mirror of
https://github.com/openwrt/openwrt.git
synced 2025-01-12 16:03:13 +00:00
02629d8f87
Targets were build tested and patches are refreshed. Signed-off-by: Luka Perkov <luka@openwrt.org> SVN-Revision: 42463
2444 lines
68 KiB
Diff
2444 lines
68 KiB
Diff
This patches adds the SPI-NOR device support code form kernel 3.17-rc1.
|
|
This patch does not contain any further code not in this mainline kernel.
|
|
|
|
--- a/drivers/mtd/Kconfig
|
|
+++ b/drivers/mtd/Kconfig
|
|
@@ -371,6 +371,8 @@ source "drivers/mtd/onenand/Kconfig"
|
|
|
|
source "drivers/mtd/lpddr/Kconfig"
|
|
|
|
+source "drivers/mtd/spi-nor/Kconfig"
|
|
+
|
|
source "drivers/mtd/ubi/Kconfig"
|
|
|
|
endif # MTD
|
|
--- a/drivers/mtd/Makefile
|
|
+++ b/drivers/mtd/Makefile
|
|
@@ -39,4 +39,5 @@ inftl-objs := inftlcore.o inftlmount.o
|
|
|
|
obj-y += chips/ lpddr/ maps/ devices/ nand/ onenand/ tests/
|
|
|
|
+obj-$(CONFIG_MTD_SPI_NOR) += spi-nor/
|
|
obj-$(CONFIG_MTD_UBI) += ubi/
|
|
--- /dev/null
|
|
+++ b/drivers/mtd/spi-nor/fsl-quadspi.c
|
|
@@ -0,0 +1,1009 @@
|
|
+/*
|
|
+ * Freescale QuadSPI driver.
|
|
+ *
|
|
+ * Copyright (C) 2013 Freescale Semiconductor, Inc.
|
|
+ *
|
|
+ * This program is free software; you can redistribute it and/or modify
|
|
+ * it under the terms of the GNU General Public License as published by
|
|
+ * the Free Software Foundation; either version 2 of the License, or
|
|
+ * (at your option) any later version.
|
|
+ */
|
|
+#include <linux/kernel.h>
|
|
+#include <linux/module.h>
|
|
+#include <linux/interrupt.h>
|
|
+#include <linux/errno.h>
|
|
+#include <linux/platform_device.h>
|
|
+#include <linux/sched.h>
|
|
+#include <linux/delay.h>
|
|
+#include <linux/io.h>
|
|
+#include <linux/clk.h>
|
|
+#include <linux/err.h>
|
|
+#include <linux/of.h>
|
|
+#include <linux/of_device.h>
|
|
+#include <linux/timer.h>
|
|
+#include <linux/jiffies.h>
|
|
+#include <linux/completion.h>
|
|
+#include <linux/mtd/mtd.h>
|
|
+#include <linux/mtd/partitions.h>
|
|
+#include <linux/mtd/spi-nor.h>
|
|
+
|
|
+/* The registers */
|
|
+#define QUADSPI_MCR 0x00
|
|
+#define QUADSPI_MCR_RESERVED_SHIFT 16
|
|
+#define QUADSPI_MCR_RESERVED_MASK (0xF << QUADSPI_MCR_RESERVED_SHIFT)
|
|
+#define QUADSPI_MCR_MDIS_SHIFT 14
|
|
+#define QUADSPI_MCR_MDIS_MASK (1 << QUADSPI_MCR_MDIS_SHIFT)
|
|
+#define QUADSPI_MCR_CLR_TXF_SHIFT 11
|
|
+#define QUADSPI_MCR_CLR_TXF_MASK (1 << QUADSPI_MCR_CLR_TXF_SHIFT)
|
|
+#define QUADSPI_MCR_CLR_RXF_SHIFT 10
|
|
+#define QUADSPI_MCR_CLR_RXF_MASK (1 << QUADSPI_MCR_CLR_RXF_SHIFT)
|
|
+#define QUADSPI_MCR_DDR_EN_SHIFT 7
|
|
+#define QUADSPI_MCR_DDR_EN_MASK (1 << QUADSPI_MCR_DDR_EN_SHIFT)
|
|
+#define QUADSPI_MCR_END_CFG_SHIFT 2
|
|
+#define QUADSPI_MCR_END_CFG_MASK (3 << QUADSPI_MCR_END_CFG_SHIFT)
|
|
+#define QUADSPI_MCR_SWRSTHD_SHIFT 1
|
|
+#define QUADSPI_MCR_SWRSTHD_MASK (1 << QUADSPI_MCR_SWRSTHD_SHIFT)
|
|
+#define QUADSPI_MCR_SWRSTSD_SHIFT 0
|
|
+#define QUADSPI_MCR_SWRSTSD_MASK (1 << QUADSPI_MCR_SWRSTSD_SHIFT)
|
|
+
|
|
+#define QUADSPI_IPCR 0x08
|
|
+#define QUADSPI_IPCR_SEQID_SHIFT 24
|
|
+#define QUADSPI_IPCR_SEQID_MASK (0xF << QUADSPI_IPCR_SEQID_SHIFT)
|
|
+
|
|
+#define QUADSPI_BUF0CR 0x10
|
|
+#define QUADSPI_BUF1CR 0x14
|
|
+#define QUADSPI_BUF2CR 0x18
|
|
+#define QUADSPI_BUFXCR_INVALID_MSTRID 0xe
|
|
+
|
|
+#define QUADSPI_BUF3CR 0x1c
|
|
+#define QUADSPI_BUF3CR_ALLMST_SHIFT 31
|
|
+#define QUADSPI_BUF3CR_ALLMST (1 << QUADSPI_BUF3CR_ALLMST_SHIFT)
|
|
+
|
|
+#define QUADSPI_BFGENCR 0x20
|
|
+#define QUADSPI_BFGENCR_PAR_EN_SHIFT 16
|
|
+#define QUADSPI_BFGENCR_PAR_EN_MASK (1 << (QUADSPI_BFGENCR_PAR_EN_SHIFT))
|
|
+#define QUADSPI_BFGENCR_SEQID_SHIFT 12
|
|
+#define QUADSPI_BFGENCR_SEQID_MASK (0xF << QUADSPI_BFGENCR_SEQID_SHIFT)
|
|
+
|
|
+#define QUADSPI_BUF0IND 0x30
|
|
+#define QUADSPI_BUF1IND 0x34
|
|
+#define QUADSPI_BUF2IND 0x38
|
|
+#define QUADSPI_SFAR 0x100
|
|
+
|
|
+#define QUADSPI_SMPR 0x108
|
|
+#define QUADSPI_SMPR_DDRSMP_SHIFT 16
|
|
+#define QUADSPI_SMPR_DDRSMP_MASK (7 << QUADSPI_SMPR_DDRSMP_SHIFT)
|
|
+#define QUADSPI_SMPR_FSDLY_SHIFT 6
|
|
+#define QUADSPI_SMPR_FSDLY_MASK (1 << QUADSPI_SMPR_FSDLY_SHIFT)
|
|
+#define QUADSPI_SMPR_FSPHS_SHIFT 5
|
|
+#define QUADSPI_SMPR_FSPHS_MASK (1 << QUADSPI_SMPR_FSPHS_SHIFT)
|
|
+#define QUADSPI_SMPR_HSENA_SHIFT 0
|
|
+#define QUADSPI_SMPR_HSENA_MASK (1 << QUADSPI_SMPR_HSENA_SHIFT)
|
|
+
|
|
+#define QUADSPI_RBSR 0x10c
|
|
+#define QUADSPI_RBSR_RDBFL_SHIFT 8
|
|
+#define QUADSPI_RBSR_RDBFL_MASK (0x3F << QUADSPI_RBSR_RDBFL_SHIFT)
|
|
+
|
|
+#define QUADSPI_RBCT 0x110
|
|
+#define QUADSPI_RBCT_WMRK_MASK 0x1F
|
|
+#define QUADSPI_RBCT_RXBRD_SHIFT 8
|
|
+#define QUADSPI_RBCT_RXBRD_USEIPS (0x1 << QUADSPI_RBCT_RXBRD_SHIFT)
|
|
+
|
|
+#define QUADSPI_TBSR 0x150
|
|
+#define QUADSPI_TBDR 0x154
|
|
+#define QUADSPI_SR 0x15c
|
|
+#define QUADSPI_SR_IP_ACC_SHIFT 1
|
|
+#define QUADSPI_SR_IP_ACC_MASK (0x1 << QUADSPI_SR_IP_ACC_SHIFT)
|
|
+#define QUADSPI_SR_AHB_ACC_SHIFT 2
|
|
+#define QUADSPI_SR_AHB_ACC_MASK (0x1 << QUADSPI_SR_AHB_ACC_SHIFT)
|
|
+
|
|
+#define QUADSPI_FR 0x160
|
|
+#define QUADSPI_FR_TFF_MASK 0x1
|
|
+
|
|
+#define QUADSPI_SFA1AD 0x180
|
|
+#define QUADSPI_SFA2AD 0x184
|
|
+#define QUADSPI_SFB1AD 0x188
|
|
+#define QUADSPI_SFB2AD 0x18c
|
|
+#define QUADSPI_RBDR 0x200
|
|
+
|
|
+#define QUADSPI_LUTKEY 0x300
|
|
+#define QUADSPI_LUTKEY_VALUE 0x5AF05AF0
|
|
+
|
|
+#define QUADSPI_LCKCR 0x304
|
|
+#define QUADSPI_LCKER_LOCK 0x1
|
|
+#define QUADSPI_LCKER_UNLOCK 0x2
|
|
+
|
|
+#define QUADSPI_RSER 0x164
|
|
+#define QUADSPI_RSER_TFIE (0x1 << 0)
|
|
+
|
|
+#define QUADSPI_LUT_BASE 0x310
|
|
+
|
|
+/*
|
|
+ * The definition of the LUT register shows below:
|
|
+ *
|
|
+ * ---------------------------------------------------
|
|
+ * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
|
|
+ * ---------------------------------------------------
|
|
+ */
|
|
+#define OPRND0_SHIFT 0
|
|
+#define PAD0_SHIFT 8
|
|
+#define INSTR0_SHIFT 10
|
|
+#define OPRND1_SHIFT 16
|
|
+
|
|
+/* Instruction set for the LUT register. */
|
|
+#define LUT_STOP 0
|
|
+#define LUT_CMD 1
|
|
+#define LUT_ADDR 2
|
|
+#define LUT_DUMMY 3
|
|
+#define LUT_MODE 4
|
|
+#define LUT_MODE2 5
|
|
+#define LUT_MODE4 6
|
|
+#define LUT_READ 7
|
|
+#define LUT_WRITE 8
|
|
+#define LUT_JMP_ON_CS 9
|
|
+#define LUT_ADDR_DDR 10
|
|
+#define LUT_MODE_DDR 11
|
|
+#define LUT_MODE2_DDR 12
|
|
+#define LUT_MODE4_DDR 13
|
|
+#define LUT_READ_DDR 14
|
|
+#define LUT_WRITE_DDR 15
|
|
+#define LUT_DATA_LEARN 16
|
|
+
|
|
+/*
|
|
+ * The PAD definitions for LUT register.
|
|
+ *
|
|
+ * The pad stands for the lines number of IO[0:3].
|
|
+ * For example, the Quad read need four IO lines, so you should
|
|
+ * set LUT_PAD4 which means we use four IO lines.
|
|
+ */
|
|
+#define LUT_PAD1 0
|
|
+#define LUT_PAD2 1
|
|
+#define LUT_PAD4 2
|
|
+
|
|
+/* Oprands for the LUT register. */
|
|
+#define ADDR24BIT 0x18
|
|
+#define ADDR32BIT 0x20
|
|
+
|
|
+/* Macros for constructing the LUT register. */
|
|
+#define LUT0(ins, pad, opr) \
|
|
+ (((opr) << OPRND0_SHIFT) | ((LUT_##pad) << PAD0_SHIFT) | \
|
|
+ ((LUT_##ins) << INSTR0_SHIFT))
|
|
+
|
|
+#define LUT1(ins, pad, opr) (LUT0(ins, pad, opr) << OPRND1_SHIFT)
|
|
+
|
|
+/* other macros for LUT register. */
|
|
+#define QUADSPI_LUT(x) (QUADSPI_LUT_BASE + (x) * 4)
|
|
+#define QUADSPI_LUT_NUM 64
|
|
+
|
|
+/* SEQID -- we can have 16 seqids at most. */
|
|
+#define SEQID_QUAD_READ 0
|
|
+#define SEQID_WREN 1
|
|
+#define SEQID_WRDI 2
|
|
+#define SEQID_RDSR 3
|
|
+#define SEQID_SE 4
|
|
+#define SEQID_CHIP_ERASE 5
|
|
+#define SEQID_PP 6
|
|
+#define SEQID_RDID 7
|
|
+#define SEQID_WRSR 8
|
|
+#define SEQID_RDCR 9
|
|
+#define SEQID_EN4B 10
|
|
+#define SEQID_BRWR 11
|
|
+
|
|
+enum fsl_qspi_devtype {
|
|
+ FSL_QUADSPI_VYBRID,
|
|
+ FSL_QUADSPI_IMX6SX,
|
|
+};
|
|
+
|
|
+struct fsl_qspi_devtype_data {
|
|
+ enum fsl_qspi_devtype devtype;
|
|
+ int rxfifo;
|
|
+ int txfifo;
|
|
+};
|
|
+
|
|
+static struct fsl_qspi_devtype_data vybrid_data = {
|
|
+ .devtype = FSL_QUADSPI_VYBRID,
|
|
+ .rxfifo = 128,
|
|
+ .txfifo = 64
|
|
+};
|
|
+
|
|
+static struct fsl_qspi_devtype_data imx6sx_data = {
|
|
+ .devtype = FSL_QUADSPI_IMX6SX,
|
|
+ .rxfifo = 128,
|
|
+ .txfifo = 512
|
|
+};
|
|
+
|
|
+#define FSL_QSPI_MAX_CHIP 4
|
|
+struct fsl_qspi {
|
|
+ struct mtd_info mtd[FSL_QSPI_MAX_CHIP];
|
|
+ struct spi_nor nor[FSL_QSPI_MAX_CHIP];
|
|
+ void __iomem *iobase;
|
|
+ void __iomem *ahb_base; /* Used when read from AHB bus */
|
|
+ u32 memmap_phy;
|
|
+ struct clk *clk, *clk_en;
|
|
+ struct device *dev;
|
|
+ struct completion c;
|
|
+ struct fsl_qspi_devtype_data *devtype_data;
|
|
+ u32 nor_size;
|
|
+ u32 nor_num;
|
|
+ u32 clk_rate;
|
|
+ unsigned int chip_base_addr; /* We may support two chips. */
|
|
+};
|
|
+
|
|
+static inline int is_vybrid_qspi(struct fsl_qspi *q)
|
|
+{
|
|
+ return q->devtype_data->devtype == FSL_QUADSPI_VYBRID;
|
|
+}
|
|
+
|
|
+static inline int is_imx6sx_qspi(struct fsl_qspi *q)
|
|
+{
|
|
+ return q->devtype_data->devtype == FSL_QUADSPI_IMX6SX;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * An IC bug makes us to re-arrange the 32-bit data.
