openwrt/target/linux/realtek/files-5.10/drivers/net/phy/rtl83xx-phy.c
Birger Koblitz 88936e7e82 realtek: cleanup PHY driver
Removes unnecessary output from the RTL PHY drivers.

Signed-off-by: Birger Koblitz <git@birger-koblitz.de>
2021-10-09 08:25:06 +02:00

1982 lines
47 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/* Realtek RTL838X Ethernet MDIO interface driver
*
* Copyright (C) 2020 B. Koblitz
*/
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/phy.h>
#include <linux/netdevice.h>
#include <linux/firmware.h>
#include <linux/crc32.h>
#include <asm/mach-rtl838x/mach-rtl83xx.h>
#include "rtl83xx-phy.h"
extern struct rtl83xx_soc_info soc_info;
extern struct mutex smi_lock;
/*
* This lock protects the state of the SoC automatically polling the PHYs over the SMI
* bus to detect e.g. link and media changes. For operations on the PHYs such as
* patching or other configuration changes such as EEE, polling needs to be disabled
* since otherwise these operations may fails or lead to unpredictable results.
*/
DEFINE_MUTEX(poll_lock);
static const struct firmware rtl838x_8380_fw;
static const struct firmware rtl838x_8214fc_fw;
static const struct firmware rtl838x_8218b_fw;
int rtl838x_read_mmd_phy(u32 port, u32 devnum, u32 regnum, u32 *val);
int rtl838x_write_mmd_phy(u32 port, u32 devnum, u32 reg, u32 val);
int rtl839x_read_mmd_phy(u32 port, u32 devnum, u32 regnum, u32 *val);
int rtl839x_write_mmd_phy(u32 port, u32 devnum, u32 reg, u32 val);
int rtl930x_read_mmd_phy(u32 port, u32 devnum, u32 regnum, u32 *val);
int rtl930x_write_mmd_phy(u32 port, u32 devnum, u32 reg, u32 val);
int rtl931x_read_mmd_phy(u32 port, u32 devnum, u32 regnum, u32 *val);
int rtl931x_write_mmd_phy(u32 port, u32 devnum, u32 reg, u32 val);
static int read_phy(u32 port, u32 page, u32 reg, u32 *val)
{ switch (soc_info.family) {
case RTL8380_FAMILY_ID:
return rtl838x_read_phy(port, page, reg, val);
case RTL8390_FAMILY_ID:
return rtl839x_read_phy(port, page, reg, val);
case RTL9300_FAMILY_ID:
return rtl930x_read_phy(port, page, reg, val);
case RTL9310_FAMILY_ID:
return rtl931x_read_phy(port, page, reg, val);
}
return -1;
}
static int write_phy(u32 port, u32 page, u32 reg, u32 val)
{
switch (soc_info.family) {
case RTL8380_FAMILY_ID:
return rtl838x_write_phy(port, page, reg, val);
case RTL8390_FAMILY_ID:
return rtl839x_write_phy(port, page, reg, val);
case RTL9300_FAMILY_ID:
return rtl930x_write_phy(port, page, reg, val);
case RTL9310_FAMILY_ID:
return rtl931x_write_phy(port, page, reg, val);
}
return -1;
}
static int read_mmd_phy(u32 port, u32 devnum, u32 regnum, u32 *val)
{
switch (soc_info.family) {
case RTL8380_FAMILY_ID:
return rtl838x_read_mmd_phy(port, devnum, regnum, val);
case RTL8390_FAMILY_ID:
return rtl839x_read_mmd_phy(port, devnum, regnum, val);
case RTL9300_FAMILY_ID:
return rtl930x_read_mmd_phy(port, devnum, regnum, val);
case RTL9310_FAMILY_ID:
return rtl931x_read_mmd_phy(port, devnum, regnum, val);
}
return -1;
}
int write_mmd_phy(u32 port, u32 devnum, u32 reg, u32 val)
{
switch (soc_info.family) {
case RTL8380_FAMILY_ID:
return rtl838x_write_mmd_phy(port, devnum, reg, val);
case RTL8390_FAMILY_ID:
return rtl839x_write_mmd_phy(port, devnum, reg, val);
case RTL9300_FAMILY_ID:
return rtl930x_write_mmd_phy(port, devnum, reg, val);
case RTL9310_FAMILY_ID:
return rtl931x_write_mmd_phy(port, devnum, reg, val);
}
return -1;
}
static u64 disable_polling(int port)
{
u64 saved_state;
mutex_lock(&poll_lock);
switch (soc_info.family) {
case RTL8380_FAMILY_ID:
saved_state = sw_r32(RTL838X_SMI_POLL_CTRL);
sw_w32_mask(BIT(port), 0, RTL838X_SMI_POLL_CTRL);
break;
case RTL8390_FAMILY_ID:
saved_state = sw_r32(RTL839X_SMI_PORT_POLLING_CTRL + 4);
saved_state <<= 32;
saved_state |= sw_r32(RTL839X_SMI_PORT_POLLING_CTRL);
sw_w32_mask(BIT(port % 32), 0,
RTL839X_SMI_PORT_POLLING_CTRL + ((port >> 5) << 2));
break;
case RTL9300_FAMILY_ID:
saved_state = sw_r32(RTL930X_SMI_POLL_CTRL);
sw_w32_mask(BIT(port), 0, RTL930X_SMI_POLL_CTRL);
break;
case RTL9310_FAMILY_ID:
pr_warn("%s not implemented for RTL931X\n", __func__);
break;
}
mutex_unlock(&poll_lock);
return saved_state;
}
static int resume_polling(u64 saved_state)
{
mutex_lock(&poll_lock);
switch (soc_info.family) {
case RTL8380_FAMILY_ID:
sw_w32(saved_state, RTL838X_SMI_POLL_CTRL);
break;
case RTL8390_FAMILY_ID:
sw_w32(saved_state >> 32, RTL839X_SMI_PORT_POLLING_CTRL + 4);
sw_w32(saved_state, RTL839X_SMI_PORT_POLLING_CTRL);
break;
case RTL9300_FAMILY_ID:
sw_w32(saved_state, RTL930X_SMI_POLL_CTRL);
break;
case RTL9310_FAMILY_ID:
pr_warn("%s not implemented for RTL931X\n", __func__);
break;
}
mutex_unlock(&poll_lock);
return 0;
}
static void rtl8380_int_phy_on_off(int mac, bool on)
{
u32 val;
read_phy(mac, 0, 0, &val);
if (on)
write_phy(mac, 0, 0, val & ~BIT(11));
else
write_phy(mac, 0, 0, val | BIT(11));
}
static void rtl8380_rtl8214fc_on_off(int mac, bool on)
{
u32 val;
/* fiber ports */
write_phy(mac, 4095, 30, 3);
read_phy(mac, 0, 16, &val);
if (on)
write_phy(mac, 0, 16, val & ~BIT(11));
else
write_phy(mac, 0, 16, val | BIT(11));
/* copper ports */
write_phy(mac, 4095, 30, 1);
read_phy(mac, 0, 16, &val);
if (on)
write_phy(mac, 0xa40, 16, val & ~BIT(11));
else
write_phy(mac, 0xa40, 16, val | BIT(11));
}
static void rtl8380_phy_reset(int mac)
{
u32 val;
read_phy(mac, 0, 0, &val);
write_phy(mac, 0, 0, val | BIT(15));
}
/*
* Reset the SerDes by powering it off and set a new operations mode
* of the SerDes. 0x1f is off. Other modes are
* 0x01: QSGMII 0x04: 1000BX_FIBER 0x05: FIBER100
* 0x06: QSGMII 0x09: RSGMII 0x0d: USXGMII
* 0x10: XSGMII 0x12: HISGMII 0x16: 2500Base_X
* 0x17: RXAUI_LITE 0x19: RXAUI_PLUS 0x1a: 10G Base-R
* 0x1b: 10GR1000BX_AUTO 0x1f: OFF
*/
void rtl9300_sds_rst(int sds_num, u32 mode)
{
// The access registers for SDS_MODE_SEL and the LSB for each SDS within
u16 regs[] = { 0x0194, 0x0194, 0x0194, 0x0194, 0x02a0, 0x02a0, 0x02a0, 0x02a0,
0x02A4, 0x02A4, 0x0198, 0x0198 };
u8 lsb[] = { 0, 6, 12, 18, 0, 6, 12, 18, 0, 6, 0, 6};
pr_info("%s %d\n", __func__, mode);
if (sds_num < 0 || sds_num > 11) {
pr_err("Wrong SerDes number: %d\n", sds_num);
return;
}
sw_w32_mask(0x1f << lsb[sds_num], 0x1f << lsb[sds_num], regs[sds_num]);
mdelay(10);
sw_w32_mask(0x1f << lsb[sds_num], mode << lsb[sds_num], regs[sds_num]);
mdelay(10);
pr_debug("%s: 194:%08x 198:%08x 2a0:%08x 2a4:%08x\n", __func__,
sw_r32(0x194), sw_r32(0x198), sw_r32(0x2a0), sw_r32(0x2a4));
}
/*
* On the RTL839x family of SoCs with inbuilt SerDes, these SerDes are accessed through
* a 2048 bit register that holds the contents of the PHY being simulated by the SoC.
