openwrt/target/linux/realtek/files-5.15/drivers/net/phy/rtl83xx-phy.c
Pascal Ernster 87a2f03b86 realtek: Use MDIO_* constants from <linux/mdio.h>
To improve code readability in drivers/net/phy/rtl83xx-phy.c, replace
constants MMD_AN and MMD_VEND2 from drivers/net/phy/rtl83xx-phy.h with
MDIO_MMD_AN and MDIO_MMD_VEND2 from <linux/mdio.h>.

Also, replace
BIT(0) with MDIO_EEE_2_5GT,
BIT(1) with MDIO_EEE_100TX,
BIT(2) with MDIO_EEE_1000T,
BIT(9) with MDIO_AN_CTRL1_RESTART,
BIT(12) with MDIO_AN_CTRL1_ENABLE,
32 with MDIO_AN_10GBT_CTRL,
60 with MDIO_AN_EEE_ADV, and
62 with MDIO_AN_EEE_ADV2
from <linux/mdio.h>.

Suggested-by: DENG Qingfang <dqfext@gmail.com>
Signed-off-by: Pascal Ernster <git@hardfalcon.net>
2023-07-01 20:25:48 +02:00

4013 lines
110 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/* Realtek RTL838X Ethernet MDIO interface driver
*
* Copyright (C) 2020 B. Koblitz
*/
#include <linux/module.h>
#include <linux/delay.h>
#include <linux/of.h>
#include <linux/phy.h>
#include <linux/netdevice.h>
#include <linux/firmware.h>
#include <linux/crc32.h>
#include <linux/sfp.h>
#include <linux/mii.h>
#include <linux/mdio.h>
#include <asm/mach-rtl838x/mach-rtl83xx.h>
#include "rtl83xx-phy.h"
extern struct rtl83xx_soc_info soc_info;
extern struct mutex smi_lock;
#define PHY_PAGE_2 2
#define PHY_PAGE_4 4
/* all Clause-22 RealTek MDIO PHYs use register 0x1f for page select */
#define RTL8XXX_PAGE_SELECT 0x1f
#define RTL8XXX_PAGE_MAIN 0x0000
#define RTL821X_PAGE_PORT 0x0266
#define RTL821X_PAGE_POWER 0x0a40
#define RTL821X_PAGE_GPHY 0x0a42
#define RTL821X_PAGE_MAC 0x0a43
#define RTL821X_PAGE_STATE 0x0b80
#define RTL821X_PAGE_PATCH 0x0b82
/* Using the special page 0xfff with the MDIO controller found in
* RealTek SoCs allows to access the PHY in RAW mode, ie. bypassing
* the cache and paging engine of the MDIO controller.
*/
#define RTL83XX_PAGE_RAW 0x0fff
/* internal RTL821X PHY uses register 0x1d to select media page */
#define RTL821XINT_MEDIA_PAGE_SELECT 0x1d
/* external RTL821X PHY uses register 0x1e to select media page */
#define RTL821XEXT_MEDIA_PAGE_SELECT 0x1e
#define RTL821X_MEDIA_PAGE_AUTO 0
#define RTL821X_MEDIA_PAGE_COPPER 1
#define RTL821X_MEDIA_PAGE_FIBRE 3
#define RTL821X_MEDIA_PAGE_INTERNAL 8
#define RTL9300_PHY_ID_MASK 0xf0ffffff
/* This lock protects the state of the SoC automatically polling the PHYs over the SMI
* bus to detect e.g. link and media changes. For operations on the PHYs such as
* patching or other configuration changes such as EEE, polling needs to be disabled
* since otherwise these operations may fails or lead to unpredictable results.
*/
DEFINE_MUTEX(poll_lock);
static const struct firmware rtl838x_8380_fw;
static const struct firmware rtl838x_8214fc_fw;
static const struct firmware rtl838x_8218b_fw;
static u64 disable_polling(int port)
{
u64 saved_state;
mutex_lock(&poll_lock);
switch (soc_info.family) {
case RTL8380_FAMILY_ID:
saved_state = sw_r32(RTL838X_SMI_POLL_CTRL);
sw_w32_mask(BIT(port), 0, RTL838X_SMI_POLL_CTRL);
break;
case RTL8390_FAMILY_ID:
saved_state = sw_r32(RTL839X_SMI_PORT_POLLING_CTRL + 4);
saved_state <<= 32;
saved_state |= sw_r32(RTL839X_SMI_PORT_POLLING_CTRL);
sw_w32_mask(BIT(port % 32), 0,
RTL839X_SMI_PORT_POLLING_CTRL + ((port >> 5) << 2));
break;
case RTL9300_FAMILY_ID:
saved_state = sw_r32(RTL930X_SMI_POLL_CTRL);
sw_w32_mask(BIT(port), 0, RTL930X_SMI_POLL_CTRL);
break;
case RTL9310_FAMILY_ID:
pr_warn("%s not implemented for RTL931X\n", __func__);
break;
}
mutex_unlock(&poll_lock);
return saved_state;
}
static int resume_polling(u64 saved_state)
{
mutex_lock(&poll_lock);
switch (soc_info.family) {
case RTL8380_FAMILY_ID:
sw_w32(saved_state, RTL838X_SMI_POLL_CTRL);
break;
case RTL8390_FAMILY_ID:
sw_w32(saved_state >> 32, RTL839X_SMI_PORT_POLLING_CTRL + 4);
sw_w32(saved_state, RTL839X_SMI_PORT_POLLING_CTRL);
