openwrt/target/linux/realtek/files-6.6/drivers/clk/realtek/clk-rtl83xx.c
Markus Stockhausen 325d79f0f9 realtek: 6.6: copy files and config from 5.15
Copy files and config from 5.15 kernel version. Because of the big version jump
leave out the patches for now so we can treat them individually later on.

Signed-off-by: Markus Stockhausen <markus.stockhausen@gmx.de>
2024-09-14 19:58:54 +02:00

771 lines
21 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Realtek RTL83XX clock driver
* Copyright (C) 2022 Markus Stockhausen <markus.stockhausen@gmx.de>
*
* This driver provides basic clock support for the central core clock unit (CCU) and its PLLs
* inside the RTL838X and RTL8389X SOC. Currently CPU, memory and LXB clock information can be
* accessed. To make use of the driver add the following devices and configurations at the
* appropriate locations to the DT.
*
* #include <dt-bindings/clock/rtl83xx-clk.h>
*
* sram0: sram@9f000000 {
* compatible = "mmio-sram";
* reg = <0x9f000000 0x18000>;
* #address-cells = <1>;
* #size-cells = <1>;
* ranges = <0 0x9f000000 0x18000>;
* };
*
* osc: oscillator {
* compatible = "fixed-clock";
* #clock-cells = <0>;
* clock-frequency = <25000000>;
* };
*
* ccu: clock-controller {
* compatible = "realtek,rtl8380-clock";
* #clock-cells = <1>;
* clocks = <&osc>;
* clock-names = "ref_clk";
* };
*
*
* The SRAM part is needed to be able to set clocks. When changing clocks the code must not run
* from DRAM. Otherwise system might freeze. Take care to adjust CCU compatibility, SRAM address
* and size to the target SOC device. Afterwards one can access/identify the clocks in the other
* DT devices with <&ccu CLK_CPU>, <&ccu CLK_MEM> or <&ccu CLK_LXB>. Additionally the clocks can
* be used inside the kernel with
*
* cpu_clk = clk_get(NULL, "cpu_clk");
* mem_clk = clk_get(NULL, "mem_clk");
* lxb_clk = clk_get(NULL, "lxb_clk");
*
* This driver can be directly used by the DT based cpufreq driver (CONFIG_CPUFREQ_DT) if CPU
* references the right clock and sane operating points (OPP) are provided. E.g.
*
* cpu@0 {
* compatible = "mips,mips4KEc";
* reg = <0>;
* clocks = <&ccu CLK_CPU>;
* operating-points-v2 = <&cpu_opp_table>;
* };
*
* cpu_opp_table: opp-table-0 {
* compatible = "operating-points-v2";
* opp-shared;
* opp00 {
* opp-hz = /bits/ 64 <425000000>;
* };
* ...
* }
*/
#include <asm/cacheflush.h>
#include <asm/mipsmtregs.h>
#include <dt-bindings/clock/rtl83xx-clk.h>
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/clkdev.h>
#include <linux/cpu.h>
#include <linux/delay.h>
#include <linux/genalloc.h>
#include <linux/io.h>
#include <linux/ioport.h>
#include <linux/of_address.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include "clk-rtl83xx.h"
#define read_sw(reg) ioread32(((void *)RTL_SW_CORE_BASE) + reg)
#define read_soc(reg) ioread32(((void *)RTL_SOC_BASE) + reg)
#define write_sw(val, reg) iowrite32(val, ((void *)RTL_SW_CORE_BASE) + reg)
#define write_soc(val, reg) iowrite32(val, ((void *)RTL_SOC_BASE) + reg)
/*
* some hardware specific definitions
*/
#define SOC_RTL838X 0
#define SOC_RTL839X 1
#define SOC_COUNT 2
#define MEM_DDR1 1
#define MEM_DDR2 2
#define MEM_DDR3 3
#define REG_CTRL0 0
#define REG_CTRL1 1
#define REG_COUNT 2
#define OSC_RATE 25000000
static const int rtcl_regs[SOC_COUNT][REG_COUNT][CLK_COUNT] = {
{
{ RTL838X_PLL_CPU_CTRL0, RTL838X_PLL_MEM_CTRL0, RTL838X_PLL_LXB_CTRL0 },
{ RTL838X_PLL_CPU_CTRL1, RTL838X_PLL_MEM_CTRL1, RTL838X_PLL_LXB_CTRL1 },
}, {
{ RTL839X_PLL_CPU_CTRL0, RTL839X_PLL_MEM_CTRL0, RTL839X_PLL_LXB_CTRL0 },
{ RTL839X_PLL_CPU_CTRL1, RTL839X_PLL_MEM_CTRL1, RTL839X_PLL_LXB_CTRL1 },
}
};
#define RTCL_REG_SET(_rate, _ctrl0, _ctrl1) \
{ \
.rate = _rate, \
.ctrl0 = _ctrl0, \
.ctrl1 = _ctrl1, \
}
struct rtcl_reg_set {
unsigned int rate;
unsigned int ctrl0;
unsigned int ctrl1;
};
/*
* The following configuration tables are valid operation points for their
* corresponding PLLs. The magic numbers are precalculated mulitpliers and
* dividers to keep the driver simple. They also provide rates outside the
* allowed physical specifications. E.g. DDR3 memory has a lower limit of 303
* MHz or the CPU might get unstable if set to anything above its startup
* frequency. Additionally the Realtek SOCs tend to expect CPU speed larger
* than MEM speed larger than LXB speed. The caller or DT configuration must
* take care that only valid operating points are selected.
