openwrt/target/linux/mediatek/files-5.10/drivers/mtd/mtk-snand/mtk-snand.c
Weijie Gao 050621aa01 mediatek: add a new spi-nand driver for kernel 5.10
This patch adds a new spi-nand driver which implements the SNFI of mt7622
and mt7629.

Unlike the existing snfi driver which makes use of the spi-mem framework
and the spi-nand framework with modified ecc support, this driver is
implemented directly on the mtd framework with other components untouched,
and provides better performance, and behaves exactly the same as the nand
framework.

Signed-off-by: Weijie Gao <hackpascal@gmail.com>
2021-08-27 10:26:24 +08:00

1863 lines
43 KiB
C

// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
/*
* Copyright (C) 2020 MediaTek Inc. All Rights Reserved.
*
* Author: Weijie Gao <weijie.gao@mediatek.com>
*/
#include "mtk-snand-def.h"
/* NFI registers */
#define NFI_CNFG 0x000
#define CNFG_OP_MODE_S 12
#define CNFG_OP_MODE_CUST 6
#define CNFG_OP_MODE_PROGRAM 3
#define CNFG_AUTO_FMT_EN BIT(9)
#define CNFG_HW_ECC_EN BIT(8)
#define CNFG_DMA_BURST_EN BIT(2)
#define CNFG_READ_MODE BIT(1)
#define CNFG_DMA_MODE BIT(0)
#define NFI_PAGEFMT 0x0004
#define NFI_SPARE_SIZE_LS_S 16
#define NFI_FDM_ECC_NUM_S 12
#define NFI_FDM_NUM_S 8
#define NFI_SPARE_SIZE_S 4
#define NFI_SEC_SEL_512 BIT(2)
#define NFI_PAGE_SIZE_S 0
#define NFI_PAGE_SIZE_512_2K 0
#define NFI_PAGE_SIZE_2K_4K 1
#define NFI_PAGE_SIZE_4K_8K 2
#define NFI_PAGE_SIZE_8K_16K 3
#define NFI_CON 0x008
#define CON_SEC_NUM_S 12
#define CON_BWR BIT(9)
#define CON_BRD BIT(8)
#define CON_NFI_RST BIT(1)
#define CON_FIFO_FLUSH BIT(0)
#define NFI_INTR_EN 0x010
#define NFI_INTR_STA 0x014
#define NFI_IRQ_INTR_EN BIT(31)
#define NFI_IRQ_CUS_READ BIT(8)
#define NFI_IRQ_CUS_PG BIT(7)
#define NFI_CMD 0x020
#define NFI_STRDATA 0x040
#define STR_DATA BIT(0)
#define NFI_STA 0x060
#define NFI_NAND_FSM GENMASK(28, 24)
#define NFI_FSM GENMASK(19, 16)
#define READ_EMPTY BIT(12)
#define NFI_FIFOSTA 0x064
#define FIFO_WR_REMAIN_S 8
#define FIFO_RD_REMAIN_S 0
#define NFI_ADDRCNTR 0x070
#define SEC_CNTR GENMASK(16, 12)
#define SEC_CNTR_S 12
#define NFI_SEC_CNTR(val) (((val) & SEC_CNTR) >> SEC_CNTR_S)
#define NFI_STRADDR 0x080
#define NFI_BYTELEN 0x084
#define BUS_SEC_CNTR(val) (((val) & SEC_CNTR) >> SEC_CNTR_S)
#define NFI_FDM0L 0x0a0
#define NFI_FDM0M 0x0a4
#define NFI_FDML(n) (NFI_FDM0L + (n) * 8)
#define NFI_FDMM(n) (NFI_FDM0M + (n) * 8)
#define NFI_DEBUG_CON1 0x220
#define WBUF_EN BIT(2)
#define NFI_MASTERSTA 0x224
#define MAS_ADDR GENMASK(11, 9)
#define MAS_RD GENMASK(8, 6)
#define MAS_WR GENMASK(5, 3)
#define MAS_RDDLY GENMASK(2, 0)
#define NFI_MASTERSTA_MASK_7622 (MAS_ADDR | MAS_RD | MAS_WR | MAS_RDDLY)
/* SNFI registers */
#define SNF_MAC_CTL 0x500
#define MAC_XIO_SEL BIT(4)
#define SF_MAC_EN BIT(3)
#define SF_TRIG BIT(2)
#define WIP_READY BIT(1)
#define WIP BIT(0)
#define SNF_MAC_OUTL 0x504
#define SNF_MAC_INL 0x508
#define SNF_RD_CTL2 0x510
#define DATA_READ_DUMMY_S 8
#define DATA_READ_CMD_S 0
#define SNF_RD_CTL3 0x514
#define SNF_PG_CTL1 0x524
#define PG_LOAD_CMD_S 8
#define SNF_PG_CTL2 0x528
#define SNF_MISC_CTL 0x538
#define SW_RST BIT(28)
#define FIFO_RD_LTC_S 25
#define PG_LOAD_X4_EN BIT(20)
#define DATA_READ_MODE_S 16
#define DATA_READ_MODE GENMASK(18, 16)
#define DATA_READ_MODE_X1 0
#define DATA_READ_MODE_X2 1
#define DATA_READ_MODE_X4 2
#define DATA_READ_MODE_DUAL 5
#define DATA_READ_MODE_QUAD 6
#define PG_LOAD_CUSTOM_EN BIT(7)
#define DATARD_CUSTOM_EN BIT(6)
#define CS_DESELECT_CYC_S 0
#define SNF_MISC_CTL2 0x53c
#define PROGRAM_LOAD_BYTE_NUM_S 16
#define READ_DATA_BYTE_NUM_S 11
#define SNF_DLY_CTL3 0x548
#define SFCK_SAM_DLY_S 0
#define SNF_STA_CTL1 0x550
#define CUS_PG_DONE BIT(28)
#define CUS_READ_DONE BIT(27)
#define SPI_STATE_S 0
#define SPI_STATE GENMASK(3, 0)
#define SNF_CFG 0x55c
#define SPI_MODE BIT(0)
#define SNF_GPRAM 0x800
#define SNF_GPRAM_SIZE 0xa0
#define SNFI_POLL_INTERVAL 1000000
static const uint8_t mt7622_spare_sizes[] = { 16, 26, 27, 28 };
static const struct mtk_snand_soc_data mtk_snand_socs[__SNAND_SOC_MAX] = {
[SNAND_SOC_MT7622] = {
.sector_size = 512,
.max_sectors = 8,
.fdm_size = 8,
.fdm_ecc_size = 1,
.fifo_size = 32,
.bbm_swap = false,
.empty_page_check = false,
.mastersta_mask = NFI_MASTERSTA_MASK_7622,
.spare_sizes = mt7622_spare_sizes,
.num_spare_size = ARRAY_SIZE(mt7622_spare_sizes)
},
[SNAND_SOC_MT7629] = {
.sector_size = 512,
.max_sectors = 8,
.fdm_size = 8,
.fdm_ecc_size = 1,
.fifo_size = 32,
.bbm_swap = true,
.empty_page_check = false,
.mastersta_mask = NFI_MASTERSTA_MASK_7622,
.spare_sizes = mt7622_spare_sizes,
.num_spare_size = ARRAY_SIZE(mt7622_spare_sizes)
},
};
static inline uint32_t nfi_read32(struct mtk_snand *snf, uint32_t reg)
{
return readl(snf->nfi_base + reg);
}
static inline void nfi_write32(struct mtk_snand *snf, uint32_t reg,
uint32_t val)
{
writel(val, snf->nfi_base + reg);
}
static inline void nfi_write16(struct mtk_snand *snf, uint32_t reg,
uint16_t val)
{
writew(val, snf->nfi_base + reg);
}
static inline void nfi_rmw32(struct mtk_snand *snf, uint32_t reg, uint32_t clr,
uint32_t set)
{
uint32_t val;
val = readl(snf->nfi_base + reg);
val &= ~clr;
val |= set;
writel(val, snf->nfi_base + reg);
}
static void nfi_write_data(struct mtk_snand *snf, uint32_t reg,