*/
int rtl839x_read_sds_phy(int phy_addr, int phy_reg)
{
int offset = 0;
int reg;
u32 val;
if (phy_addr == 49)
offset = 0x100;
/*
* For the RTL8393 internal SerDes, we simulate a PHY ID in registers 2/3
* which would otherwise read as 0.
*/
if (soc_info.id == 0x8393) {
if (phy_reg == 2)
return 0x1c;
if (phy_reg == 3)
return 0x8393;
}
/*
* Register RTL839X_SDS12_13_XSG0 is 2048 bit broad, the MSB (bit 15) of the
* 0th PHY register is bit 1023 (in byte 0x80). Because PHY-registers are 16
* bit broad, we offset by reg << 1. In the SoC 2 registers are stored in
* one 32 bit register.
*/
reg = (phy_reg << 1) & 0xfc;
val = sw_r32(RTL839X_SDS12_13_XSG0 + offset + 0x80 + reg);
if (phy_reg & 1)
val = (val >> 16) & 0xffff;
else
val &= 0xffff;
return val;
}
/*
* On the RTL930x family of SoCs, the internal SerDes are accessed through an IO
* register which simulates commands to an internal MDIO bus.
*/
int rtl930x_read_sds_phy(int phy_addr, int page, int phy_reg)
{
int i;
u32 cmd = phy_addr << 2 | page << 7 | phy_reg << 13 | 1;
pr_debug("%s: phy_addr %d, phy_reg: %d\n", __func__, phy_addr, phy_reg);
sw_w32(cmd, RTL930X_SDS_INDACS_CMD);
for (i = 0; i < 100; i++) {
if (!(sw_r32(RTL930X_SDS_INDACS_CMD) & 0x1))
break;
mdelay(1);
}
if (i >= 100)
return -EIO;
pr_debug("%s: returning %04x\n", __func__, sw_r32(RTL930X_SDS_INDACS_DATA) & 0xffff);
return sw_r32(RTL930X_SDS_INDACS_DATA) & 0xffff;
}
int rtl930x_write_sds_phy(int phy_addr, int page, int phy_reg, u16 v)
{
int i;
u32 cmd;
sw_w32(v, RTL930X_SDS_INDACS_DATA);
cmd = phy_addr << 2 | page << 7 | phy_reg << 13 | 0x3;
for (i = 0; i < 100; i++) {
if (!(sw_r32(RTL930X_SDS_INDACS_CMD) & 0x1))
break;
mdelay(1);
}
if (i >= 100)
return -EIO;
return 0;
}
/*
* On the RTL838x SoCs, the internal SerDes is accessed through direct access to
* standard PHY registers, where a 32 bit register holds a 16 bit word as found
* in a standard page 0 of a PHY
*/
int rtl838x_read_sds_phy(int phy_addr, int phy_reg)
{
int offset = 0;
u32 val;
if (phy_addr == 26)
offset = 0x100;
val = sw_r32(RTL838X_SDS4_FIB_REG0 + offset + (phy_reg << 2)) & 0xffff;
return val;
}
int rtl839x_write_sds_phy(int phy_addr, int phy_reg, u16 v)
{
int offset = 0;
int reg;
u32 val;
if (phy_addr == 49)
offset = 0x100;
reg = (phy_reg << 1) & 0xfc;
val = v;
if (phy_reg & 1) {
val = val << 16;
sw_w32_mask(0xffff0000, val,
RTL839X_SDS12_13_XSG0 + offset + 0x80 + reg);
} else {
sw_w32_mask(0xffff, val,
RTL839X_SDS12_13_XSG0 + offset + 0x80 + reg);
}
return 0;
}
/* Read the link and speed status of the 2 internal SGMII/1000Base-X
* ports of the RTL838x SoCs
*/
static int rtl8380_read_status(struct phy_device *phydev)
{
int err;
err = genphy_read_status(phydev);
if (phydev->link) {
phydev->speed = SPEED_1000;
phydev->duplex = DUPLEX_FULL;
}
return err;
}
/* Read the link and speed status of the 2 internal SGMII/1000Base-X
* ports of the RTL8393 SoC
*/
static int rtl8393_read_status(struct phy_device *phydev)
{
int offset = 0;
int err;
int phy_addr = phydev->mdio.addr;
u32 v;
err = genphy_read_status(phydev);
if (phy_addr == 49)
offset = 0x100;
if (phydev->link) {
phydev->speed = SPEED_100;
/* Read SPD_RD_00 (bit 13) and SPD_RD_01 (bit 6) out of the internal
* PHY registers
*/
v = sw_r32(RTL839X_SDS12_13_XSG0 + offset + 0x80);
if (!(v & (1 << 13)) && (v & (1 << 6)))
phydev->speed = SPEED_1000;
phydev->duplex = DUPLEX_FULL;
}
return err;
}
static int rtl8226_read_page(struct phy_device *phydev)
{
return __phy_read(phydev, 0x1f);
}
static int rtl8226_write_page(struct phy_device *phydev, int page)
{
return __phy_write(phydev, 0x1f, page);
}
static int rtl8226_read_status(struct phy_device *phydev)
{
int ret = 0, i;
u32 val;
int port = phydev->mdio.addr;
// TODO: ret = genphy_read_status(phydev);
// if (ret < 0) {
// pr_info("%s: genphy_read_status failed\n", __func__);
// return ret;
// }
// Link status must be read twice
for (i = 0; i < 2; i++) {
read_mmd_phy(port, MMD_VEND2, 0xA402, &val);
}
phydev->link = val & BIT(2) ? 1 : 0;
if (!phydev->link)
goto out;
// Read duplex status
ret = read_mmd_phy(port, MMD_VEND2, 0xA434, &val);
if (ret)
goto out;
phydev->duplex = !!(val & BIT(3));
// Read speed
ret = read_mmd_phy(port, MMD_VEND2, 0xA434, &val);
switch (val & 0x0630) {
case 0x0000:
phydev->speed = SPEED_10;
break;
case 0x0010:
phydev->speed = SPEED_100;
break;
case 0x0020:
phydev->speed = SPEED_1000;
break;
case 0x0200:
phydev->speed = SPEED_10000;
break;
case 0x0210:
phydev->speed = SPEED_2500;
break;
case 0x0220:
phydev->speed = SPEED_5000;
break;
default:
break;
}
out:
return ret;
}
static int rtl8226_advertise_aneg(struct phy_device *phydev)
{
int ret = 0;
u32 v;
int port = phydev->mdio.addr;
pr_info("In %s\n", __func__);
ret = read_mmd_phy(port, MMD_AN, 16, &v);
if (ret)
goto out;
v |= BIT(5); // HD 10M
v |= BIT(6); // FD 10M
v |= BIT(7); // HD 100M
v |= BIT(8); // FD 100M
ret = write_mmd_phy(port, MMD_AN, 16, v);
// Allow 1GBit
ret = read_mmd_phy(port, MMD_VEND2, 0xA412, &v);
if (ret)
goto out;
v |= BIT(9); // FD 1000M
ret = write_mmd_phy(port, MMD_VEND2, 0xA412, v);
if (ret)
goto out;
// Allow 2.5G
ret = read_mmd_phy(port, MMD_AN, 32, &v);
if (ret)
goto out;
v |= BIT(7);
ret = write_mmd_phy(port, MMD_AN, 32, v);
out:
return ret;
}
static int rtl8226_config_aneg(struct phy_device *phydev)
{
int ret = 0;
u32 v;
int port = phydev->mdio.addr;
pr_debug("In %s\n", __func__);
if (phydev->autoneg == AUTONEG_ENABLE) {
ret = rtl8226_advertise_aneg(phydev);
if (ret)
goto out;
// AutoNegotiationEnable
ret = read_mmd_phy(port, MMD_AN, 0, &v);
if (ret)
goto out;
v |= BIT(12); // Enable AN
ret = write_mmd_phy(port, MMD_AN, 0, v);
if (ret)
goto out;
// RestartAutoNegotiation
ret = read_mmd_phy(port, MMD_VEND2, 0xA400, &v);
if (ret)
goto out;
v |= BIT(9);
ret = write_mmd_phy(port, MMD_VEND2, 0xA400, v);
}