*/
static const struct rtcl_reg_set rtcl_838x_cpu_reg_set[] = {
RTCL_REG_SET(300000000, 0x045c8, 0x1414530e),
RTCL_REG_SET(325000000, 0x04648, 0x1414530e),
RTCL_REG_SET(350000000, 0x046c8, 0x1414530e),
RTCL_REG_SET(375000000, 0x04748, 0x1414530e),
RTCL_REG_SET(400000000, 0x045c8, 0x0c14530e),
RTCL_REG_SET(425000000, 0x04628, 0x0c14530e),
RTCL_REG_SET(450000000, 0x04688, 0x0c14530e),
RTCL_REG_SET(475000000, 0x046e8, 0x0c14530e),
RTCL_REG_SET(500000000, 0x04748, 0x0c14530e),
RTCL_REG_SET(525000000, 0x047a8, 0x0c14530e),
RTCL_REG_SET(550000000, 0x04808, 0x0c14530e),
RTCL_REG_SET(575000000, 0x04868, 0x0c14530e),
RTCL_REG_SET(600000000, 0x048c8, 0x0c14530e),
RTCL_REG_SET(625000000, 0x04928, 0x0c14530e)
};
static const struct rtcl_reg_set rtcl_838x_mem_reg_set[] = {
RTCL_REG_SET(200000000, 0x041bc, 0x14018C80),
RTCL_REG_SET(225000000, 0x0417c, 0x0c018C80),
RTCL_REG_SET(250000000, 0x041ac, 0x0c018C80),
RTCL_REG_SET(275000000, 0x0412c, 0x04018C80),
RTCL_REG_SET(300000000, 0x0414c, 0x04018c80),
RTCL_REG_SET(325000000, 0x0416c, 0x04018c80),
RTCL_REG_SET(350000000, 0x0418c, 0x04018c80),
RTCL_REG_SET(375000000, 0x041ac, 0x04018c80)
};
static const struct rtcl_reg_set rtcl_838x_lxb_reg_set[] = {
RTCL_REG_SET(100000000, 0x043c8, 0x001ad30e),
RTCL_REG_SET(125000000, 0x043c8, 0x001ad30e),
RTCL_REG_SET(150000000, 0x04508, 0x1c1ad30e),
RTCL_REG_SET(175000000, 0x04508, 0x1c1ad30e),
RTCL_REG_SET(200000000, 0x047c8, 0x001ad30e)
};
static const struct rtcl_reg_set rtcl_839x_cpu_reg_set[] = {
RTCL_REG_SET(400000000, 0x0414c, 0x00000005),
RTCL_REG_SET(425000000, 0x041ec, 0x00000006),
RTCL_REG_SET(450000000, 0x0417c, 0x00000005),
RTCL_REG_SET(475000000, 0x0422c, 0x00000006),
RTCL_REG_SET(500000000, 0x041ac, 0x00000005),
RTCL_REG_SET(525000000, 0x0426c, 0x00000006),
RTCL_REG_SET(550000000, 0x0412c, 0x00000004),
RTCL_REG_SET(575000000, 0x042ac, 0x00000006),
RTCL_REG_SET(600000000, 0x0414c, 0x00000004),
RTCL_REG_SET(625000000, 0x042ec, 0x00000006),
RTCL_REG_SET(650000000, 0x0416c, 0x00000004),
RTCL_REG_SET(675000000, 0x04324, 0x00000006),
RTCL_REG_SET(700000000, 0x0418c, 0x00000004),
RTCL_REG_SET(725000000, 0x0436c, 0x00000006),
RTCL_REG_SET(750000000, 0x0438c, 0x00000006),
RTCL_REG_SET(775000000, 0x043ac, 0x00000006),
RTCL_REG_SET(800000000, 0x043cc, 0x00000006),
RTCL_REG_SET(825000000, 0x043ec, 0x00000006),
RTCL_REG_SET(850000000, 0x0440c, 0x00000006)
};
static const struct rtcl_reg_set rtcl_839x_mem_reg_set[] = {
RTCL_REG_SET(100000000, 0x041cc, 0x00000000),
RTCL_REG_SET(125000000, 0x041ac, 0x00000007),
RTCL_REG_SET(150000000, 0x0414c, 0x00000006),
RTCL_REG_SET(175000000, 0x0418c, 0x00000006),
RTCL_REG_SET(200000000, 0x041cc, 0x00000006),
RTCL_REG_SET(225000000, 0x0417c, 0x00000005),
RTCL_REG_SET(250000000, 0x041ac, 0x00000005),
RTCL_REG_SET(275000000, 0x0412c, 0x00000004),
