mirror of
https://github.com/openwrt/openwrt.git
synced 2025-01-13 08:20:07 +00:00
9a5c26d4ef
SVN-Revision: 34101
351 lines
8.4 KiB
C
351 lines
8.4 KiB
C
/*
|
|
* linux/arch/arm/mach-cns3xxx/platsmp.c
|
|
*
|
|
* Copyright (C) 2002 ARM Ltd.
|
|
* Copyright 2012 Gateworks Corporation
|
|
* Chris Lang <clang@gateworks.com>
|
|
* Tim Harvey <tharvey@gateworks.com>
|
|
*
|
|
* All Rights Reserved
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*/
|
|
#include <linux/init.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/device.h>
|
|
#include <linux/jiffies.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/io.h>
|
|
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/hardware/gic.h>
|
|
#include <asm/smp_scu.h>
|
|
#include <asm/unified.h>
|
|
#include <asm/fiq.h>
|
|
#include <mach/smp.h>
|
|
#include <mach/cns3xxx.h>
|
|
|
|
static struct fiq_handler fh = {
|
|
.name = "cns3xxx-fiq"
|
|
};
|
|
|
|
static unsigned int fiq_buffer[8];
|
|
|
|
#define FIQ_ENABLED 0x80000000
|
|
#define FIQ_GENERATE 0x00010000
|
|
#define CNS3XXX_MAP_AREA 0x01000000
|
|
#define CNS3XXX_UNMAP_AREA 0x02000000
|
|
#define CNS3XXX_FLUSH_RANGE 0x03000000
|
|
|
|
extern void cns3xxx_secondary_startup(void);
|
|
extern unsigned char cns3xxx_fiq_start, cns3xxx_fiq_end;
|
|
extern unsigned int fiq_number[2];
|
|
extern struct cpu_cache_fns cpu_cache;
|
|
struct cpu_cache_fns cpu_cache_save;
|
|
|
|
#define SCU_CPU_STATUS 0x08
|
|
static void __iomem *scu_base;
|
|
|
|
/*
|
|
* control for which core is the next to come out of the secondary
|
|
* boot "holding pen"
|
|
*/
|
|
volatile int __cpuinitdata pen_release = -1;
|
|
|
|
static void __init cns3xxx_set_fiq_regs(void)
|
|
{
|
|
struct pt_regs FIQ_regs;
|
|
unsigned int cpu = smp_processor_id();
|
|
|
|
if (cpu) {
|
|
FIQ_regs.ARM_ip = (unsigned int)&fiq_buffer[4];
|
|
FIQ_regs.ARM_sp = (unsigned int)MISC_FIQ_CPU(0);
|
|
} else {
|
|
FIQ_regs.ARM_ip = (unsigned int)&fiq_buffer[0];
|
|
FIQ_regs.ARM_sp = (unsigned int)MISC_FIQ_CPU(1);
|
|
}
|
|
set_fiq_regs(&FIQ_regs);
|
|
}
|
|
|
|
static void __init cns3xxx_init_fiq(void)
|
|
{
|
|
void *fiqhandler_start;
|
|
unsigned int fiqhandler_length;
|
|
int ret;
|
|
|
|
fiqhandler_start = &cns3xxx_fiq_start;
|
|
fiqhandler_length = &cns3xxx_fiq_end - &cns3xxx_fiq_start;
|
|
|
|
ret = claim_fiq(&fh);
|
|
|
|
if (ret) {
|
|
return;
|
|
}
|
|
|
|
set_fiq_handler(fiqhandler_start, fiqhandler_length);
|
|
fiq_buffer[0] = (unsigned int)&fiq_number[0];
|
|
fiq_buffer[3] = 0;
|
|
fiq_buffer[4] = (unsigned int)&fiq_number[1];
|
|
fiq_buffer[7] = 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* Write pen_release in a way that is guaranteed to be visible to all
|
|
* observers, irrespective of whether they're taking part in coherency
|
|
* or not. This is necessary for the hotplug code to work reliably.
|
|
*/
|
|
static void __cpuinit write_pen_release(int val)
|
|
{
|
|
pen_release = val;
|
|
smp_wmb();
|
|
__cpuc_flush_dcache_area((void *)&pen_release, sizeof(pen_release));
|
|
outer_clean_range(__pa(&pen_release), __pa(&pen_release + 1));
|
|
}
|
|
|
|
static DEFINE_SPINLOCK(boot_lock);
|
|
|
|
void __cpuinit platform_secondary_init(unsigned int cpu)
|
|
{
|
|
/*
|
|
* if any interrupts are already enabled for the primary
|
|
* core (e.g. timer irq), then they will not have been enabled
|
|
* for us: do so
|
|
*/
|
|
gic_secondary_init(0);
|
|
|
|
/*
|
|
* Setup Secondary Core FIQ regs
|
|
*/
|
|
cns3xxx_set_fiq_regs();
|
|
|
|
/*
|
|
* let the primary processor know we're out of the
|
|
* pen, then head off into the C entry point
|
|
*/
|
|
write_pen_release(-1);
|
|
|
|
/*
|
|
* Fixup DMA Operations
|
|
*
|
|
*/
|
|
cpu_cache.dma_map_area = (void *)smp_dma_map_area;
|
|
cpu_cache.dma_unmap_area = (void *)smp_dma_unmap_area;
|
|
cpu_cache.dma_flush_range = (void *)smp_dma_flush_range;
|
|
|
|
/*
|
|
* Synchronise with the boot thread.