// TODO: ret = __genphy_config_aneg(phydev, ret);
out:
return ret;
}
static int rtl8226_get_eee(struct phy_device *phydev,
struct ethtool_eee *e)
{
u32 val;
int addr = phydev->mdio.addr;
pr_debug("In %s, port %d, was enabled: %d\n", __func__, addr, e->eee_enabled);
read_mmd_phy(addr, MMD_AN, 60, &val);
if (e->eee_enabled) {
e->eee_enabled = !!(val & BIT(1));
if (!e->eee_enabled) {
read_mmd_phy(addr, MMD_AN, 62, &val);
e->eee_enabled = !!(val & BIT(0));
}
}
pr_debug("%s: enabled: %d\n", __func__, e->eee_enabled);
return 0;
}
static int rtl8226_set_eee(struct phy_device *phydev, struct ethtool_eee *e)
{
int port = phydev->mdio.addr;
u64 poll_state;
bool an_enabled;
u32 val;
pr_info("In %s, port %d, enabled %d\n", __func__, port, e->eee_enabled);
poll_state = disable_polling(port);
// Remember aneg state
read_mmd_phy(port, MMD_AN, 0, &val);
an_enabled = !!(val & BIT(12));
// Setup 100/1000MBit
read_mmd_phy(port, MMD_AN, 60, &val);
if (e->eee_enabled)
val |= 0x6;
else
val &= 0x6;
write_mmd_phy(port, MMD_AN, 60, val);
// Setup 2.5GBit
read_mmd_phy(port, MMD_AN, 62, &val);
if (e->eee_enabled)
val |= 0x1;
else
val &= 0x1;
write_mmd_phy(port, MMD_AN, 62, val);
// RestartAutoNegotiation
read_mmd_phy(port, MMD_VEND2, 0xA400, &val);
val |= BIT(9);
write_mmd_phy(port, MMD_VEND2, 0xA400, val);
resume_polling(poll_state);
return 0;
}
static struct fw_header *rtl838x_request_fw(struct phy_device *phydev,
const struct firmware *fw,
const char *name)
{
struct device *dev = &phydev->mdio.dev;
int err;
struct fw_header *h;
uint32_t checksum, my_checksum;
err = request_firmware(&fw, name, dev);
if (err < 0)
goto out;
if (fw->size < sizeof(struct fw_header)) {
pr_err("Firmware size too small.\n");
err = -EINVAL;
goto out;
}
h = (struct fw_header *) fw->data;
pr_info("Firmware loaded. Size %d, magic: %08x\n", fw->size, h->magic);
if (h->magic != 0x83808380) {
pr_err("Wrong firmware file: MAGIC mismatch.\n");
goto out;
}
checksum = h->checksum;
h->checksum = 0;
my_checksum = ~crc32(0xFFFFFFFFU, fw->data, fw->size);
if (checksum != my_checksum) {
pr_err("Firmware checksum mismatch.\n");
err = -EINVAL;
goto out;
}
h->checksum = checksum;
return h;
out:
dev_err(dev, "Unable to load firmware %s (%d)\n", name, err);
return NULL;
}
static int rtl8390_configure_generic(struct phy_device *phydev)
{
u32 val, phy_id;
int mac = phydev->mdio.addr;
read_phy(mac, 0, 2, &val);
phy_id = val << 16;
read_phy(mac, 0, 3, &val);
phy_id |= val;
pr_debug("Phy on MAC %d: %x\n", mac, phy_id);
/* Read internal PHY ID */
write_phy(mac, 31, 27, 0x0002);
read_phy(mac, 31, 28, &val);
/* Internal RTL8218B, version 2 */
phydev_info(phydev, "Detected unknown %x\n", val);
return 0;
}
static int rtl8380_configure_int_rtl8218b(struct phy_device *phydev)
{
u32 val, phy_id;
int i, p, ipd_flag;
int mac = phydev->mdio.addr;
struct fw_header *h;
u32 *rtl838x_6275B_intPhy_perport;
u32 *rtl8218b_6276B_hwEsd_perport;
read_phy(mac, 0, 2, &val);
phy_id = val << 16;
read_phy(mac, 0, 3, &val);
phy_id |= val;
pr_debug("Phy on MAC %d: %x\n", mac, phy_id);
/* Read internal PHY ID */
write_phy(mac, 31, 27, 0x0002);
read_phy(mac, 31, 28, &val);
if (val != 0x6275) {
phydev_err(phydev, "Expected internal RTL8218B, found PHY-ID %x\n", val);
return -1;
}
/* Internal RTL8218B, version 2 */
phydev_info(phydev, "Detected internal RTL8218B\n");
h = rtl838x_request_fw(phydev, &rtl838x_8380_fw, FIRMWARE_838X_8380_1);
if (!h)
return -1;
if (h->phy != 0x83800000) {
phydev_err(phydev, "Wrong firmware file: PHY mismatch.\n");
return -1;
}
rtl838x_6275B_intPhy_perport = (void *)h + sizeof(struct fw_header)
+ h->parts[8].start;
rtl8218b_6276B_hwEsd_perport = (void *)h + sizeof(struct fw_header)
+ h->parts[9].start;
if (sw_r32(RTL838X_DMY_REG31) == 0x1)
ipd_flag = 1;
read_phy(mac, 0, 0, &val);
if (val & (1 << 11))
rtl8380_int_phy_on_off(mac, true);
else
rtl8380_phy_reset(mac);
msleep(100);
/* Ready PHY for patch */
for (p = 0; p < 8; p++) {
write_phy(mac + p, 0xfff, 0x1f, 0x0b82);
write_phy(mac + p, 0xfff, 0x10, 0x0010);
}
msleep(500);
for (p = 0; p < 8; p++) {
for (i = 0; i < 100 ; i++) {
read_phy(mac + p, 0x0b80, 0x10, &val);
if (val & 0x40)
break;
}
if (i >= 100) {
phydev_err(phydev,
"ERROR: Port %d not ready for patch.\n",
mac + p);
return -1;
}
}
for (p = 0; p < 8; p++) {
i = 0;
while (rtl838x_6275B_intPhy_perport[i * 2]) {
write_phy(mac + p, 0xfff,
rtl838x_6275B_intPhy_perport[i * 2],
rtl838x_6275B_intPhy_perport[i * 2 + 1]);
i++;
}
i = 0;
while (rtl8218b_6276B_hwEsd_perport[i * 2]) {
write_phy(mac + p, 0xfff,
rtl8218b_6276B_hwEsd_perport[i * 2],
rtl8218b_6276B_hwEsd_perport[i * 2 + 1]);
i++;
}
}
return 0;
}
static int rtl8380_configure_ext_rtl8218b(struct phy_device *phydev)
{
u32 val, ipd, phy_id;
int i, l;
int mac = phydev->mdio.addr;
struct fw_header *h;
u32 *rtl8380_rtl8218b_perchip;
u32 *rtl8218B_6276B_rtl8380_perport;
u32 *rtl8380_rtl8218b_perport;
if (soc_info.family == RTL8380_FAMILY_ID && mac != 0 && mac != 16) {
phydev_err(phydev, "External RTL8218B must have PHY-IDs 0 or 16!\n");
return -1;
}
read_phy(mac, 0, 2, &val);
phy_id = val << 16;
read_phy(mac, 0, 3, &val);
phy_id |= val;
pr_info("Phy on MAC %d: %x\n", mac, phy_id);
/* Read internal PHY ID */
write_phy(mac, 31, 27, 0x0002);
read_phy(mac, 31, 28, &val);
if (val != 0x6276) {
phydev_err(phydev, "Expected external RTL8218B, found PHY-ID %x\n", val);
return -1;
}
phydev_info(phydev, "Detected external RTL8218B\n");
h = rtl838x_request_fw(phydev, &rtl838x_8218b_fw, FIRMWARE_838X_8218b_1);
if (!h)
return -1;
if (h->phy != 0x8218b000) {
phydev_err(phydev, "Wrong firmware file: PHY mismatch.\n");
return -1;
}
rtl8380_rtl8218b_perchip = (void *)h + sizeof(struct fw_header)
+ h->parts[0].start;
rtl8218B_6276B_rtl8380_perport = (void *)h + sizeof(struct fw_header)
+ h->parts[1].start;