RTCL_REG_SET(300000000, 0x0414c, 0x00000004),
RTCL_REG_SET(325000000, 0x0416c, 0x00000004),
RTCL_REG_SET(350000000, 0x0418c, 0x00000004),
RTCL_REG_SET(375000000, 0x041ac, 0x00000004),
RTCL_REG_SET(400000000, 0x041cc, 0x00000004)
};
static const struct rtcl_reg_set rtcl_839x_lxb_reg_set[] = {
RTCL_REG_SET(50000000, 0x1414c, 0x00000003),
RTCL_REG_SET(100000000, 0x0814c, 0x00000003),
RTCL_REG_SET(150000000, 0x0414c, 0x00000003),
RTCL_REG_SET(200000000, 0x0414c, 0x00000007)
};
struct rtcl_rtab_set {
int count;
const struct rtcl_reg_set *rset;
};
#define RTCL_RTAB_SET(_rset) \
{ \
.count = ARRAY_SIZE(_rset), \
.rset = _rset, \
}
static const struct rtcl_rtab_set rtcl_rtab_set[SOC_COUNT][CLK_COUNT] = {
{
RTCL_RTAB_SET(rtcl_838x_cpu_reg_set),
RTCL_RTAB_SET(rtcl_838x_mem_reg_set),
RTCL_RTAB_SET(rtcl_838x_lxb_reg_set)
}, {
RTCL_RTAB_SET(rtcl_839x_cpu_reg_set),
RTCL_RTAB_SET(rtcl_839x_mem_reg_set),
RTCL_RTAB_SET(rtcl_839x_lxb_reg_set)
}
};
#define RTCL_ROUND_SET(_min, _max, _step) \
{ \
.min = _min, \
.max = _max, \
.step = _step, \
}
struct rtcl_round_set {
unsigned long min;
unsigned long max;
unsigned long step;
};
static const struct rtcl_round_set rtcl_round_set[SOC_COUNT][CLK_COUNT] = {
{
RTCL_ROUND_SET(300000000, 625000000, 25000000),
RTCL_ROUND_SET(200000000, 375000000, 25000000),
RTCL_ROUND_SET(100000000, 200000000, 25000000)
}, {
RTCL_ROUND_SET(400000000, 850000000, 25000000),
RTCL_ROUND_SET(100000000, 400000000, 25000000),
RTCL_ROUND_SET(50000000, 200000000, 50000000)
}
};
static const int rtcl_divn3[] = { 2, 3, 4, 6 };
static const int rtcl_xdiv[] = { 2, 4, 2 };
/*
* module data structures
*/
#define RTCL_CLK_INFO(_idx, _name, _pname, _dname) \
{ \
.idx = _idx, \
.name = _name, \
.parent_name = _pname, \
.display_name = _dname, \
}
struct rtcl_clk_info {
unsigned int idx;
const char *name;
const char *parent_name;
const char *display_name;
};
struct rtcl_clk {
struct clk_hw hw;
unsigned int idx;
unsigned long min;
unsigned long max;
unsigned long rate;
unsigned long startup;
};
static const struct rtcl_clk_info rtcl_clk_info[CLK_COUNT] = {
RTCL_CLK_INFO(CLK_CPU, "cpu_clk", "ref_clk", "CPU"),
RTCL_CLK_INFO(CLK_MEM, "mem_clk", "ref_clk", "MEM"),
RTCL_CLK_INFO(CLK_LXB, "lxb_clk", "ref_clk", "LXB")
};
struct rtcl_dram {
int type;
int buswidth;
};
struct rtcl_sram {
int *pmark;
unsigned long vbase;
};
struct rtcl_ccu {
spinlock_t lock;
unsigned int soc;
struct rtcl_sram sram;
struct rtcl_dram dram;
struct device_node *np;
struct platform_device *pdev;
struct rtcl_clk clks[CLK_COUNT];
};
struct rtcl_ccu *rtcl_ccu;
#define rtcl_hw_to_clk(_hw) container_of(_hw, struct rtcl_clk, hw)
/*
* SRAM relocatable assembler functions. The dram() parts point to normal kernel
* memory while the sram() parts are the same functions but relocated to SRAM.