break;
case RTL9300_FAMILY_ID:
sw_w32(saved_state, RTL930X_SMI_POLL_CTRL);
break;
case RTL9310_FAMILY_ID:
pr_warn("%s not implemented for RTL931X\n", __func__);
break;
}
mutex_unlock(&poll_lock);
return 0;
}
static void rtl8380_int_phy_on_off(struct phy_device *phydev, bool on)
{
phy_modify(phydev, 0, BMCR_PDOWN, on ? 0 : BMCR_PDOWN);
}
static void rtl8380_rtl8214fc_on_off(struct phy_device *phydev, bool on)
{
/* fiber ports */
phy_write_paged(phydev, RTL83XX_PAGE_RAW, RTL821XEXT_MEDIA_PAGE_SELECT, RTL821X_MEDIA_PAGE_FIBRE);
phy_modify(phydev, 0x10, BMCR_PDOWN, on ? 0 : BMCR_PDOWN);
/* copper ports */
phy_write_paged(phydev, RTL83XX_PAGE_RAW, RTL821XEXT_MEDIA_PAGE_SELECT, RTL821X_MEDIA_PAGE_COPPER);
phy_modify_paged(phydev, RTL821X_PAGE_POWER, 0x10, BMCR_PDOWN, on ? 0 : BMCR_PDOWN);
}
static void rtl8380_phy_reset(struct phy_device *phydev)
{
phy_modify(phydev, 0, BMCR_RESET, BMCR_RESET);
}
/* The access registers for SDS_MODE_SEL and the LSB for each SDS within */
u16 rtl9300_sds_regs[] = { 0x0194, 0x0194, 0x0194, 0x0194, 0x02a0, 0x02a0, 0x02a0, 0x02a0,
0x02A4, 0x02A4, 0x0198, 0x0198 };
u8 rtl9300_sds_lsb[] = { 0, 6, 12, 18, 0, 6, 12, 18, 0, 6, 0, 6};
/* Reset the SerDes by powering it off and set a new operations mode
* of the SerDes. 0x1f is off. Other modes are
* 0x02: SGMII 0x04: 1000BX_FIBER 0x05: FIBER100
* 0x06: QSGMII 0x09: RSGMII 0x0d: USXGMII
* 0x10: XSGMII 0x12: HISGMII 0x16: 2500Base_X
* 0x17: RXAUI_LITE 0x19: RXAUI_PLUS 0x1a: 10G Base-R
* 0x1b: 10GR1000BX_AUTO 0x1f: OFF
*/
void rtl9300_sds_rst(int sds_num, u32 mode)
{
pr_info("%s %d\n", __func__, mode);
if (sds_num < 0 || sds_num > 11) {
pr_err("Wrong SerDes number: %d\n", sds_num);
return;
}
sw_w32_mask(0x1f << rtl9300_sds_lsb[sds_num], 0x1f << rtl9300_sds_lsb[sds_num],
rtl9300_sds_regs[sds_num]);
mdelay(10);
sw_w32_mask(0x1f << rtl9300_sds_lsb[sds_num], mode << rtl9300_sds_lsb[sds_num],
rtl9300_sds_regs[sds_num]);
mdelay(10);
pr_debug("%s: 194:%08x 198:%08x 2a0:%08x 2a4:%08x\n", __func__,
sw_r32(0x194), sw_r32(0x198), sw_r32(0x2a0), sw_r32(0x2a4));
}
void rtl9300_sds_set(int sds_num, u32 mode)
{
pr_info("%s %d\n", __func__, mode);
if (sds_num < 0 || sds_num > 11) {
pr_err("Wrong SerDes number: %d\n", sds_num);
return;
}
sw_w32_mask(0x1f << rtl9300_sds_lsb[sds_num], mode << rtl9300_sds_lsb[sds_num],
rtl9300_sds_regs[sds_num]);
mdelay(10);
pr_debug("%s: 194:%08x 198:%08x 2a0:%08x 2a4:%08x\n", __func__,
sw_r32(0x194), sw_r32(0x198), sw_r32(0x2a0), sw_r32(0x2a4));
}
u32 rtl9300_sds_mode_get(int sds_num)
{
u32 v;
if (sds_num < 0 || sds_num > 11) {
pr_err("Wrong SerDes number: %d\n", sds_num);
return 0;
}
v = sw_r32(rtl9300_sds_regs[sds_num]);
v >>= rtl9300_sds_lsb[sds_num];
return v & 0x1f;
}
/* On the RTL839x family of SoCs with inbuilt SerDes, these SerDes are accessed through
* a 2048 bit register that holds the contents of the PHY being simulated by the SoC.
*/
int rtl839x_read_sds_phy(int phy_addr, int phy_reg)
{
int offset = 0;
int reg;
u32 val;
if (phy_addr == 49)
offset = 0x100;
/* For the RTL8393 internal SerDes, we simulate a PHY ID in registers 2/3
* which would otherwise read as 0.
*/
if (soc_info.id == 0x8393) {
if (phy_reg == MII_PHYSID1)
return 0x1c;
if (phy_reg == MII_PHYSID2)
return 0x8393;
}
/* Register RTL839X_SDS12_13_XSG0 is 2048 bit broad, the MSB (bit 15) of the
* 0th PHY register is bit 1023 (in byte 0x80). Because PHY-registers are 16
* bit broad, we offset by reg << 1. In the SoC 2 registers are stored in
* one 32 bit register.
*/
reg = (phy_reg << 1) & 0xfc;
val = sw_r32(RTL839X_SDS12_13_XSG0 + offset + 0x80 + reg);
if (phy_reg & 1)
val = (val >> 16) & 0xffff;
else
val &= 0xffff;
return val;
}
/* On the RTL930x family of SoCs, the internal SerDes are accessed through an IO
* register which simulates commands to an internal MDIO bus.