|
|
+ * The following chips, such as IMX6SLX, have fixed this bug.
|
|
+ */
|
|
+static inline u32 fsl_qspi_endian_xchg(struct fsl_qspi *q, u32 a)
|
|
+{
|
|
+ return is_vybrid_qspi(q) ? __swab32(a) : a;
|
|
+}
|
|
+
|
|
+static inline void fsl_qspi_unlock_lut(struct fsl_qspi *q)
|
|
+{
|
|
+ writel(QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
|
|
+ writel(QUADSPI_LCKER_UNLOCK, q->iobase + QUADSPI_LCKCR);
|
|
+}
|
|
+
|
|
+static inline void fsl_qspi_lock_lut(struct fsl_qspi *q)
|
|
+{
|
|
+ writel(QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
|
|
+ writel(QUADSPI_LCKER_LOCK, q->iobase + QUADSPI_LCKCR);
|
|
+}
|
|
+
|
|
+static irqreturn_t fsl_qspi_irq_handler(int irq, void *dev_id)
|
|
+{
|
|
+ struct fsl_qspi *q = dev_id;
|
|
+ u32 reg;
|
|
+
|
|
+ /* clear interrupt */
|
|
+ reg = readl(q->iobase + QUADSPI_FR);
|
|
+ writel(reg, q->iobase + QUADSPI_FR);
|
|
+
|
|
+ if (reg & QUADSPI_FR_TFF_MASK)
|
|
+ complete(&q->c);
|
|
+
|
|
+ dev_dbg(q->dev, "QUADSPI_FR : 0x%.8x:0x%.8x\n", q->chip_base_addr, reg);
|
|
+ return IRQ_HANDLED;
|
|
+}
|
|
+
|
|
+static void fsl_qspi_init_lut(struct fsl_qspi *q)
|
|
+{
|
|
+ void __iomem *base = q->iobase;
|
|
+ int rxfifo = q->devtype_data->rxfifo;
|
|
+ u32 lut_base;
|
|
+ u8 cmd, addrlen, dummy;
|
|
+ int i;
|
|
+
|
|
+ fsl_qspi_unlock_lut(q);
|
|
+
|
|
+ /* Clear all the LUT table */
|
|
+ for (i = 0; i < QUADSPI_LUT_NUM; i++)
|
|
+ writel(0, base + QUADSPI_LUT_BASE + i * 4);
|
|
+
|
|
+ /* Quad Read */
|
|
+ lut_base = SEQID_QUAD_READ * 4;
|
|
+
|
|
+ if (q->nor_size <= SZ_16M) {
|
|
+ cmd = SPINOR_OP_READ_1_1_4;
|
|
+ addrlen = ADDR24BIT;
|
|
+ dummy = 8;
|
|
+ } else {
|
|
+ /* use the 4-byte address */
|
|
+ cmd = SPINOR_OP_READ_1_1_4;
|
|
+ addrlen = ADDR32BIT;
|
|
+ dummy = 8;
|
|
+ }
|
|
+
|
|
+ writel(LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen),
|
|
+ base + QUADSPI_LUT(lut_base));
|
|
+ writel(LUT0(DUMMY, PAD1, dummy) | LUT1(READ, PAD4, rxfifo),
|
|
+ base + QUADSPI_LUT(lut_base + 1));
|
|
+
|
|
+ /* Write enable */
|
|
+ lut_base = SEQID_WREN * 4;
|
|
+ writel(LUT0(CMD, PAD1, SPINOR_OP_WREN), base + QUADSPI_LUT(lut_base));
|
|
+
|
|
+ /* Page Program */
|
|
+ lut_base = SEQID_PP * 4;
|
|
+
|
|
+ if (q->nor_size <= SZ_16M) {
|
|
+ cmd = SPINOR_OP_PP;
|
|
+ addrlen = ADDR24BIT;
|
|
+ } else {
|
|
+ /* use the 4-byte address */
|
|
+ cmd = SPINOR_OP_PP;
|
|
+ addrlen = ADDR32BIT;
|
|
+ }
|
|
+
|
|
+ writel(LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen),
|
|
+ base + QUADSPI_LUT(lut_base));
|
|
+ writel(LUT0(WRITE, PAD1, 0), base + QUADSPI_LUT(lut_base + 1));
|
|
+
|
|
+ /* Read Status */
|
|
+ lut_base = SEQID_RDSR * 4;
|
|
+ writel(LUT0(CMD, PAD1, SPINOR_OP_RDSR) | LUT1(READ, PAD1, 0x1),
|
|
+ base + QUADSPI_LUT(lut_base));
|
|
+
|
|
+ /* Erase a sector */
|
|
+ lut_base = SEQID_SE * 4;
|
|
+
|
|
+ if (q->nor_size <= SZ_16M) {
|
|
+ cmd = SPINOR_OP_SE;
|
|
+ addrlen = ADDR24BIT;
|
|
+ } else {
|
|
+ /* use the 4-byte address */
|
|
+ cmd = SPINOR_OP_SE;
|
|
+ addrlen = ADDR32BIT;
|
|
+ }
|
|
+
|
|
+ writel(LUT0(CMD, PAD1, cmd) | LUT1(ADDR, PAD1, addrlen),
|
|
+ base + QUADSPI_LUT(lut_base));
|
|
+
|
|
+ /* Erase the whole chip */
|
|
+ lut_base = SEQID_CHIP_ERASE * 4;
|
|
+ writel(LUT0(CMD, PAD1, SPINOR_OP_CHIP_ERASE),
|
|
+ base + QUADSPI_LUT(lut_base));
|
|
+
|
|
+ /* READ ID */
|
|
+ lut_base = SEQID_RDID * 4;
|
|
+ writel(LUT0(CMD, PAD1, SPINOR_OP_RDID) | LUT1(READ, PAD1, 0x8),
|
|
+ base + QUADSPI_LUT(lut_base));
|
|
+
|
|
+ /* Write Register */
|
|
+ lut_base = SEQID_WRSR * 4;
|
|
+ writel(LUT0(CMD, PAD1, SPINOR_OP_WRSR) | LUT1(WRITE, PAD1, 0x2),
|
|
+ base + QUADSPI_LUT(lut_base));
|
|
+
|
|
+ /* Read Configuration Register */
|
|
+ lut_base = SEQID_RDCR * 4;
|
|
+ writel(LUT0(CMD, PAD1, SPINOR_OP_RDCR) | LUT1(READ, PAD1, 0x1),
|
|
+ base + QUADSPI_LUT(lut_base));
|
|
+
|
|
+ /* Write disable */
|
|
+ lut_base = SEQID_WRDI * 4;
|
|
+ writel(LUT0(CMD, PAD1, SPINOR_OP_WRDI), base + QUADSPI_LUT(lut_base));
|
|
+
|
|
+ /* Enter 4 Byte Mode (Micron) */
|
|
+ lut_base = SEQID_EN4B * 4;
|
|
+ writel(LUT0(CMD, PAD1, SPINOR_OP_EN4B), base + QUADSPI_LUT(lut_base));
|
|
+
|
|
+ /* Enter 4 Byte Mode (Spansion) */
|
|
+ lut_base = SEQID_BRWR * 4;
|
|
+ writel(LUT0(CMD, PAD1, SPINOR_OP_BRWR), base + QUADSPI_LUT(lut_base));
|
|
+
|
|
+ fsl_qspi_lock_lut(q);
|
|
+}
|
|
+
|
|
+/* Get the SEQID for the command */
|
|
+static int fsl_qspi_get_seqid(struct fsl_qspi *q, u8 cmd)
|
|
+{
|
|
+ switch (cmd) {
|
|
+ case SPINOR_OP_READ_1_1_4:
|
|
+ return SEQID_QUAD_READ;
|
|
+ case SPINOR_OP_WREN:
|
|
+ return SEQID_WREN;
|
|
+ case SPINOR_OP_WRDI:
|
|
+ return SEQID_WRDI;
|
|
+ case SPINOR_OP_RDSR:
|
|
+ return SEQID_RDSR;
|
|
+ case SPINOR_OP_SE:
|
|
+ return SEQID_SE;
|
|
+ case SPINOR_OP_CHIP_ERASE:
|
|
+ return SEQID_CHIP_ERASE;
|
|
+ case SPINOR_OP_PP:
|
|
+ return SEQID_PP;
|
|
+ case SPINOR_OP_RDID:
|
|
+ return SEQID_RDID;
|
|
+ case SPINOR_OP_WRSR:
|
|
+ return SEQID_WRSR;
|
|
+ case SPINOR_OP_RDCR:
|
|
+ return SEQID_RDCR;
|
|
+ case SPINOR_OP_EN4B:
|
|
+ return SEQID_EN4B;
|
|
+ case SPINOR_OP_BRWR:
|
|
+ return SEQID_BRWR;
|
|
+ default:
|
|
+ dev_err(q->dev, "Unsupported cmd 0x%.2x\n", cmd);
|
|
+ break;
|
|
+ }
|
|
+ return -EINVAL;
|
|
+}
|
|
+
|
|
+static int
|
|
+fsl_qspi_runcmd(struct fsl_qspi *q, u8 cmd, unsigned int addr, int len)
|
|
+{
|
|
+ void __iomem *base = q->iobase;
|
|
+ int seqid;
|
|
+ u32 reg, reg2;
|
|
+ int err;
|
|
+
|
|
+ init_completion(&q->c);
|
|
+ dev_dbg(q->dev, "to 0x%.8x:0x%.8x, len:%d, cmd:%.2x\n",
|
|
+ q->chip_base_addr, addr, len, cmd);
|
|
+
|
|
+ /* save the reg */
|
|
+ reg = readl(base + QUADSPI_MCR);
|
|
+
|
|
+ writel(q->memmap_phy + q->chip_base_addr + addr, base + QUADSPI_SFAR);
|
|
+ writel(QUADSPI_RBCT_WMRK_MASK | QUADSPI_RBCT_RXBRD_USEIPS,
|
|
+ base + QUADSPI_RBCT);
|
|
+ writel(reg | QUADSPI_MCR_CLR_RXF_MASK, base + QUADSPI_MCR);
|
|
+
|
|
+ do {
|
|
+ reg2 = readl(base + QUADSPI_SR);
|
|
+ if (reg2 & (QUADSPI_SR_IP_ACC_MASK | QUADSPI_SR_AHB_ACC_MASK)) {
|
|
+ udelay(1);
|
|
+ dev_dbg(q->dev, "The controller is busy, 0x%x\n", reg2);
|
|
+ continue;
|
|
+ }
|
|
+ break;
|
|
+ } while (1);
|
|
+
|
|
+ /* trigger the LUT now */
|
|
+ seqid = fsl_qspi_get_seqid(q, cmd);
|
|
+ writel((seqid << QUADSPI_IPCR_SEQID_SHIFT) | len, base + QUADSPI_IPCR);
|
|
+
|
|
+ /* Wait for the interrupt. */
|
|
+ err = wait_for_completion_timeout(&q->c, msecs_to_jiffies(1000));
|
|
+ if (!err) {
|
|
+ dev_err(q->dev,
|
|
+ "cmd 0x%.2x timeout, addr@%.8x, FR:0x%.8x, SR:0x%.8x\n",
|
|
+ cmd, addr, readl(base + QUADSPI_FR),
|
|
+ readl(base + QUADSPI_SR));
|
|
+ err = -ETIMEDOUT;
|
|
+ } else {
|
|
+ err = 0;
|
|
+ }
|
|
+
|
|
+ /* restore the MCR */
|
|
+ writel(reg, base + QUADSPI_MCR);
|
|
+
|
|
+ return err;
|
|
+}
|
|
+
|
|
+/* Read out the data from the QUADSPI_RBDR buffer registers. */
|
|
+static void fsl_qspi_read_data(struct fsl_qspi *q, int len, u8 *rxbuf)
|
|
+{
|
|
+ u32 tmp;
|
|
+ int i = 0;
|
|
+
|
|
+ while (len > 0) {
|
|
+ tmp = readl(q->iobase + QUADSPI_RBDR + i * 4);
|
|
+ tmp = fsl_qspi_endian_xchg(q, tmp);
|
|
+ dev_dbg(q->dev, "chip addr:0x%.8x, rcv:0x%.8x\n",
|
|
+ q->chip_base_addr, tmp);
|
|
+
|
|
+ if (len >= 4) {
|
|
+ *((u32 *)rxbuf) = tmp;
|
|
+ rxbuf += 4;
|
|
+ } else {
|
|
+ memcpy(rxbuf, &tmp, len);
|
|
+ break;
|
|
+ }
|
|
+
|
|
+ len -= 4;
|
|
+ i++;
|
|
+ }
|
|
+}
|
|
+
|
|
+/*
|
|
+ * If we have changed the content of the flash by writing or erasing,
|
|
+ * we need to invalidate the AHB buffer. If we do not do so, we may read out
|
|
+ * the wrong data. The spec tells us reset the AHB domain and Serial Flash
|
|
+ * domain at the same time.
|
|
+ */
|
|
+static inline void fsl_qspi_invalid(struct fsl_qspi *q)
|
|
+{
|
|
+ u32 reg;
|
|
+
|
|
+ reg = readl(q->iobase + QUADSPI_MCR);
|
|
+ reg |= QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK;
|
|
+ writel(reg, q->iobase + QUADSPI_MCR);
|
|
+
|
|
+ /*
|
|
+ * The minimum delay : 1 AHB + 2 SFCK clocks.
|
|
+ * Delay 1 us is enough.
|
|
+ */
|
|
+ udelay(1);
|
|
+
|
|
+ reg &= ~(QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK);
|
|
+ writel(reg, q->iobase + QUADSPI_MCR);
|
|
+}
|
|
+
|
|
+static int fsl_qspi_nor_write(struct fsl_qspi *q, struct spi_nor *nor,
|
|
+ u8 opcode, unsigned int to, u32 *txbuf,
|
|
+ unsigned count, size_t *retlen)
|
|
+{
|
|
+ int ret, i, j;
|
|
+ u32 tmp;
|
|
+
|
|
+ dev_dbg(q->dev, "to 0x%.8x:0x%.8x, len : %d\n",
|
|
+ q->chip_base_addr, to, count);
|
|
+
|
|
+ /* clear the TX FIFO. */
|
|
+ tmp = readl(q->iobase + QUADSPI_MCR);
|
|
+ writel(tmp | QUADSPI_MCR_CLR_RXF_MASK, q->iobase + QUADSPI_MCR);
|
|
+
|
|
+ /* fill the TX data to the FIFO */
|
|
+ for (j = 0, i = ((count + 3) / 4); j < i; j++) {
|
|
+ tmp = fsl_qspi_endian_xchg(q, *txbuf);
|
|
+ writel(tmp, q->iobase + QUADSPI_TBDR);
|
|
+ txbuf++;
|
|
+ }
|
|
+
|
|
+ /* Trigger it */
|
|
+ ret = fsl_qspi_runcmd(q, opcode, to, count);
|
|
+
|
|
+ if (ret == 0 && retlen)
|
|
+ *retlen += count;
|
|
+
|
|
+ return ret;
|
|
+}
|
|
+
|
|
+static void fsl_qspi_set_map_addr(struct fsl_qspi *q)
|
|
+{
|
|
+ int nor_size = q->nor_size;
|
|
+ void __iomem *base = q->iobase;
|
|
+
|
|
+ writel(nor_size + q->memmap_phy, base + QUADSPI_SFA1AD);
|
|
+ writel(nor_size * 2 + q->memmap_phy, base + QUADSPI_SFA2AD);
|
|
+ writel(nor_size * 3 + q->memmap_phy, base + QUADSPI_SFB1AD);
|
|
+ writel(nor_size * 4 + q->memmap_phy, base + QUADSPI_SFB2AD);
|
|
+}
|
|
+
|
|
+/*
|
|
+ * There are two different ways to read out the data from the flash:
|
|
+ * the "IP Command Read" and the "AHB Command Read".
