openwrt/target/linux/bcm27xx/patches-6.6/950-1185-pinctrl-rp1-jump-through-hoops-to-avoid-PCIe-latency.patch
Álvaro Fernández Rojas 0171157d45 bcm27xx: update to latest RPi patches
The patches were generated from the RPi repo with the following command:
git format-patch v6.6.44..rpi-6.6.y

Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
2024-08-06 18:38:00 +02:00

289 lines
9.6 KiB
Diff

From d24229dcef58e0162780ceffa02eb5f6a01b9a4d Mon Sep 17 00:00:00 2001
From: Jonathan Bell <jonathan@raspberrypi.com>
Date: Tue, 16 Jul 2024 16:47:08 +0100
Subject: [PATCH 1185/1215] pinctrl: rp1: jump through hoops to avoid PCIe
latency issues
Automatic link power saving plus the ability of a root complex to buffer
pending posted write transfers (and consider them complete before being
transmitted on the wire) causes compression of updates to GPIO state.
The large bandwidth of a Gen 2 x4 link means the writes toggle state
inside RP1 as fast as it can go (~20MHz), which is bad for applications
wanting bitbash with at least a few microseconds of delay between
updates.
By tailoring IO access patterns to a special Root Complex register,
writes to GPIOs can be stalled until the link wakes - meaning all writes
end up with a reasonably consistent minimum pacing (~200ns).
Additionally, write barriers have no effect other than to arbitrarily
delay some writes by a small, variable amount - so remove the vast
majority of these in areas that could be hot-paths.
Although the IO memory is mapped with Device strongly-ordered semantics,
this doesn't prevent the splitter inside BCM2712 from letting an MMIO
read request to a GPIO register get ahead of the pacing writes to the
Root Complex register. So each pin state read must flush writes out to
the Outer-Shareable domain.
Signed-off-by: Jonathan Bell <jonathan@raspberrypi.com>
---
drivers/pinctrl/pinctrl-rp1.c | 120 +++++++++++++++++++++++++++++-----
1 file changed, 105 insertions(+), 15 deletions(-)
--- a/drivers/pinctrl/pinctrl-rp1.c
+++ b/drivers/pinctrl/pinctrl-rp1.c
@@ -197,6 +197,7 @@ struct rp1_pin_info {
void __iomem *inte;
void __iomem *ints;
void __iomem *pad;
+ void __iomem *dummy;
};
enum funcs {
@@ -276,6 +277,7 @@ struct rp1_pinctrl {
void __iomem *gpio_base;
void __iomem *rio_base;
void __iomem *pads_base;
+ void __iomem *dummy_base;
int irq[RP1_NUM_BANKS];
struct rp1_pin_info pins[RP1_NUM_GPIOS];
@@ -577,6 +579,42 @@ static bool persist_gpio_outputs = true;
module_param(persist_gpio_outputs, bool, 0644);
MODULE_PARM_DESC(persist_gpio_outputs, "Enable GPIO_OUT persistence when pin is freed");
+static bool pace_pin_updates = true;
+module_param(pace_pin_updates, bool, 0644);
+MODULE_PARM_DESC(pace_pin_updates, "Update pin states with guaranteed monotonicity if PCIe ASPM is enabled");
+
+static inline void rp1_pin_writel(u32 val, void __iomem *dummy, void __iomem *reg)
+{
+ unsigned long flags;
+
+ local_irq_save(flags);
+ /*
+ * Issuing 6 pipelined writes to the RC's Slot Control register will stall the
+ * peripheral bus inside 2712 if the link is in L1. This acts as a lightweight
+ * "fence" operation preventing back-to-back writes arriving at RP1 on a wake.
+ */
+ if (dummy) {
+ writel_relaxed(0, dummy);
+ writel_relaxed(0, dummy);
+ writel_relaxed(0, dummy);
+ writel_relaxed(0, dummy);
+ writel_relaxed(0, dummy);
+ writel_relaxed(0, dummy);
+ }
+ writel_relaxed(val, reg);
+ local_irq_restore(flags);
+}
+
+static inline u32 rp1_pin_readl(const void __iomem *ioaddr)
+{
+ /*
+ * Prior posted writes may not yet have been emitted by the CPU - do a store-flush
+ * before reading GPIO state, as this will serialise writes versus the next issued read.