*/
extern void rtcl_838x_dram_start(void);
extern int rtcl_838x_dram_size;
extern void (*rtcl_838x_dram_set_rate)(int clk_idx, int ctrl0, int ctrl1);
static void (*rtcl_838x_sram_set_rate)(int clk_idx, int ctrl0, int ctrl1);
extern void rtcl_839x_dram_start(void);
extern int rtcl_839x_dram_size;
extern void (*rtcl_839x_dram_set_rate)(int clk_idx, int ctrl0, int ctrl1);
static void (*rtcl_839x_sram_set_rate)(int clk_idx, int ctrl0, int ctrl1);
/*
* clock setter/getter functions
*/
static unsigned long rtcl_recalc_rate(struct clk_hw *hw, unsigned long parent_rate)
{
struct rtcl_clk *clk = rtcl_hw_to_clk(hw);
unsigned int ctrl0, ctrl1, div1, div2, cmu_ncode_in;
unsigned int cmu_sel_prediv, cmu_sel_div4, cmu_divn2, cmu_divn2_selb, cmu_divn3_sel;
if ((clk->idx >= CLK_COUNT) || (!rtcl_ccu) || (rtcl_ccu->soc >= SOC_COUNT))
return 0;
ctrl0 = read_sw(rtcl_regs[rtcl_ccu->soc][REG_CTRL0][clk->idx]);
ctrl1 = read_sw(rtcl_regs[rtcl_ccu->soc][REG_CTRL1][clk->idx]);
cmu_sel_prediv = 1 << RTL_PLL_CTRL0_CMU_SEL_PREDIV(ctrl0);
cmu_sel_div4 = RTL_PLL_CTRL0_CMU_SEL_DIV4(ctrl0) ? 4 : 1;
cmu_ncode_in = RTL_PLL_CTRL0_CMU_NCODE_IN(ctrl0) + 4;
cmu_divn2 = RTL_PLL_CTRL0_CMU_DIVN2(ctrl0) + 4;
switch (rtcl_ccu->soc) {
case SOC_RTL838X:
if ((ctrl0 == 0) && (ctrl1 == 0) && (clk->idx == CLK_LXB))
return 200000000;
cmu_divn2_selb = RTL838X_PLL_CTRL1_CMU_DIVN2_SELB(ctrl1);
cmu_divn3_sel = rtcl_divn3[RTL838X_PLL_CTRL1_CMU_DIVN3_SEL(ctrl1)];
break;
case SOC_RTL839X:
cmu_divn2_selb = RTL839X_PLL_CTRL1_CMU_DIVN2_SELB(ctrl1);
cmu_divn3_sel = rtcl_divn3[RTL839X_PLL_CTRL1_CMU_DIVN3_SEL(ctrl1)];
break;
}
div1 = cmu_divn2_selb ? cmu_divn3_sel : cmu_divn2;
div2 = rtcl_xdiv[clk->idx];
return (((parent_rate / 16) * cmu_ncode_in) / (div1 * div2)) *
cmu_sel_prediv * cmu_sel_div4 * 16;
}
static int rtcl_838x_set_rate(int clk_idx, const struct rtcl_reg_set *reg)
{
unsigned long irqflags;
/*
* Runtime of this function (including locking)
* CPU: up to 14000 cycles / up to 56 us at 250 MHz (half default speed)
*/
spin_lock_irqsave(&rtcl_ccu->lock, irqflags);
rtcl_838x_sram_set_rate(clk_idx, reg->ctrl0, reg->ctrl1);
spin_unlock_irqrestore(&rtcl_ccu->lock, irqflags);
return 0;
}
static int rtcl_839x_set_rate(int clk_idx, const struct rtcl_reg_set *reg)
{
unsigned long vpflags;
unsigned long irqflags;
/*
* Runtime of this function (including locking)
* CPU: up to 31000 cycles / up to 89 us at 350 MHz (half default speed)
*/
spin_lock_irqsave(&rtcl_ccu->lock, irqflags);
vpflags = dvpe();
rtcl_839x_sram_set_rate(clk_idx, reg->ctrl0, reg->ctrl1);
evpe(vpflags);
spin_unlock_irqrestore(&rtcl_ccu->lock, irqflags);
return 0;
}
static int rtcl_set_rate(struct clk_hw *hw, unsigned long rate, unsigned long parent_rate)
{
int tab_idx;
struct rtcl_clk *clk = rtcl_hw_to_clk(hw);
const struct rtcl_rtab_set *rtab = &rtcl_rtab_set[rtcl_ccu->soc][clk->idx];