*/
int rtl930x_read_sds_phy(int phy_addr, int page, int phy_reg)
{
int i;
u32 cmd = phy_addr << 2 | page << 7 | phy_reg << 13 | 1;
sw_w32(cmd, RTL930X_SDS_INDACS_CMD);
for (i = 0; i < 100; i++) {
if (!(sw_r32(RTL930X_SDS_INDACS_CMD) & 0x1))
break;
mdelay(1);
}
if (i >= 100)
return -EIO;
return sw_r32(RTL930X_SDS_INDACS_DATA) & 0xffff;
}
int rtl930x_write_sds_phy(int phy_addr, int page, int phy_reg, u16 v)
{
int i;
u32 cmd;
sw_w32(v, RTL930X_SDS_INDACS_DATA);
cmd = phy_addr << 2 | page << 7 | phy_reg << 13 | 0x3;
for (i = 0; i < 100; i++) {
if (!(sw_r32(RTL930X_SDS_INDACS_CMD) & 0x1))
break;
mdelay(1);
}
if (i >= 100) {
pr_info("%s ERROR !!!!!!!!!!!!!!!!!!!!\n", __func__);
return -EIO;
}
return 0;
}
int rtl931x_read_sds_phy(int phy_addr, int page, int phy_reg)
{
int i;
u32 cmd = phy_addr << 2 | page << 7 | phy_reg << 13 | 1;
pr_debug("%s: phy_addr(SDS-ID) %d, phy_reg: %d\n", __func__, phy_addr, phy_reg);
sw_w32(cmd, RTL931X_SERDES_INDRT_ACCESS_CTRL);
for (i = 0; i < 100; i++) {
if (!(sw_r32(RTL931X_SERDES_INDRT_ACCESS_CTRL) & 0x1))
break;
mdelay(1);
}
if (i >= 100)
return -EIO;
pr_debug("%s: returning %04x\n", __func__, sw_r32(RTL931X_SERDES_INDRT_DATA_CTRL) & 0xffff);
return sw_r32(RTL931X_SERDES_INDRT_DATA_CTRL) & 0xffff;
}
int rtl931x_write_sds_phy(int phy_addr, int page, int phy_reg, u16 v)
{
int i;
u32 cmd;
cmd = phy_addr << 2 | page << 7 | phy_reg << 13;
sw_w32(cmd, RTL931X_SERDES_INDRT_ACCESS_CTRL);
sw_w32(v, RTL931X_SERDES_INDRT_DATA_CTRL);
cmd = sw_r32(RTL931X_SERDES_INDRT_ACCESS_CTRL) | 0x3;
sw_w32(cmd, RTL931X_SERDES_INDRT_ACCESS_CTRL);
for (i = 0; i < 100; i++) {
if (!(sw_r32(RTL931X_SERDES_INDRT_ACCESS_CTRL) & 0x1))
break;
mdelay(1);
}
if (i >= 100)
return -EIO;
return 0;
}
/* On the RTL838x SoCs, the internal SerDes is accessed through direct access to
* standard PHY registers, where a 32 bit register holds a 16 bit word as found
* in a standard page 0 of a PHY
*/
int rtl838x_read_sds_phy(int phy_addr, int phy_reg)
{
int offset = 0;
u32 val;
if (phy_addr == 26)
offset = 0x100;
val = sw_r32(RTL838X_SDS4_FIB_REG0 + offset + (phy_reg << 2)) & 0xffff;
return val;
}
int rtl839x_write_sds_phy(int phy_addr, int phy_reg, u16 v)
{
int offset = 0;
int reg;
u32 val;
if (phy_addr == 49)
offset = 0x100;
reg = (phy_reg << 1) & 0xfc;
val = v;
if (phy_reg & 1) {
val = val << 16;
sw_w32_mask(0xffff0000, val,
RTL839X_SDS12_13_XSG0 + offset + 0x80 + reg);
} else {
sw_w32_mask(0xffff, val,
RTL839X_SDS12_13_XSG0 + offset + 0x80 + reg);
}
return 0;
}
/* Read the link and speed status of the 2 internal SGMII/1000Base-X
* ports of the RTL838x SoCs
*/
static int rtl8380_read_status(struct phy_device *phydev)
{
int err;
err = genphy_read_status(phydev);
if (phydev->link) {
phydev->speed = SPEED_1000;
phydev->duplex = DUPLEX_FULL;
}
return err;
}
/* Read the link and speed status of the 2 internal SGMII/1000Base-X
* ports of the RTL8393 SoC
*/
static int rtl8393_read_status(struct phy_device *phydev)
{
int offset = 0;
int err;
int phy_addr = phydev->mdio.addr;
u32 v;
err = genphy_read_status(phydev);
if (phy_addr == 49)
offset = 0x100;
if (phydev->link) {
phydev->speed = SPEED_100;
/* Read SPD_RD_00 (bit 13) and SPD_RD_01 (bit 6) out of the internal
* PHY registers
*/
v = sw_r32(RTL839X_SDS12_13_XSG0 + offset + 0x80);
if (!(v & (1 << 13)) && (v & (1 << 6)))
phydev->speed = SPEED_1000;
phydev->duplex = DUPLEX_FULL;
}
return err;
}
static int rtl8226_read_page(struct phy_device *phydev)
{
return __phy_read(phydev, RTL8XXX_PAGE_SELECT);
}
static int rtl8226_write_page(struct phy_device *phydev, int page)
{
return __phy_write(phydev, RTL8XXX_PAGE_SELECT, page);
}
static int rtl8226_read_status(struct phy_device *phydev)
{
int ret = 0;
u32 val;
/* TODO: ret = genphy_read_status(phydev);
* if (ret < 0) {
* pr_info("%s: genphy_read_status failed\n", __func__);
* return ret;
* }
*/
/* Link status must be read twice */