const uint8_t *data, uint32_t len)
{
uint32_t i, val = 0, es = sizeof(uint32_t);
for (i = reg; i < reg + len; i++) {
val |= ((uint32_t)*data++) << (8 * (i % es));
if (i % es == es - 1 || i == reg + len - 1) {
nfi_write32(snf, i & ~(es - 1), val);
val = 0;
}
}
}
static void nfi_read_data(struct mtk_snand *snf, uint32_t reg, uint8_t *data,
uint32_t len)
{
uint32_t i, val = 0, es = sizeof(uint32_t);
for (i = reg; i < reg + len; i++) {
if (i == reg || i % es == 0)
val = nfi_read32(snf, i & ~(es - 1));
*data++ = (uint8_t)(val >> (8 * (i % es)));
}
}
static inline void do_bm_swap(uint8_t *bm1, uint8_t *bm2)
{
uint8_t tmp = *bm1;
*bm1 = *bm2;
*bm2 = tmp;
}
static void mtk_snand_bm_swap_raw(struct mtk_snand *snf)
{
uint32_t fdm_bbm_pos;
if (!snf->nfi_soc->bbm_swap || snf->ecc_steps == 1)
return;
fdm_bbm_pos = (snf->ecc_steps - 1) * snf->raw_sector_size +
snf->nfi_soc->sector_size;
do_bm_swap(&snf->page_cache[fdm_bbm_pos],
&snf->page_cache[snf->writesize]);
}
static void mtk_snand_bm_swap(struct mtk_snand *snf)
{
uint32_t buf_bbm_pos, fdm_bbm_pos;
if (!snf->nfi_soc->bbm_swap || snf->ecc_steps == 1)
return;
buf_bbm_pos = snf->writesize -
(snf->ecc_steps - 1) * snf->spare_per_sector;
fdm_bbm_pos = snf->writesize +
(snf->ecc_steps - 1) * snf->nfi_soc->fdm_size;
do_bm_swap(&snf->page_cache[fdm_bbm_pos],
&snf->page_cache[buf_bbm_pos]);
}
static void mtk_snand_fdm_bm_swap_raw(struct mtk_snand *snf)
{
uint32_t fdm_bbm_pos1, fdm_bbm_pos2;
if (!snf->nfi_soc->bbm_swap || snf->ecc_steps == 1)
return;
fdm_bbm_pos1 = snf->nfi_soc->sector_size;
fdm_bbm_pos2 = (snf->ecc_steps - 1) * snf->raw_sector_size +
snf->nfi_soc->sector_size;
do_bm_swap(&snf->page_cache[fdm_bbm_pos1],
&snf->page_cache[fdm_bbm_pos2]);
}
static void mtk_snand_fdm_bm_swap(struct mtk_snand *snf)
{
uint32_t fdm_bbm_pos1, fdm_bbm_pos2;
if (!snf->nfi_soc->bbm_swap || snf->ecc_steps == 1)
return;
fdm_bbm_pos1 = snf->writesize;
fdm_bbm_pos2 = snf->writesize +
(snf->ecc_steps - 1) * snf->nfi_soc->fdm_size;
do_bm_swap(&snf->page_cache[fdm_bbm_pos1],
&snf->page_cache[fdm_bbm_pos2]);
}
static int mtk_nfi_reset(struct mtk_snand *snf)
{
uint32_t val, fifo_mask;
int ret;
nfi_write32(snf, NFI_CON, CON_FIFO_FLUSH | CON_NFI_RST);
ret = read16_poll_timeout(snf->nfi_base + NFI_MASTERSTA, val,
!(val & snf->nfi_soc->mastersta_mask), 0,
SNFI_POLL_INTERVAL);
if (ret) {
snand_log_nfi(snf->pdev,
"NFI master is still busy after reset\n");
return ret;
}
ret = read32_poll_timeout(snf->nfi_base + NFI_STA, val,
!(val & (NFI_FSM | NFI_NAND_FSM)), 0,
SNFI_POLL_INTERVAL);
if (ret) {
snand_log_nfi(snf->pdev, "Failed to reset NFI\n");
return ret;
}
fifo_mask = ((snf->nfi_soc->fifo_size - 1) << FIFO_RD_REMAIN_S) |
((snf->nfi_soc->fifo_size - 1) << FIFO_WR_REMAIN_S);
ret = read16_poll_timeout(snf->nfi_base + NFI_FIFOSTA, val,
!(val & fifo_mask), 0, SNFI_POLL_INTERVAL);
if (ret) {
snand_log_nfi(snf->pdev, "NFI FIFOs are not empty\n");
return ret;
}
return 0;
}
static int mtk_snand_mac_reset(struct mtk_snand *snf)
{
int ret;
uint32_t val;
nfi_rmw32(snf, SNF_MISC_CTL, 0, SW_RST);
ret = read32_poll_timeout(snf->nfi_base + SNF_STA_CTL1, val,
!(val & SPI_STATE), 0, SNFI_POLL_INTERVAL);
if (ret)
snand_log_snfi(snf->pdev, "Failed to reset SNFI MAC\n");
nfi_write32(snf, SNF_MISC_CTL, (2 << FIFO_RD_LTC_S) |
(10 << CS_DESELECT_CYC_S));
return ret;
}
static int mtk_snand_mac_trigger(struct mtk_snand *snf, uint32_t outlen,
uint32_t inlen)
{
int ret;
uint32_t val;
nfi_write32(snf, SNF_MAC_CTL, SF_MAC_EN);
nfi_write32(snf, SNF_MAC_OUTL, outlen);
nfi_write32(snf, SNF_MAC_INL, inlen);
nfi_write32(snf, SNF_MAC_CTL, SF_MAC_EN | SF_TRIG);
ret = read32_poll_timeout(snf->nfi_base + SNF_MAC_CTL, val,
val & WIP_READY, 0, SNFI_POLL_INTERVAL);
if (ret) {
snand_log_snfi(snf->pdev, "Timed out waiting for WIP_READY\n");
goto cleanup;
}
ret = read32_poll_timeout(snf->nfi_base + SNF_MAC_CTL, val,
!(val & WIP), 0, SNFI_POLL_INTERVAL);
if (ret) {
snand_log_snfi(snf->pdev,
"Timed out waiting for WIP cleared\n");
}
cleanup:
nfi_write32(snf, SNF_MAC_CTL, 0);
return ret;
}
int mtk_snand_mac_io(struct mtk_snand *snf, const uint8_t *out, uint32_t outlen,
uint8_t *in, uint32_t inlen)
{
int ret;
if (outlen + inlen > SNF_GPRAM_SIZE)
return -EINVAL;
mtk_snand_mac_reset(snf);
nfi_write_data(snf, SNF_GPRAM, out, outlen);
ret = mtk_snand_mac_trigger(snf, outlen, inlen);
if (ret)
return ret;
if (!inlen)
return 0;
nfi_read_data(snf, SNF_GPRAM + outlen, in, inlen);
return 0;
}
static int mtk_snand_get_feature(struct mtk_snand *snf, uint32_t addr)
{
uint8_t op[2], val;
int ret;
op[0] = SNAND_CMD_GET_FEATURE;
op[1] = (uint8_t)addr;
ret = mtk_snand_mac_io(snf, op, sizeof(op), &val, 1);
if (ret)
return ret;
return val;
}
int mtk_snand_set_feature(struct mtk_snand *snf, uint32_t addr, uint32_t val)
{
uint8_t op[3];
op[0] = SNAND_CMD_SET_FEATURE;
op[1] = (uint8_t)addr;
op[2] = (uint8_t)val;
return mtk_snand_mac_io(snf, op, sizeof(op), NULL, 0);
}
static int mtk_snand_poll_status(struct mtk_snand *snf, uint32_t wait_us)
{
int val;
mtk_snand_time_t time_start, tmo;
time_start = timer_get_ticks();
tmo = timer_time_to_tick(wait_us);
do {
val = mtk_snand_get_feature(snf, SNAND_FEATURE_STATUS_ADDR);
if (!(val & SNAND_STATUS_OIP))