const struct rtcl_round_set *round = &rtcl_round_set[rtcl_ccu->soc][clk->idx];
if ((parent_rate != OSC_RATE) || (!rtcl_ccu->sram.vbase))
return -EINVAL;
/*
* Currently we do not know if SRAM is stable on these devices. Maybe someone
* changes memory in this region and does not care about proper allocation. So
* check if something might go wrong.
*/
if (unlikely(*rtcl_ccu->sram.pmark != RTL_SRAM_MARKER)) {
dev_err(&rtcl_ccu->pdev->dev, "SRAM code lost\n");
return -EINVAL;
}
tab_idx = (rate - round->min) / round->step;
if ((tab_idx < 0) || (tab_idx >= rtab->count) || (rtab->rset[tab_idx].rate != rate))
return -EINVAL;
rtcl_ccu->clks[clk->idx].rate = rate;
switch (rtcl_ccu->soc) {
case SOC_RTL838X:
return rtcl_838x_set_rate(clk->idx, &rtab->rset[tab_idx]);
case SOC_RTL839X:
return rtcl_839x_set_rate(clk->idx, &rtab->rset[tab_idx]);
}
return -ENXIO;
}
static long rtcl_round_rate(struct clk_hw *hw, unsigned long rate, unsigned long *parent_rate)
{
struct rtcl_clk *clk = rtcl_hw_to_clk(hw);
unsigned long rrate = max(clk->min, min(clk->max, rate));
const struct rtcl_round_set *round = &rtcl_round_set[rtcl_ccu->soc][clk->idx];
rrate = ((rrate + (round->step >> 1)) / round->step) * round->step;
rrate -= (rrate > clk->max) ? round->step : 0;
rrate += (rrate < clk->min) ? round->step : 0;
return rrate;
}
/*
* Initialization functions to register the CCU and its clocks
*/
#define RTCL_SRAM_FUNC(SOC, PBASE, FN) ({ \
rtcl_##SOC##_sram_##FN = ((void *)&rtcl_##SOC##_dram_##FN - \
(void *)&rtcl_##SOC##_dram_start) + \
(void *)PBASE; })
static const struct clk_ops rtcl_clk_ops = {
.set_rate = rtcl_set_rate,
.round_rate = rtcl_round_rate,
.recalc_rate = rtcl_recalc_rate,
};
static int rtcl_ccu_create(struct device_node *np)
{
int soc;
if (of_device_is_compatible(np, "realtek,rtl8380-clock"))
soc = SOC_RTL838X;
else if (of_device_is_compatible(np, "realtek,rtl8390-clock"))
soc = SOC_RTL839X;
else
return -ENXIO;
rtcl_ccu = kzalloc(sizeof(*rtcl_ccu), GFP_KERNEL);
if (IS_ERR(rtcl_ccu))
return -ENOMEM;
rtcl_ccu->np = np;
rtcl_ccu->soc = soc;
rtcl_ccu->dram.type = RTL_MC_MCR_DRAMTYPE(read_soc(RTL_MC_MCR));
rtcl_ccu->dram.buswidth = RTL_MC_DCR_BUSWIDTH(read_soc(RTL_MC_DCR));
spin_lock_init(&rtcl_ccu->lock);
return 0;
}
int rtcl_register_clkhw(int clk_idx)
{
int ret;
struct clk *clk;
struct clk_init_data hw_init = { };
struct rtcl_clk *rclk = &rtcl_ccu->clks[clk_idx];
struct clk_parent_data parent_data = { .fw_name = rtcl_clk_info[clk_idx].parent_name };
rclk->idx = clk_idx;
rclk->hw.init = &hw_init;
hw_init.num_parents = 1;
hw_init.ops = &rtcl_clk_ops;
hw_init.parent_data = &parent_data;
hw_init.name = rtcl_clk_info[clk_idx].name;
ret = of_clk_hw_register(rtcl_ccu->np, &rclk->hw);
if (ret)
return ret;
clk_hw_register_clkdev(&rclk->hw, rtcl_clk_info[clk_idx].name, NULL);