|
|
+ *
|
|
+ * The IC guy suggests we use the "AHB Command Read" which is faster
|
|
+ * then the "IP Command Read". (What's more is that there is a bug in
|
|
+ * the "IP Command Read" in the Vybrid.)
|
|
+ *
|
|
+ * After we set up the registers for the "AHB Command Read", we can use
|
|
+ * the memcpy to read the data directly. A "missed" access to the buffer
|
|
+ * causes the controller to clear the buffer, and use the sequence pointed
|
|
+ * by the QUADSPI_BFGENCR[SEQID] to initiate a read from the flash.
|
|
+ */
|
|
+static void fsl_qspi_init_abh_read(struct fsl_qspi *q)
|
|
+{
|
|
+ void __iomem *base = q->iobase;
|
|
+ int seqid;
|
|
+
|
|
+ /* AHB configuration for access buffer 0/1/2 .*/
|
|
+ writel(QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF0CR);
|
|
+ writel(QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF1CR);
|
|
+ writel(QUADSPI_BUFXCR_INVALID_MSTRID, base + QUADSPI_BUF2CR);
|
|
+ writel(QUADSPI_BUF3CR_ALLMST, base + QUADSPI_BUF3CR);
|
|
+
|
|
+ /* We only use the buffer3 */
|
|
+ writel(0, base + QUADSPI_BUF0IND);
|
|
+ writel(0, base + QUADSPI_BUF1IND);
|
|
+ writel(0, base + QUADSPI_BUF2IND);
|
|
+
|
|
+ /* Set the default lut sequence for AHB Read. */
|
|
+ seqid = fsl_qspi_get_seqid(q, q->nor[0].read_opcode);
|
|
+ writel(seqid << QUADSPI_BFGENCR_SEQID_SHIFT,
|
|
+ q->iobase + QUADSPI_BFGENCR);
|
|
+}
|
|
+
|
|
+/* We use this function to do some basic init for spi_nor_scan(). */
|
|
+static int fsl_qspi_nor_setup(struct fsl_qspi *q)
|
|
+{
|
|
+ void __iomem *base = q->iobase;
|
|
+ u32 reg;
|
|
+ int ret;
|
|
+
|
|
+ /* the default frequency, we will change it in the future.*/
|
|
+ ret = clk_set_rate(q->clk, 66000000);
|
|
+ if (ret)
|
|
+ return ret;
|
|
+
|
|
+ /* Init the LUT table. */
|
|
+ fsl_qspi_init_lut(q);
|
|
+
|
|
+ /* Disable the module */
|
|
+ writel(QUADSPI_MCR_MDIS_MASK | QUADSPI_MCR_RESERVED_MASK,
|
|
+ base + QUADSPI_MCR);
|
|
+
|
|
+ reg = readl(base + QUADSPI_SMPR);
|
|
+ writel(reg & ~(QUADSPI_SMPR_FSDLY_MASK
|
|
+ | QUADSPI_SMPR_FSPHS_MASK
|
|
+ | QUADSPI_SMPR_HSENA_MASK
|
|
+ | QUADSPI_SMPR_DDRSMP_MASK), base + QUADSPI_SMPR);
|
|
+
|
|
+ /* Enable the module */
|
|
+ writel(QUADSPI_MCR_RESERVED_MASK | QUADSPI_MCR_END_CFG_MASK,
|
|
+ base + QUADSPI_MCR);
|
|
+
|
|
+ /* enable the interrupt */
|
|
+ writel(QUADSPI_RSER_TFIE, q->iobase + QUADSPI_RSER);
|
|
+
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+static int fsl_qspi_nor_setup_last(struct fsl_qspi *q)
|
|
+{
|
|
+ unsigned long rate = q->clk_rate;
|
|
+ int ret;
|
|
+
|
|
+ if (is_imx6sx_qspi(q))
|
|
+ rate *= 4;
|
|
+
|
|
+ ret = clk_set_rate(q->clk, rate);
|
|
+ if (ret)
|
|
+ return ret;
|
|
+
|
|
+ /* Init the LUT table again. */
|
|
+ fsl_qspi_init_lut(q);
|
|
+
|
|
+ /* Init for AHB read */
|
|
+ fsl_qspi_init_abh_read(q);
|
|
+
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+static struct of_device_id fsl_qspi_dt_ids[] = {
|
|
+ { .compatible = "fsl,vf610-qspi", .data = (void *)&vybrid_data, },
|
|
+ { .compatible = "fsl,imx6sx-qspi", .data = (void *)&imx6sx_data, },
|
|
+ { /* sentinel */ }
|
|
+};
|
|
+MODULE_DEVICE_TABLE(of, fsl_qspi_dt_ids);
|
|
+
|
|
+static void fsl_qspi_set_base_addr(struct fsl_qspi *q, struct spi_nor *nor)
|
|
+{
|
|
+ q->chip_base_addr = q->nor_size * (nor - q->nor);
|
|
+}
|
|
+
|
|
+static int fsl_qspi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
|
|
+{
|
|
+ int ret;
|
|
+ struct fsl_qspi *q = nor->priv;
|
|
+
|
|
+ ret = fsl_qspi_runcmd(q, opcode, 0, len);
|
|
+ if (ret)
|
|
+ return ret;
|
|
+
|
|
+ fsl_qspi_read_data(q, len, buf);
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+static int fsl_qspi_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len,
|
|
+ int write_enable)
|
|
+{
|
|
+ struct fsl_qspi *q = nor->priv;
|
|
+ int ret;
|
|
+
|
|
+ if (!buf) {
|
|
+ ret = fsl_qspi_runcmd(q, opcode, 0, 1);
|
|
+ if (ret)
|
|
+ return ret;
|
|
+
|
|
+ if (opcode == SPINOR_OP_CHIP_ERASE)
|
|
+ fsl_qspi_invalid(q);
|
|
+
|
|
+ } else if (len > 0) {
|
|
+ ret = fsl_qspi_nor_write(q, nor, opcode, 0,
|
|
+ (u32 *)buf, len, NULL);
|
|
+ } else {
|
|
+ dev_err(q->dev, "invalid cmd %d\n", opcode);
|
|
+ ret = -EINVAL;
|
|
+ }
|
|
+
|
|
+ return ret;
|
|
+}
|
|
+
|
|
+static void fsl_qspi_write(struct spi_nor *nor, loff_t to,
|
|
+ size_t len, size_t *retlen, const u_char *buf)
|
|
+{
|
|
+ struct fsl_qspi *q = nor->priv;
|
|
+
|
|
+ fsl_qspi_nor_write(q, nor, nor->program_opcode, to,
|
|
+ (u32 *)buf, len, retlen);
|
|
+
|
|
+ /* invalid the data in the AHB buffer. */
|
|
+ fsl_qspi_invalid(q);
|
|
+}
|
|
+
|
|
+static int fsl_qspi_read(struct spi_nor *nor, loff_t from,
|
|
+ size_t len, size_t *retlen, u_char *buf)
|
|
+{
|
|
+ struct fsl_qspi *q = nor->priv;
|
|
+ u8 cmd = nor->read_opcode;
|
|
+ int ret;
|
|
+
|
|
+ dev_dbg(q->dev, "cmd [%x],read from (0x%p, 0x%.8x, 0x%.8x),len:%d\n",
|
|
+ cmd, q->ahb_base, q->chip_base_addr, (unsigned int)from, len);
|
|
+
|
|
+ /* Wait until the previous command is finished. */
|
|
+ ret = nor->wait_till_ready(nor);
|
|
+ if (ret)
|
|
+ return ret;
|
|
+
|
|
+ /* Read out the data directly from the AHB buffer.*/
|
|
+ memcpy(buf, q->ahb_base + q->chip_base_addr + from, len);
|
|
+
|
|
+ *retlen += len;
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+static int fsl_qspi_erase(struct spi_nor *nor, loff_t offs)
|
|
+{
|
|
+ struct fsl_qspi *q = nor->priv;
|
|
+ int ret;
|
|
+
|
|
+ dev_dbg(nor->dev, "%dKiB at 0x%08x:0x%08x\n",
|
|
+ nor->mtd->erasesize / 1024, q->chip_base_addr, (u32)offs);
|
|
+
|
|
+ /* Wait until finished previous write command. */
|
|
+ ret = nor->wait_till_ready(nor);
|
|
+ if (ret)
|
|
+ return ret;
|
|
+
|
|
+ /* Send write enable, then erase commands. */
|
|
+ ret = nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0, 0);
|
|
+ if (ret)
|
|
+ return ret;
|
|
+
|
|
+ ret = fsl_qspi_runcmd(q, nor->erase_opcode, offs, 0);
|
|
+ if (ret)
|
|
+ return ret;
|
|
+
|
|
+ fsl_qspi_invalid(q);
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+static int fsl_qspi_prep(struct spi_nor *nor, enum spi_nor_ops ops)
|
|
+{
|
|
+ struct fsl_qspi *q = nor->priv;
|
|
+ int ret;
|
|
+
|
|
+ ret = clk_enable(q->clk_en);
|
|
+ if (ret)
|
|
+ return ret;
|
|
+
|
|
+ ret = clk_enable(q->clk);
|
|
+ if (ret) {
|
|
+ clk_disable(q->clk_en);
|
|
+ return ret;
|
|
+ }
|
|
+
|
|
+ fsl_qspi_set_base_addr(q, nor);
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+static void fsl_qspi_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
|
|
+{
|
|
+ struct fsl_qspi *q = nor->priv;
|
|
+
|
|
+ clk_disable(q->clk);
|
|
+ clk_disable(q->clk_en);
|
|
+}
|
|
+
|
|
+static int fsl_qspi_probe(struct platform_device *pdev)
|
|
+{
|
|
+ struct device_node *np = pdev->dev.of_node;
|
|
+ struct mtd_part_parser_data ppdata;
|
|
+ struct device *dev = &pdev->dev;
|
|
+ struct fsl_qspi *q;
|
|
+ struct resource *res;
|
|
+ struct spi_nor *nor;
|
|
+ struct mtd_info *mtd;
|
|
+ int ret, i = 0;
|
|
+ bool has_second_chip = false;
|
|
+ const struct of_device_id *of_id =
|
|
+ of_match_device(fsl_qspi_dt_ids, &pdev->dev);
|
|
+
|
|
+ q = devm_kzalloc(dev, sizeof(*q), GFP_KERNEL);
|
|
+ if (!q)
|
|
+ return -ENOMEM;
|
|
+
|
|
+ q->nor_num = of_get_child_count(dev->of_node);
|
|
+ if (!q->nor_num || q->nor_num > FSL_QSPI_MAX_CHIP)
|
|
+ return -ENODEV;
|
|
+
|
|
+ /* find the resources */
|
|
+ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "QuadSPI");
|
|
+ q->iobase = devm_ioremap_resource(dev, res);
|
|
+ if (IS_ERR(q->iobase)) {
|
|
+ ret = PTR_ERR(q->iobase);
|
|
+ goto map_failed;
|
|
+ }
|
|
+
|
|
+ res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
|
|
+ "QuadSPI-memory");
|
|
+ q->ahb_base = devm_ioremap_resource(dev, res);
|
|
+ if (IS_ERR(q->ahb_base)) {
|
|
+ ret = PTR_ERR(q->ahb_base);
|
|
+ goto map_failed;
|
|
+ }
|
|
+ q->memmap_phy = res->start;
|
|
+
|
|
+ /* find the clocks */
|
|
+ q->clk_en = devm_clk_get(dev, "qspi_en");
|
|
+ if (IS_ERR(q->clk_en)) {
|
|
+ ret = PTR_ERR(q->clk_en);
|
|
+ goto map_failed;
|
|
+ }
|
|
+
|
|
+ q->clk = devm_clk_get(dev, "qspi");
|
|
+ if (IS_ERR(q->clk)) {
|
|
+ ret = PTR_ERR(q->clk);
|
|
+ goto map_failed;
|
|
+ }
|
|
+
|
|
+ ret = clk_prepare_enable(q->clk_en);
|
|
+ if (ret) {
|
|
+ dev_err(dev, "can not enable the qspi_en clock\n");
|
|
+ goto map_failed;
|
|
+ }
|
|
+
|
|
+ ret = clk_prepare_enable(q->clk);
|
|
+ if (ret) {
|
|
+ clk_disable_unprepare(q->clk_en);
|
|
+ dev_err(dev, "can not enable the qspi clock\n");
|
|
+ goto map_failed;
|
|
+ }
|
|
+
|
|
+ /* find the irq */
|
|
+ ret = platform_get_irq(pdev, 0);
|
|
+ if (ret < 0) {
|
|
+ dev_err(dev, "failed to get the irq\n");
|
|
+ goto irq_failed;
|
|
+ }
|
|
+
|
|
+ ret = devm_request_irq(dev, ret,
|
|
+ fsl_qspi_irq_handler, 0, pdev->name, q);
|
|
+ if (ret) {
|
|
+ dev_err(dev, "failed to request irq.\n");
|
|
+ goto irq_failed;
|
|
+ }
|
|
+
|
|
+ q->dev = dev;
|
|
+ q->devtype_data = (struct fsl_qspi_devtype_data *)of_id->data;
|
|
+ platform_set_drvdata(pdev, q);
|
|
+
|
|
+ ret = fsl_qspi_nor_setup(q);
|
|
+ if (ret)
|
|
+ goto irq_failed;
|
|
+
|
|
+ if (of_get_property(np, "fsl,qspi-has-second-chip", NULL))
|
|
+ has_second_chip = true;
|
|
+
|
|
+ /* iterate the subnodes. */
|
|
+ for_each_available_child_of_node(dev->of_node, np) {
|
|
+ const struct spi_device_id *id;
|
|
+ char modalias[40];
|
|
+
|
|
+ /* skip the holes */
|
|
+ if (!has_second_chip)
|
|
+ i *= 2;
|
|
+
|
|
+ nor = &q->nor[i];
|
|
+ mtd = &q->mtd[i];
|
|
+
|
|
+ nor->mtd = mtd;
|
|
+ nor->dev = dev;
|
|
+ nor->priv = q;
|
|
+ mtd->priv = nor;
|
|
+
|
|
+ /* fill the hooks */
|
|
+ nor->read_reg = fsl_qspi_read_reg;
|
|
+ nor->write_reg = fsl_qspi_write_reg;
|
|
+ nor->read = fsl_qspi_read;
|
|
+ nor->write = fsl_qspi_write;
|
|
+ nor->erase = fsl_qspi_erase;
|
|
+
|
|
+ nor->prepare = fsl_qspi_prep;
|
|
+ nor->unprepare = fsl_qspi_unprep;
|
|
+
|
|
+ if (of_modalias_node(np, modalias, sizeof(modalias)) < 0)
|
|
+ goto map_failed;
|
|
+
|
|
+ id = spi_nor_match_id(modalias);
|
|
+ if (!id)
|
|
+ goto map_failed;
|
|
+
|
|
+ ret = of_property_read_u32(np, "spi-max-frequency",
|
|
+ &q->clk_rate);
|
|
+ if (ret < 0)
|
|
+ goto map_failed;
|
|
+
|
|
+ /* set the chip address for READID */
|
|
+ fsl_qspi_set_base_addr(q, nor);
|
|
+
|
|
+ ret = spi_nor_scan(nor, id, SPI_NOR_QUAD);
|
|
+ if (ret)
|
|
+ goto map_failed;
|
|
+
|
|
+ ppdata.of_node = np;
|
|
+ ret = mtd_device_parse_register(mtd, NULL, &ppdata, NULL, 0);
|
|
+ if (ret)
|
|
+ goto map_failed;
|
|
+
|
|
+ /* Set the correct NOR size now. */
|
|
+ if (q->nor_size == 0) {
|
|
+ q->nor_size = mtd->size;
|
|
+
|
|
+ /* Map the SPI NOR to accessiable address */
|
|
+ fsl_qspi_set_map_addr(q);
|
|
+ }
|
|
+
|
|
+ /*
|
|
+ * The TX FIFO is 64 bytes in the Vybrid, but the Page Program
|
|
+ * may writes 265 bytes per time. The write is working in the
|
|
+ * unit of the TX FIFO, not in the unit of the SPI NOR's page
|
|
+ * size.
