openwrt/target/linux/realtek/image/Makefile
Stijn Segers c4bfe68c83 realtek: add support for ZyXEL GS1900-8HP v1 and v2
The ZyXEL GS1900-8HP is an 8 port gigabit switch with PoE+ support.
There are two versions on the market (v1 & v2) which share similar
specs (same flash size and flash layout, same RAM size, same PoE+ power
envelope) but have a different case and board layout that they each
share with other GS1900 siblings.

The v1 seems to share its PCB and case with non-PoE GS1900-8; as such,
adding support for the GS1900-8 would probably be trivial. The v2 seems
to share its casing and platform with its already supported bigger
brother, the GS1900-10HP - its board looks the same, except for two
holes where the GS1900-10 has its SFP ports.

Like their 10 port sibling, both devices have a dual firmware layout.
Both GS1900-8HP boards have the same 70W PoE+ power budget. In order to
manipulate the PoE+, one needs the rtl83xx-poe package [1].

After careful consideration it was decided to go with separate images
for each version.

Specifications (v1)
-------------------
* SoC:       Realtek RTL8380M 500 MHz MIPS 4KEc
* Flash:     Macronix MX25L12835F 16 MiB
* RAM:       Nanya NT5TU128M8HE-AC 128 MiB DDR2 SDRAM
* Ethernet:  8x 10/100/1000 Mbit
* PoE+:      Broadcom BCM59111KMLG (IEEE 802.3at-2009 compliant, 2x)
* UART:      1 serial header with populated standard pin connector on the
             left side of the PCB, towards the bottom. Pins are labeled:
             + VCC (3.3V)
             + TX
             + RX
             + GND

Specifications (v2)
-------------------
* SoC:       Realtek RTL8380M 500 MHz MIPS 4KEc
* Flash:     Macronix MX25L12835F 16 MiB
* RAM:       Samsung K4B1G0846G 128 MiB DDR3 SDRAM
* Ethernet:  8x 10/100/1000 Mbit
* PoE+:      Broadcom BCM59121B0KMLG (IEEE 802.3at-2009 compliant)
* UART:      1 angled serial header with populated standard pin connector
             accessible from outside through the ventilation slits on the
             side. Pins from top to bottom are clearly marked on the PCB:
             + VCC (3.3V)
             + TX
             + RX
             + GND

Serial connection parameters for both devices: 115200 8N1.

Installation
------------
Instructions are identical to those for the GS1900-10HP and apply both
to the GS1900-8HP v1 and v2 as well.

* Configure your client with a static 192.168.1.x IP (e.g. 192.168.1.10).
* Set up a TFTP server on your client and make it serve the initramfs
  image.
* Connect serial, power up the switch, interrupt U-boot by hitting the
  space bar, and enable the network:
  > rtk network on
* Since the GS1900-10HP is a dual-partition device, you want to keep the
  OEM firmware on the backup partition for the time being. OpenWrt can
  only boot off the first partition anyway (hardcoded in the DTS). To
  make sure we are manipulating the first partition, issue the following
  commands:
  > setsys bootpartition 0
  > savesys
* Download the image onto the device and boot from it:
  > tftpboot 0x84f00000 192.168.1.10:openwrt-realtek-generic-zyxel_gs1900-8hp-v{1,2}-initramfs-kernel.bin
  > bootm
* Once OpenWrt has booted, scp the sysupgrade image to /tmp and flash it:
  > sysupgrade /tmp//tmp/openwrt-realtek-generic-zyxel_gs1900-8hp-v{1,2}-squashfs-sysupgrade.bin

Signed-off-by: Stijn Segers <foss@volatilesystems.org>
[merge PoE case, keep device definitions separate, change all those
hashes in the commit message to something else so they don't get
removed when changing the commit ...]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-01-08 20:48:22 +01:00

97 lines
2.3 KiB
Makefile

# This is free software, licensed under the GNU General Public License v2.
# See /LICENSE for more information.
#
include $(TOPDIR)/rules.mk
include $(INCLUDE_DIR)/image.mk
KERNEL_LOADADDR = 0x80000000
KERNEL_ENTRY = 0x80000400
define Device/Default
PROFILES = Default
KERNEL := kernel-bin | append-dtb | gzip | uImage gzip
KERNEL_INITRAMFS := kernel-bin | append-dtb | gzip | uImage gzip
DEVICE_DTS_DIR := ../dts
DEVICE_DTS = $$(SOC)_$(1)
SUPPORTED_DEVICES := $(subst _,$(comma),$(1))
IMAGES := sysupgrade.bin
IMAGE/sysupgrade.bin := append-kernel | pad-to 64k | append-rootfs | pad-rootfs | \
append-metadata | check-size
endef
define Device/allnet_all-sg8208m
SOC := rtl8382
IMAGE_SIZE := 7168k
DEVICE_VENDOR := ALLNET
DEVICE_MODEL := ALL-SG8208M
UIMAGE_MAGIC := 0x00000006
UIMAGE_NAME := 2.2.2.0
endef
TARGET_DEVICES += allnet_all-sg8208m
define Device/d-link_dgs-1210
SOC := rtl8382
IMAGE_SIZE := 13824k
DEVICE_VENDOR := D-Link
endef
define Device/d-link_dgs-1210-10p
$(Device/d-link_dgs-1210)
DEVICE_MODEL := DGS-1210-10P
DEVICE_PACKAGES += lua-rs232
endef
TARGET_DEVICES += d-link_dgs-1210-10p
define Device/d-link_dgs-1210-16
$(Device/d-link_dgs-1210)
DEVICE_MODEL := DGS-1210-16
endef
TARGET_DEVICES += d-link_dgs-1210-16
define Device/d-link_dgs-1210-28
$(Device/d-link_dgs-1210)
DEVICE_MODEL := DGS-1210-28
endef
TARGET_DEVICES += d-link_dgs-1210-28
define Device/netgear_gs110tpp-v1
$(Device/Default)
SOC := rtl8380
IMAGE_SIZE := 14848k
UIMAGE_MAGIC := 0x4e474520
DEVICE_VENDOR := NETGEAR
DEVICE_MODEL := GS110TP
DEVICE_VARIANT := v1
endef
TARGET_DEVICES += netgear_gs110tpp-v1
define Device/zyxel_gs1900-10hp
SOC := rtl8380
IMAGE_SIZE := 6976k
DEVICE_VENDOR := ZyXEL
DEVICE_MODEL := GS1900-10HP
endef
TARGET_DEVICES += zyxel_gs1900-10hp
define Device/zyxel_gs1900-8hp-v1
SOC := rtl8380
IMAGE_SIZE := 6976k
DEVICE_VENDOR := ZyXEL
DEVICE_MODEL := GS1900-8HP
DEVICE_VARIANT := v1
DEVICE_PACKAGES += lua-rs232
endef
TARGET_DEVICES += zyxel_gs1900-8hp-v1
define Device/zyxel_gs1900-8hp-v2
SOC := rtl8380
IMAGE_SIZE := 6976k
DEVICE_VENDOR := ZyXEL
DEVICE_MODEL := GS1900-8HP
DEVICE_VARIANT := v2
DEVICE_PACKAGES += lua-rs232
endef
TARGET_DEVICES += zyxel_gs1900-8hp-v2
$(eval $(call BuildImage))