for (int i = 0; i < 2; i++)
val = phy_read_mmd(phydev, MDIO_MMD_VEND2, 0xA402);
phydev->link = val & BIT(2) ? 1 : 0;
if (!phydev->link)
goto out;
/* Read duplex status */
val = phy_read_mmd(phydev, MDIO_MMD_VEND2, 0xA434);
if (val < 0)
goto out;
phydev->duplex = !!(val & BIT(3));
/* Read speed */
val = phy_read_mmd(phydev, MDIO_MMD_VEND2, 0xA434);
switch (val & 0x0630) {
case 0x0000:
phydev->speed = SPEED_10;
break;
case 0x0010:
phydev->speed = SPEED_100;
break;
case 0x0020:
phydev->speed = SPEED_1000;
break;
case 0x0200:
phydev->speed = SPEED_10000;
break;
case 0x0210:
phydev->speed = SPEED_2500;
break;
case 0x0220:
phydev->speed = SPEED_5000;
break;
default:
break;
}
out:
return ret;
}
static int rtl8226_advertise_aneg(struct phy_device *phydev)
{
int ret = 0;
u32 v;
pr_info("In %s\n", __func__);
v = phy_read_mmd(phydev, MDIO_MMD_AN, MDIO_AN_ADVERTISE);
if (v < 0)
goto out;
v |= ADVERTISE_10HALF;
v |= ADVERTISE_10FULL;
v |= ADVERTISE_100HALF;
v |= ADVERTISE_100FULL;
ret = phy_write_mmd(phydev, MDIO_MMD_AN, MDIO_AN_ADVERTISE, v);
/* Allow 1GBit */
v = phy_read_mmd(phydev, MDIO_MMD_VEND2, 0xA412);
if (v < 0)
goto out;
v |= ADVERTISE_1000FULL;
ret = phy_write_mmd(phydev, MDIO_MMD_VEND2, 0xA412, v);
if (ret < 0)
goto out;
/* Allow 2.5G */
v = phy_read_mmd(phydev, MDIO_MMD_AN, MDIO_AN_10GBT_CTRL);
if (v < 0)
goto out;
v |= MDIO_AN_10GBT_CTRL_ADV2_5G;
ret = phy_write_mmd(phydev, MDIO_MMD_AN, MDIO_AN_10GBT_CTRL, v);
out:
return ret;
}
static int rtl8226_config_aneg(struct phy_device *phydev)
{
int ret = 0;
u32 v;
pr_debug("In %s\n", __func__);
if (phydev->autoneg == AUTONEG_ENABLE) {
ret = rtl8226_advertise_aneg(phydev);
if (ret)
goto out;
/* AutoNegotiationEnable */
v = phy_read_mmd(phydev, MDIO_MMD_AN, MDIO_CTRL1);
if (v < 0)
goto out;
v |= MDIO_AN_CTRL1_ENABLE; /* Enable AN */
ret = phy_write_mmd(phydev, MDIO_MMD_AN, MDIO_CTRL1, v);
if (ret < 0)
goto out;
/* RestartAutoNegotiation */
v = phy_read_mmd(phydev, MDIO_MMD_VEND2, 0xA400);
if (v < 0)
goto out;
v |= MDIO_AN_CTRL1_RESTART;
ret = phy_write_mmd(phydev, MDIO_MMD_VEND2, 0xA400, v);
}
/* TODO: ret = __genphy_config_aneg(phydev, ret); */
out:
return ret;
}
static int rtl8226_get_eee(struct phy_device *phydev,
struct ethtool_eee *e)
{
u32 val;
int addr = phydev->mdio.addr;
pr_debug("In %s, port %d, was enabled: %d\n", __func__, addr, e->eee_enabled);
val = phy_read_mmd(phydev, MDIO_MMD_AN, MDIO_AN_EEE_ADV);
if (e->eee_enabled) {
e->eee_enabled = !!(val & MDIO_EEE_100TX);
if (!e->eee_enabled) {
val = phy_read_mmd(phydev, MDIO_MMD_AN, MDIO_AN_EEE_ADV2);
e->eee_enabled = !!(val & MDIO_EEE_2_5GT);
}
}
pr_debug("%s: enabled: %d\n", __func__, e->eee_enabled);
return 0;
}
static int rtl8226_set_eee(struct phy_device *phydev, struct ethtool_eee *e)
{
int port = phydev->mdio.addr;
u64 poll_state;
bool an_enabled;
u32 val;
pr_info("In %s, port %d, enabled %d\n", __func__, port, e->eee_enabled);
poll_state = disable_polling(port);
/* Remember aneg state */
val = phy_read_mmd(phydev, MDIO_MMD_AN, MDIO_CTRL1);
an_enabled = !!(val & MDIO_AN_CTRL1_ENABLE);
/* Setup 100/1000MBit */
val = phy_read_mmd(phydev, MDIO_MMD_AN, MDIO_AN_EEE_ADV);
if (e->eee_enabled)
val |= (MDIO_EEE_100TX | MDIO_EEE_1000T);
else
val &= (MDIO_EEE_100TX | MDIO_EEE_1000T);
phy_write_mmd(phydev, MDIO_MMD_AN, MDIO_AN_EEE_ADV, val);
/* Setup 2.5GBit */
val = phy_read_mmd(phydev, MDIO_MMD_AN, MDIO_AN_EEE_ADV2);
if (e->eee_enabled)
val |= MDIO_EEE_2_5GT;
else
val &= MDIO_EEE_2_5GT;
phy_write_mmd(phydev, MDIO_MMD_AN, MDIO_AN_EEE_ADV2, val);
/* RestartAutoNegotiation */
val = phy_read_mmd(phydev, MDIO_MMD_VEND2, 0xA400);
val |= MDIO_AN_CTRL1_RESTART;
phy_write_mmd(phydev, MDIO_MMD_VEND2, 0xA400, val);
resume_polling(poll_state);
return 0;
}
static struct fw_header *rtl838x_request_fw(struct phy_device *phydev,
const struct firmware *fw,
const char *name)
{
struct device *dev = &phydev->mdio.dev;