return val & (SNAND_STATUS_ERASE_FAIL |
SNAND_STATUS_PROGRAM_FAIL);
} while (!timer_is_timeout(time_start, tmo));
return -ETIMEDOUT;
}
int mtk_snand_chip_reset(struct mtk_snand *snf)
{
uint8_t op = SNAND_CMD_RESET;
int ret;
ret = mtk_snand_mac_io(snf, &op, 1, NULL, 0);
if (ret)
return ret;
ret = mtk_snand_poll_status(snf, SNFI_POLL_INTERVAL);
if (ret < 0)
return ret;
return 0;
}
static int mtk_snand_config_feature(struct mtk_snand *snf, uint8_t clr,
uint8_t set)
{
int val, newval;
int ret;
val = mtk_snand_get_feature(snf, SNAND_FEATURE_CONFIG_ADDR);
if (val < 0) {
snand_log_chip(snf->pdev,
"Failed to get configuration feature\n");
return val;
}
newval = (val & (~clr)) | set;
if (newval == val)
return 0;
ret = mtk_snand_set_feature(snf, SNAND_FEATURE_CONFIG_ADDR,
(uint8_t)newval);
if (val < 0) {
snand_log_chip(snf->pdev,
"Failed to set configuration feature\n");
return ret;
}
val = mtk_snand_get_feature(snf, SNAND_FEATURE_CONFIG_ADDR);
if (val < 0) {
snand_log_chip(snf->pdev,
"Failed to get configuration feature\n");
return val;
}
if (newval != val)
return -ENOTSUPP;
return 0;
}
static int mtk_snand_ondie_ecc_control(struct mtk_snand *snf, bool enable)
{
int ret;
if (enable)
ret = mtk_snand_config_feature(snf, 0, SNAND_FEATURE_ECC_EN);
else
ret = mtk_snand_config_feature(snf, SNAND_FEATURE_ECC_EN, 0);
if (ret) {
snand_log_chip(snf->pdev, "Failed to %s On-Die ECC engine\n",
enable ? "enable" : "disable");
}
return ret;
}
static int mtk_snand_qspi_control(struct mtk_snand *snf, bool enable)
{
int ret;
if (enable) {
ret = mtk_snand_config_feature(snf, 0,
SNAND_FEATURE_QUAD_ENABLE);
} else {
ret = mtk_snand_config_feature(snf,
SNAND_FEATURE_QUAD_ENABLE, 0);
}
if (ret) {
snand_log_chip(snf->pdev, "Failed to %s quad spi\n",
enable ? "enable" : "disable");
}
return ret;
}
static int mtk_snand_unlock(struct mtk_snand *snf)
{
int ret;
ret = mtk_snand_set_feature(snf, SNAND_FEATURE_PROTECT_ADDR, 0);
if (ret) {
snand_log_chip(snf->pdev, "Failed to set protection feature\n");
return ret;
}
return 0;
}
static int mtk_snand_write_enable(struct mtk_snand *snf)
{
uint8_t op = SNAND_CMD_WRITE_ENABLE;
int ret, val;
ret = mtk_snand_mac_io(snf, &op, 1, NULL, 0);
if (ret)
return ret;
val = mtk_snand_get_feature(snf, SNAND_FEATURE_STATUS_ADDR);
if (val < 0)
return ret;
if (val & SNAND_STATUS_WEL)
return 0;
snand_log_chip(snf->pdev, "Failed to send write-enable command\n");
return -ENOTSUPP;
}
static int mtk_snand_select_die(struct mtk_snand *snf, uint32_t dieidx)
{
if (!snf->select_die)
return 0;
return snf->select_die(snf, dieidx);
}
static uint64_t mtk_snand_select_die_address(struct mtk_snand *snf,
uint64_t addr)
{
uint32_t dieidx;
if (!snf->select_die)
return addr;
dieidx = addr >> snf->die_shift;
mtk_snand_select_die(snf, dieidx);
return addr & snf->die_mask;
}
static uint32_t mtk_snand_get_plane_address(struct mtk_snand *snf,
uint32_t page)
{
uint32_t pages_per_block;
pages_per_block = 1 << (snf->erasesize_shift - snf->writesize_shift);
if (page & pages_per_block)
return 1 << (snf->writesize_shift + 1);
return 0;
}
static int mtk_snand_page_op(struct mtk_snand *snf, uint32_t page, uint8_t cmd)
{
uint8_t op[4];
op[0] = cmd;
op[1] = (page >> 16) & 0xff;
op[2] = (page >> 8) & 0xff;
op[3] = page & 0xff;
return mtk_snand_mac_io(snf, op, sizeof(op), NULL, 0);
}
static void mtk_snand_read_fdm(struct mtk_snand *snf, uint8_t *buf)
{
uint32_t vall, valm;
uint8_t *oobptr = buf;
int i, j;
for (i = 0; i < snf->ecc_steps; i++) {
vall = nfi_read32(snf, NFI_FDML(i));
valm = nfi_read32(snf, NFI_FDMM(i));
for (j = 0; j < snf->nfi_soc->fdm_size; j++)
oobptr[j] = (j >= 4 ? valm : vall) >> ((j % 4) * 8);
oobptr += snf->nfi_soc->fdm_size;
}
}
static int mtk_snand_read_ecc_parity(struct mtk_snand *snf, uint32_t page,
uint32_t sect, uint8_t *oob)
{
uint32_t ecc_bytes = snf->spare_per_sector - snf->nfi_soc->fdm_size;
uint32_t coladdr, raw_offs, offs;
uint8_t op[4];
if (sizeof(op) + ecc_bytes > SNF_GPRAM_SIZE) {
snand_log_snfi(snf->pdev,
"ECC parity size does not fit the GPRAM\n");
return -ENOTSUPP;
}
raw_offs = sect * snf->raw_sector_size + snf->nfi_soc->sector_size +
snf->nfi_soc->fdm_size;
offs = snf->ecc_steps * snf->nfi_soc->fdm_size + sect * ecc_bytes;
/* Column address with plane bit */
coladdr = raw_offs | mtk_snand_get_plane_address(snf, page);
op[0] = SNAND_CMD_READ_FROM_CACHE;
op[1] = (coladdr >> 8) & 0xff;
op[2] = coladdr & 0xff;
op[3] = 0;
return mtk_snand_mac_io(snf, op, sizeof(op), oob + offs, ecc_bytes);
}
static int mtk_snand_check_ecc_result(struct mtk_snand *snf, uint32_t page)
{
uint8_t *oob = snf->page_cache + snf->writesize;
int i, rc, ret = 0, max_bitflips = 0;
for (i = 0; i < snf->ecc_steps; i++) {
if (snf->sect_bf[i] >= 0) {
if (snf->sect_bf[i] > max_bitflips)
max_bitflips = snf->sect_bf[i];
continue;
}
rc = mtk_snand_read_ecc_parity(snf, page, i, oob);
if (rc)
return rc;
rc = mtk_ecc_fixup_empty_sector(snf, i);
if (rc < 0) {
ret = -EBADMSG;
snand_log_ecc(snf->pdev,
"Uncorrectable bitflips in page %u sect %u\n",
page, i);
} else if (rc) {
snf->sect_bf[i] = rc;
if (snf->sect_bf[i] > max_bitflips)
max_bitflips = snf->sect_bf[i];
snand_log_ecc(snf->pdev,
"%u bitflip%s corrected in page %u sect %u\n",
rc, rc > 1 ? "s" : "", page, i);