rtl8380_rtl8218b_perport = (void *)h + sizeof(struct fw_header)
+ h->parts[2].start;
read_phy(mac, 0, 0, &val);
if (val & (1 << 11))
rtl8380_int_phy_on_off(mac, true);
else
rtl8380_phy_reset(mac);
msleep(100);
/* Get Chip revision */
write_phy(mac, 0xfff, 0x1f, 0x0);
write_phy(mac, 0xfff, 0x1b, 0x4);
read_phy(mac, 0xfff, 0x1c, &val);
i = 0;
while (rtl8380_rtl8218b_perchip[i * 3]
&& rtl8380_rtl8218b_perchip[i * 3 + 1]) {
write_phy(mac + rtl8380_rtl8218b_perchip[i * 3],
0xfff, rtl8380_rtl8218b_perchip[i * 3 + 1],
rtl8380_rtl8218b_perchip[i * 3 + 2]);
i++;
}
/* Enable PHY */
for (i = 0; i < 8; i++) {
write_phy(mac + i, 0xfff, 0x1f, 0x0000);
write_phy(mac + i, 0xfff, 0x00, 0x1140);
}
mdelay(100);
/* Request patch */
for (i = 0; i < 8; i++) {
write_phy(mac + i, 0xfff, 0x1f, 0x0b82);
write_phy(mac + i, 0xfff, 0x10, 0x0010);
}
mdelay(300);
/* Verify patch readiness */
for (i = 0; i < 8; i++) {
for (l = 0; l < 100; l++) {
read_phy(mac + i, 0xb80, 0x10, &val);
if (val & 0x40)
break;
}
if (l >= 100) {
phydev_err(phydev, "Could not patch PHY\n");
return -1;
}
}
/* Use Broadcast ID method for patching */
write_phy(mac, 0xfff, 0x1f, 0x0000);
write_phy(mac, 0xfff, 0x1d, 0x0008);
write_phy(mac, 0xfff, 0x1f, 0x0266);
write_phy(mac, 0xfff, 0x16, 0xff00 + mac);
write_phy(mac, 0xfff, 0x1f, 0x0000);
write_phy(mac, 0xfff, 0x1d, 0x0000);
mdelay(1);
write_phy(mac, 0xfff, 30, 8);
write_phy(mac, 0x26e, 17, 0xb);
write_phy(mac, 0x26e, 16, 0x2);
mdelay(1);
read_phy(mac, 0x26e, 19, &ipd);
write_phy(mac, 0, 30, 0);
ipd = (ipd >> 4) & 0xf;
i = 0;
while (rtl8218B_6276B_rtl8380_perport[i * 2]) {
write_phy(mac, 0xfff, rtl8218B_6276B_rtl8380_perport[i * 2],
rtl8218B_6276B_rtl8380_perport[i * 2 + 1]);
i++;
}
/*Disable broadcast ID*/
write_phy(mac, 0xfff, 0x1f, 0x0000);
write_phy(mac, 0xfff, 0x1d, 0x0008);
write_phy(mac, 0xfff, 0x1f, 0x0266);
write_phy(mac, 0xfff, 0x16, 0x00 + mac);
write_phy(mac, 0xfff, 0x1f, 0x0000);
write_phy(mac, 0xfff, 0x1d, 0x0000);
mdelay(1);
return 0;
}
static int rtl8218b_ext_match_phy_device(struct phy_device *phydev)
{
int addr = phydev->mdio.addr;
/* Both the RTL8214FC and the external RTL8218B have the same
* PHY ID. On the RTL838x, the RTL8218B can only be attached_dev
* at PHY IDs 0-7, while the RTL8214FC must be attached via
* the pair of SGMII/1000Base-X with higher PHY-IDs
*/
if (soc_info.family == RTL8380_FAMILY_ID)
return phydev->phy_id == PHY_ID_RTL8218B_E && addr < 8;
else
return phydev->phy_id == PHY_ID_RTL8218B_E;
}
static int rtl8218b_read_mmd(struct phy_device *phydev,
int devnum, u16 regnum)
{
int ret;
u32 val;
int addr = phydev->mdio.addr;
ret = read_mmd_phy(addr, devnum, regnum, &val);
if (ret)
return ret;
return val;
}
static int rtl8218b_write_mmd(struct phy_device *phydev,
int devnum, u16 regnum, u16 val)
{
int addr = phydev->mdio.addr;
return rtl838x_write_mmd_phy(addr, devnum, regnum, val);
}
static int rtl8226_read_mmd(struct phy_device *phydev, int devnum, u16 regnum)
{
int port = phydev->mdio.addr; // the SoC translates port addresses to PHY addr
int err;
u32 val;
err = read_mmd_phy(port, devnum, regnum, &val);
if (err)
return err;
return val;
}
static int rtl8226_write_mmd(struct phy_device *phydev, int devnum, u16 regnum, u16 val)
{
int port = phydev->mdio.addr; // the SoC translates port addresses to PHY addr
return write_mmd_phy(port, devnum, regnum, val);
}
static void rtl8380_rtl8214fc_media_set(int mac, bool set_fibre)
{
int base = mac - (mac % 4);
static int reg[] = {16, 19, 20, 21};
int val, media, power;
pr_info("%s: port %d, set_fibre: %d\n", __func__, mac, set_fibre);
write_phy(base, 0xfff, 29, 8);
read_phy(base, 0x266, reg[mac % 4], &val);
media = (val >> 10) & 0x3;
pr_info("Current media %x\n", media);
if (media & 0x2) {
pr_info("Powering off COPPER\n");
write_phy(base, 0xfff, 29, 1);
/* Ensure power is off */
read_phy(base, 0xa40, 16, &power);
if (!(power & (1 << 11)))
write_phy(base, 0xa40, 16, power | (1 << 11));
} else {
pr_info("Powering off FIBRE");
write_phy(base, 0xfff, 29, 3);
/* Ensure power is off */
read_phy(base, 0xa40, 16, &power);
if (!(power & (1 << 11)))
write_phy(base, 0xa40, 16, power | (1 << 11));
}
if (set_fibre) {
val |= 1 << 10;
val &= ~(1 << 11);
} else {
val |= 1 << 10;
val |= 1 << 11;
}
write_phy(base, 0xfff, 29, 8);
write_phy(base, 0x266, reg[mac % 4], val);
write_phy(base, 0xfff, 29, 0);
if (set_fibre) {
pr_info("Powering on FIBRE");
write_phy(base, 0xfff, 29, 3);
/* Ensure power is off */
read_phy(base, 0xa40, 16, &power);
if (power & (1 << 11))
write_phy(base, 0xa40, 16, power & ~(1 << 11));
} else {
pr_info("Powering on COPPER\n");
write_phy(base, 0xfff, 29, 1);
/* Ensure power is off */
read_phy(base, 0xa40, 16, &power);
if (power & (1 << 11))
write_phy(base, 0xa40, 16, power & ~(1 << 11));
}
write_phy(base, 0xfff, 29, 0);
}
static bool rtl8380_rtl8214fc_media_is_fibre(int mac)
{
int base = mac - (mac % 4);
static int reg[] = {16, 19, 20, 21};
u32 val;
write_phy(base, 0xfff, 29, 8);
read_phy(base, 0x266, reg[mac % 4], &val);
write_phy(base, 0xfff, 29, 0);
if (val & (1 << 11))
return false;
return true;
}
static int rtl8214fc_set_port(struct phy_device *phydev, int port)
{
bool is_fibre = (port == PORT_FIBRE ? true : false);
int addr = phydev->mdio.addr;
pr_debug("%s port %d to %d\n", __func__, addr, port);
rtl8380_rtl8214fc_media_set(addr, is_fibre);
return 0;
}
static int rtl8214fc_get_port(struct phy_device *phydev)
{
int addr = phydev->mdio.addr;
pr_debug("%s: port %d\n", __func__, addr);
if (rtl8380_rtl8214fc_media_is_fibre(addr))
return PORT_FIBRE;
return PORT_MII;
}
/*
* Enable EEE on the RTL8218B PHYs
* The method used is not the preferred way (which would be based on the MAC-EEE state,
* but the only way that works since the kernel first enables EEE in the MAC
* and then sets up the PHY. The MAC-based approach would require the oppsite.