int err;
struct fw_header *h;
uint32_t checksum, my_checksum;
err = request_firmware(&fw, name, dev);
if (err < 0)
goto out;
if (fw->size < sizeof(struct fw_header)) {
pr_err("Firmware size too small.\n");
err = -EINVAL;
goto out;
}
h = (struct fw_header *) fw->data;
pr_info("Firmware loaded. Size %d, magic: %08x\n", fw->size, h->magic);
if (h->magic != 0x83808380) {
pr_err("Wrong firmware file: MAGIC mismatch.\n");
goto out;
}
checksum = h->checksum;
h->checksum = 0;
my_checksum = ~crc32(0xFFFFFFFFU, fw->data, fw->size);
if (checksum != my_checksum) {
pr_err("Firmware checksum mismatch.\n");
err = -EINVAL;
goto out;
}
h->checksum = checksum;
return h;
out:
dev_err(dev, "Unable to load firmware %s (%d)\n", name, err);
return NULL;
}
static void rtl821x_phy_setup_package_broadcast(struct phy_device *phydev, bool enable)
{
int mac = phydev->mdio.addr;
/* select main page 0 */
phy_write_paged(phydev, RTL83XX_PAGE_RAW, RTL8XXX_PAGE_SELECT, RTL8XXX_PAGE_MAIN);
/* write to 0x8 to register 0x1d on main page 0 */
phy_write_paged(phydev, RTL83XX_PAGE_RAW, RTL821XINT_MEDIA_PAGE_SELECT, RTL821X_MEDIA_PAGE_INTERNAL);
/* select page 0x266 */
phy_write_paged(phydev, RTL83XX_PAGE_RAW, RTL8XXX_PAGE_SELECT, RTL821X_PAGE_PORT);
/* set phy id and target broadcast bitmap in register 0x16 on page 0x266 */
phy_write_paged(phydev, RTL83XX_PAGE_RAW, 0x16, (enable?0xff00:0x00) | mac);
/* return to main page 0 */
phy_write_paged(phydev, RTL83XX_PAGE_RAW, RTL8XXX_PAGE_SELECT, RTL8XXX_PAGE_MAIN);
/* write to 0x0 to register 0x1d on main page 0 */
phy_write_paged(phydev, RTL83XX_PAGE_RAW, RTL821XINT_MEDIA_PAGE_SELECT, RTL821X_MEDIA_PAGE_AUTO);
mdelay(1);
}
static int rtl8390_configure_generic(struct phy_device *phydev)
{
int mac = phydev->mdio.addr;
u32 val, phy_id;
val = phy_read(phydev, 2);
phy_id = val << 16;
val = phy_read(phydev, 3);
phy_id |= val;
pr_debug("Phy on MAC %d: %x\n", mac, phy_id);
/* Read internal PHY ID */
phy_write_paged(phydev, 31, 27, 0x0002);
val = phy_read_paged(phydev, 31, 28);
/* Internal RTL8218B, version 2 */
phydev_info(phydev, "Detected unknown %x\n", val);
return 0;
}
static int rtl8380_configure_int_rtl8218b(struct phy_device *phydev)
{
u32 val, phy_id;
int mac = phydev->mdio.addr;
struct fw_header *h;
u32 *rtl838x_6275B_intPhy_perport;
u32 *rtl8218b_6276B_hwEsd_perport;
val = phy_read(phydev, 2);
phy_id = val << 16;
val = phy_read(phydev, 3);
phy_id |= val;
pr_debug("Phy on MAC %d: %x\n", mac, phy_id);
/* Read internal PHY ID */
phy_write_paged(phydev, 31, 27, 0x0002);
val = phy_read_paged(phydev, 31, 28);
if (val != 0x6275) {
phydev_err(phydev, "Expected internal RTL8218B, found PHY-ID %x\n", val);
return -1;
}
/* Internal RTL8218B, version 2 */
phydev_info(phydev, "Detected internal RTL8218B\n");
h = rtl838x_request_fw(phydev, &rtl838x_8380_fw, FIRMWARE_838X_8380_1);
if (!h)
return -1;
if (h->phy != 0x83800000) {
phydev_err(phydev, "Wrong firmware file: PHY mismatch.\n");
return -1;
}
rtl838x_6275B_intPhy_perport = (void *)h + sizeof(struct fw_header) + h->parts[8].start;
rtl8218b_6276B_hwEsd_perport = (void *)h + sizeof(struct fw_header) + h->parts[9].start;
// Currently not used
// if (sw_r32(RTL838X_DMY_REG31) == 0x1) {
// int ipd_flag = 1;
// }
val = phy_read(phydev, MII_BMCR);
if (val & BMCR_PDOWN)
rtl8380_int_phy_on_off(phydev, true);
else
rtl8380_phy_reset(phydev);
msleep(100);
/* Ready PHY for patch */
for (int p = 0; p < 8; p++) {
phy_package_port_write_paged(phydev, p, RTL83XX_PAGE_RAW, RTL8XXX_PAGE_SELECT, RTL821X_PAGE_PATCH);
phy_package_port_write_paged(phydev, p, RTL83XX_PAGE_RAW, 0x10, 0x0010);
}
msleep(500);
for (int p = 0; p < 8; p++) {
int i;
for (i = 0; i < 100 ; i++) {
val = phy_package_port_read_paged(phydev, p, RTL821X_PAGE_STATE, 0x10);
if (val & 0x40)
break;
}
if (i >= 100) {
phydev_err(phydev,
"ERROR: Port %d not ready for patch.\n",
mac + p);