|
|
*/
|
|
spin_lock(&boot_lock);
|
|
spin_unlock(&boot_lock);
|
|
}
|
|
|
|
int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle)
|
|
{
|
|
unsigned long timeout;
|
|
|
|
/*
|
|
* Set synchronisation state between this boot processor
|
|
* and the secondary one
|
|
*/
|
|
spin_lock(&boot_lock);
|
|
|
|
/*
|
|
* The secondary processor is waiting to be released from
|
|
* the holding pen - release it, then wait for it to flag
|
|
* that it has been released by resetting pen_release.
|
|
*
|
|
* Note that "pen_release" is the hardware CPU ID, whereas
|
|
* "cpu" is Linux's internal ID.
|
|
*/
|
|
write_pen_release(cpu);
|
|
|
|
/*
|
|
* Send the secondary CPU a soft interrupt, thereby causing
|
|
* the boot monitor to read the system wide flags register,
|
|
* and branch to the address found there.
|
|
*/
|
|
gic_raise_softirq(cpumask_of(cpu), 1);
|
|
|
|
timeout = jiffies + (1 * HZ);
|
|
while (time_before(jiffies, timeout)) {
|
|
smp_rmb();
|
|
if (pen_release == -1)
|
|
break;
|
|
|
|
udelay(10);
|
|
}
|
|
|
|
/*
|
|
* now the secondary core is starting up let it run its
|
|
* calibrations, then wait for it to finish
|
|
*/
|
|
spin_unlock(&boot_lock);
|
|
|
|
return pen_release != -1 ? -ENOSYS : 0;
|
|
}
|
|
|
|
/*
|
|
* Initialise the CPU possible map early - this describes the CPUs
|
|
* which may be present or become present in the system.
|
|
*/
|
|
void __init smp_init_cpus(void)
|
|
{
|
|
unsigned int i, ncores;
|
|
unsigned int status;
|
|
|
|
scu_base = (void __iomem *) CNS3XXX_TC11MP_SCU_BASE_VIRT;
|
|
|
|
/* for CNS3xxx SCU_CPU_STATUS must be examined instead of SCU_CONFIGURATION
|
|
* used in scu_get_core_count
|
|
*/
|
|
status = __raw_readl(scu_base + SCU_CPU_STATUS);
|
|
for (i = 0; i < NR_CPUS+1; i++) {
|
|
if (((status >> (i*2)) & 0x3) == 0)
|
|
set_cpu_possible(i, true);
|
|
else
|
|
break;
|
|
}
|
|
ncores = i;
|
|
|
|
set_smp_cross_call(gic_raise_softirq);
|
|
}
|
|
|
|
void __init platform_smp_prepare_cpus(unsigned int max_cpus)
|
|
{
|
|
int i;
|
|
|
|
/*
|
|
* Initialise the present map, which describes the set of CPUs
|
|
* actually populated at the present time.
|
|
*/
|
|
for (i = 0; i < max_cpus; i++) {
|
|
set_cpu_present(i, true);
|
|
}
|
|
|
|
/*
|
|
* enable SCU
|
|
*/
|
|
scu_enable(scu_base);
|
|
|
|
/*
|
|
* Write the address of secondary startup into the
|
|
* system-wide flags register. The boot monitor waits
|
|
* until it receives a soft interrupt, and then the
|
|
* secondary CPU branches to this address.
