i++)
|
|
ctxaes192->pc_iv[i] = ctx.pc_iv[i];
|
|
break;
|
|
|
|
/* AES 256bit */
|
|
case 256:
|
|
ctxaes256 = (struct ubsec_pktctx_aes256 *)
|
|
(dmap->d_alloc.dma_vaddr +
|
|
offsetof(struct ubsec_dmachunk, d_ctx));
|
|
|
|
ctxaes256->pc_len = htole16(sizeof(struct ubsec_pktctx_aes256));
|
|
ctxaes256->pc_type = ctx.pc_type;
|
|
ctxaes256->pc_flags = ctx.pc_flags;
|
|
ctxaes256->pc_offset = ctx.pc_offset;
|
|
for (i = 0; i < 8; i++)
|
|
ctxaes256->pc_aeskey[i] = ctx.pc_key[i];
|
|
for (i = 0; i < 5; i++)
|
|
ctxaes256->pc_hminner[i] = ctx.pc_hminner[i];
|
|
for (i = 0; i < 5; i++)
|
|
ctxaes256->pc_hmouter[i] = ctx.pc_hmouter[i];
|
|
for (i = 0; i < 4; i++)
|
|
ctxaes256->pc_iv[i] = ctx.pc_iv[i];
|
|
break;
|
|
|
|
}
|
|
} else {
|
|
/*
|
|
* [3]DES / MD5_HMAC / SHA1_HMAC
|
|
*
|
|
* MD5_HMAC / SHA1_HMAC can use the IPSEC 3DES operation without
|
|
* encryption.
|
|
*/
|
|
struct ubsec_pktctx_des *ctxdes;
|
|
|
|
ctxdes = (struct ubsec_pktctx_des *)(dmap->d_alloc.dma_vaddr +
|
|
offsetof(struct ubsec_dmachunk, d_ctx));
|
|
|
|
ctxdes->pc_len = htole16(sizeof(struct ubsec_pktctx_des));
|
|
ctxdes->pc_type = ctx.pc_type;
|
|
ctxdes->pc_flags = ctx.pc_flags;
|
|
ctxdes->pc_offset = ctx.pc_offset;
|
|
for (i = 0; i < 6; i++)
|
|
ctxdes->pc_deskey[i] = ctx.pc_key[i];
|
|
for (i = 0; i < 5; i++)
|
|
ctxdes->pc_hminner[i] = ctx.pc_hminner[i];
|
|
for (i = 0; i < 5; i++)
|
|
ctxdes->pc_hmouter[i] = ctx.pc_hmouter[i];
|
|
ctxdes->pc_iv[0] = ctx.pc_iv[0];
|
|
ctxdes->pc_iv[1] = ctx.pc_iv[1];
|
|
}
|
|
} else
|
|
{
|
|
/* old Broadcom card with fixed small command context structure */
|
|
|
|
/*
|
|
* [3]DES / MD5_HMAC / SHA1_HMAC
|
|
*/
|
|
struct ubsec_pktctx *ctxs;
|
|
|
|
ctxs = (struct ubsec_pktctx *)(dmap->d_alloc.dma_vaddr +
|
|
offsetof(struct ubsec_dmachunk, d_ctx));
|
|
|
|
/* transform generic context into small context */
|
|
for (i = 0; i < 6; i++)
|
|
ctxs->pc_deskey[i] = ctx.pc_key[i];
|
|
for (i = 0; i < 5; i++)
|
|
ctxs->pc_hminner[i] = ctx.pc_hminner[i];
|
|
for (i = 0; i < 5; i++)
|
|
ctxs->pc_hmouter[i] = ctx.pc_hmouter[i];
|
|
ctxs->pc_iv[0] = ctx.pc_iv[0];
|
|
ctxs->pc_iv[1] = ctx.pc_iv[1];
|
|
ctxs->pc_flags = ctx.pc_flags;
|
|
ctxs->pc_offset = ctx.pc_offset;
|
|
}
|
|
|
|
#ifdef UBSEC_VERBOSE_DEBUG
|
|
DPRINTF("spin_lock_irqsave\n");
|
|
#endif
|
|
spin_lock_irqsave(&sc->sc_ringmtx, flags);
|
|
//spin_lock_irq(&sc->sc_ringmtx);
|
|
|
|
BSD_SIMPLEQ_INSERT_TAIL(&sc->sc_queue, q, q_next);
|
|
sc->sc_nqueue++;
|
|
ubsecstats.hst_ipackets++;
|
|
ubsecstats.hst_ibytes += stheend;
|
|
ubsec_feed(sc);
|
|
|
|
#ifdef UBSEC_VERBOSE_DEBUG
|
|
DPRINTF("spin_unlock_irqrestore\n");
|
|
#endif
|
|
spin_unlock_irqrestore(&sc->sc_ringmtx, flags);
|
|
//spin_unlock_irq(&sc->sc_ringmtx);
|
|
|
|
return (0);
|
|
|
|
errout:
|
|
if (q != NULL) {
|
|
#ifdef NOTYET
|
|
if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
|
|
m_freem(q->q_dst_m);
|
|
#endif
|
|
|
|
if ((q->q_has_dst == 1) && q->q_dst_len > 0) {
|
|
#if 0