*/
void rtl8218d_eee_set(int port, bool enable)
{
u32 val;
bool an_enabled;
pr_debug("In %s %d, enable %d\n", __func__, port, enable);
/* Set GPHY page to copper */
write_phy(port, 0xa42, 30, 0x0001);
read_phy(port, 0, 0, &val);
an_enabled = val & BIT(12);
/* Enable 100M (bit 1) / 1000M (bit 2) EEE */
read_mmd_phy(port, 7, 60, &val);
val |= BIT(2) | BIT(1);
write_mmd_phy(port, 7, 60, enable ? 0x6 : 0);
/* 500M EEE ability */
read_phy(port, 0xa42, 20, &val);
if (enable)
val |= BIT(7);
else
val &= ~BIT(7);
write_phy(port, 0xa42, 20, val);
/* Restart AN if enabled */
if (an_enabled) {
read_phy(port, 0, 0, &val);
val |= BIT(9);
write_phy(port, 0, 0, val);
}
/* GPHY page back to auto*/
write_phy(port, 0xa42, 30, 0);
}
static int rtl8218b_get_eee(struct phy_device *phydev,
struct ethtool_eee *e)
{
u32 val;
int addr = phydev->mdio.addr;
pr_debug("In %s, port %d, was enabled: %d\n", __func__, addr, e->eee_enabled);
/* Set GPHY page to copper */
write_phy(addr, 0xa42, 29, 0x0001);
read_phy(addr, 7, 60, &val);
if (e->eee_enabled) {
// Verify vs MAC-based EEE
e->eee_enabled = !!(val & BIT(7));
if (!e->eee_enabled) {
read_phy(addr, 0x0A43, 25, &val);
e->eee_enabled = !!(val & BIT(4));
}
}
pr_debug("%s: enabled: %d\n", __func__, e->eee_enabled);
/* GPHY page to auto */
write_phy(addr, 0xa42, 29, 0x0000);
return 0;
}
static int rtl8218d_get_eee(struct phy_device *phydev,
struct ethtool_eee *e)
{
u32 val;
int addr = phydev->mdio.addr;
pr_debug("In %s, port %d, was enabled: %d\n", __func__, addr, e->eee_enabled);
/* Set GPHY page to copper */
write_phy(addr, 0xa42, 30, 0x0001);
read_phy(addr, 7, 60, &val);
if (e->eee_enabled)
e->eee_enabled = !!(val & BIT(7));
pr_debug("%s: enabled: %d\n", __func__, e->eee_enabled);
/* GPHY page to auto */
write_phy(addr, 0xa42, 30, 0x0000);
return 0;
}
static int rtl8214fc_set_eee(struct phy_device *phydev,
struct ethtool_eee *e)
{
u32 poll_state;
int port = phydev->mdio.addr;
bool an_enabled;
u32 val;
pr_debug("In %s port %d, enabled %d\n", __func__, port, e->eee_enabled);
if (rtl8380_rtl8214fc_media_is_fibre(port)) {
netdev_err(phydev->attached_dev, "Port %d configured for FIBRE", port);
return -ENOTSUPP;
}
poll_state = disable_polling(port);
/* Set GPHY page to copper */
write_phy(port, 0xa42, 29, 0x0001);
// Get auto-negotiation status
read_phy(port, 0, 0, &val);
an_enabled = val & BIT(12);
pr_info("%s: aneg: %d\n", __func__, an_enabled);
read_phy(port, 0x0A43, 25, &val);
val &= ~BIT(5); // Use MAC-based EEE
write_phy(port, 0x0A43, 25, val);
/* Enable 100M (bit 1) / 1000M (bit 2) EEE */
write_phy(port, 7, 60, e->eee_enabled ? 0x6 : 0);
/* 500M EEE ability */
read_phy(port, 0xa42, 20, &val);
if (e->eee_enabled)
val |= BIT(7);
else
val &= ~BIT(7);
write_phy(port, 0xa42, 20, val);
/* Restart AN if enabled */
if (an_enabled) {
pr_info("%s: doing aneg\n", __func__);
read_phy(port, 0, 0, &val);
val |= BIT(9);
write_phy(port, 0, 0, val);
}
/* GPHY page back to auto*/
write_phy(port, 0xa42, 29, 0);
resume_polling(poll_state);
return 0;
}
static int rtl8214fc_get_eee(struct phy_device *phydev,
struct ethtool_eee *e)
{
int addr = phydev->mdio.addr;
pr_debug("In %s port %d, enabled %d\n", __func__, addr, e->eee_enabled);
if (rtl8380_rtl8214fc_media_is_fibre(addr)) {
netdev_err(phydev->attached_dev, "Port %d configured for FIBRE", addr);
return -ENOTSUPP;
}
return rtl8218b_get_eee(phydev, e);
}
static int rtl8218b_set_eee(struct phy_device *phydev, struct ethtool_eee *e)
{
int port = phydev->mdio.addr;
u64 poll_state;
u32 val;
bool an_enabled;
pr_info("In %s, port %d, enabled %d\n", __func__, port, e->eee_enabled);
poll_state = disable_polling(port);
/* Set GPHY page to copper */
write_phy(port, 0, 30, 0x0001);
read_phy(port, 0, 0, &val);
an_enabled = val & BIT(12);
if (e->eee_enabled) {
/* 100/1000M EEE Capability */
write_phy(port, 0, 13, 0x0007);
write_phy(port, 0, 14, 0x003C);
write_phy(port, 0, 13, 0x4007);
write_phy(port, 0, 14, 0x0006);
read_phy(port, 0x0A43, 25, &val);
val |= BIT(4);
write_phy(port, 0x0A43, 25, val);
} else {
/* 100/1000M EEE Capability */
write_phy(port, 0, 13, 0x0007);
write_phy(port, 0, 14, 0x003C);
write_phy(port, 0, 13, 0x0007);
write_phy(port, 0, 14, 0x0000);
read_phy(port, 0x0A43, 25, &val);
val &= ~BIT(4);
write_phy(port, 0x0A43, 25, val);
}
/* Restart AN if enabled */
if (an_enabled) {
read_phy(port, 0, 0, &val);
val |= BIT(9);
write_phy(port, 0, 0, val);
}
/* GPHY page back to auto*/
write_phy(port, 0xa42, 30, 0);
pr_info("%s done\n", __func__);
resume_polling(poll_state);
return 0;
}
static int rtl8218d_set_eee(struct phy_device *phydev, struct ethtool_eee *e)
{
int addr = phydev->mdio.addr;
u64 poll_state;
pr_info("In %s, port %d, enabled %d\n", __func__, addr, e->eee_enabled);
poll_state = disable_polling(addr);
rtl8218d_eee_set(addr, (bool) e->eee_enabled);
resume_polling(poll_state);
return 0;
}
static int rtl8214c_match_phy_device(struct phy_device *phydev)
{
return phydev->phy_id == PHY_ID_RTL8214C;
}
static int rtl8380_configure_rtl8214c(struct phy_device *phydev)
{
u32 phy_id, val;
int mac = phydev->mdio.addr;
read_phy(mac, 0, 2, &val);
phy_id = val << 16;
read_phy(mac, 0, 3, &val);
phy_id |= val;
pr_debug("Phy on MAC %d: %x\n", mac, phy_id);
phydev_info(phydev, "Detected external RTL8214C\n");
/* GPHY auto conf */
write_phy(mac, 0xa42, 29, 0);
return 0;
}
static int rtl8380_configure_rtl8214fc(struct phy_device *phydev)
{
u32 phy_id, val, page = 0;
int i, l;