return -1;
}
}
for (int p = 0; p < 8; p++) {
int i;
i = 0;
while (rtl838x_6275B_intPhy_perport[i * 2]) {
phy_package_port_write_paged(phydev, p, RTL83XX_PAGE_RAW,
rtl838x_6275B_intPhy_perport[i * 2],
rtl838x_6275B_intPhy_perport[i * 2 + 1]);
i++;
}
i = 0;
while (rtl8218b_6276B_hwEsd_perport[i * 2]) {
phy_package_port_write_paged(phydev, p, RTL83XX_PAGE_RAW,
rtl8218b_6276B_hwEsd_perport[i * 2],
rtl8218b_6276B_hwEsd_perport[i * 2 + 1]);
i++;
}
}
return 0;
}
static int rtl8380_configure_ext_rtl8218b(struct phy_device *phydev)
{
u32 val, ipd, phy_id;
int mac = phydev->mdio.addr;
struct fw_header *h;
u32 *rtl8380_rtl8218b_perchip;
u32 *rtl8218B_6276B_rtl8380_perport;
u32 *rtl8380_rtl8218b_perport;
if (soc_info.family == RTL8380_FAMILY_ID && mac != 0 && mac != 16) {
phydev_err(phydev, "External RTL8218B must have PHY-IDs 0 or 16!\n");
return -1;
}
val = phy_read(phydev, 2);
phy_id = val << 16;
val = phy_read(phydev, 3);
phy_id |= val;
pr_info("Phy on MAC %d: %x\n", mac, phy_id);
/* Read internal PHY ID */
phy_write_paged(phydev, 31, 27, 0x0002);
val = phy_read_paged(phydev, 31, 28);
if (val != 0x6276) {
phydev_err(phydev, "Expected external RTL8218B, found PHY-ID %x\n", val);
return -1;
}
phydev_info(phydev, "Detected external RTL8218B\n");
h = rtl838x_request_fw(phydev, &rtl838x_8218b_fw, FIRMWARE_838X_8218b_1);
if (!h)
return -1;
if (h->phy != 0x8218b000) {
phydev_err(phydev, "Wrong firmware file: PHY mismatch.\n");
return -1;
}
rtl8380_rtl8218b_perchip = (void *)h + sizeof(struct fw_header) + h->parts[0].start;
rtl8218B_6276B_rtl8380_perport = (void *)h + sizeof(struct fw_header) + h->parts[1].start;
rtl8380_rtl8218b_perport = (void *)h + sizeof(struct fw_header) + h->parts[2].start;
val = phy_read(phydev, MII_BMCR);
if (val & BMCR_PDOWN)
rtl8380_int_phy_on_off(phydev, true);
else
rtl8380_phy_reset(phydev);
msleep(100);
/* Get Chip revision */
phy_write_paged(phydev, RTL83XX_PAGE_RAW, RTL8XXX_PAGE_SELECT, RTL8XXX_PAGE_MAIN);
phy_write_paged(phydev, RTL83XX_PAGE_RAW, 0x1b, 0x4);
val = phy_read_paged(phydev, RTL83XX_PAGE_RAW, 0x1c);
phydev_info(phydev, "Detected chip revision %04x\n", val);
for (int i = 0; rtl8380_rtl8218b_perchip[i * 3] &&
rtl8380_rtl8218b_perchip[i * 3 + 1]; i++) {
phy_package_port_write_paged(phydev, rtl8380_rtl8218b_perchip[i * 3],
RTL83XX_PAGE_RAW, rtl8380_rtl8218b_perchip[i * 3 + 1],
rtl8380_rtl8218b_perchip[i * 3 + 2]);
}
/* Enable PHY */
for (int i = 0; i < 8; i++) {
phy_package_port_write_paged(phydev, i, RTL83XX_PAGE_RAW, RTL8XXX_PAGE_SELECT, RTL8XXX_PAGE_MAIN);
phy_package_port_write_paged(phydev, i, RTL83XX_PAGE_RAW, 0x00, 0x1140);
}
mdelay(100);
/* Request patch */
for (int i = 0; i < 8; i++) {
phy_package_port_write_paged(phydev, i, RTL83XX_PAGE_RAW, RTL8XXX_PAGE_SELECT, RTL821X_PAGE_PATCH);
phy_package_port_write_paged(phydev, i, RTL83XX_PAGE_RAW, 0x10, 0x0010);
}
mdelay(300);
/* Verify patch readiness */
for (int i = 0; i < 8; i++) {
int l;
for (l = 0; l < 100; l++) {
val = phy_package_port_read_paged(phydev, i, RTL821X_PAGE_STATE, 0x10);
if (val & 0x40)
break;
}
if (l >= 100) {
phydev_err(phydev, "Could not patch PHY\n");
return -1;
}
}
/* Use Broadcast ID method for patching */
rtl821x_phy_setup_package_broadcast(phydev, true);
phy_write_paged(phydev, RTL83XX_PAGE_RAW, 30, 8);
phy_write_paged(phydev, 0x26e, 17, 0xb);
phy_write_paged(phydev, 0x26e, 16, 0x2);
mdelay(1);
ipd = phy_read_paged(phydev, 0x26e, 19);
phy_write_paged(phydev, 0, 30, 0);
ipd = (ipd >> 4) & 0xf; /* unused ? */
for (int i = 0; rtl8218B_6276B_rtl8380_perport[i * 2]; i++) {
phy_write_paged(phydev, RTL83XX_PAGE_RAW, rtl8218B_6276B_rtl8380_perport[i * 2],
rtl8218B_6276B_rtl8380_perport[i * 2 + 1]);
}
/* Disable broadcast ID */
rtl821x_phy_setup_package_broadcast(phydev, false);
return 0;
}
static int rtl8218b_ext_match_phy_device(struct phy_device *phydev)
{
int addr = phydev->mdio.addr;