clk = clk_get(NULL, rtcl_clk_info[clk_idx].name);
rclk->startup = clk_get_rate(clk);
clk_put(clk);
switch (clk_idx) {
case CLK_CPU:
rclk->min = rtcl_round_set[rtcl_ccu->soc][clk_idx].min;
rclk->max = rtcl_round_set[rtcl_ccu->soc][clk_idx].max;
break;
default:
/*
* TODO: This driver supports PLL reclocking and nothing else. Additional
* required steps for non CPU PLLs are missing. E.g. if we want to change memory
* clocks the right way we must adapt a lot of other settings. This includes
* MCR and DTRx timing registers (0xb80001000, 0xb8001008, ...) and a DLL reset
* so that hardware operates in the allowed limits. This is far too complex
* without official support. Avoid this for now.
*/
rclk->min = rclk->max = rclk->startup;
break;
}
return 0;
}
static struct clk_hw *rtcl_get_clkhw(struct of_phandle_args *clkspec, void *prv)
{
unsigned int idx = clkspec->args[0];
if (idx >= CLK_COUNT) {
pr_err("%s: Invalid index %u\n", __func__, idx);
return ERR_PTR(-EINVAL);
}
return &rtcl_ccu->clks[idx].hw;
}
static int rtcl_ccu_register_clocks(void)
{
int clk_idx, ret;
for (clk_idx = 0; clk_idx < CLK_COUNT; clk_idx++) {
ret = rtcl_register_clkhw(clk_idx);
if (ret) {
pr_err("%s: Couldn't register %s clock\n",
__func__, rtcl_clk_info[clk_idx].display_name);
goto err_hw_unregister;
}
}
ret = of_clk_add_hw_provider(rtcl_ccu->np, rtcl_get_clkhw, rtcl_ccu);
if (ret) {
pr_err("%s: Couldn't register clock provider of %s\n",
__func__, of_node_full_name(rtcl_ccu->np));
goto err_hw_unregister;
}
return 0;
err_hw_unregister:
for (--clk_idx; clk_idx >= 0; --clk_idx)
clk_hw_unregister(&rtcl_ccu->clks[clk_idx].hw);
return ret;
}
int rtcl_init_sram(void)
{
struct gen_pool *sram_pool;
phys_addr_t sram_pbase;
unsigned long sram_vbase;
struct device_node *node;
struct platform_device *pdev = NULL;
void *dram_start;
int dram_size;
const char *wrn = ", rate setting disabled.\n";
switch (rtcl_ccu->soc) {
case SOC_RTL838X:
dram_start = &rtcl_838x_dram_start;
dram_size = rtcl_838x_dram_size;
break;
case SOC_RTL839X:
dram_start = &rtcl_839x_dram_start;
dram_size = rtcl_839x_dram_size;
break;
default:
return -ENXIO;
}
for_each_compatible_node(node, NULL, "mmio-sram") {
pdev = of_find_device_by_node(node);
if (pdev) {
of_node_put(node);
break;
}
}
if (!pdev) {
dev_warn(&rtcl_ccu->pdev->dev, "no SRAM device found%s", wrn);
return -ENXIO;
}
sram_pool = gen_pool_get(&pdev->dev, NULL);
if (!sram_pool) {
dev_warn(&rtcl_ccu->pdev->dev, "SRAM pool unavailable%s", wrn);
goto err_put_device;
}
sram_vbase = gen_pool_alloc(sram_pool, dram_size);
if (!sram_vbase) {
dev_warn(&rtcl_ccu->pdev->dev, "can not allocate SRAM%s", wrn);
goto err_put_device;
}
sram_pbase = gen_pool_virt_to_phys(sram_pool, sram_vbase);
memcpy((void *)sram_pbase, dram_start, dram_size);
flush_icache_range((unsigned long)sram_pbase, (unsigned long)(sram_pbase + dram_size));