} else {
snf->sect_bf[i] = 0;
}
}
return ret ? ret : max_bitflips;
}
static int mtk_snand_read_cache(struct mtk_snand *snf, uint32_t page, bool raw)
{
uint32_t coladdr, rwbytes, mode, len, val;
uintptr_t dma_addr;
int ret;
/* Column address with plane bit */
coladdr = mtk_snand_get_plane_address(snf, page);
mtk_snand_mac_reset(snf);
mtk_nfi_reset(snf);
/* Command and dummy cycles */
nfi_write32(snf, SNF_RD_CTL2,
((uint32_t)snf->dummy_rfc << DATA_READ_DUMMY_S) |
(snf->opcode_rfc << DATA_READ_CMD_S));
/* Column address */
nfi_write32(snf, SNF_RD_CTL3, coladdr);
/* Set read mode */
mode = (uint32_t)snf->mode_rfc << DATA_READ_MODE_S;
nfi_rmw32(snf, SNF_MISC_CTL, DATA_READ_MODE, mode | DATARD_CUSTOM_EN);
/* Set bytes to read */
rwbytes = snf->ecc_steps * snf->raw_sector_size;
nfi_write32(snf, SNF_MISC_CTL2, (rwbytes << PROGRAM_LOAD_BYTE_NUM_S) |
rwbytes);
/* NFI read prepare */
mode = raw ? 0 : CNFG_HW_ECC_EN | CNFG_AUTO_FMT_EN;
nfi_write16(snf, NFI_CNFG, (CNFG_OP_MODE_CUST << CNFG_OP_MODE_S) |
CNFG_DMA_BURST_EN | CNFG_READ_MODE | CNFG_DMA_MODE | mode);
nfi_write32(snf, NFI_CON, (snf->ecc_steps << CON_SEC_NUM_S));
/* Prepare for DMA read */
len = snf->writesize + snf->oobsize;
ret = dma_mem_map(snf->pdev, snf->page_cache, &dma_addr, len, false);
if (ret) {
snand_log_nfi(snf->pdev,
"DMA map from device failed with %d\n", ret);
return ret;
}
nfi_write32(snf, NFI_STRADDR, (uint32_t)dma_addr);
if (!raw)
mtk_snand_ecc_decoder_start(snf);
/* Prepare for custom read interrupt */
nfi_write32(snf, NFI_INTR_EN, NFI_IRQ_INTR_EN | NFI_IRQ_CUS_READ);
irq_completion_init(snf->pdev);
/* Trigger NFI into custom mode */
nfi_write16(snf, NFI_CMD, NFI_CMD_DUMMY_READ);
/* Start DMA read */
nfi_rmw32(snf, NFI_CON, 0, CON_BRD);
nfi_write16(snf, NFI_STRDATA, STR_DATA);
/* Wait for operation finished */
ret = irq_completion_wait(snf->pdev, snf->nfi_base + SNF_STA_CTL1,
CUS_READ_DONE, SNFI_POLL_INTERVAL);
if (ret) {
snand_log_nfi(snf->pdev,
"DMA timed out for reading from cache\n");
goto cleanup;
}
/* Wait for BUS_SEC_CNTR returning expected value */
ret = read32_poll_timeout(snf->nfi_base + NFI_BYTELEN, val,
BUS_SEC_CNTR(val) >= snf->ecc_steps,
0, SNFI_POLL_INTERVAL);
if (ret) {
snand_log_nfi(snf->pdev,
"Timed out waiting for BUS_SEC_CNTR\n");
goto cleanup;
}
/* Wait for bus becoming idle */
ret = read32_poll_timeout(snf->nfi_base + NFI_MASTERSTA, val,
!(val & snf->nfi_soc->mastersta_mask),
0, SNFI_POLL_INTERVAL);
if (ret) {
snand_log_nfi(snf->pdev,
"Timed out waiting for bus becoming idle\n");
goto cleanup;
}
if (!raw) {
ret = mtk_ecc_wait_decoder_done(snf);
if (ret)
goto cleanup;
mtk_snand_read_fdm(snf, snf->page_cache + snf->writesize);
mtk_ecc_check_decode_error(snf);
mtk_snand_ecc_decoder_stop(snf);
ret = mtk_snand_check_ecc_result(snf, page);
}
cleanup:
/* DMA cleanup */
dma_mem_unmap(snf->pdev, dma_addr, len, false);
/* Stop read */
nfi_write32(snf, NFI_CON, 0);
nfi_write16(snf, NFI_CNFG, 0);
/* Clear SNF done flag */
nfi_rmw32(snf, SNF_STA_CTL1, 0, CUS_READ_DONE);
nfi_write32(snf, SNF_STA_CTL1, 0);
/* Disable interrupt */
nfi_read32(snf, NFI_INTR_STA);
nfi_write32(snf, NFI_INTR_EN, 0);
nfi_rmw32(snf, SNF_MISC_CTL, DATARD_CUSTOM_EN, 0);
return ret;
}
static void mtk_snand_from_raw_page(struct mtk_snand *snf, void *buf, void *oob)
{
uint32_t i, ecc_bytes = snf->spare_per_sector - snf->nfi_soc->fdm_size;
uint8_t *eccptr = oob + snf->ecc_steps * snf->nfi_soc->fdm_size;
uint8_t *bufptr = buf, *oobptr = oob, *raw_sector;
for (i = 0; i < snf->ecc_steps; i++) {
raw_sector = snf->page_cache + i * snf->raw_sector_size;
if (buf) {
memcpy(bufptr, raw_sector, snf->nfi_soc->sector_size);
bufptr += snf->nfi_soc->sector_size;
}
raw_sector += snf->nfi_soc->sector_size;
if (oob) {
memcpy(oobptr, raw_sector, snf->nfi_soc->fdm_size);
oobptr += snf->nfi_soc->fdm_size;
raw_sector += snf->nfi_soc->fdm_size;
memcpy(eccptr, raw_sector, ecc_bytes);
eccptr += ecc_bytes;
}
}
}
static int mtk_snand_do_read_page(struct mtk_snand *snf, uint64_t addr,
void *buf, void *oob, bool raw, bool format)
{
uint64_t die_addr;
uint32_t page;
int ret;
die_addr = mtk_snand_select_die_address(snf, addr);
page = die_addr >> snf->writesize_shift;
ret = mtk_snand_page_op(snf, page, SNAND_CMD_READ_TO_CACHE);
if (ret)
return ret;
ret = mtk_snand_poll_status(snf, SNFI_POLL_INTERVAL);
if (ret < 0) {
snand_log_chip(snf->pdev, "Read to cache command timed out\n");
return ret;
}
ret = mtk_snand_read_cache(snf, page, raw);
if (ret < 0 && ret != -EBADMSG)
return ret;
if (raw) {
if (format) {
mtk_snand_bm_swap_raw(snf);
mtk_snand_fdm_bm_swap_raw(snf);
mtk_snand_from_raw_page(snf, buf, oob);
} else {
if (buf)
memcpy(buf, snf->page_cache, snf->writesize);
if (oob) {
memset(oob, 0xff, snf->oobsize);
memcpy(oob, snf->page_cache + snf->writesize,
snf->ecc_steps * snf->spare_per_sector);
}
}
} else {
mtk_snand_bm_swap(snf);
mtk_snand_fdm_bm_swap(snf);
if (buf)
memcpy(buf, snf->page_cache, snf->writesize);
if (oob) {
memset(oob, 0xff, snf->oobsize);
memcpy(oob, snf->page_cache + snf->writesize,
snf->ecc_steps * snf->nfi_soc->fdm_size);
}
}
return ret;
}
int mtk_snand_read_page(struct mtk_snand *snf, uint64_t addr, void *buf,
void *oob, bool raw)
{
if (!snf || (!buf && !oob))
return -EINVAL;