|
|
bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
|
|
bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
|
|
#endif
|
|
dma_unmap(sc, q->q_dst_map, q->q_dst_len);
|
|
}
|
|
if (q->q_src_len > 0) {
|
|
#if 0
|
|
bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
|
|
bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
|
|
#endif
|
|
dma_unmap(sc, q->q_src_map, q->q_src_len);
|
|
}
|
|
|
|
#ifdef UBSEC_VERBOSE_DEBUG
|
|
DPRINTF("spin_lock_irqsave\n");
|
|
#endif
|
|
spin_lock_irqsave(&sc->sc_ringmtx, flags);
|
|
//spin_lock_irq(&sc->sc_ringmtx);
|
|
|
|
BSD_SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
|
|
|
|
#ifdef UBSEC_VERBOSE_DEBUG
|
|
DPRINTF("spin_unlock_irqrestore\n");
|
|
#endif
|
|
spin_unlock_irqrestore(&sc->sc_ringmtx, flags);
|
|
//spin_unlock_irq(&sc->sc_ringmtx);
|
|
|
|
}
|
|
if (err == EINVAL)
|
|
ubsecstats.hst_invalid++;
|
|
else
|
|
ubsecstats.hst_nomem++;
|
|
errout2:
|
|
crp->crp_etype = err;
|
|
crypto_done(crp);
|
|
|
|
#ifdef UBSEC_DEBUG
|
|
DPRINTF("%s() err = %x\n", __FUNCTION__, err);
|
|
#endif
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
ubsec_callback(struct ubsec_softc *sc, struct ubsec_q *q)
|
|
{
|
|
struct cryptop *crp = (struct cryptop *)q->q_crp;
|
|
struct cryptodesc *crd;
|
|
struct ubsec_dma *dmap = q->q_dma;
|
|
int ivsize = 8;
|
|
|
|
#ifdef UBSEC_DEBUG
|
|
DPRINTF("%s()\n", __FUNCTION__);
|
|
#endif
|
|
|
|
ubsecstats.hst_opackets++;
|
|
ubsecstats.hst_obytes += dmap->d_alloc.dma_size;
|
|
|
|
#if 0
|
|
bus_dmamap_sync(sc->sc_dmat, dmap->d_alloc.dma_map, 0,
|
|
dmap->d_alloc.dma_map->dm_mapsize,
|
|
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
|
|
if (q->q_dst_map != NULL && q->q_dst_map != q->q_src_map) {
|
|
bus_dmamap_sync(sc->sc_dmat, q->q_dst_map,
|
|
0, q->q_dst_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
|
|
bus_dmamap_unload(sc->sc_dmat, q->q_dst_map);
|
|
bus_dmamap_destroy(sc->sc_dmat, q->q_dst_map);
|
|
}
|
|
bus_dmamap_sync(sc->sc_dmat, q->q_src_map,
|
|
0, q->q_src_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_dmat, q->q_src_map);
|
|
bus_dmamap_destroy(sc->sc_dmat, q->q_src_map);
|
|
#endif
|
|
|
|
if ((q->q_has_dst == 1) && q->q_dst_len > 0)
|
|
dma_unmap(sc, q->q_dst_map, q->q_dst_len);
|
|
|
|
dma_unmap(sc, q->q_src_map, q->q_src_len);
|
|
|
|
#ifdef NOTYET
|
|
if ((crp->crp_flags & CRYPTO_F_SKBUF) && (q->q_src_m != q->q_dst_m)) {
|
|
m_freem(q->q_src_m);
|
|
crp->crp_buf = (caddr_t)q->q_dst_m;
|
|
}
|
|
#endif
|
|
|
|
/* copy out IV for future use */
|
|
if (q->q_flags & UBSEC_QFLAGS_COPYOUTIV) {
|
|
for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
|
|
if (crd->crd_alg != CRYPTO_DES_CBC &&
|
|
crd->crd_alg != CRYPTO_3DES_CBC &&
|
|
crd->crd_alg != CRYPTO_AES_CBC)
|
|
continue;
|
|
|
|
if (crd->crd_alg == CRYPTO_AES_CBC)
|
|
ivsize = 16;
|
|
else
|
|
ivsize = 8;
|
|
|
|
if (crp->crp_flags & CRYPTO_F_SKBUF)
|
|
#if 0
|
|
m_copydata((struct sk_buff *)crp->crp_buf,
|
|
crd->crd_skip + crd->crd_len - 8, 8,