|
|
*/
|
|
__raw_writel(virt_to_phys(cns3xxx_secondary_startup),
|
|
(void __iomem *)(CNS3XXX_MISC_BASE_VIRT + 0x0600));
|
|
|
|
/*
|
|
* Setup FIQ's for main cpu
|
|
*/
|
|
cns3xxx_init_fiq();
|
|
cns3xxx_set_fiq_regs();
|
|
memcpy((void *)&cpu_cache_save, (void *)&cpu_cache, sizeof(struct cpu_cache_fns));
|
|
}
|
|
|
|
|
|
static inline unsigned long cns3xxx_cpu_id(void)
|
|
{
|
|
unsigned long cpu;
|
|
|
|
asm volatile(
|
|
" mrc p15, 0, %0, c0, c0, 5 @ cns3xxx_cpu_id\n"
|
|
: "=r" (cpu) : : "memory", "cc");
|
|
return (cpu & 0xf);
|
|
}
|
|
|
|
void smp_dma_map_area(const void *addr, size_t size, int dir)
|
|
{
|
|
unsigned int cpu;
|
|
unsigned long flags;
|
|
raw_local_irq_save(flags);
|
|
cpu = cns3xxx_cpu_id();
|
|
if (cpu) {
|
|
fiq_buffer[1] = (unsigned int)addr;
|
|
fiq_buffer[2] = size;
|
|
fiq_buffer[3] = dir | CNS3XXX_MAP_AREA | FIQ_ENABLED;
|
|
smp_mb();
|
|
__raw_writel(FIQ_GENERATE, MISC_FIQ_CPU(1));
|
|
|
|
cpu_cache_save.dma_map_area(addr, size, dir);
|
|
while ((fiq_buffer[3]) & FIQ_ENABLED) { barrier(); }
|
|
} else {
|
|
|
|
fiq_buffer[5] = (unsigned int)addr;
|
|
fiq_buffer[6] = size;
|
|
fiq_buffer[7] = dir | CNS3XXX_MAP_AREA | FIQ_ENABLED;
|
|
smp_mb();
|
|
__raw_writel(FIQ_GENERATE, MISC_FIQ_CPU(0));
|
|
|
|
cpu_cache_save.dma_map_area(addr, size, dir);
|
|
while ((fiq_buffer[7]) & FIQ_ENABLED) { barrier(); }
|
|
}
|
|
raw_local_irq_restore(flags);
|
|
}
|
|
|
|
void smp_dma_unmap_area(const void *addr, size_t size, int dir)
|
|
{
|
|
unsigned int cpu;
|
|
unsigned long flags;
|
|
|
|
raw_local_irq_save(flags);
|
|
cpu = cns3xxx_cpu_id();
|
|
if (cpu) {
|
|
|
|
fiq_buffer[1] = (unsigned int)addr;
|
|
fiq_buffer[2] = size;
|
|
fiq_buffer[3] = dir | CNS3XXX_UNMAP_AREA | FIQ_ENABLED;
|
|
smp_mb();
|
|
__raw_writel(FIQ_GENERATE, MISC_FIQ_CPU(1));
|
|
|
|
cpu_cache_save.dma_unmap_area(addr, size, dir);
|
|
while ((fiq_buffer[3]) & FIQ_ENABLED) { barrier(); }
|
|
} else {
|
|
|
|
fiq_buffer[5] = (unsigned int)addr;
|
|
fiq_buffer[6] = size;
|
|
fiq_buffer[7] = dir | CNS3XXX_UNMAP_AREA | FIQ_ENABLED;
|
|
smp_mb();
|
|
__raw_writel(FIQ_GENERATE, MISC_FIQ_CPU(0));
|
|
|
|
cpu_cache_save.dma_unmap_area(addr, size, dir);
|
|
while ((fiq_buffer[7]) & FIQ_ENABLED) { barrier(); }
|
|
}
|
|
raw_local_irq_restore(flags);
|
|
}
|
|
|
|
void smp_dma_flush_range(const void *start, const void *end)
|
|
{
|
|
unsigned int cpu;
|
|
unsigned long flags;
|
|
raw_local_irq_save(flags);
|
|
cpu = cns3xxx_cpu_id();
|
|
if (cpu) {
|
|
|
|
fiq_buffer[1] = (unsigned int)start;
|
|
fiq_buffer[2] = (unsigned int)end;
|
|
fiq_buffer[3] = CNS3XXX_FLUSH_RANGE | FIQ_ENABLED;
|
|
smp_mb();
|
|
__raw_writel(FIQ_GENERATE, MISC_FIQ_CPU(1));
|
|
|
|
cpu_cache_save.dma_flush_range(start, end);
|
|
while ((fiq_buffer[3]) & FIQ_ENABLED) { barrier(); }
|
|
} else {
|
|
|
|
fiq_buffer[5] = (unsigned int)start;
|
|
fiq_buffer[6] = (unsigned int)end;
|
|
fiq_buffer[7] = CNS3XXX_FLUSH_RANGE | FIQ_ENABLED;
|
|
smp_mb();
|
|
__raw_writel(FIQ_GENERATE, MISC_FIQ_CPU(0));
|
|
|
|
cpu_cache_save.dma_flush_range(start, end);
|
|
while ((fiq_buffer[7]) & FIQ_ENABLED) { barrier(); }
|
|
}
|
|
raw_local_irq_restore(flags);
|
|
}
|