if (addr >= snf->size)
return -EINVAL;
return mtk_snand_do_read_page(snf, addr, buf, oob, raw, true);
}
static void mtk_snand_write_fdm(struct mtk_snand *snf, const uint8_t *buf)
{
uint32_t vall, valm, fdm_size = snf->nfi_soc->fdm_size;
const uint8_t *oobptr = buf;
int i, j;
for (i = 0; i < snf->ecc_steps; i++) {
vall = 0;
valm = 0;
for (j = 0; j < 8; j++) {
if (j < 4)
vall |= (j < fdm_size ? oobptr[j] : 0xff)
<< (j * 8);
else
valm |= (j < fdm_size ? oobptr[j] : 0xff)
<< ((j - 4) * 8);
}
nfi_write32(snf, NFI_FDML(i), vall);
nfi_write32(snf, NFI_FDMM(i), valm);
oobptr += fdm_size;
}
}
static int mtk_snand_program_load(struct mtk_snand *snf, uint32_t page,
bool raw)
{
uint32_t coladdr, rwbytes, mode, len, val;
uintptr_t dma_addr;
int ret;
/* Column address with plane bit */
coladdr = mtk_snand_get_plane_address(snf, page);
mtk_snand_mac_reset(snf);
mtk_nfi_reset(snf);
/* Write FDM registers if necessary */
if (!raw)
mtk_snand_write_fdm(snf, snf->page_cache + snf->writesize);
/* Command */
nfi_write32(snf, SNF_PG_CTL1, (snf->opcode_pl << PG_LOAD_CMD_S));
/* Column address */
nfi_write32(snf, SNF_PG_CTL2, coladdr);
/* Set write mode */
mode = snf->mode_pl ? PG_LOAD_X4_EN : 0;
nfi_rmw32(snf, SNF_MISC_CTL, PG_LOAD_X4_EN, mode | PG_LOAD_CUSTOM_EN);
/* Set bytes to write */
rwbytes = snf->ecc_steps * snf->raw_sector_size;
nfi_write32(snf, SNF_MISC_CTL2, (rwbytes << PROGRAM_LOAD_BYTE_NUM_S) |
rwbytes);
/* NFI write prepare */
mode = raw ? 0 : CNFG_HW_ECC_EN | CNFG_AUTO_FMT_EN;
nfi_write16(snf, NFI_CNFG, (CNFG_OP_MODE_PROGRAM << CNFG_OP_MODE_S) |
CNFG_DMA_BURST_EN | CNFG_DMA_MODE | mode);
nfi_write32(snf, NFI_CON, (snf->ecc_steps << CON_SEC_NUM_S));
/* Prepare for DMA write */
len = snf->writesize + snf->oobsize;
ret = dma_mem_map(snf->pdev, snf->page_cache, &dma_addr, len, true);
if (ret) {
snand_log_nfi(snf->pdev,
"DMA map to device failed with %d\n", ret);
return ret;
}
nfi_write32(snf, NFI_STRADDR, (uint32_t)dma_addr);
if (!raw)
mtk_snand_ecc_encoder_start(snf);
/* Prepare for custom write interrupt */
nfi_write32(snf, NFI_INTR_EN, NFI_IRQ_INTR_EN | NFI_IRQ_CUS_PG);
irq_completion_init(snf->pdev);
/* Trigger NFI into custom mode */
nfi_write16(snf, NFI_CMD, NFI_CMD_DUMMY_WRITE);
/* Start DMA write */
nfi_rmw32(snf, NFI_CON, 0, CON_BWR);
nfi_write16(snf, NFI_STRDATA, STR_DATA);
/* Wait for operation finished */
ret = irq_completion_wait(snf->pdev, snf->nfi_base + SNF_STA_CTL1,
CUS_PG_DONE, SNFI_POLL_INTERVAL);
if (ret) {
snand_log_nfi(snf->pdev,
"DMA timed out for program load\n");
goto cleanup;
}
/* Wait for NFI_SEC_CNTR returning expected value */
ret = read32_poll_timeout(snf->nfi_base + NFI_ADDRCNTR, val,
NFI_SEC_CNTR(val) >= snf->ecc_steps,
0, SNFI_POLL_INTERVAL);
if (ret) {
snand_log_nfi(snf->pdev,
"Timed out waiting for NFI_SEC_CNTR\n");
goto cleanup;
}
if (!raw)
mtk_snand_ecc_encoder_stop(snf);
cleanup:
/* DMA cleanup */
dma_mem_unmap(snf->pdev, dma_addr, len, true);
/* Stop write */
nfi_write32(snf, NFI_CON, 0);
nfi_write16(snf, NFI_CNFG, 0);
/* Clear SNF done flag */
nfi_rmw32(snf, SNF_STA_CTL1, 0, CUS_PG_DONE);
nfi_write32(snf, SNF_STA_CTL1, 0);
/* Disable interrupt */
nfi_read32(snf, NFI_INTR_STA);
nfi_write32(snf, NFI_INTR_EN, 0);
nfi_rmw32(snf, SNF_MISC_CTL, PG_LOAD_CUSTOM_EN, 0);
return ret;
}
static void mtk_snand_to_raw_page(struct mtk_snand *snf,
const void *buf, const void *oob,
bool empty_ecc)
{
uint32_t i, ecc_bytes = snf->spare_per_sector - snf->nfi_soc->fdm_size;
const uint8_t *eccptr = oob + snf->ecc_steps * snf->nfi_soc->fdm_size;
const uint8_t *bufptr = buf, *oobptr = oob;
uint8_t *raw_sector;
memset(snf->page_cache, 0xff, snf->writesize + snf->oobsize);
for (i = 0; i < snf->ecc_steps; i++) {
raw_sector = snf->page_cache + i * snf->raw_sector_size;
if (buf) {
memcpy(raw_sector, bufptr, snf->nfi_soc->sector_size);
bufptr += snf->nfi_soc->sector_size;
}
raw_sector += snf->nfi_soc->sector_size;
if (oob) {
memcpy(raw_sector, oobptr, snf->nfi_soc->fdm_size);
oobptr += snf->nfi_soc->fdm_size;
raw_sector += snf->nfi_soc->fdm_size;
if (empty_ecc)
memset(raw_sector, 0xff, ecc_bytes);
else
memcpy(raw_sector, eccptr, ecc_bytes);
eccptr += ecc_bytes;
}
}
}
static bool mtk_snand_is_empty_page(struct mtk_snand *snf, const void *buf,
const void *oob)
{
const uint8_t *p = buf;
uint32_t i, j;
if (buf) {
for (i = 0; i < snf->writesize; i++) {
if (p[i] != 0xff)
return false;
}
}
if (oob) {
for (j = 0; j < snf->ecc_steps; j++) {
p = oob + j * snf->nfi_soc->fdm_size;
for (i = 0; i < snf->nfi_soc->fdm_ecc_size; i++) {
if (p[i] != 0xff)
return false;
}
}
}
return true;
}
static int mtk_snand_do_write_page(struct mtk_snand *snf, uint64_t addr,
const void *buf, const void *oob,
bool raw, bool format)
{
uint64_t die_addr;
bool empty_ecc = false;
uint32_t page;
int ret;
die_addr = mtk_snand_select_die_address(snf, addr);
page = die_addr >> snf->writesize_shift;
if (!raw && mtk_snand_is_empty_page(snf, buf, oob)) {
/*
* If the data in the page to be ecc-ed is full 0xff,
* change to raw write mode
*/
raw = true;
format = true;
/* fill ecc parity code region with 0xff */
empty_ecc = true;
}
if (raw) {
if (format) {
mtk_snand_to_raw_page(snf, buf, oob, empty_ecc);
mtk_snand_fdm_bm_swap_raw(snf);
mtk_snand_bm_swap_raw(snf);