int mac = phydev->mdio.addr;
struct fw_header *h;
u32 *rtl8380_rtl8214fc_perchip;
u32 *rtl8380_rtl8214fc_perport;
read_phy(mac, 0, 2, &val);
phy_id = val << 16;
read_phy(mac, 0, 3, &val);
phy_id |= val;
pr_debug("Phy on MAC %d: %x\n", mac, phy_id);
/* Read internal PHY id */
write_phy(mac, 0, 30, 0x0001);
write_phy(mac, 0, 31, 0x0a42);
write_phy(mac, 31, 27, 0x0002);
read_phy(mac, 31, 28, &val);
if (val != 0x6276) {
phydev_err(phydev, "Expected external RTL8214FC, found PHY-ID %x\n", val);
return -1;
}
phydev_info(phydev, "Detected external RTL8214FC\n");
h = rtl838x_request_fw(phydev, &rtl838x_8214fc_fw, FIRMWARE_838X_8214FC_1);
if (!h)
return -1;
if (h->phy != 0x8214fc00) {
phydev_err(phydev, "Wrong firmware file: PHY mismatch.\n");
return -1;
}
rtl8380_rtl8214fc_perchip = (void *)h + sizeof(struct fw_header)
+ h->parts[0].start;
rtl8380_rtl8214fc_perport = (void *)h + sizeof(struct fw_header)
+ h->parts[1].start;
/* detect phy version */
write_phy(mac, 0xfff, 27, 0x0004);
read_phy(mac, 0xfff, 28, &val);
read_phy(mac, 0, 16, &val);
if (val & (1 << 11))
rtl8380_rtl8214fc_on_off(mac, true);
else
rtl8380_phy_reset(mac);
msleep(100);
write_phy(mac, 0, 30, 0x0001);
i = 0;
while (rtl8380_rtl8214fc_perchip[i * 3]
&& rtl8380_rtl8214fc_perchip[i * 3 + 1]) {
if (rtl8380_rtl8214fc_perchip[i * 3 + 1] == 0x1f)
page = rtl8380_rtl8214fc_perchip[i * 3 + 2];
if (rtl8380_rtl8214fc_perchip[i * 3 + 1] == 0x13 && page == 0x260) {
read_phy(mac + rtl8380_rtl8214fc_perchip[i * 3], 0x260, 13, &val);
val = (val & 0x1f00) | (rtl8380_rtl8214fc_perchip[i * 3 + 2]
& 0xe0ff);
write_phy(mac + rtl8380_rtl8214fc_perchip[i * 3],
0xfff, rtl8380_rtl8214fc_perchip[i * 3 + 1], val);
} else {
write_phy(mac + rtl8380_rtl8214fc_perchip[i * 3],
0xfff, rtl8380_rtl8214fc_perchip[i * 3 + 1],
rtl8380_rtl8214fc_perchip[i * 3 + 2]);
}
i++;
}
/* Force copper medium */
for (i = 0; i < 4; i++) {
write_phy(mac + i, 0xfff, 0x1f, 0x0000);
write_phy(mac + i, 0xfff, 0x1e, 0x0001);
}
/* Enable PHY */
for (i = 0; i < 4; i++) {
write_phy(mac + i, 0xfff, 0x1f, 0x0000);
write_phy(mac + i, 0xfff, 0x00, 0x1140);
}
mdelay(100);
/* Disable Autosensing */
for (i = 0; i < 4; i++) {
for (l = 0; l < 100; l++) {
read_phy(mac + i, 0x0a42, 0x10, &val);
if ((val & 0x7) >= 3)
break;
}
if (l >= 100) {
phydev_err(phydev, "Could not disable autosensing\n");
return -1;
}
}
/* Request patch */
for (i = 0; i < 4; i++) {
write_phy(mac + i, 0xfff, 0x1f, 0x0b82);
write_phy(mac + i, 0xfff, 0x10, 0x0010);
}
mdelay(300);
/* Verify patch readiness */
for (i = 0; i < 4; i++) {
for (l = 0; l < 100; l++) {
read_phy(mac + i, 0xb80, 0x10, &val);
if (val & 0x40)
break;
}
if (l >= 100) {
phydev_err(phydev, "Could not patch PHY\n");
return -1;
}
}
/* Use Broadcast ID method for patching */
write_phy(mac, 0xfff, 0x1f, 0x0000);
write_phy(mac, 0xfff, 0x1d, 0x0008);
write_phy(mac, 0xfff, 0x1f, 0x0266);
write_phy(mac, 0xfff, 0x16, 0xff00 + mac);
write_phy(mac, 0xfff, 0x1f, 0x0000);
write_phy(mac, 0xfff, 0x1d, 0x0000);
mdelay(1);
i = 0;
while (rtl8380_rtl8214fc_perport[i * 2]) {
write_phy(mac, 0xfff, rtl8380_rtl8214fc_perport[i * 2],
rtl8380_rtl8214fc_perport[i * 2 + 1]);
i++;
}
/*Disable broadcast ID*/
write_phy(mac, 0xfff, 0x1f, 0x0000);
write_phy(mac, 0xfff, 0x1d, 0x0008);
write_phy(mac, 0xfff, 0x1f, 0x0266);
write_phy(mac, 0xfff, 0x16, 0x00 + mac);
write_phy(mac, 0xfff, 0x1f, 0x0000);
write_phy(mac, 0xfff, 0x1d, 0x0000);
mdelay(1);
/* Auto medium selection */
for (i = 0; i < 4; i++) {
write_phy(mac + i, 0xfff, 0x1f, 0x0000);
write_phy(mac + i, 0xfff, 0x1e, 0x0000);
}
return 0;
}
static int rtl8214fc_match_phy_device(struct phy_device *phydev)
{
int addr = phydev->mdio.addr;
return phydev->phy_id == PHY_ID_RTL8214FC && addr >= 24;
}
static int rtl8380_configure_serdes(struct phy_device *phydev)
{
u32 v;
u32 sds_conf_value;
int i;
struct fw_header *h;
u32 *rtl8380_sds_take_reset;
u32 *rtl8380_sds_common;
u32 *rtl8380_sds01_qsgmii_6275b;
u32 *rtl8380_sds23_qsgmii_6275b;
u32 *rtl8380_sds4_fiber_6275b;
u32 *rtl8380_sds5_fiber_6275b;
u32 *rtl8380_sds_reset;
u32 *rtl8380_sds_release_reset;
phydev_info(phydev, "Detected internal RTL8380 SERDES\n");
h = rtl838x_request_fw(phydev, &rtl838x_8218b_fw, FIRMWARE_838X_8380_1);
if (!h)
return -1;
if (h->magic != 0x83808380) {
phydev_err(phydev, "Wrong firmware file: magic number mismatch.\n");
return -1;
}
rtl8380_sds_take_reset = (void *)h + sizeof(struct fw_header)
+ h->parts[0].start;
rtl8380_sds_common = (void *)h + sizeof(struct fw_header)
+ h->parts[1].start;
rtl8380_sds01_qsgmii_6275b = (void *)h + sizeof(struct fw_header)
+ h->parts[2].start;
rtl8380_sds23_qsgmii_6275b = (void *)h + sizeof(struct fw_header)
+ h->parts[3].start;
rtl8380_sds4_fiber_6275b = (void *)h + sizeof(struct fw_header)
+ h->parts[4].start;
rtl8380_sds5_fiber_6275b = (void *)h + sizeof(struct fw_header)
+ h->parts[5].start;
rtl8380_sds_reset = (void *)h + sizeof(struct fw_header)
+ h->parts[6].start;
rtl8380_sds_release_reset = (void *)h + sizeof(struct fw_header)
+ h->parts[7].start;
/* Back up serdes power off value */
sds_conf_value = sw_r32(RTL838X_SDS_CFG_REG);
pr_info("SDS power down value: %x\n", sds_conf_value);
/* take serdes into reset */
i = 0;
while (rtl8380_sds_take_reset[2 * i]) {
sw_w32(rtl8380_sds_take_reset[2 * i + 1], rtl8380_sds_take_reset[2 * i]);
i++;
udelay(1000);
}
/* apply common serdes patch */
i = 0;
while (rtl8380_sds_common[2 * i]) {