|
|
+ *
|
|
+ * So shrink the spi_nor->page_size if it is larger then the
|
|
+ * TX FIFO.
|
|
+ */
|
|
+ if (nor->page_size > q->devtype_data->txfifo)
|
|
+ nor->page_size = q->devtype_data->txfifo;
|
|
+
|
|
+ i++;
|
|
+ }
|
|
+
|
|
+ /* finish the rest init. */
|
|
+ ret = fsl_qspi_nor_setup_last(q);
|
|
+ if (ret)
|
|
+ goto last_init_failed;
|
|
+
|
|
+ clk_disable(q->clk);
|
|
+ clk_disable(q->clk_en);
|
|
+ dev_info(dev, "QuadSPI SPI NOR flash driver\n");
|
|
+ return 0;
|
|
+
|
|
+last_init_failed:
|
|
+ for (i = 0; i < q->nor_num; i++)
|
|
+ mtd_device_unregister(&q->mtd[i]);
|
|
+
|
|
+irq_failed:
|
|
+ clk_disable_unprepare(q->clk);
|
|
+ clk_disable_unprepare(q->clk_en);
|
|
+map_failed:
|
|
+ dev_err(dev, "Freescale QuadSPI probe failed\n");
|
|
+ return ret;
|
|
+}
|
|
+
|
|
+static int fsl_qspi_remove(struct platform_device *pdev)
|
|
+{
|
|
+ struct fsl_qspi *q = platform_get_drvdata(pdev);
|
|
+ int i;
|
|
+
|
|
+ for (i = 0; i < q->nor_num; i++)
|
|
+ mtd_device_unregister(&q->mtd[i]);
|
|
+
|
|
+ /* disable the hardware */
|
|
+ writel(QUADSPI_MCR_MDIS_MASK, q->iobase + QUADSPI_MCR);
|
|
+ writel(0x0, q->iobase + QUADSPI_RSER);
|
|
+
|
|
+ clk_unprepare(q->clk);
|
|
+ clk_unprepare(q->clk_en);
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+static struct platform_driver fsl_qspi_driver = {
|
|
+ .driver = {
|
|
+ .name = "fsl-quadspi",
|
|
+ .bus = &platform_bus_type,
|
|
+ .owner = THIS_MODULE,
|
|
+ .of_match_table = fsl_qspi_dt_ids,
|
|
+ },
|
|
+ .probe = fsl_qspi_probe,
|
|
+ .remove = fsl_qspi_remove,
|
|
+};
|
|
+module_platform_driver(fsl_qspi_driver);
|
|
+
|
|
+MODULE_DESCRIPTION("Freescale QuadSPI Controller Driver");
|
|
+MODULE_AUTHOR("Freescale Semiconductor Inc.");
|
|
+MODULE_LICENSE("GPL v2");
|
|
--- /dev/null
|
|
+++ b/drivers/mtd/spi-nor/Kconfig
|
|
@@ -0,0 +1,17 @@
|
|
+menuconfig MTD_SPI_NOR
|
|
+ tristate "SPI-NOR device support"
|
|
+ depends on MTD
|
|
+ help
|
|
+ This is the framework for the SPI NOR which can be used by the SPI
|
|
+ device drivers and the SPI-NOR device driver.
|
|
+
|
|
+if MTD_SPI_NOR
|
|
+
|
|
+config SPI_FSL_QUADSPI
|
|
+ tristate "Freescale Quad SPI controller"
|
|
+ depends on ARCH_MXC
|
|
+ help
|
|
+ This enables support for the Quad SPI controller in master mode.
|
|
+ We only connect the NOR to this controller now.
|
|
+
|
|
+endif # MTD_SPI_NOR
|
|
--- /dev/null
|
|
+++ b/drivers/mtd/spi-nor/Makefile
|
|
@@ -0,0 +1,2 @@
|
|
+obj-$(CONFIG_MTD_SPI_NOR) += spi-nor.o
|
|
+obj-$(CONFIG_SPI_FSL_QUADSPI) += fsl-quadspi.o
|
|
--- /dev/null
|
|
+++ b/drivers/mtd/spi-nor/spi-nor.c
|
|
@@ -0,0 +1,1160 @@
|
|
+/*
|
|
+ * Based on m25p80.c, by Mike Lavender (mike@steroidmicros.com), with
|
|
+ * influence from lart.c (Abraham Van Der Merwe) and mtd_dataflash.c
|
|
+ *
|
|
+ * Copyright (C) 2005, Intec Automation Inc.
|
|
+ * Copyright (C) 2014, Freescale Semiconductor, Inc.
|
|
+ *
|
|
+ * This code is free software; you can redistribute it and/or modify
|
|
+ * it under the terms of the GNU General Public License version 2 as
|
|
+ * published by the Free Software Foundation.
|
|
+ */
|
|
+
|
|
+#include <linux/err.h>
|
|
+#include <linux/errno.h>
|
|
+#include <linux/module.h>
|
|
+#include <linux/device.h>
|
|
+#include <linux/mutex.h>
|
|
+#include <linux/math64.h>
|
|
+
|
|
+#include <linux/mtd/cfi.h>
|
|
+#include <linux/mtd/mtd.h>
|
|
+#include <linux/of_platform.h>
|
|
+#include <linux/spi/flash.h>
|
|
+#include <linux/mtd/spi-nor.h>
|
|
+
|
|
+/* Define max times to check status register before we give up. */
|
|
+#define MAX_READY_WAIT_JIFFIES (40 * HZ) /* M25P16 specs 40s max chip erase */
|
|
+
|
|
+#define JEDEC_MFR(_jedec_id) ((_jedec_id) >> 16)
|
|
+
|
|
+/*
|
|
+ * Read the status register, returning its value in the location
|
|
+ * Return the status register value.
|
|
+ * Returns negative if error occurred.
|
|
+ */
|
|
+static int read_sr(struct spi_nor *nor)
|
|
+{
|
|
+ int ret;
|
|
+ u8 val;
|
|
+
|
|
+ ret = nor->read_reg(nor, SPINOR_OP_RDSR, &val, 1);
|
|
+ if (ret < 0) {
|
|
+ pr_err("error %d reading SR\n", (int) ret);
|
|
+ return ret;
|
|
+ }
|
|
+
|
|
+ return val;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Read the flag status register, returning its value in the location
|
|
+ * Return the status register value.
|
|
+ * Returns negative if error occurred.
|
|
+ */
|
|
+static int read_fsr(struct spi_nor *nor)
|
|
+{
|
|
+ int ret;
|
|
+ u8 val;
|
|
+
|
|
+ ret = nor->read_reg(nor, SPINOR_OP_RDFSR, &val, 1);
|
|
+ if (ret < 0) {
|
|
+ pr_err("error %d reading FSR\n", ret);
|
|
+ return ret;
|
|
+ }
|
|
+
|
|
+ return val;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Read configuration register, returning its value in the
|
|
+ * location. Return the configuration register value.
|
|
+ * Returns negative if error occured.
|
|
+ */
|
|
+static int read_cr(struct spi_nor *nor)
|
|
+{
|
|
+ int ret;
|
|
+ u8 val;
|
|
+
|
|
+ ret = nor->read_reg(nor, SPINOR_OP_RDCR, &val, 1);
|
|
+ if (ret < 0) {
|
|
+ dev_err(nor->dev, "error %d reading CR\n", ret);
|
|
+ return ret;
|
|
+ }
|
|
+
|
|
+ return val;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Dummy Cycle calculation for different type of read.
|
|
+ * It can be used to support more commands with
|
|
+ * different dummy cycle requirements.
|
|
+ */
|
|
+static inline int spi_nor_read_dummy_cycles(struct spi_nor *nor)
|
|
+{
|
|
+ switch (nor->flash_read) {
|
|
+ case SPI_NOR_FAST:
|
|
+ case SPI_NOR_DUAL:
|
|
+ case SPI_NOR_QUAD:
|
|
+ return 1;
|
|
+ case SPI_NOR_NORMAL:
|
|
+ return 0;
|
|
+ }
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Write status register 1 byte
|
|
+ * Returns negative if error occurred.
|
|
+ */
|
|
+static inline int write_sr(struct spi_nor *nor, u8 val)
|
|
+{
|
|
+ nor->cmd_buf[0] = val;
|
|
+ return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1, 0);
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Set write enable latch with Write Enable command.
|
|
+ * Returns negative if error occurred.
|
|
+ */
|
|
+static inline int write_enable(struct spi_nor *nor)
|
|
+{
|
|
+ return nor->write_reg(nor, SPINOR_OP_WREN, NULL, 0, 0);
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Send write disble instruction to the chip.
|
|
+ */
|
|
+static inline int write_disable(struct spi_nor *nor)
|
|
+{
|
|
+ return nor->write_reg(nor, SPINOR_OP_WRDI, NULL, 0, 0);
|
|
+}
|
|
+
|
|
+static inline struct spi_nor *mtd_to_spi_nor(struct mtd_info *mtd)
|
|
+{
|
|
+ return mtd->priv;
|
|
+}
|
|
+
|
|
+/* Enable/disable 4-byte addressing mode. */
|
|
+static inline int set_4byte(struct spi_nor *nor, u32 jedec_id, int enable)
|
|
+{
|
|
+ int status;
|
|
+ bool need_wren = false;
|
|
+ u8 cmd;
|
|
+
|
|
+ switch (JEDEC_MFR(jedec_id)) {
|
|
+ case CFI_MFR_ST: /* Micron, actually */
|
|
+ /* Some Micron need WREN command; all will accept it */
|
|
+ need_wren = true;
|
|
+ case CFI_MFR_MACRONIX:
|
|
+ case 0xEF /* winbond */:
|
|
+ if (need_wren)
|
|
+ write_enable(nor);
|
|
+
|
|
+ cmd = enable ? SPINOR_OP_EN4B : SPINOR_OP_EX4B;
|
|
+ status = nor->write_reg(nor, cmd, NULL, 0, 0);
|
|
+ if (need_wren)
|
|
+ write_disable(nor);
|
|
+
|
|
+ return status;
|
|
+ default:
|
|
+ /* Spansion style */
|
|
+ nor->cmd_buf[0] = enable << 7;
|
|
+ return nor->write_reg(nor, SPINOR_OP_BRWR, nor->cmd_buf, 1, 0);
|
|
+ }
|
|
+}
|
|
+
|
|
+static int spi_nor_wait_till_ready(struct spi_nor *nor)
|
|
+{
|
|
+ unsigned long deadline;
|
|
+ int sr;
|
|
+
|
|
+ deadline = jiffies + MAX_READY_WAIT_JIFFIES;
|
|
+
|
|
+ do {
|
|
+ cond_resched();
|
|
+
|
|
+ sr = read_sr(nor);
|
|
+ if (sr < 0)
|
|
+ break;
|
|
+ else if (!(sr & SR_WIP))
|
|
+ return 0;
|
|
+ } while (!time_after_eq(jiffies, deadline));
|
|
+
|
|
+ return -ETIMEDOUT;
|
|
+}
|
|
+
|
|
+static int spi_nor_wait_till_fsr_ready(struct spi_nor *nor)
|
|
+{
|
|
+ unsigned long deadline;
|
|
+ int sr;
|
|
+ int fsr;
|
|
+
|
|
+ deadline = jiffies + MAX_READY_WAIT_JIFFIES;
|
|
+
|
|
+ do {
|
|
+ cond_resched();
|
|
+
|
|
+ sr = read_sr(nor);
|
|
+ if (sr < 0) {
|
|
+ break;
|
|
+ } else if (!(sr & SR_WIP)) {
|
|
+ fsr = read_fsr(nor);
|
|
+ if (fsr < 0)
|
|
+ break;
|
|
+ if (fsr & FSR_READY)
|
|
+ return 0;
|
|
+ }
|
|
+ } while (!time_after_eq(jiffies, deadline));
|
|
+
|
|
+ return -ETIMEDOUT;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Service routine to read status register until ready, or timeout occurs.
|
|
+ * Returns non-zero if error.
|
|
+ */
|
|
+static int wait_till_ready(struct spi_nor *nor)
|
|
+{
|
|
+ return nor->wait_till_ready(nor);
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Erase the whole flash memory
|
|
+ *
|
|
+ * Returns 0 if successful, non-zero otherwise.