} else {
memset(snf->page_cache, 0xff,
snf->writesize + snf->oobsize);
if (buf)
memcpy(snf->page_cache, buf, snf->writesize);
if (oob) {
memcpy(snf->page_cache + snf->writesize, oob,
snf->ecc_steps * snf->spare_per_sector);
}
}
} else {
memset(snf->page_cache, 0xff, snf->writesize + snf->oobsize);
if (buf)
memcpy(snf->page_cache, buf, snf->writesize);
if (oob) {
memcpy(snf->page_cache + snf->writesize, oob,
snf->ecc_steps * snf->nfi_soc->fdm_size);
}
mtk_snand_fdm_bm_swap(snf);
mtk_snand_bm_swap(snf);
}
ret = mtk_snand_write_enable(snf);
if (ret)
return ret;
ret = mtk_snand_program_load(snf, page, raw);
if (ret)
return ret;
ret = mtk_snand_page_op(snf, page, SNAND_CMD_PROGRAM_EXECUTE);
if (ret)
return ret;
ret = mtk_snand_poll_status(snf, SNFI_POLL_INTERVAL);
if (ret < 0) {
snand_log_chip(snf->pdev,
"Page program command timed out on page %u\n",
page);
return ret;
}
if (ret & SNAND_STATUS_PROGRAM_FAIL) {
snand_log_chip(snf->pdev,
"Page program failed on page %u\n", page);
return -EIO;
}
return 0;
}
int mtk_snand_write_page(struct mtk_snand *snf, uint64_t addr, const void *buf,
const void *oob, bool raw)
{
if (!snf || (!buf && !oob))
return -EINVAL;
if (addr >= snf->size)
return -EINVAL;
return mtk_snand_do_write_page(snf, addr, buf, oob, raw, true);
}
int mtk_snand_erase_block(struct mtk_snand *snf, uint64_t addr)
{
uint64_t die_addr;
uint32_t page, block;
int ret;
if (!snf)
return -EINVAL;
if (addr >= snf->size)
return -EINVAL;
die_addr = mtk_snand_select_die_address(snf, addr);
block = die_addr >> snf->erasesize_shift;
page = block << (snf->erasesize_shift - snf->writesize_shift);
ret = mtk_snand_write_enable(snf);
if (ret)
return ret;
ret = mtk_snand_page_op(snf, page, SNAND_CMD_BLOCK_ERASE);
if (ret)
return ret;
ret = mtk_snand_poll_status(snf, SNFI_POLL_INTERVAL);
if (ret < 0) {
snand_log_chip(snf->pdev,
"Block erase command timed out on block %u\n",
block);
return ret;
}
if (ret & SNAND_STATUS_ERASE_FAIL) {
snand_log_chip(snf->pdev,
"Block erase failed on block %u\n", block);
return -EIO;
}
return 0;
}
static int mtk_snand_block_isbad_std(struct mtk_snand *snf, uint64_t addr)
{
int ret;
ret = mtk_snand_do_read_page(snf, addr, NULL, snf->buf_cache, true,
false);
if (ret && ret != -EBADMSG)
return ret;
return snf->buf_cache[0] != 0xff;
}
static int mtk_snand_block_isbad_mtk(struct mtk_snand *snf, uint64_t addr)
{
int ret;
ret = mtk_snand_do_read_page(snf, addr, NULL, snf->buf_cache, true,
true);
if (ret && ret != -EBADMSG)
return ret;
return snf->buf_cache[0] != 0xff;
}
int mtk_snand_block_isbad(struct mtk_snand *snf, uint64_t addr)
{
if (!snf)
return -EINVAL;
if (addr >= snf->size)
return -EINVAL;
addr &= ~snf->erasesize_mask;
if (snf->nfi_soc->bbm_swap)
return mtk_snand_block_isbad_std(snf, addr);
return mtk_snand_block_isbad_mtk(snf, addr);
}
static int mtk_snand_block_markbad_std(struct mtk_snand *snf, uint64_t addr)
{
/* Standard BBM position */
memset(snf->buf_cache, 0xff, snf->oobsize);
snf->buf_cache[0] = 0;
return mtk_snand_do_write_page(snf, addr, NULL, snf->buf_cache, true,
false);
}
static int mtk_snand_block_markbad_mtk(struct mtk_snand *snf, uint64_t addr)
{
/* Write the whole page with zeros */
memset(snf->buf_cache, 0, snf->writesize + snf->oobsize);
return mtk_snand_do_write_page(snf, addr, snf->buf_cache,
snf->buf_cache + snf->writesize, true,
true);
}
int mtk_snand_block_markbad(struct mtk_snand *snf, uint64_t addr)
{
if (!snf)
return -EINVAL;
if (addr >= snf->size)
return -EINVAL;
addr &= ~snf->erasesize_mask;
if (snf->nfi_soc->bbm_swap)
return mtk_snand_block_markbad_std(snf, addr);
return mtk_snand_block_markbad_mtk(snf, addr);
}
int mtk_snand_fill_oob(struct mtk_snand *snf, uint8_t *oobraw,
const uint8_t *oobbuf, size_t ooblen)
{
size_t len = ooblen, sect_fdm_len;
const uint8_t *oob = oobbuf;
uint32_t step = 0;
if (!snf || !oobraw || !oob)
return -EINVAL;
while (len && step < snf->ecc_steps) {
sect_fdm_len = snf->nfi_soc->fdm_size - 1;
if (sect_fdm_len > len)
sect_fdm_len = len;
memcpy(oobraw + step * snf->nfi_soc->fdm_size + 1, oob,
sect_fdm_len);
len -= sect_fdm_len;
oob += sect_fdm_len;
step++;
}
return len;
}
int mtk_snand_transfer_oob(struct mtk_snand *snf, uint8_t *oobbuf,
size_t ooblen, const uint8_t *oobraw)
{
size_t len = ooblen, sect_fdm_len;
uint8_t *oob = oobbuf;
uint32_t step = 0;
if (!snf || !oobraw || !oob)
return -EINVAL;
while (len && step < snf->ecc_steps) {
sect_fdm_len = snf->nfi_soc->fdm_size - 1;
if (sect_fdm_len > len)
sect_fdm_len = len;
memcpy(oob, oobraw + step * snf->nfi_soc->fdm_size + 1,
sect_fdm_len);
len -= sect_fdm_len;
oob += sect_fdm_len;
step++;
}
return len;
}
int mtk_snand_read_page_auto_oob(struct mtk_snand *snf, uint64_t addr,
void *buf, void *oob, size_t ooblen,
size_t *actualooblen, bool raw)
{
int ret, oobremain;
if (!snf)
return -EINVAL;
if (!oob)
return mtk_snand_read_page(snf, addr, buf, NULL, raw);
ret = mtk_snand_read_page(snf, addr, buf, snf->buf_cache, raw);
if (ret && ret != -EBADMSG) {
if (actualooblen)
*actualooblen = 0;
return ret;
}
oobremain = mtk_snand_transfer_oob(snf, oob, ooblen, snf->buf_cache);
if (actualooblen)
*actualooblen = ooblen - oobremain;
return ret;
}
int mtk_snand_write_page_auto_oob(struct mtk_snand *snf, uint64_t addr,