/* Both the RTL8214FC and the external RTL8218B have the same
* PHY ID. On the RTL838x, the RTL8218B can only be attached_dev
* at PHY IDs 0-7, while the RTL8214FC must be attached via
* the pair of SGMII/1000Base-X with higher PHY-IDs
*/
if (soc_info.family == RTL8380_FAMILY_ID)
return phydev->phy_id == PHY_ID_RTL8218B_E && addr < 8;
else
return phydev->phy_id == PHY_ID_RTL8218B_E;
}
static bool rtl8214fc_media_is_fibre(struct phy_device *phydev)
{
int mac = phydev->mdio.addr;
static int reg[] = {16, 19, 20, 21};
u32 val;
phy_package_write_paged(phydev, RTL83XX_PAGE_RAW, RTL821XINT_MEDIA_PAGE_SELECT, RTL821X_MEDIA_PAGE_INTERNAL);
val = phy_package_read_paged(phydev, RTL821X_PAGE_PORT, reg[mac % 4]);
phy_package_write_paged(phydev, RTL83XX_PAGE_RAW, RTL821XINT_MEDIA_PAGE_SELECT, RTL821X_MEDIA_PAGE_AUTO);
if (val & BMCR_PDOWN)
return false;
return true;
}
static void rtl8214fc_power_set(struct phy_device *phydev, int port, bool on)
{
char *state = on ? "on" : "off";
if (port == PORT_FIBRE) {
pr_info("%s: Powering %s FIBRE (port %d)\n", __func__, state, phydev->mdio.addr);
phy_write_paged(phydev, RTL83XX_PAGE_RAW, RTL821XINT_MEDIA_PAGE_SELECT, RTL821X_MEDIA_PAGE_FIBRE);
} else {
pr_info("%s: Powering %s COPPER (port %d)\n", __func__, state, phydev->mdio.addr);
phy_write_paged(phydev, RTL83XX_PAGE_RAW, RTL821XINT_MEDIA_PAGE_SELECT, RTL821X_MEDIA_PAGE_COPPER);
}
if (on) {
phy_modify_paged(phydev, RTL821X_PAGE_POWER, 0x10, BMCR_PDOWN, 0);
} else {
phy_modify_paged(phydev, RTL821X_PAGE_POWER, 0x10, 0, BMCR_PDOWN);
}
phy_write_paged(phydev, RTL83XX_PAGE_RAW, RTL821XINT_MEDIA_PAGE_SELECT, RTL821X_MEDIA_PAGE_AUTO);
}
static int rtl8214fc_suspend(struct phy_device *phydev)
{
rtl8214fc_power_set(phydev, PORT_MII, false);
rtl8214fc_power_set(phydev, PORT_FIBRE, false);
return 0;
}
static int rtl8214fc_resume(struct phy_device *phydev)
{
if (rtl8214fc_media_is_fibre(phydev)) {
rtl8214fc_power_set(phydev, PORT_MII, false);
rtl8214fc_power_set(phydev, PORT_FIBRE, true);
} else {
rtl8214fc_power_set(phydev, PORT_FIBRE, false);
rtl8214fc_power_set(phydev, PORT_MII, true);
}
return 0;
}
static void rtl8214fc_media_set(struct phy_device *phydev, bool set_fibre)
{
int mac = phydev->mdio.addr;
static int reg[] = {16, 19, 20, 21};
int val;
pr_info("%s: port %d, set_fibre: %d\n", __func__, mac, set_fibre);
phy_package_write_paged(phydev, RTL83XX_PAGE_RAW, RTL821XINT_MEDIA_PAGE_SELECT, RTL821X_MEDIA_PAGE_INTERNAL);
val = phy_package_read_paged(phydev, RTL821X_PAGE_PORT, reg[mac % 4]);
val |= BIT(10);
if (set_fibre) {
val &= ~BMCR_PDOWN;
} else {
val |= BMCR_PDOWN;
}
phy_package_write_paged(phydev, RTL83XX_PAGE_RAW, RTL821XINT_MEDIA_PAGE_SELECT, RTL821X_MEDIA_PAGE_INTERNAL);
phy_package_write_paged(phydev, RTL821X_PAGE_PORT, reg[mac % 4], val);
phy_package_write_paged(phydev, RTL83XX_PAGE_RAW, RTL821XINT_MEDIA_PAGE_SELECT, RTL821X_MEDIA_PAGE_AUTO);
if (!phydev->suspended) {
if (set_fibre) {
rtl8214fc_power_set(phydev, PORT_MII, false);
rtl8214fc_power_set(phydev, PORT_FIBRE, true);
} else {
rtl8214fc_power_set(phydev, PORT_FIBRE, false);
rtl8214fc_power_set(phydev, PORT_MII, true);
}
}
}
static int rtl8214fc_set_port(struct phy_device *phydev, int port)
{
bool is_fibre = (port == PORT_FIBRE ? true : false);
int addr = phydev->mdio.addr;
pr_debug("%s port %d to %d\n", __func__, addr, port);
rtl8214fc_media_set(phydev, is_fibre);
return 0;
}
static int rtl8214fc_get_port(struct phy_device *phydev)
{
int addr = phydev->mdio.addr;
pr_debug("%s: port %d\n", __func__, addr);
if (rtl8214fc_media_is_fibre(phydev))
return PORT_FIBRE;
return PORT_MII;
}
/* Enable EEE on the RTL8218B PHYs
* The method used is not the preferred way (which would be based on the MAC-EEE state,
* but the only way that works since the kernel first enables EEE in the MAC
* and then sets up the PHY. The MAC-based approach would require the oppsite.