sw_w32(rtl8380_sds_common[2 * i + 1], rtl8380_sds_common[2 * i]);
i++;
udelay(1000);
}
/* internal R/W enable */
sw_w32(3, RTL838X_INT_RW_CTRL);
/* SerDes ports 4 and 5 are FIBRE ports */
sw_w32_mask(0x7 | 0x38, 1 | (1 << 3), RTL838X_INT_MODE_CTRL);
/* SerDes module settings, SerDes 0-3 are QSGMII */
v = 0x6 << 25 | 0x6 << 20 | 0x6 << 15 | 0x6 << 10;
/* SerDes 4 and 5 are 1000BX FIBRE */
v |= 0x4 << 5 | 0x4;
sw_w32(v, RTL838X_SDS_MODE_SEL);
pr_info("PLL control register: %x\n", sw_r32(RTL838X_PLL_CML_CTRL));
sw_w32_mask(0xfffffff0, 0xaaaaaaaf & 0xf, RTL838X_PLL_CML_CTRL);
i = 0;
while (rtl8380_sds01_qsgmii_6275b[2 * i]) {
sw_w32(rtl8380_sds01_qsgmii_6275b[2 * i + 1],
rtl8380_sds01_qsgmii_6275b[2 * i]);
i++;
}
i = 0;
while (rtl8380_sds23_qsgmii_6275b[2 * i]) {
sw_w32(rtl8380_sds23_qsgmii_6275b[2 * i + 1], rtl8380_sds23_qsgmii_6275b[2 * i]);
i++;
}
i = 0;
while (rtl8380_sds4_fiber_6275b[2 * i]) {
sw_w32(rtl8380_sds4_fiber_6275b[2 * i + 1], rtl8380_sds4_fiber_6275b[2 * i]);
i++;
}
i = 0;
while (rtl8380_sds5_fiber_6275b[2 * i]) {
sw_w32(rtl8380_sds5_fiber_6275b[2 * i + 1], rtl8380_sds5_fiber_6275b[2 * i]);
i++;
}
i = 0;
while (rtl8380_sds_reset[2 * i]) {
sw_w32(rtl8380_sds_reset[2 * i + 1], rtl8380_sds_reset[2 * i]);
i++;
}
i = 0;
while (rtl8380_sds_release_reset[2 * i]) {
sw_w32(rtl8380_sds_release_reset[2 * i + 1], rtl8380_sds_release_reset[2 * i]);
i++;
}
pr_info("SDS power down value now: %x\n", sw_r32(RTL838X_SDS_CFG_REG));
sw_w32(sds_conf_value, RTL838X_SDS_CFG_REG);
pr_info("Configuration of SERDES done\n");
return 0;
}
static int rtl8390_configure_serdes(struct phy_device *phydev)
{
phydev_info(phydev, "Detected internal RTL8390 SERDES\n");
/* In autoneg state, force link, set SR4_CFG_EN_LINK_FIB1G */
sw_w32_mask(0, 1 << 18, RTL839X_SDS12_13_XSG0 + 0x0a);
/* Disable EEE: Clear FRE16_EEE_RSG_FIB1G, FRE16_EEE_STD_FIB1G,
* FRE16_C1_PWRSAV_EN_FIB1G, FRE16_C2_PWRSAV_EN_FIB1G
* and FRE16_EEE_QUIET_FIB1G
*/
sw_w32_mask(0x1f << 10, 0, RTL839X_SDS12_13_XSG0 + 0xe0);
return 0;
}
int rtl9300_configure_serdes(struct phy_device *phydev)
{
struct device *dev = &phydev->mdio.dev;
int phy_addr = phydev->mdio.addr;
int sds_num = 0;
int v;
phydev_info(phydev, "Configuring internal RTL9300 SERDES\n");
switch (phy_addr) {
case 26:
sds_num = 8;
break;
case 27:
sds_num = 9;
break;
default:
dev_err(dev, "Not a SerDes PHY\n");
return -EINVAL;
}
/* Set default Medium to fibre */
v = rtl930x_read_sds_phy(sds_num, 0x1f, 11);
if (v < 0) {
dev_err(dev, "Cannot access SerDes PHY %d\n", phy_addr);
return -EINVAL;
}
v |= BIT(2);
rtl930x_write_sds_phy(sds_num, 0x1f, 11, v);
// TODO: this needs to be configurable via ethtool/.dts
pr_info("Setting 10G/1000BX auto fibre medium\n");
rtl9300_sds_rst(sds_num, 0x1b);
// TODO: Apply patch set for fibre type
return 0;
}
static int rtl8214fc_phy_probe(struct phy_device *phydev)
{
struct device *dev = &phydev->mdio.dev;
struct rtl838x_phy_priv *priv;
int addr = phydev->mdio.addr;
/* 839x has internal SerDes */
if (soc_info.id == 0x8393)
return -ENODEV;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->name = "RTL8214FC";
/* All base addresses of the PHYs start at multiples of 8 */
if (!(addr % 8)) {
/* Configuration must be done whil patching still possible */
return rtl8380_configure_rtl8214fc(phydev);
}
return 0;
}
static int rtl8214c_phy_probe(struct phy_device *phydev)
{
struct device *dev = &phydev->mdio.dev;
struct rtl838x_phy_priv *priv;
int addr = phydev->mdio.addr;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->name = "RTL8214C";
/* All base addresses of the PHYs start at multiples of 8 */
if (!(addr % 8)) {
/* Configuration must be done whil patching still possible */
return rtl8380_configure_rtl8214c(phydev);
}
return 0;
}
static int rtl8218b_ext_phy_probe(struct phy_device *phydev)
{
struct device *dev = &phydev->mdio.dev;
struct rtl838x_phy_priv *priv;
int addr = phydev->mdio.addr;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->name = "RTL8218B (external)";
/* All base addresses of the PHYs start at multiples of 8 */
if (!(addr % 8) && soc_info.family == RTL8380_FAMILY_ID) {
/* Configuration must be done while patching still possible */
return rtl8380_configure_ext_rtl8218b(phydev);
}
return 0;
}
static int rtl8218b_int_phy_probe(struct phy_device *phydev)
{
struct device *dev = &phydev->mdio.dev;
struct rtl838x_phy_priv *priv;
int addr = phydev->mdio.addr;
if (soc_info.family != RTL8380_FAMILY_ID)
return -ENODEV;
if (addr >= 24)
return -ENODEV;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->name = "RTL8218B (internal)";
/* All base addresses of the PHYs start at multiples of 8 */
if (!(addr % 8)) {
/* Configuration must be done while patching still possible */
return rtl8380_configure_int_rtl8218b(phydev);
}
return 0;
}
static int rtl8218d_phy_probe(struct phy_device *phydev)
{
struct device *dev = &phydev->mdio.dev;
struct rtl838x_phy_priv *priv;
int addr = phydev->mdio.addr;
pr_debug("%s: id: %d\n", __func__, addr);
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->name = "RTL8218D";
/* All base addresses of the PHYs start at multiples of 8 */
if (!(addr % 8)) {
/* Configuration must be done while patching still possible */
// TODO: return configure_rtl8218d(phydev);
}
return 0;
}
static int rtl8226_phy_probe(struct phy_device *phydev)
{
struct device *dev = &phydev->mdio.dev;
struct rtl838x_phy_priv *priv;
int addr = phydev->mdio.addr;
pr_info("%s: id: %d\n", __func__, addr);