|
|
(caddr_t)sc->sc_sessions[q->q_sesn].ses_iv);
|
|
#endif
|
|
crypto_copydata(crp->crp_flags, (caddr_t)crp->crp_buf,
|
|
crd->crd_skip + crd->crd_len - ivsize, ivsize,
|
|
(caddr_t)sc->sc_sessions[q->q_sesn].ses_iv);
|
|
|
|
else if (crp->crp_flags & CRYPTO_F_IOV) {
|
|
#if 0
|
|
cuio_copydata((struct uio *)crp->crp_buf,
|
|
crd->crd_skip + crd->crd_len - 8, 8,
|
|
(caddr_t)sc->sc_sessions[q->q_sesn].ses_iv);
|
|
#endif
|
|
crypto_copydata(crp->crp_flags, (caddr_t)crp->crp_buf,
|
|
crd->crd_skip + crd->crd_len - ivsize, ivsize,
|
|
(caddr_t)sc->sc_sessions[q->q_sesn].ses_iv);
|
|
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
for (crd = crp->crp_desc; crd; crd = crd->crd_next) {
|
|
if (crd->crd_alg != CRYPTO_MD5_HMAC &&
|
|
crd->crd_alg != CRYPTO_SHA1_HMAC)
|
|
continue;
|
|
#if 0
|
|
if (crp->crp_flags & CRYPTO_F_SKBUF)
|
|
m_copyback((struct sk_buff *)crp->crp_buf,
|
|
crd->crd_inject, 12,
|
|
dmap->d_dma->d_macbuf);
|
|
#endif
|
|
#if 0
|
|
/* BUG? it does not honor the mac len.. */
|
|
crypto_copyback(crp->crp_flags, crp->crp_buf,
|
|
crd->crd_inject, 12,
|
|
(caddr_t)dmap->d_dma->d_macbuf);
|
|
#endif
|
|
crypto_copyback(crp->crp_flags, crp->crp_buf,
|
|
crd->crd_inject,
|
|
sc->sc_sessions[q->q_sesn].ses_mlen,
|
|
(caddr_t)dmap->d_dma->d_macbuf);
|
|
#if 0
|
|
else if (crp->crp_flags & CRYPTO_F_IOV && crp->crp_mac)
|
|
bcopy((caddr_t)dmap->d_dma->d_macbuf,
|
|
crp->crp_mac, 12);
|
|
#endif
|
|
break;
|
|
}
|
|
BSD_SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
|
|
crypto_done(crp);
|
|
}
|
|
|
|
void
|
|
ubsec_mcopy(struct sk_buff *srcm, struct sk_buff *dstm, int hoffset, int toffset)
|
|
{
|
|
int i, j, dlen, slen;
|
|
caddr_t dptr, sptr;
|
|
|
|
j = 0;
|
|
sptr = srcm->data;
|
|
slen = srcm->len;
|
|
dptr = dstm->data;
|
|
dlen = dstm->len;
|
|
|
|
while (1) {
|
|
for (i = 0; i < min(slen, dlen); i++) {
|
|
if (j < hoffset || j >= toffset)
|
|
*dptr++ = *sptr++;
|
|
slen--;
|
|
dlen--;
|
|
j++;
|
|
}
|
|
if (slen == 0) {
|
|
srcm = srcm->next;
|
|
if (srcm == NULL)
|
|
return;
|
|
sptr = srcm->data;
|
|
slen = srcm->len;
|
|
}
|
|
if (dlen == 0) {
|
|
dstm = dstm->next;
|
|
if (dstm == NULL)
|
|
return;
|
|
dptr = dstm->data;
|
|
dlen = dstm->len;
|
|
}
|
|
}
|
|
}
|
|
|
|
int
|
|
ubsec_dma_malloc(struct ubsec_softc *sc, struct ubsec_dma_alloc *dma,
|
|
size_t size, int mapflags)
|
|
{
|
|
dma->dma_vaddr = dma_alloc_coherent(sc->sc_dv,
|
|
size, &dma->dma_paddr, GFP_KERNEL);
|
|
|
|
if (likely(dma->dma_vaddr))
|
|
{
|
|
dma->dma_size = size;
|
|
return (0);
|
|
}
|
|
|
|
DPRINTF("could not allocate %d bytes of coherent memory.\n", size);
|
|
|
|
return (1);
|
|
}
|
|
|
|
void
|
|
ubsec_dma_free(struct ubsec_softc *sc, struct ubsec_dma_alloc *dma)
|
|
{
|
|
dma_free_coherent(sc->sc_dv, dma->dma_size, dma->dma_vaddr,
|
|
dma->dma_paddr);
|
|
}
|
|
|
|
/*
|
|
* Resets the board. Values in the regesters are left as is
|
|
* from the reset (i.e. initial values are assigned elsewhere).