+ */
+ __dma_wmb();
+ return readl(ioaddr);
+}
+
static int rp1_pinconf_set(struct pinctrl_dev *pctldev,
unsigned int offset, unsigned long *configs,
unsigned int num_configs);
@@ -603,12 +641,12 @@ static struct rp1_pin_info *rp1_get_pin_
static void rp1_pad_update(struct rp1_pin_info *pin, u32 clr, u32 set)
{
- u32 padctrl = readl(pin->pad);
+ u32 padctrl = rp1_pin_readl(pin->pad);
padctrl &= ~clr;
padctrl |= set;
- writel(padctrl, pin->pad);
+ rp1_pin_writel(padctrl, pin->dummy, pin->pad);
}
static void rp1_input_enable(struct rp1_pin_info *pin, int value)
@@ -625,7 +663,7 @@ static void rp1_output_enable(struct rp1
static u32 rp1_get_fsel(struct rp1_pin_info *pin)
{
- u32 ctrl = readl(pin->gpio + RP1_GPIO_CTRL);
+ u32 ctrl = rp1_pin_readl(pin->gpio + RP1_GPIO_CTRL);
u32 oeover = FLD_GET(ctrl, RP1_GPIO_CTRL_OEOVER);
u32 fsel = FLD_GET(ctrl, RP1_GPIO_CTRL_FUNCSEL);
@@ -637,7 +675,7 @@ static u32 rp1_get_fsel(struct rp1_pin_i
static void rp1_set_fsel(struct rp1_pin_info *pin, u32 fsel)
{
- u32 ctrl = readl(pin->gpio + RP1_GPIO_CTRL);
+ u32 ctrl = rp1_pin_readl(pin->gpio + RP1_GPIO_CTRL);
if (fsel >= RP1_FSEL_COUNT)
fsel = RP1_FSEL_NONE_HW;
@@ -652,12 +690,12 @@ static void rp1_set_fsel(struct rp1_pin_
FLD_SET(ctrl, RP1_GPIO_CTRL_OEOVER, RP1_OEOVER_PERI);
}
FLD_SET(ctrl, RP1_GPIO_CTRL_FUNCSEL, fsel);
- writel(ctrl, pin->gpio + RP1_GPIO_CTRL);
+ rp1_pin_writel(ctrl, pin->dummy, pin->gpio + RP1_GPIO_CTRL);
}
static int rp1_get_dir(struct rp1_pin_info *pin)
{
- return !(readl(pin->rio + RP1_RIO_OE) & (1 << pin->offset)) ?
+ return !(rp1_pin_readl(pin->rio + RP1_RIO_OE) & (1 << pin->offset)) ?
RP1_DIR_INPUT : RP1_DIR_OUTPUT;
}
@@ -665,19 +703,19 @@ static void rp1_set_dir(struct rp1_pin_i
{
int offset = is_input ? RP1_CLR_OFFSET : RP1_SET_OFFSET;
- writel(1 << pin->offset, pin->rio + RP1_RIO_OE + offset);
+ rp1_pin_writel(1 << pin->offset, pin->dummy, pin->rio + RP1_RIO_OE + offset);
}
static int rp1_get_value(struct rp1_pin_info *pin)
{
- return !!(readl(pin->rio + RP1_RIO_IN) & (1 << pin->offset));
+ return !!(rp1_pin_readl(pin->rio + RP1_RIO_IN) & (1 << pin->offset));
}
static void rp1_set_value(struct rp1_pin_info *pin, int value)
{
/* Assume the pin is already an output */
- writel(1 << pin->offset,
- pin->rio + RP1_RIO_OUT + (value ? RP1_SET_OFFSET : RP1_CLR_OFFSET));
+ rp1_pin_writel(1 << pin->offset, pin->dummy,
+ pin->rio + RP1_RIO_OUT + (value ? RP1_SET_OFFSET : RP1_CLR_OFFSET));
}
static int rp1_gpio_get(struct gpio_chip *chip, unsigned offset)
@@ -1298,7 +1336,7 @@ static const struct pinmux_ops rp1_pmx_o
static void rp1_pull_config_set(struct rp1_pin_info *pin, unsigned int arg)
{
- u32 padctrl = readl(pin->pad);
+ u32 padctrl = rp1_pin_readl(pin->pad);
FLD_SET(padctrl, RP1_PAD_PULL, arg & 0x3);
@@ -1398,7 +1436,7 @@ static int rp1_pinconf_get(struct pinctr
if (!pin)
return -EINVAL;
- padctrl = readl(pin->pad);
+ padctrl = rp1_pin_readl(pin->pad);
switch (param) {
case PIN_CONFIG_INPUT_ENABLE:
@@ -1493,6 +1531,7 @@ static int rp1_pinctrl_probe(struct plat
{
struct device *dev = &pdev->dev;
struct device_node *np = dev->of_node;
+ struct device_node *rp1_node = NULL;
struct rp1_pinctrl *pc;
struct gpio_irq_chip *girq;
int err, i;
@@ -1528,6 +1567,40 @@ static int rp1_pinctrl_probe(struct plat
pc->gpio_chip = rp1_gpio_chip;
pc->gpio_chip.parent = dev;
+ /*
+ * Workaround for the vagaries of PCIe on BCM2712
+ *
+ * If the link to RP1 is in L1, then the BRCMSTB RC will buffer many
+ * outbound writes - and generate write responses for them, despite the
+ * fact that the link is not yet active. This has the effect of compressing
+ * multiple writes to GPIOs together, destroying any pacing that an application
+ * may require in the 1-10us range.