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->name = "RTL8226";
return 0;
}
static int rtl838x_serdes_probe(struct phy_device *phydev)
{
struct device *dev = &phydev->mdio.dev;
struct rtl838x_phy_priv *priv;
int addr = phydev->mdio.addr;
if (soc_info.family != RTL8380_FAMILY_ID)
return -ENODEV;
if (addr < 24)
return -ENODEV;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->name = "RTL8380 Serdes";
/* On the RTL8380M, PHYs 24-27 connect to the internal SerDes */
if (soc_info.id == 0x8380) {
if (addr == 24)
return rtl8380_configure_serdes(phydev);
return 0;
}
return -ENODEV;
}
static int rtl8393_serdes_probe(struct phy_device *phydev)
{
struct device *dev = &phydev->mdio.dev;
struct rtl838x_phy_priv *priv;
int addr = phydev->mdio.addr;
pr_info("%s: id: %d\n", __func__, addr);
if (soc_info.family != RTL8390_FAMILY_ID)
return -ENODEV;
if (addr < 24)
return -ENODEV;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->name = "RTL8393 Serdes";
return rtl8390_configure_serdes(phydev);
}
static int rtl8390_serdes_probe(struct phy_device *phydev)
{
struct device *dev = &phydev->mdio.dev;
struct rtl838x_phy_priv *priv;
int addr = phydev->mdio.addr;
if (soc_info.family != RTL8390_FAMILY_ID)
return -ENODEV;
if (addr < 24)
return -ENODEV;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->name = "RTL8390 Serdes";
return rtl8390_configure_generic(phydev);
}
static int rtl9300_serdes_probe(struct phy_device *phydev)
{
struct device *dev = &phydev->mdio.dev;
struct rtl838x_phy_priv *priv;
int addr = phydev->mdio.addr;
if (soc_info.family != RTL9300_FAMILY_ID)
return -ENODEV;
if (addr < 24)
return -ENODEV;
priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
if (!priv)
return -ENOMEM;
priv->name = "RTL9300 Serdes";
return rtl9300_configure_serdes(phydev);
}
static struct phy_driver rtl83xx_phy_driver[] = {
{
PHY_ID_MATCH_MODEL(PHY_ID_RTL8214C),
.name = "Realtek RTL8214C",
.features = PHY_GBIT_FEATURES,
.match_phy_device = rtl8214c_match_phy_device,
.probe = rtl8214c_phy_probe,
.suspend = genphy_suspend,
.resume = genphy_resume,
.set_loopback = genphy_loopback,
},
{
PHY_ID_MATCH_MODEL(PHY_ID_RTL8214FC),
.name = "Realtek RTL8214FC",
.features = PHY_GBIT_FIBRE_FEATURES,
.match_phy_device = rtl8214fc_match_phy_device,
.probe = rtl8214fc_phy_probe,
.suspend = genphy_suspend,
.resume = genphy_resume,
.set_loopback = genphy_loopback,
.read_mmd = rtl8218b_read_mmd,
.write_mmd = rtl8218b_write_mmd,
.set_port = rtl8214fc_set_port,
.get_port = rtl8214fc_get_port,
.set_eee = rtl8214fc_set_eee,
.get_eee = rtl8214fc_get_eee,
},
{
PHY_ID_MATCH_MODEL(PHY_ID_RTL8218B_E),
.name = "Realtek RTL8218B (external)",
.features = PHY_GBIT_FEATURES,
.match_phy_device = rtl8218b_ext_match_phy_device,
.probe = rtl8218b_ext_phy_probe,
.suspend = genphy_suspend,
.resume = genphy_resume,
.set_loopback = genphy_loopback,
.read_mmd = rtl8218b_read_mmd,
.write_mmd = rtl8218b_write_mmd,
.set_eee = rtl8218b_set_eee,
.get_eee = rtl8218b_get_eee,
},
{
PHY_ID_MATCH_MODEL(PHY_ID_RTL8218D),
.name = "REALTEK RTL8218D",
.features = PHY_GBIT_FEATURES,
.probe = rtl8218d_phy_probe,
.suspend = genphy_suspend,
.resume = genphy_resume,
.set_loopback = genphy_loopback,
.set_eee = rtl8218d_set_eee,
.get_eee = rtl8218d_get_eee,
},
{
PHY_ID_MATCH_MODEL(PHY_ID_RTL8226),
.name = "REALTEK RTL8226",
.features = PHY_GBIT_FEATURES,
.probe = rtl8226_phy_probe,
.suspend = genphy_suspend,
.resume = genphy_resume,
.set_loopback = genphy_loopback,
.read_mmd = rtl8226_read_mmd,
.write_mmd = rtl8226_write_mmd,
.read_page = rtl8226_read_page,
.write_page = rtl8226_write_page,
.read_status = rtl8226_read_status,
.config_aneg = rtl8226_config_aneg,
.set_eee = rtl8226_set_eee,
.get_eee = rtl8226_get_eee,
},
{
PHY_ID_MATCH_MODEL(PHY_ID_RTL8218B_I),
.name = "Realtek RTL8218B (internal)",
.features = PHY_GBIT_FEATURES,
.probe = rtl8218b_int_phy_probe,
.suspend = genphy_suspend,
.resume = genphy_resume,
.set_loopback = genphy_loopback,
.read_mmd = rtl8218b_read_mmd,
.write_mmd = rtl8218b_write_mmd,
.set_eee = rtl8218b_set_eee,
.get_eee = rtl8218b_get_eee,
},
{
PHY_ID_MATCH_MODEL(PHY_ID_RTL8218B_I),
.name = "Realtek RTL8380 SERDES",
.features = PHY_GBIT_FIBRE_FEATURES,
.probe = rtl838x_serdes_probe,
.suspend = genphy_suspend,
.resume = genphy_resume,
.set_loopback = genphy_loopback,
.read_mmd = rtl8218b_read_mmd,
.write_mmd = rtl8218b_write_mmd,
.read_status = rtl8380_read_status,
},
{
PHY_ID_MATCH_MODEL(PHY_ID_RTL8393_I),
.name = "Realtek RTL8393 SERDES",
.features = PHY_GBIT_FIBRE_FEATURES,
.probe = rtl8393_serdes_probe,
.suspend = genphy_suspend,
.resume = genphy_resume,
.set_loopback = genphy_loopback,
.read_status = rtl8393_read_status,
},
{
PHY_ID_MATCH_MODEL(PHY_ID_RTL8390_GENERIC),
.name = "Realtek RTL8390 Generic",
.features = PHY_GBIT_FIBRE_FEATURES,
.probe = rtl8390_serdes_probe,
.suspend = genphy_suspend,
.resume = genphy_resume,
.set_loopback = genphy_loopback,
},
{
PHY_ID_MATCH_MODEL(PHY_ID_RTL9300_I),
.name = "REALTEK RTL9300 SERDES",
.features = PHY_GBIT_FIBRE_FEATURES,
.probe = rtl9300_serdes_probe,
.suspend = genphy_suspend,
.resume = genphy_resume,
.set_loopback = genphy_loopback,
},
};
module_phy_driver(rtl83xx_phy_driver);
static struct mdio_device_id __maybe_unused rtl83xx_tbl[] = {
{ PHY_ID_MATCH_MODEL(PHY_ID_RTL8214FC) },
{ }
};
MODULE_DEVICE_TABLE(mdio, rtl83xx_tbl);
MODULE_AUTHOR("B. Koblitz");
MODULE_DESCRIPTION("RTL83xx PHY driver");
MODULE_LICENSE("GPL");