|
|
*/
|
|
void
|
|
ubsec_reset_board(struct ubsec_softc *sc)
|
|
{
|
|
volatile u_int32_t ctrl;
|
|
|
|
#ifdef UBSEC_DEBUG
|
|
DPRINTF("%s()\n", __FUNCTION__);
|
|
#endif
|
|
DPRINTF("Send reset signal to chip.\n");
|
|
|
|
ctrl = READ_REG(sc, BS_CTRL);
|
|
ctrl |= BS_CTRL_RESET;
|
|
WRITE_REG(sc, BS_CTRL, ctrl);
|
|
|
|
/*
|
|
* Wait aprox. 30 PCI clocks = 900 ns = 0.9 us
|
|
*/
|
|
DELAY(10);
|
|
}
|
|
|
|
/*
|
|
* Init Broadcom registers
|
|
*/
|
|
void
|
|
ubsec_init_board(struct ubsec_softc *sc)
|
|
{
|
|
u_int32_t ctrl;
|
|
|
|
#ifdef UBSEC_DEBUG
|
|
DPRINTF("%s()\n", __FUNCTION__);
|
|
#endif
|
|
DPRINTF("Initialize chip.\n");
|
|
|
|
ctrl = READ_REG(sc, BS_CTRL);
|
|
ctrl &= ~(BS_CTRL_BE32 | BS_CTRL_BE64);
|
|
ctrl |= BS_CTRL_LITTLE_ENDIAN | BS_CTRL_MCR1INT | BS_CTRL_DMAERR;
|
|
|
|
WRITE_REG(sc, BS_CTRL, ctrl);
|
|
|
|
/* Set chip capabilities (BCM5365P) */
|
|
sc->sc_flags |= UBS_FLAGS_LONGCTX | UBS_FLAGS_AES;
|
|
}
|
|
|
|
/*
|
|
* Clean up after a chip crash.
|
|
* It is assumed that the caller has spin_lock_irq(sc_ringmtx).
|
|
*/
|
|
void
|
|
ubsec_cleanchip(struct ubsec_softc *sc)
|
|
{
|
|
struct ubsec_q *q;
|
|
|
|
#ifdef UBSEC_DEBUG
|
|
DPRINTF("%s()\n", __FUNCTION__);
|
|
#endif
|
|
DPRINTF("Clean up queues after chip crash.\n");
|
|
|
|
while (!BSD_SIMPLEQ_EMPTY(&sc->sc_qchip)) {
|
|
q = BSD_SIMPLEQ_FIRST(&sc->sc_qchip);
|
|
BSD_SIMPLEQ_REMOVE_HEAD(&sc->sc_qchip, q_next);
|
|
ubsec_free_q(sc, q);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* free a ubsec_q
|
|
* It is assumed that the caller has spin_lock_irq(sc_ringmtx).