switch (rtcl_ccu->soc) {
case SOC_RTL838X:
RTCL_SRAM_FUNC(838x, sram_pbase, set_rate);
break;
case SOC_RTL839X:
RTCL_SRAM_FUNC(839x, sram_pbase, set_rate);
break;
}
rtcl_ccu->sram.pmark = (int *)((void *)sram_pbase + (dram_size - 4));
rtcl_ccu->sram.vbase = sram_vbase;
return 0;
err_put_device:
put_device(&pdev->dev);
return -ENXIO;
}
void rtcl_ccu_log_early(void)
{
char meminfo[80], clkinfo[255], msg[255] = "rtl83xx-clk: initialized";
sprintf(meminfo, " (%d Bit DDR%d)", rtcl_ccu->dram.buswidth, rtcl_ccu->dram.type);
for (int clk_idx = 0; clk_idx < CLK_COUNT; clk_idx++) {
sprintf(clkinfo, ", %s %lu MHz", rtcl_clk_info[clk_idx].display_name,
rtcl_ccu->clks[clk_idx].startup / 1000000);
if (clk_idx == CLK_MEM)
strcat(clkinfo, meminfo);
strcat(msg, clkinfo);
}
pr_info("%s\n", msg);
}
void rtcl_ccu_log_late(void)
{
struct rtcl_clk *rclk;
bool overclock = false;
char clkinfo[80], msg[255] = "rate setting enabled";
for (int clk_idx = 0; clk_idx < CLK_COUNT; clk_idx++) {
rclk = &rtcl_ccu->clks[clk_idx];
overclock |= rclk->max > rclk->startup;
sprintf(clkinfo, ", %s %lu-%lu MHz", rtcl_clk_info[clk_idx].display_name,
rclk->min / 1000000, rclk->max / 1000000);
strcat(msg, clkinfo);
}
if (overclock)
strcat(msg, ", OVERCLOCK AT OWN RISK");
dev_info(&rtcl_ccu->pdev->dev, "%s\n", msg);
}
/*
* Early registration: This module provides core startup clocks that are needed
* for generic SOC init and for further builtin devices (e.g. UART). Register
* asap via clock framework.
*/
static void __init rtcl_probe_early(struct device_node *np)
{
if (rtcl_ccu_create(np))
return;
if (rtcl_ccu_register_clocks())
kfree(rtcl_ccu);
else
rtcl_ccu_log_early();
}
CLK_OF_DECLARE_DRIVER(rtl838x_clk, "realtek,rtl8380-clock", rtcl_probe_early);
CLK_OF_DECLARE_DRIVER(rtl839x_clk, "realtek,rtl8390-clock", rtcl_probe_early);
/*
* Late registration: Finally register as normal platform driver. At this point
* we can make use of other modules like SRAM.
*/
static const struct of_device_id rtcl_dt_ids[] = {
{ .compatible = "realtek,rtl8380-clock" },
{ .compatible = "realtek,rtl8390-clock" },
{}
};
static int rtcl_probe_late(struct platform_device *pdev)
{
int ret;
if (!rtcl_ccu) {
dev_err(&pdev->dev, "early initialization not run");
return -ENXIO;
}
rtcl_ccu->pdev = pdev;
ret = rtcl_init_sram();
if (ret)
return ret;
rtcl_ccu_log_late();
return 0;
}
static struct platform_driver rtcl_platform_driver = {
.driver = {
.name = "rtl83xx-clk",
.of_match_table = rtcl_dt_ids,
},
.probe = rtcl_probe_late,
};
static int __init rtcl_init_subsys(void)
{
return platform_driver_register(&rtcl_platform_driver);
}
/*
* The driver does not know when SRAM module has finally loaded. With an
* arch_initcall() we might overtake SRAM initialization. Be polite and give the
* system a little more time.
*/
subsys_initcall(rtcl_init_subsys);