const void *buf, const void *oob,
size_t ooblen, size_t *actualooblen, bool raw)
{
int oobremain;
if (!snf)
return -EINVAL;
if (!oob)
return mtk_snand_write_page(snf, addr, buf, NULL, raw);
memset(snf->buf_cache, 0xff, snf->oobsize);
oobremain = mtk_snand_fill_oob(snf, snf->buf_cache, oob, ooblen);
if (actualooblen)
*actualooblen = ooblen - oobremain;
return mtk_snand_write_page(snf, addr, buf, snf->buf_cache, raw);
}
int mtk_snand_get_chip_info(struct mtk_snand *snf,
struct mtk_snand_chip_info *info)
{
if (!snf || !info)
return -EINVAL;
info->model = snf->model;
info->chipsize = snf->size;
info->blocksize = snf->erasesize;
info->pagesize = snf->writesize;
info->sparesize = snf->oobsize;
info->spare_per_sector = snf->spare_per_sector;
info->fdm_size = snf->nfi_soc->fdm_size;
info->fdm_ecc_size = snf->nfi_soc->fdm_ecc_size;
info->num_sectors = snf->ecc_steps;
info->sector_size = snf->nfi_soc->sector_size;
info->ecc_strength = snf->ecc_strength;
info->ecc_bytes = snf->ecc_bytes;
return 0;
}
int mtk_snand_irq_process(struct mtk_snand *snf)
{
uint32_t sta, ien;
if (!snf)
return -EINVAL;
sta = nfi_read32(snf, NFI_INTR_STA);
ien = nfi_read32(snf, NFI_INTR_EN);
if (!(sta & ien))
return 0;
nfi_write32(snf, NFI_INTR_EN, 0);
irq_completion_done(snf->pdev);
return 1;
}
static int mtk_snand_select_spare_per_sector(struct mtk_snand *snf)
{
uint32_t spare_per_step = snf->oobsize / snf->ecc_steps;
int i, mul = 1;
/*
* If we're using the 1KB sector size, HW will automatically
* double the spare size. So we should only use half of the value.
*/
if (snf->nfi_soc->sector_size == 1024)
mul = 2;
spare_per_step /= mul;
for (i = snf->nfi_soc->num_spare_size - 1; i >= 0; i--) {
if (snf->nfi_soc->spare_sizes[i] <= spare_per_step) {
snf->spare_per_sector = snf->nfi_soc->spare_sizes[i];
snf->spare_per_sector *= mul;
return i;
}
}
snand_log_nfi(snf->pdev,
"Page size %u+%u is not supported\n", snf->writesize,
snf->oobsize);
return -1;
}
static int mtk_snand_pagefmt_setup(struct mtk_snand *snf)
{
uint32_t spare_size_idx, spare_size_shift, pagesize_idx;
uint32_t sector_size_512;
if (snf->nfi_soc->sector_size == 512) {
sector_size_512 = NFI_SEC_SEL_512;
spare_size_shift = NFI_SPARE_SIZE_S;
} else {
sector_size_512 = 0;
spare_size_shift = NFI_SPARE_SIZE_LS_S;
}
switch (snf->writesize) {
case SZ_512:
pagesize_idx = NFI_PAGE_SIZE_512_2K;
break;
case SZ_2K:
if (snf->nfi_soc->sector_size == 512)
pagesize_idx = NFI_PAGE_SIZE_2K_4K;
else
pagesize_idx = NFI_PAGE_SIZE_512_2K;
break;
case SZ_4K:
if (snf->nfi_soc->sector_size == 512)
pagesize_idx = NFI_PAGE_SIZE_4K_8K;
else
pagesize_idx = NFI_PAGE_SIZE_2K_4K;
break;
case SZ_8K:
if (snf->nfi_soc->sector_size == 512)
pagesize_idx = NFI_PAGE_SIZE_8K_16K;
else
pagesize_idx = NFI_PAGE_SIZE_4K_8K;
break;
case SZ_16K:
pagesize_idx = NFI_PAGE_SIZE_8K_16K;
break;
default:
snand_log_nfi(snf->pdev, "Page size %u is not supported\n",
snf->writesize);
return -ENOTSUPP;
}
spare_size_idx = mtk_snand_select_spare_per_sector(snf);
if (unlikely(spare_size_idx < 0))
return -ENOTSUPP;
snf->raw_sector_size = snf->nfi_soc->sector_size +
snf->spare_per_sector;
/* Setup page format */
nfi_write32(snf, NFI_PAGEFMT,
(snf->nfi_soc->fdm_ecc_size << NFI_FDM_ECC_NUM_S) |
(snf->nfi_soc->fdm_size << NFI_FDM_NUM_S) |
(spare_size_idx << spare_size_shift) |
(pagesize_idx << NFI_PAGE_SIZE_S) |
sector_size_512);
return 0;
}
static enum snand_flash_io mtk_snand_select_opcode(struct mtk_snand *snf,
uint32_t snfi_caps, uint8_t *opcode,
uint8_t *dummy,
const struct snand_io_cap *op_cap)
{
uint32_t i, caps;
caps = snfi_caps & op_cap->caps;
i = fls(caps);
if (i > 0) {
*opcode = op_cap->opcodes[i - 1].opcode;
if (dummy)
*dummy = op_cap->opcodes[i - 1].dummy;
return i - 1;
}
return __SNAND_IO_MAX;
}
static int mtk_snand_select_opcode_rfc(struct mtk_snand *snf,
uint32_t snfi_caps,
const struct snand_io_cap *op_cap)
{
enum snand_flash_io idx;
static const uint8_t rfc_modes[__SNAND_IO_MAX] = {
[SNAND_IO_1_1_1] = DATA_READ_MODE_X1,
[SNAND_IO_1_1_2] = DATA_READ_MODE_X2,
[SNAND_IO_1_2_2] = DATA_READ_MODE_DUAL,
[SNAND_IO_1_1_4] = DATA_READ_MODE_X4,
[SNAND_IO_1_4_4] = DATA_READ_MODE_QUAD,
};
idx = mtk_snand_select_opcode(snf, snfi_caps, &snf->opcode_rfc,
&snf->dummy_rfc, op_cap);
if (idx >= __SNAND_IO_MAX) {
snand_log_snfi(snf->pdev,
"No capable opcode for read from cache\n");
return -ENOTSUPP;
}
snf->mode_rfc = rfc_modes[idx];
if (idx == SNAND_IO_1_1_4 || idx == SNAND_IO_1_4_4)
snf->quad_spi_op = true;
return 0;
}
static int mtk_snand_select_opcode_pl(struct mtk_snand *snf, uint32_t snfi_caps,
const struct snand_io_cap *op_cap)
{
enum snand_flash_io idx;
static const uint8_t pl_modes[__SNAND_IO_MAX] = {
[SNAND_IO_1_1_1] = 0,
[SNAND_IO_1_1_4] = 1,
};
idx = mtk_snand_select_opcode(snf, snfi_caps, &snf->opcode_pl,
NULL, op_cap);
if (idx >= __SNAND_IO_MAX) {
snand_log_snfi(snf->pdev,
"No capable opcode for program load\n");
return -ENOTSUPP;
}
snf->mode_pl = pl_modes[idx];
if (idx == SNAND_IO_1_1_4)
snf->quad_spi_op = true;
return 0;
}
static int mtk_snand_setup(struct mtk_snand *snf,
const struct snand_flash_info *snand_info)
{
const struct snand_mem_org *memorg = &snand_info->memorg;
uint32_t i, msg_size, snfi_caps;
int ret;