|
|
*/
|
|
int
|
|
ubsec_free_q(struct ubsec_softc *sc, struct ubsec_q *q)
|
|
{
|
|
struct ubsec_q *q2;
|
|
struct cryptop *crp;
|
|
int npkts;
|
|
int i;
|
|
|
|
#ifdef UBSEC_DEBUG
|
|
DPRINTF("%s()\n", __FUNCTION__);
|
|
#endif
|
|
|
|
npkts = q->q_nstacked_mcrs;
|
|
|
|
for (i = 0; i < npkts; i++) {
|
|
if(q->q_stacked_mcr[i]) {
|
|
q2 = q->q_stacked_mcr[i];
|
|
|
|
if ((q2->q_dst_m != NULL) && (q2->q_src_m != q2->q_dst_m))
|
|
#ifdef NOTYET
|
|
m_freem(q2->q_dst_m);
|
|
#else
|
|
printk(KERN_ERR "%s,%d: SKB not supported\n", __FILE__, __LINE__);
|
|
#endif
|
|
|
|
crp = (struct cryptop *)q2->q_crp;
|
|
|
|
BSD_SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q2, q_next);
|
|
|
|
crp->crp_etype = EFAULT;
|
|
crypto_done(crp);
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Free header MCR
|
|
*/
|
|
if ((q->q_dst_m != NULL) && (q->q_src_m != q->q_dst_m))
|
|
#ifdef NOTYET
|
|
m_freem(q->q_dst_m);
|
|
#else
|
|
printk(KERN_ERR "%s,%d: SKB not supported\n", __FILE__, __LINE__);
|
|
#endif
|
|
|
|
crp = (struct cryptop *)q->q_crp;
|
|
|
|
BSD_SIMPLEQ_INSERT_TAIL(&sc->sc_freequeue, q, q_next);
|
|
|
|
crp->crp_etype = EFAULT;
|
|
crypto_done(crp);
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Routine to reset the chip and clean up.
|
|
* It is assumed that the caller has spin_lock_irq(sc_ringmtx).
|
|
*/
|
|
void
|
|
ubsec_totalreset(struct ubsec_softc *sc)
|
|
{
|
|
|
|
#ifdef UBSEC_DEBUG
|
|
DPRINTF("%s()\n", __FUNCTION__);
|
|
#endif
|
|
DPRINTF("initiate total chip reset.. \n");
|
|
ubsec_reset_board(sc);
|
|
ubsec_init_board(sc);
|
|
ubsec_cleanchip(sc);
|
|
}
|
|
|
|
void
|
|
ubsec_dump_pb(struct ubsec_pktbuf *pb)
|
|
{
|
|
printf("addr 0x%x (0x%x) next 0x%x\n",
|
|
pb->pb_addr, pb->pb_len, pb->pb_next);
|
|
}
|
|
|
|
void
|
|
ubsec_dump_mcr(struct ubsec_mcr *mcr)
|
|
{
|
|
struct ubsec_mcr_add *ma;
|
|
int i;
|
|
|
|
printf("MCR:\n");
|
|
printf(" pkts: %u, flags 0x%x\n",
|
|
letoh16(mcr->mcr_pkts), letoh16(mcr->mcr_flags));
|
|
ma = (struct ubsec_mcr_add *)&mcr->mcr_cmdctxp;
|
|
for (i = 0; i < letoh16(mcr->mcr_pkts); i++) {
|
|
printf(" %d: ctx 0x%x len 0x%x rsvd 0x%x\n", i,
|
|
letoh32(ma->mcr_cmdctxp), letoh16(ma->mcr_pktlen),
|
|
letoh16(ma->mcr_reserved));
|
|
printf(" %d: ipkt ", i);
|
|
ubsec_dump_pb(&ma->mcr_ipktbuf);
|
|
printf(" %d: opkt ", i);
|
|
ubsec_dump_pb(&ma->mcr_opktbuf);
|
|
ma++;
|
|
}
|
|
printf("END MCR\n");
|
|
}
|
|
|
|
static int __init mod_init(void) {
|
|
return ssb_driver_register(&ubsec_ssb_driver);
|
|
}
|
|
|
|
static void __exit mod_exit(void) {
|
|
ssb_driver_unregister(&ubsec_ssb_driver);
|
|
}
|
|
|
|
module_init(mod_init);
|
|
module_exit(mod_exit);
|
|
|
|
// Meta information
|
|
MODULE_AUTHOR("Daniel Mueller <daniel@danm.de>");
|
|
MODULE_LICENSE("BSD");
|
|
MODULE_DESCRIPTION("OCF driver for BCM5365P IPSec Core");
|
|
MODULE_VERSION(DRV_MODULE_VERSION);
|
|
|