|
|
+ */
|
|
+static int erase_chip(struct spi_nor *nor)
|
|
+{
|
|
+ int ret;
|
|
+
|
|
+ dev_dbg(nor->dev, " %lldKiB\n", (long long)(nor->mtd->size >> 10));
|
|
+
|
|
+ /* Wait until finished previous write command. */
|
|
+ ret = wait_till_ready(nor);
|
|
+ if (ret)
|
|
+ return ret;
|
|
+
|
|
+ /* Send write enable, then erase commands. */
|
|
+ write_enable(nor);
|
|
+
|
|
+ return nor->write_reg(nor, SPINOR_OP_CHIP_ERASE, NULL, 0, 0);
|
|
+}
|
|
+
|
|
+static int spi_nor_lock_and_prep(struct spi_nor *nor, enum spi_nor_ops ops)
|
|
+{
|
|
+ int ret = 0;
|
|
+
|
|
+ mutex_lock(&nor->lock);
|
|
+
|
|
+ if (nor->prepare) {
|
|
+ ret = nor->prepare(nor, ops);
|
|
+ if (ret) {
|
|
+ dev_err(nor->dev, "failed in the preparation.\n");
|
|
+ mutex_unlock(&nor->lock);
|
|
+ return ret;
|
|
+ }
|
|
+ }
|
|
+ return ret;
|
|
+}
|
|
+
|
|
+static void spi_nor_unlock_and_unprep(struct spi_nor *nor, enum spi_nor_ops ops)
|
|
+{
|
|
+ if (nor->unprepare)
|
|
+ nor->unprepare(nor, ops);
|
|
+ mutex_unlock(&nor->lock);
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Erase an address range on the nor chip. The address range may extend
|
|
+ * one or more erase sectors. Return an error is there is a problem erasing.
|
|
+ */
|
|
+static int spi_nor_erase(struct mtd_info *mtd, struct erase_info *instr)
|
|
+{
|
|
+ struct spi_nor *nor = mtd_to_spi_nor(mtd);
|
|
+ u32 addr, len;
|
|
+ uint32_t rem;
|
|
+ int ret;
|
|
+
|
|
+ dev_dbg(nor->dev, "at 0x%llx, len %lld\n", (long long)instr->addr,
|
|
+ (long long)instr->len);
|
|
+
|
|
+ div_u64_rem(instr->len, mtd->erasesize, &rem);
|
|
+ if (rem)
|
|
+ return -EINVAL;
|
|
+
|
|
+ addr = instr->addr;
|
|
+ len = instr->len;
|
|
+
|
|
+ ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_ERASE);
|
|
+ if (ret)
|
|
+ return ret;
|
|
+
|
|
+ /* whole-chip erase? */
|
|
+ if (len == mtd->size) {
|
|
+ if (erase_chip(nor)) {
|
|
+ ret = -EIO;
|
|
+ goto erase_err;
|
|
+ }
|
|
+
|
|
+ /* REVISIT in some cases we could speed up erasing large regions
|
|
+ * by using SPINOR_OP_SE instead of SPINOR_OP_BE_4K. We may have set up
|
|
+ * to use "small sector erase", but that's not always optimal.
|
|
+ */
|
|
+
|
|
+ /* "sector"-at-a-time erase */
|
|
+ } else {
|
|
+ while (len) {
|
|
+ if (nor->erase(nor, addr)) {
|
|
+ ret = -EIO;
|
|
+ goto erase_err;
|
|
+ }
|
|
+
|
|
+ addr += mtd->erasesize;
|
|
+ len -= mtd->erasesize;
|
|
+ }
|
|
+ }
|
|
+
|
|
+ spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);
|
|
+
|
|
+ instr->state = MTD_ERASE_DONE;
|
|
+ mtd_erase_callback(instr);
|
|
+
|
|
+ return ret;
|
|
+
|
|
+erase_err:
|
|
+ spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_ERASE);
|
|
+ instr->state = MTD_ERASE_FAILED;
|
|
+ return ret;
|
|
+}
|
|
+
|
|
+static int spi_nor_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
|
|
+{
|
|
+ struct spi_nor *nor = mtd_to_spi_nor(mtd);
|
|
+ uint32_t offset = ofs;
|
|
+ uint8_t status_old, status_new;
|
|
+ int ret = 0;
|
|
+
|
|
+ ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_LOCK);
|
|
+ if (ret)
|
|
+ return ret;
|
|
+
|
|
+ /* Wait until finished previous command */
|
|
+ ret = wait_till_ready(nor);
|
|
+ if (ret)
|
|
+ goto err;
|
|
+
|
|
+ status_old = read_sr(nor);
|
|
+
|
|
+ if (offset < mtd->size - (mtd->size / 2))
|
|
+ status_new = status_old | SR_BP2 | SR_BP1 | SR_BP0;
|
|
+ else if (offset < mtd->size - (mtd->size / 4))
|
|
+ status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;
|
|
+ else if (offset < mtd->size - (mtd->size / 8))
|
|
+ status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
|
|
+ else if (offset < mtd->size - (mtd->size / 16))
|
|
+ status_new = (status_old & ~(SR_BP0 | SR_BP1)) | SR_BP2;
|
|
+ else if (offset < mtd->size - (mtd->size / 32))
|
|
+ status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
|
|
+ else if (offset < mtd->size - (mtd->size / 64))
|
|
+ status_new = (status_old & ~(SR_BP2 | SR_BP0)) | SR_BP1;
|
|
+ else
|
|
+ status_new = (status_old & ~(SR_BP2 | SR_BP1)) | SR_BP0;
|
|
+
|
|
+ /* Only modify protection if it will not unlock other areas */
|
|
+ if ((status_new & (SR_BP2 | SR_BP1 | SR_BP0)) >
|
|
+ (status_old & (SR_BP2 | SR_BP1 | SR_BP0))) {
|
|
+ write_enable(nor);
|
|
+ ret = write_sr(nor, status_new);
|
|
+ if (ret)
|
|
+ goto err;
|
|
+ }
|
|
+
|
|
+err:
|
|
+ spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_LOCK);
|
|
+ return ret;
|
|
+}
|
|
+
|
|
+static int spi_nor_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
|
|
+{
|
|
+ struct spi_nor *nor = mtd_to_spi_nor(mtd);
|
|
+ uint32_t offset = ofs;
|
|
+ uint8_t status_old, status_new;
|
|
+ int ret = 0;
|
|
+
|
|
+ ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_UNLOCK);
|
|
+ if (ret)
|
|
+ return ret;
|
|
+
|
|
+ /* Wait until finished previous command */
|
|
+ ret = wait_till_ready(nor);
|
|
+ if (ret)
|
|
+ goto err;
|
|
+
|
|
+ status_old = read_sr(nor);
|
|
+
|
|
+ if (offset+len > mtd->size - (mtd->size / 64))
|
|
+ status_new = status_old & ~(SR_BP2 | SR_BP1 | SR_BP0);
|
|
+ else if (offset+len > mtd->size - (mtd->size / 32))
|
|
+ status_new = (status_old & ~(SR_BP2 | SR_BP1)) | SR_BP0;
|
|
+ else if (offset+len > mtd->size - (mtd->size / 16))
|
|
+ status_new = (status_old & ~(SR_BP2 | SR_BP0)) | SR_BP1;
|
|
+ else if (offset+len > mtd->size - (mtd->size / 8))
|
|
+ status_new = (status_old & ~SR_BP2) | SR_BP1 | SR_BP0;
|
|
+ else if (offset+len > mtd->size - (mtd->size / 4))
|
|
+ status_new = (status_old & ~(SR_BP0 | SR_BP1)) | SR_BP2;
|
|
+ else if (offset+len > mtd->size - (mtd->size / 2))
|
|
+ status_new = (status_old & ~SR_BP1) | SR_BP2 | SR_BP0;
|
|
+ else
|
|
+ status_new = (status_old & ~SR_BP0) | SR_BP2 | SR_BP1;
|
|
+
|
|
+ /* Only modify protection if it will not lock other areas */
|
|
+ if ((status_new & (SR_BP2 | SR_BP1 | SR_BP0)) <
|
|
+ (status_old & (SR_BP2 | SR_BP1 | SR_BP0))) {
|
|
+ write_enable(nor);
|
|
+ ret = write_sr(nor, status_new);
|
|
+ if (ret)
|
|
+ goto err;
|
|
+ }
|
|
+
|
|
+err:
|
|
+ spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_UNLOCK);
|
|
+ return ret;
|
|
+}
|
|
+
|
|
+struct flash_info {
|
|
+ /* JEDEC id zero means "no ID" (most older chips); otherwise it has
|
|
+ * a high byte of zero plus three data bytes: the manufacturer id,
|
|
+ * then a two byte device id.
|
|
+ */
|
|
+ u32 jedec_id;
|
|
+ u16 ext_id;
|
|
+
|
|
+ /* The size listed here is what works with SPINOR_OP_SE, which isn't
|
|
+ * necessarily called a "sector" by the vendor.
|
|
+ */
|
|
+ unsigned sector_size;
|
|
+ u16 n_sectors;
|
|
+
|
|
+ u16 page_size;
|
|
+ u16 addr_width;
|
|
+
|
|
+ u16 flags;
|
|
+#define SECT_4K 0x01 /* SPINOR_OP_BE_4K works uniformly */
|
|
+#define SPI_NOR_NO_ERASE 0x02 /* No erase command needed */
|
|
+#define SST_WRITE 0x04 /* use SST byte programming */
|
|
+#define SPI_NOR_NO_FR 0x08 /* Can't do fastread */
|
|
+#define SECT_4K_PMC 0x10 /* SPINOR_OP_BE_4K_PMC works uniformly */
|
|
+#define SPI_NOR_DUAL_READ 0x20 /* Flash supports Dual Read */
|
|
+#define SPI_NOR_QUAD_READ 0x40 /* Flash supports Quad Read */
|
|
+#define USE_FSR 0x80 /* use flag status register */
|
|
+};
|
|
+
|
|
+#define INFO(_jedec_id, _ext_id, _sector_size, _n_sectors, _flags) \
|
|
+ ((kernel_ulong_t)&(struct flash_info) { \
|
|
+ .jedec_id = (_jedec_id), \
|
|
+ .ext_id = (_ext_id), \
|
|
+ .sector_size = (_sector_size), \
|
|
+ .n_sectors = (_n_sectors), \
|
|
+ .page_size = 256, \
|
|
+ .flags = (_flags), \
|
|
+ })
|
|
+
|
|
+#define CAT25_INFO(_sector_size, _n_sectors, _page_size, _addr_width, _flags) \
|
|
+ ((kernel_ulong_t)&(struct flash_info) { \
|
|
+ .sector_size = (_sector_size), \
|
|
+ .n_sectors = (_n_sectors), \
|
|
+ .page_size = (_page_size), \
|
|
+ .addr_width = (_addr_width), \
|
|
+ .flags = (_flags), \
|
|
+ })
|
|
+
|
|
+/* NOTE: double check command sets and memory organization when you add
|
|
+ * more nor chips. This current list focusses on newer chips, which
|
|
+ * have been converging on command sets which including JEDEC ID.
|
|
+ */
|
|
+const struct spi_device_id spi_nor_ids[] = {
|
|
+ /* Atmel -- some are (confusingly) marketed as "DataFlash" */
|
|
+ { "at25fs010", INFO(0x1f6601, 0, 32 * 1024, 4, SECT_4K) },
|
|
+ { "at25fs040", INFO(0x1f6604, 0, 64 * 1024, 8, SECT_4K) },
|
|
+
|
|
+ { "at25df041a", INFO(0x1f4401, 0, 64 * 1024, 8, SECT_4K) },
|
|
+ { "at25df321a", INFO(0x1f4701, 0, 64 * 1024, 64, SECT_4K) },
|
|
+ { "at25df641", INFO(0x1f4800, 0, 64 * 1024, 128, SECT_4K) },
|
|
+
|
|
+ { "at26f004", INFO(0x1f0400, 0, 64 * 1024, 8, SECT_4K) },
|
|
+ { "at26df081a", INFO(0x1f4501, 0, 64 * 1024, 16, SECT_4K) },
|
|
+ { "at26df161a", INFO(0x1f4601, 0, 64 * 1024, 32, SECT_4K) },
|
|
+ { "at26df321", INFO(0x1f4700, 0, 64 * 1024, 64, SECT_4K) },
|
|
+
|
|
+ { "at45db081d", INFO(0x1f2500, 0, 64 * 1024, 16, SECT_4K) },
|
|
+
|
|
+ /* EON -- en25xxx */
|
|
+ { "en25f32", INFO(0x1c3116, 0, 64 * 1024, 64, SECT_4K) },
|
|
+ { "en25p32", INFO(0x1c2016, 0, 64 * 1024, 64, 0) },
|
|
+ { "en25q32b", INFO(0x1c3016, 0, 64 * 1024, 64, 0) },
|
|
+ { "en25p64", INFO(0x1c2017, 0, 64 * 1024, 128, 0) },
|
|
+ { "en25q64", INFO(0x1c3017, 0, 64 * 1024, 128, SECT_4K) },
|
|
+ { "en25qh128", INFO(0x1c7018, 0, 64 * 1024, 256, 0) },
|
|
+ { "en25qh256", INFO(0x1c7019, 0, 64 * 1024, 512, 0) },
|
|
+
|
|
+ /* ESMT */
|
|
+ { "f25l32pa", INFO(0x8c2016, 0, 64 * 1024, 64, SECT_4K) },
|
|
+
|
|
+ /* Everspin */
|
|
+ { "mr25h256", CAT25_INFO( 32 * 1024, 1, 256, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
|
|
+ { "mr25h10", CAT25_INFO(128 * 1024, 1, 256, 3, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
|
|
+
|
|
+ /* GigaDevice */
|
|
+ { "gd25q32", INFO(0xc84016, 0, 64 * 1024, 64, SECT_4K) },
|
|
+ { "gd25q64", INFO(0xc84017, 0, 64 * 1024, 128, SECT_4K) },
|
|
+
|
|
+ /* Intel/Numonyx -- xxxs33b */
|
|
+ { "160s33b", INFO(0x898911, 0, 64 * 1024, 32, 0) },
|
|
+ { "320s33b", INFO(0x898912, 0, 64 * 1024, 64, 0) },
|
|
+ { "640s33b", INFO(0x898913, 0, 64 * 1024, 128, 0) },
|
|
+
|
|
+ /* Macronix */
|
|
+ { "mx25l2005a", INFO(0xc22012, 0, 64 * 1024, 4, SECT_4K) },
|
|
+ { "mx25l4005a", INFO(0xc22013, 0, 64 * 1024, 8, SECT_4K) },
|
|
+ { "mx25l8005", INFO(0xc22014, 0, 64 * 1024, 16, 0) },
|
|
+ { "mx25l1606e", INFO(0xc22015, 0, 64 * 1024, 32, SECT_4K) },
|
|
+ { "mx25l3205d", INFO(0xc22016, 0, 64 * 1024, 64, 0) },
|
|
+ { "mx25l3255e", INFO(0xc29e16, 0, 64 * 1024, 64, SECT_4K) },
|
|
+ { "mx25l6405d", INFO(0xc22017, 0, 64 * 1024, 128, 0) },
|
|
+ { "mx25l12805d", INFO(0xc22018, 0, 64 * 1024, 256, 0) },
|
|
+ { "mx25l12855e", INFO(0xc22618, 0, 64 * 1024, 256, 0) },
|
|
+ { "mx25l25635e", INFO(0xc22019, 0, 64 * 1024, 512, 0) },
|
|
+ { "mx25l25655e", INFO(0xc22619, 0, 64 * 1024, 512, 0) },
|
|
+ { "mx66l51235l", INFO(0xc2201a, 0, 64 * 1024, 1024, SPI_NOR_QUAD_READ) },
|
|
+ { "mx66l1g55g", INFO(0xc2261b, 0, 64 * 1024, 2048, SPI_NOR_QUAD_READ) },
|
|
+
|
|
+ /* Micron */
|
|
+ { "n25q064", INFO(0x20ba17, 0, 64 * 1024, 128, 0) },
|
|
+ { "n25q128a11", INFO(0x20bb18, 0, 64 * 1024, 256, 0) },
|
|
+ { "n25q128a13", INFO(0x20ba18, 0, 64 * 1024, 256, 0) },
|
|
+ { "n25q256a", INFO(0x20ba19, 0, 64 * 1024, 512, SECT_4K) },
|
|
+ { "n25q512a", INFO(0x20bb20, 0, 64 * 1024, 1024, SECT_4K) },
|
|
+ { "n25q512ax3", INFO(0x20ba20, 0, 64 * 1024, 1024, USE_FSR) },
|
|
+ { "n25q00", INFO(0x20ba21, 0, 64 * 1024, 2048, USE_FSR) },
|
|
+
|
|
+ /* PMC */
|
|
+ { "pm25lv512", INFO(0, 0, 32 * 1024, 2, SECT_4K_PMC) },
|
|
+ { "pm25lv010", INFO(0, 0, 32 * 1024, 4, SECT_4K_PMC) },
|
|
+ { "pm25lq032", INFO(0x7f9d46, 0, 64 * 1024, 64, SECT_4K) },
|
|
+
|
|
+ /* Spansion -- single (large) sector size only, at least
|
|
+ * for the chips listed here (without boot sectors).