+ *
+ * The RC Slot Control configuration register is special. It emits a
+ * MsgD for every write to it, will stall further writes until the message
+ * goes out on the wire. This can be (ab)used to force CPU stalls when the
+ * link is inactive, at the cost of a small amount of downstream bandwidth
+ * and some 200ns of added latency for each write.
+ *
+ * Several back-to-back configuration writes are necessary to "fill the pipe",
+ * otherwise the outbound MAC can consume a pending MMIO write and reorder
+ * it with respect to the config writes - undoing the intent.
+ *
+ * of_iomap() is used directly here as the address overlaps with the RC driver's
+ * usage.
+ */
+ rp1_node = of_find_node_by_name(NULL, "rp1");
+ if (!rp1_node)
+ dev_err(&pdev->dev, "failed to find RP1 DT node\n");
+ else if (pace_pin_updates &&
+ of_device_is_compatible(rp1_node->parent, "brcm,bcm2712-pcie")) {
+ pc->dummy_base = of_iomap(rp1_node->parent, 0);
+ if (IS_ERR(pc->dummy_base)) {
+ dev_warn(&pdev->dev, "could not map bcm2712 root complex registers\n");
+ pc->dummy_base = NULL;
+ }
+ }
+
for (i = 0; i < RP1_NUM_BANKS; i++) {
const struct rp1_iobank_desc *bank = &rp1_iobanks[i];
int j;
@@ -1547,14 +1620,17 @@ static int rp1_pinctrl_probe(struct plat
pin->rio = pc->rio_base + bank->rio_offset;
pin->pad = pc->pads_base + bank->pads_offset +
j * sizeof(u32);
+ pin->dummy = pc->dummy_base ? pc->dummy_base + 0xc0 : NULL;
}
raw_spin_lock_init(&pc->irq_lock[i]);
}
pc->pctl_dev = devm_pinctrl_register(dev, &rp1_pinctrl_desc, pc);
- if (IS_ERR(pc->pctl_dev))
- return PTR_ERR(pc->pctl_dev);
+ if (IS_ERR(pc->pctl_dev)) {
+ err = PTR_ERR(pc->pctl_dev);
+ goto out_iounmap;
+ }
girq = &pc->gpio_chip.irq;
girq->chip = &rp1_gpio_irq_chip;
@@ -1583,7 +1659,7 @@ static int rp1_pinctrl_probe(struct plat
err = devm_gpiochip_add_data(dev, &pc->gpio_chip, pc);
if (err) {
dev_err(dev, "could not add GPIO chip\n");
- return err;
+ goto out_iounmap;
}
pc->gpio_range = rp1_pinctrl_gpio_range;
@@ -1592,10 +1668,24 @@ static int rp1_pinctrl_probe(struct plat
pinctrl_add_gpio_range(pc->pctl_dev, &pc->gpio_range);
return 0;
+
+out_iounmap:
+ if (pc->dummy_base)
+ iounmap(pc->dummy_base);
+ return err;
+}
+
+static void rp1_pinctrl_remove(struct platform_device *pdev)
+{
+ struct rp1_pinctrl *pc = platform_get_drvdata(pdev);
+
+ if (pc->dummy_base)
+ iounmap(pc->dummy_base);
}
static struct platform_driver rp1_pinctrl_driver = {
.probe = rp1_pinctrl_probe,
+ .remove_new = rp1_pinctrl_remove,
.driver = {
.name = MODULE_NAME,
.of_match_table = rp1_pinctrl_match,