/* Calculate flash memory organization */
snf->model = snand_info->model;
snf->writesize = memorg->pagesize;
snf->oobsize = memorg->sparesize;
snf->erasesize = snf->writesize * memorg->pages_per_block;
snf->die_size = (uint64_t)snf->erasesize * memorg->blocks_per_die;
snf->size = snf->die_size * memorg->ndies;
snf->num_dies = memorg->ndies;
snf->writesize_mask = snf->writesize - 1;
snf->erasesize_mask = snf->erasesize - 1;
snf->die_mask = snf->die_size - 1;
snf->writesize_shift = ffs(snf->writesize) - 1;
snf->erasesize_shift = ffs(snf->erasesize) - 1;
snf->die_shift = mtk_snand_ffs64(snf->die_size) - 1;
snf->select_die = snand_info->select_die;
/* Determine opcodes for read from cache/program load */
snfi_caps = SPI_IO_1_1_1 | SPI_IO_1_1_2 | SPI_IO_1_2_2;
if (snf->snfi_quad_spi)
snfi_caps |= SPI_IO_1_1_4 | SPI_IO_1_4_4;
ret = mtk_snand_select_opcode_rfc(snf, snfi_caps, snand_info->cap_rd);
if (ret)
return ret;
ret = mtk_snand_select_opcode_pl(snf, snfi_caps, snand_info->cap_pl);
if (ret)
return ret;
/* ECC and page format */
snf->ecc_steps = snf->writesize / snf->nfi_soc->sector_size;
if (snf->ecc_steps > snf->nfi_soc->max_sectors) {
snand_log_nfi(snf->pdev, "Page size %u is not supported\n",
snf->writesize);
return -ENOTSUPP;
}
ret = mtk_snand_pagefmt_setup(snf);
if (ret)
return ret;
msg_size = snf->nfi_soc->sector_size + snf->nfi_soc->fdm_ecc_size;
ret = mtk_ecc_setup(snf, snf->nfi_base + NFI_FDM0L,
snf->spare_per_sector - snf->nfi_soc->fdm_size,
msg_size);
if (ret)
return ret;
nfi_write16(snf, NFI_CNFG, 0);
/* Tuning options */
nfi_write16(snf, NFI_DEBUG_CON1, WBUF_EN);
nfi_write32(snf, SNF_DLY_CTL3, (40 << SFCK_SAM_DLY_S));
/* Interrupts */
nfi_read32(snf, NFI_INTR_STA);
nfi_write32(snf, NFI_INTR_EN, 0);
/* Clear SNF done flag */
nfi_rmw32(snf, SNF_STA_CTL1, 0, CUS_READ_DONE | CUS_PG_DONE);
nfi_write32(snf, SNF_STA_CTL1, 0);
/* Initialization on all dies */
for (i = 0; i < snf->num_dies; i++) {
mtk_snand_select_die(snf, i);
/* Disable On-Die ECC engine */
ret = mtk_snand_ondie_ecc_control(snf, false);
if (ret)
return ret;
/* Disable block protection */
mtk_snand_unlock(snf);
/* Enable/disable quad-spi */
mtk_snand_qspi_control(snf, snf->quad_spi_op);
}
mtk_snand_select_die(snf, 0);
return 0;
}
static int mtk_snand_id_probe(struct mtk_snand *snf,
const struct snand_flash_info **snand_info)
{
uint8_t id[4], op[2];
int ret;
/* Read SPI-NAND JEDEC ID, OP + dummy/addr + ID */
op[0] = SNAND_CMD_READID;
op[1] = 0;
ret = mtk_snand_mac_io(snf, op, 2, id, sizeof(id));
if (ret)
return ret;
*snand_info = snand_flash_id_lookup(SNAND_ID_DYMMY, id);
if (*snand_info)
return 0;
/* Read SPI-NAND JEDEC ID, OP + ID */
op[0] = SNAND_CMD_READID;
ret = mtk_snand_mac_io(snf, op, 1, id, sizeof(id));
if (ret)
return ret;
*snand_info = snand_flash_id_lookup(SNAND_ID_DYMMY, id);
if (*snand_info)
return 0;
snand_log_chip(snf->pdev,
"Unrecognized SPI-NAND ID: %02x %02x %02x %02x\n",
id[0], id[1], id[2], id[3]);
return -EINVAL;
}
int mtk_snand_init(void *dev, const struct mtk_snand_platdata *pdata,
struct mtk_snand **psnf)
{
const struct snand_flash_info *snand_info;
uint32_t rawpage_size, sect_bf_size;
struct mtk_snand tmpsnf, *snf;
int ret;
if (!pdata || !psnf)
return -EINVAL;
if (pdata->soc >= __SNAND_SOC_MAX) {
snand_log_chip(dev, "Invalid SOC %u for MTK-SNAND\n",
pdata->soc);
return -EINVAL;
}
/* Dummy instance only for initial reset and id probe */
tmpsnf.nfi_base = pdata->nfi_base;
tmpsnf.ecc_base = pdata->ecc_base;
tmpsnf.soc = pdata->soc;
tmpsnf.nfi_soc = &mtk_snand_socs[pdata->soc];
tmpsnf.pdev = dev;
/* Switch to SNFI mode */
writel(SPI_MODE, tmpsnf.nfi_base + SNF_CFG);
/* Reset SNFI & NFI */
mtk_snand_mac_reset(&tmpsnf);
mtk_nfi_reset(&tmpsnf);
/* Reset SPI-NAND chip */
ret = mtk_snand_chip_reset(&tmpsnf);
if (ret) {
snand_log_chip(dev, "Failed to reset SPI-NAND chip\n");
return ret;
}
/* Probe SPI-NAND flash by JEDEC ID */
ret = mtk_snand_id_probe(&tmpsnf, &snand_info);
if (ret)
return ret;
rawpage_size = snand_info->memorg.pagesize +
snand_info->memorg.sparesize;
sect_bf_size = mtk_snand_socs[pdata->soc].max_sectors *
sizeof(*snf->sect_bf);
/* Allocate memory for instance and cache */
snf = generic_mem_alloc(dev,
sizeof(*snf) + rawpage_size + sect_bf_size);
if (!snf) {
snand_log_chip(dev, "Failed to allocate memory for instance\n");
return -ENOMEM;
}
snf->sect_bf = (int *)((uintptr_t)snf + sizeof(*snf));
snf->buf_cache = (uint8_t *)((uintptr_t)snf->sect_bf + sect_bf_size);
/* Allocate memory for DMA buffer */
snf->page_cache = dma_mem_alloc(dev, rawpage_size);
if (!snf->page_cache) {
generic_mem_free(dev, snf);
snand_log_chip(dev,
"Failed to allocate memory for DMA buffer\n");
return -ENOMEM;
}
/* Fill up instance */
snf->pdev = dev;
snf->nfi_base = pdata->nfi_base;
snf->ecc_base = pdata->ecc_base;
snf->soc = pdata->soc;
snf->nfi_soc = &mtk_snand_socs[pdata->soc];
snf->snfi_quad_spi = pdata->quad_spi;
/* Initialize SNFI & ECC engine */
ret = mtk_snand_setup(snf, snand_info);
if (ret) {
dma_mem_free(dev, snf->page_cache);
generic_mem_free(dev, snf);
return ret;
}
*psnf = snf;
return 0;
}
int mtk_snand_cleanup(struct mtk_snand *snf)
{
if (!snf)
return 0;
dma_mem_free(snf->pdev, snf->page_cache);
generic_mem_free(snf->pdev, snf);
return 0;
}