|
|
+ */
|
|
+ { "s25sl032p", INFO(0x010215, 0x4d00, 64 * 1024, 64, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
|
|
+ { "s25sl064p", INFO(0x010216, 0x4d00, 64 * 1024, 128, 0) },
|
|
+ { "s25fl256s0", INFO(0x010219, 0x4d00, 256 * 1024, 128, 0) },
|
|
+ { "s25fl256s1", INFO(0x010219, 0x4d01, 64 * 1024, 512, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
|
|
+ { "s25fl512s", INFO(0x010220, 0x4d00, 256 * 1024, 256, SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ) },
|
|
+ { "s70fl01gs", INFO(0x010221, 0x4d00, 256 * 1024, 256, 0) },
|
|
+ { "s25sl12800", INFO(0x012018, 0x0300, 256 * 1024, 64, 0) },
|
|
+ { "s25sl12801", INFO(0x012018, 0x0301, 64 * 1024, 256, 0) },
|
|
+ { "s25fl129p0", INFO(0x012018, 0x4d00, 256 * 1024, 64, 0) },
|
|
+ { "s25fl129p1", INFO(0x012018, 0x4d01, 64 * 1024, 256, 0) },
|
|
+ { "s25sl004a", INFO(0x010212, 0, 64 * 1024, 8, 0) },
|
|
+ { "s25sl008a", INFO(0x010213, 0, 64 * 1024, 16, 0) },
|
|
+ { "s25sl016a", INFO(0x010214, 0, 64 * 1024, 32, 0) },
|
|
+ { "s25sl032a", INFO(0x010215, 0, 64 * 1024, 64, 0) },
|
|
+ { "s25sl064a", INFO(0x010216, 0, 64 * 1024, 128, 0) },
|
|
+ { "s25fl008k", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) },
|
|
+ { "s25fl016k", INFO(0xef4015, 0, 64 * 1024, 32, SECT_4K) },
|
|
+ { "s25fl064k", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
|
|
+
|
|
+ /* SST -- large erase sizes are "overlays", "sectors" are 4K */
|
|
+ { "sst25vf040b", INFO(0xbf258d, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) },
|
|
+ { "sst25vf080b", INFO(0xbf258e, 0, 64 * 1024, 16, SECT_4K | SST_WRITE) },
|
|
+ { "sst25vf016b", INFO(0xbf2541, 0, 64 * 1024, 32, SECT_4K | SST_WRITE) },
|
|
+ { "sst25vf032b", INFO(0xbf254a, 0, 64 * 1024, 64, SECT_4K | SST_WRITE) },
|
|
+ { "sst25vf064c", INFO(0xbf254b, 0, 64 * 1024, 128, SECT_4K) },
|
|
+ { "sst25wf512", INFO(0xbf2501, 0, 64 * 1024, 1, SECT_4K | SST_WRITE) },
|
|
+ { "sst25wf010", INFO(0xbf2502, 0, 64 * 1024, 2, SECT_4K | SST_WRITE) },
|
|
+ { "sst25wf020", INFO(0xbf2503, 0, 64 * 1024, 4, SECT_4K | SST_WRITE) },
|
|
+ { "sst25wf040", INFO(0xbf2504, 0, 64 * 1024, 8, SECT_4K | SST_WRITE) },
|
|
+
|
|
+ /* ST Microelectronics -- newer production may have feature updates */
|
|
+ { "m25p05", INFO(0x202010, 0, 32 * 1024, 2, 0) },
|
|
+ { "m25p10", INFO(0x202011, 0, 32 * 1024, 4, 0) },
|
|
+ { "m25p20", INFO(0x202012, 0, 64 * 1024, 4, 0) },
|
|
+ { "m25p40", INFO(0x202013, 0, 64 * 1024, 8, 0) },
|
|
+ { "m25p80", INFO(0x202014, 0, 64 * 1024, 16, 0) },
|
|
+ { "m25p16", INFO(0x202015, 0, 64 * 1024, 32, 0) },
|
|
+ { "m25p32", INFO(0x202016, 0, 64 * 1024, 64, 0) },
|
|
+ { "m25p64", INFO(0x202017, 0, 64 * 1024, 128, 0) },
|
|
+ { "m25p128", INFO(0x202018, 0, 256 * 1024, 64, 0) },
|
|
+ { "n25q032", INFO(0x20ba16, 0, 64 * 1024, 64, 0) },
|
|
+
|
|
+ { "m25p05-nonjedec", INFO(0, 0, 32 * 1024, 2, 0) },
|
|
+ { "m25p10-nonjedec", INFO(0, 0, 32 * 1024, 4, 0) },
|
|
+ { "m25p20-nonjedec", INFO(0, 0, 64 * 1024, 4, 0) },
|
|
+ { "m25p40-nonjedec", INFO(0, 0, 64 * 1024, 8, 0) },
|
|
+ { "m25p80-nonjedec", INFO(0, 0, 64 * 1024, 16, 0) },
|
|
+ { "m25p16-nonjedec", INFO(0, 0, 64 * 1024, 32, 0) },
|
|
+ { "m25p32-nonjedec", INFO(0, 0, 64 * 1024, 64, 0) },
|
|
+ { "m25p64-nonjedec", INFO(0, 0, 64 * 1024, 128, 0) },
|
|
+ { "m25p128-nonjedec", INFO(0, 0, 256 * 1024, 64, 0) },
|
|
+
|
|
+ { "m45pe10", INFO(0x204011, 0, 64 * 1024, 2, 0) },
|
|
+ { "m45pe80", INFO(0x204014, 0, 64 * 1024, 16, 0) },
|
|
+ { "m45pe16", INFO(0x204015, 0, 64 * 1024, 32, 0) },
|
|
+
|
|
+ { "m25pe20", INFO(0x208012, 0, 64 * 1024, 4, 0) },
|
|
+ { "m25pe80", INFO(0x208014, 0, 64 * 1024, 16, 0) },
|
|
+ { "m25pe16", INFO(0x208015, 0, 64 * 1024, 32, SECT_4K) },
|
|
+
|
|
+ { "m25px16", INFO(0x207115, 0, 64 * 1024, 32, SECT_4K) },
|
|
+ { "m25px32", INFO(0x207116, 0, 64 * 1024, 64, SECT_4K) },
|
|
+ { "m25px32-s0", INFO(0x207316, 0, 64 * 1024, 64, SECT_4K) },
|
|
+ { "m25px32-s1", INFO(0x206316, 0, 64 * 1024, 64, SECT_4K) },
|
|
+ { "m25px64", INFO(0x207117, 0, 64 * 1024, 128, 0) },
|
|
+
|
|
+ /* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
|
|
+ { "w25x10", INFO(0xef3011, 0, 64 * 1024, 2, SECT_4K) },
|
|
+ { "w25x20", INFO(0xef3012, 0, 64 * 1024, 4, SECT_4K) },
|
|
+ { "w25x40", INFO(0xef3013, 0, 64 * 1024, 8, SECT_4K) },
|
|
+ { "w25x80", INFO(0xef3014, 0, 64 * 1024, 16, SECT_4K) },
|
|
+ { "w25x16", INFO(0xef3015, 0, 64 * 1024, 32, SECT_4K) },
|
|
+ { "w25x32", INFO(0xef3016, 0, 64 * 1024, 64, SECT_4K) },
|
|
+ { "w25q32", INFO(0xef4016, 0, 64 * 1024, 64, SECT_4K) },
|
|
+ { "w25q32dw", INFO(0xef6016, 0, 64 * 1024, 64, SECT_4K) },
|
|
+ { "w25x64", INFO(0xef3017, 0, 64 * 1024, 128, SECT_4K) },
|
|
+ { "w25q64", INFO(0xef4017, 0, 64 * 1024, 128, SECT_4K) },
|
|
+ { "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
|
|
+ { "w25q80", INFO(0xef5014, 0, 64 * 1024, 16, SECT_4K) },
|
|
+ { "w25q80bl", INFO(0xef4014, 0, 64 * 1024, 16, SECT_4K) },
|
|
+ { "w25q128", INFO(0xef4018, 0, 64 * 1024, 256, SECT_4K) },
|
|
+ { "w25q256", INFO(0xef4019, 0, 64 * 1024, 512, SECT_4K) },
|
|
+
|
|
+ /* Catalyst / On Semiconductor -- non-JEDEC */
|
|
+ { "cat25c11", CAT25_INFO( 16, 8, 16, 1, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
|
|
+ { "cat25c03", CAT25_INFO( 32, 8, 16, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
|
|
+ { "cat25c09", CAT25_INFO( 128, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
|
|
+ { "cat25c17", CAT25_INFO( 256, 8, 32, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
|
|
+ { "cat25128", CAT25_INFO(2048, 8, 64, 2, SPI_NOR_NO_ERASE | SPI_NOR_NO_FR) },
|
|
+ { },
|
|
+};
|
|
+EXPORT_SYMBOL_GPL(spi_nor_ids);
|
|
+
|
|
+static const struct spi_device_id *spi_nor_read_id(struct spi_nor *nor)
|
|
+{
|
|
+ int tmp;
|
|
+ u8 id[5];
|
|
+ u32 jedec;
|
|
+ u16 ext_jedec;
|
|
+ struct flash_info *info;
|
|
+
|
|
+ tmp = nor->read_reg(nor, SPINOR_OP_RDID, id, 5);
|
|
+ if (tmp < 0) {
|
|
+ dev_dbg(nor->dev, " error %d reading JEDEC ID\n", tmp);
|
|
+ return ERR_PTR(tmp);
|
|
+ }
|
|
+ jedec = id[0];
|
|
+ jedec = jedec << 8;
|
|
+ jedec |= id[1];
|
|
+ jedec = jedec << 8;
|
|
+ jedec |= id[2];
|
|
+
|
|
+ ext_jedec = id[3] << 8 | id[4];
|
|
+
|
|
+ for (tmp = 0; tmp < ARRAY_SIZE(spi_nor_ids) - 1; tmp++) {
|
|
+ info = (void *)spi_nor_ids[tmp].driver_data;
|
|
+ if (info->jedec_id == jedec) {
|
|
+ if (info->ext_id == 0 || info->ext_id == ext_jedec)
|
|
+ return &spi_nor_ids[tmp];
|
|
+ }
|
|
+ }
|
|
+ dev_err(nor->dev, "unrecognized JEDEC id %06x\n", jedec);
|
|
+ return ERR_PTR(-ENODEV);
|
|
+}
|
|
+
|
|
+static const struct spi_device_id *jedec_probe(struct spi_nor *nor)
|
|
+{
|
|
+ return nor->read_id(nor);
|
|
+}
|
|
+
|
|
+static int spi_nor_read(struct mtd_info *mtd, loff_t from, size_t len,
|
|
+ size_t *retlen, u_char *buf)
|
|
+{
|
|
+ struct spi_nor *nor = mtd_to_spi_nor(mtd);
|
|
+ int ret;
|
|
+
|
|
+ dev_dbg(nor->dev, "from 0x%08x, len %zd\n", (u32)from, len);
|
|
+
|
|
+ ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_READ);
|
|
+ if (ret)
|
|
+ return ret;
|
|
+
|
|
+ ret = nor->read(nor, from, len, retlen, buf);
|
|
+
|
|
+ spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_READ);
|
|
+ return ret;
|
|
+}
|
|
+
|
|
+static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
|
|
+ size_t *retlen, const u_char *buf)
|
|
+{
|
|
+ struct spi_nor *nor = mtd_to_spi_nor(mtd);
|
|
+ size_t actual;
|
|
+ int ret;
|
|
+
|
|
+ dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
|
|
+
|
|
+ ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
|
|
+ if (ret)
|
|
+ return ret;
|
|
+
|
|
+ /* Wait until finished previous write command. */
|
|
+ ret = wait_till_ready(nor);
|
|
+ if (ret)
|
|
+ goto time_out;
|
|
+
|
|
+ write_enable(nor);
|
|
+
|
|
+ nor->sst_write_second = false;
|
|
+
|
|
+ actual = to % 2;
|
|
+ /* Start write from odd address. */
|
|
+ if (actual) {
|
|
+ nor->program_opcode = SPINOR_OP_BP;
|
|
+
|
|
+ /* write one byte. */
|
|
+ nor->write(nor, to, 1, retlen, buf);
|
|
+ ret = wait_till_ready(nor);
|
|
+ if (ret)
|
|
+ goto time_out;
|
|
+ }
|
|
+ to += actual;
|
|
+
|
|
+ /* Write out most of the data here. */
|
|
+ for (; actual < len - 1; actual += 2) {
|
|
+ nor->program_opcode = SPINOR_OP_AAI_WP;
|
|
+
|
|
+ /* write two bytes. */
|
|
+ nor->write(nor, to, 2, retlen, buf + actual);
|
|
+ ret = wait_till_ready(nor);
|
|
+ if (ret)
|
|
+ goto time_out;
|
|
+ to += 2;
|
|
+ nor->sst_write_second = true;
|
|
+ }
|
|
+ nor->sst_write_second = false;
|
|
+
|
|
+ write_disable(nor);
|
|
+ ret = wait_till_ready(nor);
|
|
+ if (ret)
|
|
+ goto time_out;
|
|
+
|
|
+ /* Write out trailing byte if it exists. */
|
|
+ if (actual != len) {
|
|
+ write_enable(nor);
|
|
+
|
|
+ nor->program_opcode = SPINOR_OP_BP;
|
|
+ nor->write(nor, to, 1, retlen, buf + actual);
|
|
+
|
|
+ ret = wait_till_ready(nor);
|
|
+ if (ret)
|
|
+ goto time_out;
|
|
+ write_disable(nor);
|
|
+ }
|
|
+time_out:
|
|
+ spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
|
|
+ return ret;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Write an address range to the nor chip. Data must be written in
|
|
+ * FLASH_PAGESIZE chunks. The address range may be any size provided
|
|
+ * it is within the physical boundaries.
|
|
+ */
|
|
+static int spi_nor_write(struct mtd_info *mtd, loff_t to, size_t len,
|
|
+ size_t *retlen, const u_char *buf)
|
|
+{
|
|
+ struct spi_nor *nor = mtd_to_spi_nor(mtd);
|
|
+ u32 page_offset, page_size, i;
|
|
+ int ret;
|
|
+
|
|
+ dev_dbg(nor->dev, "to 0x%08x, len %zd\n", (u32)to, len);
|
|
+
|
|
+ ret = spi_nor_lock_and_prep(nor, SPI_NOR_OPS_WRITE);
|
|
+ if (ret)
|
|
+ return ret;
|
|
+
|
|
+ /* Wait until finished previous write command. */
|
|
+ ret = wait_till_ready(nor);
|
|
+ if (ret)
|
|
+ goto write_err;
|
|
+
|
|
+ write_enable(nor);
|
|
+
|
|
+ page_offset = to & (nor->page_size - 1);
|
|
+
|
|
+ /* do all the bytes fit onto one page? */
|
|
+ if (page_offset + len <= nor->page_size) {
|
|
+ nor->write(nor, to, len, retlen, buf);
|
|
+ } else {
|
|
+ /* the size of data remaining on the first page */
|
|
+ page_size = nor->page_size - page_offset;
|
|
+ nor->write(nor, to, page_size, retlen, buf);
|
|
+
|
|
+ /* write everything in nor->page_size chunks */
|
|
+ for (i = page_size; i < len; i += page_size) {
|
|
+ page_size = len - i;
|
|
+ if (page_size > nor->page_size)
|
|
+ page_size = nor->page_size;
|
|
+
|
|
+ wait_till_ready(nor);
|
|
+ write_enable(nor);
|
|
+
|
|
+ nor->write(nor, to + i, page_size, retlen, buf + i);
|
|
+ }
|
|
+ }
|
|
+
|
|
+write_err:
|
|
+ spi_nor_unlock_and_unprep(nor, SPI_NOR_OPS_WRITE);
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+static int macronix_quad_enable(struct spi_nor *nor)
|
|
+{
|
|
+ int ret, val;
|
|
+
|
|
+ val = read_sr(nor);
|
|
+ write_enable(nor);
|
|
+
|
|
+ nor->cmd_buf[0] = val | SR_QUAD_EN_MX;
|
|
+ nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 1, 0);
|
|
+
|
|
+ if (wait_till_ready(nor))
|
|
+ return 1;
|
|
+
|
|
+ ret = read_sr(nor);
|
|
+ if (!(ret > 0 && (ret & SR_QUAD_EN_MX))) {
|
|
+ dev_err(nor->dev, "Macronix Quad bit not set\n");
|
|
+ return -EINVAL;
|
|
+ }
|
|
+
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+/*
|
|
+ * Write status Register and configuration register with 2 bytes
|
|
+ * The first byte will be written to the status register, while the
|
|
+ * second byte will be written to the configuration register.
|
|
+ * Return negative if error occured.
|
|
+ */
|
|
+static int write_sr_cr(struct spi_nor *nor, u16 val)
|
|
+{
|
|
+ nor->cmd_buf[0] = val & 0xff;
|
|
+ nor->cmd_buf[1] = (val >> 8);
|
|
+
|
|
+ return nor->write_reg(nor, SPINOR_OP_WRSR, nor->cmd_buf, 2, 0);
|
|
+}
|
|
+
|
|
+static int spansion_quad_enable(struct spi_nor *nor)
|
|
+{
|
|
+ int ret;
|
|
+ int quad_en = CR_QUAD_EN_SPAN << 8;
|
|
+
|
|
+ write_enable(nor);
|
|
+
|
|
+ ret = write_sr_cr(nor, quad_en);
|
|
+ if (ret < 0) {
|
|
+ dev_err(nor->dev,
|
|
+ "error while writing configuration register\n");
|
|
+ return -EINVAL;
|
|
+ }
|
|
+
|
|
+ /* read back and check it */
|
|
+ ret = read_cr(nor);
|
|
+ if (!(ret > 0 && (ret & CR_QUAD_EN_SPAN))) {
|
|
+ dev_err(nor->dev, "Spansion Quad bit not set\n");
|
|
+ return -EINVAL;
|
|
+ }
|
|
+
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+static int set_quad_mode(struct spi_nor *nor, u32 jedec_id)
|
|
+{
|
|
+ int status;
|
|
+
|
|
+ switch (JEDEC_MFR(jedec_id)) {
|
|
+ case CFI_MFR_MACRONIX:
|
|
+ status = macronix_quad_enable(nor);
|
|
+ if (status) {
|
|
+ dev_err(nor->dev, "Macronix quad-read not enabled\n");
|
|
+ return -EINVAL;
|
|
+ }
|
|
+ return status;
|
|
+ default:
|
|
+ status = spansion_quad_enable(nor);
|
|
+ if (status) {
|
|
+ dev_err(nor->dev, "Spansion quad-read not enabled\n");
|
|
+ return -EINVAL;
|
|
+ }
|
|
+ return status;
|
|
+ }
|
|
+}
|
|
+
|
|
+static int spi_nor_check(struct spi_nor *nor)
|
|
+{
|
|
+ if (!nor->dev || !nor->read || !nor->write ||
|
|
+ !nor->read_reg || !nor->write_reg || !nor->erase) {
|
|
+ pr_err("spi-nor: please fill all the necessary fields!\n");
|
|
+ return -EINVAL;
|
|
+ }
|
|
+
|
|
+ if (!nor->read_id)
|
|
+ nor->read_id = spi_nor_read_id;
|
|
+ if (!nor->wait_till_ready)
|
|
+ nor->wait_till_ready = spi_nor_wait_till_ready;
|
|
+
|
|
+ return 0;
|
|
+}
|
|
+
|
|
+int spi_nor_scan(struct spi_nor *nor, const struct spi_device_id *id,
|
|
+ enum read_mode mode)
|
|
+{
|
|
+ struct flash_info *info;
|
|
+ struct flash_platform_data *data;
|
|
+ struct device *dev = nor->dev;
|
|
+ struct mtd_info *mtd = nor->mtd;
|
|
+ struct device_node *np = dev->of_node;
|
|
+ int ret;
|
|
+ int i;
|
|
+
|
|
+ ret = spi_nor_check(nor);
|
|
+ if (ret)
|
|
+ return ret;
|
|
+
|
|
+ /* Platform data helps sort out which chip type we have, as
|
|
+ * well as how this board partitions it. If we don't have
|
|
+ * a chip ID, try the JEDEC id commands; they'll work for most
|
|
+ * newer chips, even if we don't recognize the particular chip.
|
|
+ */
|
|
+ data = dev_get_platdata(dev);
|
|
+ if (data && data->type) {
|
|
+ const struct spi_device_id *plat_id;
|
|
+
|
|
+ for (i = 0; i < ARRAY_SIZE(spi_nor_ids) - 1; i++) {
|
|
+ plat_id = &spi_nor_ids[i];
|
|
+ if (strcmp(data->type, plat_id->name))
|
|
+ continue;
|
|
+ break;
|
|
+ }
|
|
+
|
|
+ if (i < ARRAY_SIZE(spi_nor_ids) - 1)
|
|
+ id = plat_id;
|
|
+ else
|
|
+ dev_warn(dev, "unrecognized id %s\n", data->type);
|
|
+ }
|
|
+
|
|
+ info = (void *)id->driver_data;
|
|
+
|
|
+ if (info->jedec_id) {
|
|
+ const struct spi_device_id *jid;
|
|
+
|
|
+ jid = jedec_probe(nor);
|
|
+ if (IS_ERR(jid)) {
|
|
+ return PTR_ERR(jid);
|
|
+ } else if (jid != id) {
|
|
+ /*
|
|
+ * JEDEC knows better, so overwrite platform ID. We
|
|
+ * can't trust partitions any longer, but we'll let
|
|
+ * mtd apply them anyway, since some partitions may be
|
|
+ * marked read-only, and we don't want to lose that
|
|
+ * information, even if it's not 100% accurate.
|
|
+ */
|
|
+ dev_warn(dev, "found %s, expected %s\n",
|
|
+ jid->name, id->name);
|
|
+ id = jid;
|
|
+ info = (void *)jid->driver_data;
|
|
+ }
|
|
+ }
|
|
+
|
|
+ mutex_init(&nor->lock);
|
|
+
|
|
+ /*
|
|
+ * Atmel, SST and Intel/Numonyx serial nor tend to power
|
|
+ * up with the software protection bits set
|
|
+ */
|
|
+
|
|
+ if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ATMEL ||
|
|
+ JEDEC_MFR(info->jedec_id) == CFI_MFR_INTEL ||
|
|
+ JEDEC_MFR(info->jedec_id) == CFI_MFR_SST) {
|
|
+ write_enable(nor);
|
|
+ write_sr(nor, 0);
|
|
+ }
|
|
+
|
|
+ if (data && data->name)
|
|
+ mtd->name = data->name;
|
|
+ else
|
|
+ mtd->name = dev_name(dev);
|
|
+
|
|
+ mtd->type = MTD_NORFLASH;
|
|
+ mtd->writesize = 1;
|
|
+ mtd->flags = MTD_CAP_NORFLASH;
|
|
+ mtd->size = info->sector_size * info->n_sectors;
|
|
+ mtd->_erase = spi_nor_erase;
|
|
+ mtd->_read = spi_nor_read;
|
|
+
|
|
+ /* nor protection support for STmicro chips */
|
|
+ if (JEDEC_MFR(info->jedec_id) == CFI_MFR_ST) {
|
|
+ mtd->_lock = spi_nor_lock;
|
|
+ mtd->_unlock = spi_nor_unlock;
|
|
+ }
|
|
+
|
|
+ /* sst nor chips use AAI word program */
|
|
+ if (info->flags & SST_WRITE)
|
|
+ mtd->_write = sst_write;
|
|
+ else
|
|
+ mtd->_write = spi_nor_write;
|
|
+
|
|
+ if ((info->flags & USE_FSR) &&
|
|
+ nor->wait_till_ready == spi_nor_wait_till_ready)
|
|
+ nor->wait_till_ready = spi_nor_wait_till_fsr_ready;
|
|
+
|
|
+ /* prefer "small sector" erase if possible */
|
|
+ if (info->flags & SECT_4K) {
|
|
+ nor->erase_opcode = SPINOR_OP_BE_4K;
|
|
+ mtd->erasesize = 4096;
|
|
+ } else if (info->flags & SECT_4K_PMC) {
|
|
+ nor->erase_opcode = SPINOR_OP_BE_4K_PMC;
|
|
+ mtd->erasesize = 4096;
|
|
+ } else {
|
|
+ nor->erase_opcode = SPINOR_OP_SE;
|
|
+ mtd->erasesize = info->sector_size;
|
|
+ }
|
|
+
|
|
+ if (info->flags & SPI_NOR_NO_ERASE)
|
|
+ mtd->flags |= MTD_NO_ERASE;
|
|
+
|
|
+ mtd->dev.parent = dev;
|
|
+ nor->page_size = info->page_size;
|
|
+ mtd->writebufsize = nor->page_size;
|
|
+
|
|
+ if (np) {
|
|
+ /* If we were instantiated by DT, use it */
|
|
+ if (of_property_read_bool(np, "m25p,fast-read"))
|
|
+ nor->flash_read = SPI_NOR_FAST;
|
|
+ else
|
|
+ nor->flash_read = SPI_NOR_NORMAL;
|
|
+ } else {
|
|
+ /* If we weren't instantiated by DT, default to fast-read */
|
|
+ nor->flash_read = SPI_NOR_FAST;
|
|
+ }
|
|
+
|
|
+ /* Some devices cannot do fast-read, no matter what DT tells us */
|
|
+ if (info->flags & SPI_NOR_NO_FR)
|
|
+ nor->flash_read = SPI_NOR_NORMAL;
|
|
+
|
|
+ /* Quad/Dual-read mode takes precedence over fast/normal */
|
|
+ if (mode == SPI_NOR_QUAD && info->flags & SPI_NOR_QUAD_READ) {
|
|
+ ret = set_quad_mode(nor, info->jedec_id);
|
|
+ if (ret) {
|
|
+ dev_err(dev, "quad mode not supported\n");
|
|
+ return ret;
|
|
+ }
|
|
+ nor->flash_read = SPI_NOR_QUAD;
|
|
+ } else if (mode == SPI_NOR_DUAL && info->flags & SPI_NOR_DUAL_READ) {
|
|
+ nor->flash_read = SPI_NOR_DUAL;
|
|
+ }
|
|
+
|
|
+ /* Default commands */
|
|
+ switch (nor->flash_read) {
|
|
+ case SPI_NOR_QUAD:
|
|
+ nor->read_opcode = SPINOR_OP_READ_1_1_4;
|
|
+ break;
|
|
+ case SPI_NOR_DUAL:
|
|
+ nor->read_opcode = SPINOR_OP_READ_1_1_2;
|
|
+ break;
|
|
+ case SPI_NOR_FAST:
|
|
+ nor->read_opcode = SPINOR_OP_READ_FAST;
|
|
+ break;
|
|
+ case SPI_NOR_NORMAL:
|
|
+ nor->read_opcode = SPINOR_OP_READ;
|
|
+ break;
|
|
+ default:
|
|
+ dev_err(dev, "No Read opcode defined\n");
|
|
+ return -EINVAL;
|
|
+ }
|
|
+
|
|
+ nor->program_opcode = SPINOR_OP_PP;
|
|
+
|
|
+ if (info->addr_width)
|
|
+ nor->addr_width = info->addr_width;
|
|
+ else if (mtd->size > 0x1000000) {
|
|
+ /* enable 4-byte addressing if the device exceeds 16MiB */
|
|
+ nor->addr_width = 4;
|
|
+ if (JEDEC_MFR(info->jedec_id) == CFI_MFR_AMD) {
|
|
+ /* Dedicated 4-byte command set */
|
|
+ switch (nor->flash_read) {
|
|
+ case SPI_NOR_QUAD:
|
|
+ nor->read_opcode = SPINOR_OP_READ4_1_1_4;
|
|
+ break;
|
|
+ case SPI_NOR_DUAL:
|
|
+ nor->read_opcode = SPINOR_OP_READ4_1_1_2;
|
|
+ break;
|
|
+ case SPI_NOR_FAST:
|
|
+ nor->read_opcode = SPINOR_OP_READ4_FAST;
|
|
+ break;
|
|
+ case SPI_NOR_NORMAL:
|
|
+ nor->read_opcode = SPINOR_OP_READ4;
|
|
+ break;
|
|
+ }
|
|
+ nor->program_opcode = SPINOR_OP_PP_4B;
|
|
+ /* No small sector erase for 4-byte command set */
|
|
+ nor->erase_opcode = SPINOR_OP_SE_4B;
|
|
+ mtd->erasesize = info->sector_size;
|
|
+ } else
|
|
+ set_4byte(nor, info->jedec_id, 1);
|
|
+ } else {
|
|
+ nor->addr_width = 3;
|
|
+ }
|
|
+
|
|
+ nor->read_dummy = spi_nor_read_dummy_cycles(nor);
|
|
+
|
|
+ dev_info(dev, "%s (%lld Kbytes)\n", id->name,
|
|
+ (long long)mtd->size >> 10);
|
|
+
|
|
+ dev_dbg(dev,
|
|
+ "mtd .name = %s, .size = 0x%llx (%lldMiB), "
|
|
+ ".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
|
|
+ mtd->name, (long long)mtd->size, (long long)(mtd->size >> 20),
|
|
+ mtd->erasesize, mtd->erasesize / 1024, mtd->numeraseregions);
|
|
+
|
|
+ if (mtd->numeraseregions)
|
|
+ for (i = 0; i < mtd->numeraseregions; i++)
|
|
+ dev_dbg(dev,
|
|
+ "mtd.eraseregions[%d] = { .offset = 0x%llx, "
|
|
+ ".erasesize = 0x%.8x (%uKiB), "
|
|
+ ".numblocks = %d }\n",
|
|
+ i, (long long)mtd->eraseregions[i].offset,
|
|
+ mtd->eraseregions[i].erasesize,
|
|
+ mtd->eraseregions[i].erasesize / 1024,
|
|
+ mtd->eraseregions[i].numblocks);
|
|
+ return 0;
|
|
+}
|
|
+EXPORT_SYMBOL_GPL(spi_nor_scan);
|
|
+
|
|
+const struct spi_device_id *spi_nor_match_id(char *name)
|
|
+{
|
|
+ const struct spi_device_id *id = spi_nor_ids;
|
|
+
|
|
+ while (id->name[0]) {
|
|
+ if (!strcmp(name, id->name))
|
|
+ return id;
|
|
+ id++;
|
|
+ }
|
|
+ return NULL;
|
|
+}
|
|
+EXPORT_SYMBOL_GPL(spi_nor_match_id);
|
|
+
|
|
+MODULE_LICENSE("GPL");
|
|
+MODULE_AUTHOR("Huang Shijie <shijie8@gmail.com>");
|
|
+MODULE_AUTHOR("Mike Lavender");
|
|
+MODULE_DESCRIPTION("framework for SPI NOR");
|
|
--- /dev/null
|
|
+++ b/include/linux/mtd/spi-nor.h
|
|
@@ -0,0 +1,218 @@
|
|
+/*
|
|
+ * Copyright (C) 2014 Freescale Semiconductor, Inc.
|
|
+ *
|
|
+ * This program is free software; you can redistribute it and/or modify
|
|
+ * it under the terms of the GNU General Public License as published by
|
|
+ * the Free Software Foundation; either version 2 of the License, or
|
|
+ * (at your option) any later version.
|
|
+ */
|
|
+
|
|
+#ifndef __LINUX_MTD_SPI_NOR_H
|
|
+#define __LINUX_MTD_SPI_NOR_H
|
|
+
|
|
+/*
|
|
+ * Note on opcode nomenclature: some opcodes have a format like
|
|
+ * SPINOR_OP_FUNCTION{4,}_x_y_z. The numbers x, y, and z stand for the number
|
|
+ * of I/O lines used for the opcode, address, and data (respectively). The
|
|
+ * FUNCTION has an optional suffix of '4', to represent an opcode which
|
|
+ * requires a 4-byte (32-bit) address.
|
|
+ */
|
|
+
|
|
+/* Flash opcodes. */
|
|
+#define SPINOR_OP_WREN 0x06 /* Write enable */
|
|
+#define SPINOR_OP_RDSR 0x05 /* Read status register */
|
|
+#define SPINOR_OP_WRSR 0x01 /* Write status register 1 byte */
|
|
+#define SPINOR_OP_READ 0x03 /* Read data bytes (low frequency) */
|
|
+#define SPINOR_OP_READ_FAST 0x0b /* Read data bytes (high frequency) */
|
|
+#define SPINOR_OP_READ_1_1_2 0x3b /* Read data bytes (Dual SPI) */
|
|
+#define SPINOR_OP_READ_1_1_4 0x6b /* Read data bytes (Quad SPI) */
|
|
+#define SPINOR_OP_PP 0x02 /* Page program (up to 256 bytes) */
|
|
+#define SPINOR_OP_BE_4K 0x20 /* Erase 4KiB block */
|
|
+#define SPINOR_OP_BE_4K_PMC 0xd7 /* Erase 4KiB block on PMC chips */
|
|
+#define SPINOR_OP_BE_32K 0x52 /* Erase 32KiB block */
|
|
+#define SPINOR_OP_CHIP_ERASE 0xc7 /* Erase whole flash chip */
|
|
+#define SPINOR_OP_SE 0xd8 /* Sector erase (usually 64KiB) */
|
|
+#define SPINOR_OP_RDID 0x9f /* Read JEDEC ID */
|
|
+#define SPINOR_OP_RDCR 0x35 /* Read configuration register */
|
|
+#define SPINOR_OP_RDFSR 0x70 /* Read flag status register */
|
|
+
|
|
+/* 4-byte address opcodes - used on Spansion and some Macronix flashes. */
|
|
+#define SPINOR_OP_READ4 0x13 /* Read data bytes (low frequency) */
|
|
+#define SPINOR_OP_READ4_FAST 0x0c /* Read data bytes (high frequency) */
|
|
+#define SPINOR_OP_READ4_1_1_2 0x3c /* Read data bytes (Dual SPI) */
|
|
+#define SPINOR_OP_READ4_1_1_4 0x6c /* Read data bytes (Quad SPI) */
|
|
+#define SPINOR_OP_PP_4B 0x12 /* Page program (up to 256 bytes) */
|
|
+#define SPINOR_OP_SE_4B 0xdc /* Sector erase (usually 64KiB) */
|
|
+
|
|
+/* Used for SST flashes only. */
|
|
+#define SPINOR_OP_BP 0x02 /* Byte program */
|
|
+#define SPINOR_OP_WRDI 0x04 /* Write disable */
|
|
+#define SPINOR_OP_AAI_WP 0xad /* Auto address increment word program */
|
|
+
|
|
+/* Used for Macronix and Winbond flashes. */
|
|
+#define SPINOR_OP_EN4B 0xb7 /* Enter 4-byte mode */
|
|
+#define SPINOR_OP_EX4B 0xe9 /* Exit 4-byte mode */
|
|
+
|
|
+/* Used for Spansion flashes only. */
|
|
+#define SPINOR_OP_BRWR 0x17 /* Bank register write */
|
|
+
|
|
+/* Status Register bits. */
|
|
+#define SR_WIP 1 /* Write in progress */
|
|
+#define SR_WEL 2 /* Write enable latch */
|
|
+/* meaning of other SR_* bits may differ between vendors */
|
|
+#define SR_BP0 4 /* Block protect 0 */
|
|
+#define SR_BP1 8 /* Block protect 1 */
|
|
+#define SR_BP2 0x10 /* Block protect 2 */
|
|
+#define SR_SRWD 0x80 /* SR write protect */
|
|
+
|
|
+#define SR_QUAD_EN_MX 0x40 /* Macronix Quad I/O */
|
|
+
|
|
+/* Flag Status Register bits */
|
|
+#define FSR_READY 0x80
|
|
+
|
|
+/* Configuration Register bits. */
|
|
+#define CR_QUAD_EN_SPAN 0x2 /* Spansion Quad I/O */
|
|
+
|
|
+enum read_mode {
|
|
+ SPI_NOR_NORMAL = 0,
|
|
+ SPI_NOR_FAST,
|
|
+ SPI_NOR_DUAL,
|
|
+ SPI_NOR_QUAD,
|
|
+};
|
|
+
|
|
+/**
|
|
+ * struct spi_nor_xfer_cfg - Structure for defining a Serial Flash transfer
|
|
+ * @wren: command for "Write Enable", or 0x00 for not required
|
|
+ * @cmd: command for operation
|
|
+ * @cmd_pins: number of pins to send @cmd (1, 2, 4)
|
|
+ * @addr: address for operation
|
|
+ * @addr_pins: number of pins to send @addr (1, 2, 4)
|
|
+ * @addr_width: number of address bytes
|
|
+ * (3,4, or 0 for address not required)
|
|
+ * @mode: mode data
|
|
+ * @mode_pins: number of pins to send @mode (1, 2, 4)
|
|
+ * @mode_cycles: number of mode cycles (0 for mode not required)
|
|
+ * @dummy_cycles: number of dummy cycles (0 for dummy not required)
|
|
+ */
|
|
+struct spi_nor_xfer_cfg {
|
|
+ u8 wren;
|
|
+ u8 cmd;
|
|
+ u8 cmd_pins;
|
|
+ u32 addr;
|
|
+ u8 addr_pins;
|
|
+ u8 addr_width;
|
|
+ u8 mode;
|
|
+ u8 mode_pins;
|
|
+ u8 mode_cycles;
|
|
+ u8 dummy_cycles;
|
|
+};
|
|
+
|
|
+#define SPI_NOR_MAX_CMD_SIZE 8
|
|
+enum spi_nor_ops {
|
|
+ SPI_NOR_OPS_READ = 0,
|
|
+ SPI_NOR_OPS_WRITE,
|
|
+ SPI_NOR_OPS_ERASE,
|
|
+ SPI_NOR_OPS_LOCK,
|
|
+ SPI_NOR_OPS_UNLOCK,
|
|
+};
|
|
+
|
|
+/**
|
|
+ * struct spi_nor - Structure for defining a the SPI NOR layer
|
|
+ * @mtd: point to a mtd_info structure
|
|
+ * @lock: the lock for the read/write/erase/lock/unlock operations
|
|
+ * @dev: point to a spi device, or a spi nor controller device.
|
|
+ * @page_size: the page size of the SPI NOR
|
|
+ * @addr_width: number of address bytes
|
|
+ * @erase_opcode: the opcode for erasing a sector
|
|
+ * @read_opcode: the read opcode
|
|
+ * @read_dummy: the dummy needed by the read operation
|
|
+ * @program_opcode: the program opcode
|
|
+ * @flash_read: the mode of the read
|
|
+ * @sst_write_second: used by the SST write operation
|
|
+ * @cfg: used by the read_xfer/write_xfer
|
|
+ * @cmd_buf: used by the write_reg
|
|
+ * @prepare: [OPTIONAL] do some preparations for the
|
|
+ * read/write/erase/lock/unlock operations
|
|
+ * @unprepare: [OPTIONAL] do some post work after the
|
|
+ * read/write/erase/lock/unlock operations
|
|
+ * @read_xfer: [OPTIONAL] the read fundamental primitive
|
|
+ * @write_xfer: [OPTIONAL] the writefundamental primitive
|
|
+ * @read_reg: [DRIVER-SPECIFIC] read out the register
|
|
+ * @write_reg: [DRIVER-SPECIFIC] write data to the register
|
|
+ * @read_id: [REPLACEABLE] read out the ID data, and find
|
|
+ * the proper spi_device_id
|
|
+ * @wait_till_ready: [REPLACEABLE] wait till the NOR becomes ready
|
|
+ * @read: [DRIVER-SPECIFIC] read data from the SPI NOR
|
|
+ * @write: [DRIVER-SPECIFIC] write data to the SPI NOR
|
|
+ * @erase: [DRIVER-SPECIFIC] erase a sector of the SPI NOR
|
|
+ * at the offset @offs
|
|
+ * @priv: the private data
|
|
+ */
|
|
+struct spi_nor {
|
|
+ struct mtd_info *mtd;
|
|
+ struct mutex lock;
|
|
+ struct device *dev;
|
|
+ u32 page_size;
|
|
+ u8 addr_width;
|
|
+ u8 erase_opcode;
|
|
+ u8 read_opcode;
|
|
+ u8 read_dummy;
|
|
+ u8 program_opcode;
|
|
+ enum read_mode flash_read;
|
|
+ bool sst_write_second;
|
|
+ struct spi_nor_xfer_cfg cfg;
|
|
+ u8 cmd_buf[SPI_NOR_MAX_CMD_SIZE];
|
|
+
|
|
+ int (*prepare)(struct spi_nor *nor, enum spi_nor_ops ops);
|
|
+ void (*unprepare)(struct spi_nor *nor, enum spi_nor_ops ops);
|
|
+ int (*read_xfer)(struct spi_nor *nor, struct spi_nor_xfer_cfg *cfg,
|
|
+ u8 *buf, size_t len);
|
|
+ int (*write_xfer)(struct spi_nor *nor, struct spi_nor_xfer_cfg *cfg,
|
|
+ u8 *buf, size_t len);
|
|
+ int (*read_reg)(struct spi_nor *nor, u8 opcode, u8 *buf, int len);
|
|
+ int (*write_reg)(struct spi_nor *nor, u8 opcode, u8 *buf, int len,
|
|
+ int write_enable);
|
|
+ const struct spi_device_id *(*read_id)(struct spi_nor *nor);
|
|
+ int (*wait_till_ready)(struct spi_nor *nor);
|
|
+
|
|
+ int (*read)(struct spi_nor *nor, loff_t from,
|
|
+ size_t len, size_t *retlen, u_char *read_buf);
|
|
+ void (*write)(struct spi_nor *nor, loff_t to,
|
|
+ size_t len, size_t *retlen, const u_char *write_buf);
|
|
+ int (*erase)(struct spi_nor *nor, loff_t offs);
|
|
+
|
|
+ void *priv;
|
|
+};
|
|
+
|
|
+/**
|
|
+ * spi_nor_scan() - scan the SPI NOR
|
|
+ * @nor: the spi_nor structure
|
|
+ * @id: the spi_device_id provided by the driver
|
|
+ * @mode: the read mode supported by the driver
|
|
+ *
|
|
+ * The drivers can use this fuction to scan the SPI NOR.
|
|
+ * In the scanning, it will try to get all the necessary information to
|
|
+ * fill the mtd_info{} and the spi_nor{}.
|
|
+ *
|
|
+ * The board may assigns a spi_device_id with @id which be used to compared with
|
|
+ * the spi_device_id detected by the scanning.
|
|
+ *
|
|
+ * Return: 0 for success, others for failure.
|
|
+ */
|
|
+int spi_nor_scan(struct spi_nor *nor, const struct spi_device_id *id,
|
|
+ enum read_mode mode);
|
|
+extern const struct spi_device_id spi_nor_ids[];
|
|
+
|
|
+/**
|
|
+ * spi_nor_match_id() - find the spi_device_id by the name
|
|
+ * @name: the name of the spi_device_id
|
|
+ *
|
|
+ * The drivers use this function to find the spi_device_id
|
|
+ * specified by the @name.
|
|
+ *
|
|
+ * Return: returns the right spi_device_id pointer on success,
|
|
+ * and returns NULL on failure.
|
|
+ */
|
|
+const struct spi_device_id *spi_nor_match_id(char *name);
|
|
+
|
|
+#endif
|