*/
void rtl8218d_eee_set(struct phy_device *phydev, bool enable)
{
u32 val;
bool an_enabled;
pr_debug("In %s %d, enable %d\n", __func__, phydev->mdio.addr, enable);
/* Set GPHY page to copper */
phy_write_paged(phydev, RTL821X_PAGE_GPHY, RTL821XEXT_MEDIA_PAGE_SELECT, RTL821X_MEDIA_PAGE_COPPER);
val = phy_read(phydev, MII_BMCR);
an_enabled = val & BMCR_ANENABLE;
val = phy_read_mmd(phydev, MDIO_MMD_AN, MDIO_AN_EEE_ADV);
val |= MDIO_EEE_1000T | MDIO_EEE_100TX;
phy_write_mmd(phydev, MDIO_MMD_AN, MDIO_AN_EEE_ADV, enable ? (MDIO_EEE_100TX | MDIO_EEE_1000T) : 0);
/* 500M EEE ability */
val = phy_read_paged(phydev, RTL821X_PAGE_GPHY, 20);
if (enable)
val |= BIT(7);
else
val &= ~BIT(7);
phy_write_paged(phydev, RTL821X_PAGE_GPHY, 20, val);
/* Restart AN if enabled */
if (an_enabled) {
val = phy_read(phydev, MII_BMCR);
val |= BMCR_ANRESTART;
phy_write(phydev, MII_BMCR, val);
}
/* GPHY page back to auto */
phy_write_paged(phydev, RTL821X_PAGE_GPHY, RTL821XEXT_MEDIA_PAGE_SELECT, RTL821X_MEDIA_PAGE_AUTO);
}
static int rtl8218b_get_eee(struct phy_device *phydev,
struct ethtool_eee *e)
{
u32 val;
int addr = phydev->mdio.addr;
pr_debug("In %s, port %d, was enabled: %d\n", __func__, addr, e->eee_enabled);
/* Set GPHY page to copper */
phy_write_paged(phydev, RTL821X_PAGE_GPHY, RTL821XINT_MEDIA_PAGE_SELECT, RTL821X_MEDIA_PAGE_COPPER);
val = phy_read_paged(phydev, 7, MDIO_AN_EEE_ADV);
if (e->eee_enabled) {
/* Verify vs MAC-based EEE */
e->eee_enabled = !!(val & BIT(7));
if (!e->eee_enabled) {
val = phy_read_paged(phydev, RTL821X_PAGE_MAC, 25);
e->eee_enabled = !!(val & BIT(4));
}
}
pr_debug("%s: enabled: %d\n", __func__, e->eee_enabled);
/* GPHY page to auto */
phy_write_paged(phydev, RTL821X_PAGE_GPHY, RTL821XINT_MEDIA_PAGE_SELECT, RTL821X_MEDIA_PAGE_AUTO);
return 0;
}
static int rtl8218d_get_eee(struct phy_device *phydev,
struct ethtool_eee *e)
{
u32 val;
int addr = phydev->mdio.addr;
pr_debug("In %s, port %d, was enabled: %d\n", __func__, addr, e->eee_enabled);
/* Set GPHY page to copper */
phy_write_paged(phydev, RTL821X_PAGE_GPHY, RTL821XEXT_MEDIA_PAGE_SELECT, RTL821X_MEDIA_PAGE_COPPER);
val = phy_read_paged(phydev, 7, MDIO_AN_EEE_ADV);
if (e->eee_enabled)
e->eee_enabled = !!(val & BIT(7));
pr_debug("%s: enabled: %d\n", __func__, e->eee_enabled);
/* GPHY page to auto */
phy_write_paged(phydev, RTL821X_PAGE_GPHY, RTL821XEXT_MEDIA_PAGE_SELECT, RTL821X_MEDIA_PAGE_AUTO);
return 0;
}
static int rtl8214fc_set_eee(struct phy_device *phydev,
struct ethtool_eee *e)
{
u32 poll_state;
int port = phydev->mdio.addr;
bool an_enabled;
u32 val;
pr_debug("In %s port %d, enabled %d\n", __func__, port, e->eee_enabled);
if (rtl8214fc_media_is_fibre(phydev)) {
netdev_err(phydev->attached_dev, "Port %d configured for FIBRE", port);
return -ENOTSUPP;
}
poll_state = disable_polling(port);
/* Set GPHY page to copper */
phy_write_paged(phydev, RTL821X_PAGE_GPHY, RTL821XINT_MEDIA_PAGE_SELECT, RTL821X_MEDIA_PAGE_COPPER);
/* Get auto-negotiation status */
val = phy_read(phydev, MII_BMCR);
an_enabled = val & BMCR_ANENABLE;
pr_info("%s: aneg: %d\n", __func__, an_enabled);
val = phy_read_paged(phydev, RTL821X_PAGE_MAC, 25);
val &= ~BIT(5); /* Use MAC-based EEE */
phy_write_paged(phydev, RTL821X_PAGE_MAC, 25, val);
/* Enable 100M (bit 1) / 1000M (bit 2) EEE */
phy_write_paged(phydev, 7, MDIO_AN_EEE_ADV, e->eee_enabled ? (MDIO_EEE_100TX | MDIO_EEE_1000T) : 0);
/* 500M EEE ability */
val = phy_read_paged(phydev, RTL821X_PAGE_GPHY, 20);
if (e->eee_enabled)
val |= BIT(7);
else
val &= ~BIT(7);
phy_write_paged(phydev, RTL821X_PAGE_GPHY, 20, val);
/* Restart AN if enabled */
if (an_enabled) {
pr_info("%s: doing aneg\n", __func__);
val = phy_read(phydev, MII_BMCR);
val |= BMCR_ANRESTART;
phy_write(phydev, MII_BMCR, val);
}
/* GPHY page back to auto */
phy_write_paged(phydev, RTL821X_PAGE_GPHY, RTL821XINT_MEDIA_PAGE_SELECT, RTL821X_MEDIA_PAGE_AUTO);
resume_polling(poll_state);
return 0;
}
static int rtl8214fc_get_eee(struct phy_device *phydev,
struct ethtool_eee *e)
{
int addr = phydev->mdio.addr;
pr_debug("In %s port %d, enabled %d\n", __func__, addr, e->eee_enabled);
if (rtl8214fc_media_is_fibre(phydev)) {
netdev_err(phydev->attached_dev, "Port %d configured for FIBRE", addr);
return -ENOTSUPP;
}
return rtl8218b_get_eee(phydev, e);
}
static int rtl8218b_set_eee(struct phy_device *phydev, struct ethtool_eee *e)
{
int port = phydev->mdio.addr;
u64 poll_state;
u32 val;
bool an_enabled;
pr_info("In %s, port %d, enabled %d\n", __func__, port, e->eee_enabled);
poll_state = disable_polling(port);
/* Set GPHY page to copper */
phy_write(phydev, RTL821XEXT_MEDIA_PAGE_SELECT, RTL821X_MEDIA_PAGE_COPPER);
val = phy_read(phydev, MII_BMCR);
an_enabled = val & BMCR_ANENABLE;
if (e->eee_enabled) {
/* 100/1000M EEE Capability */
phy_write(phydev, 13, 0x0007);
phy_write(phydev, 14, 0x003C);
phy_write(phydev, 13, 0x4007);
phy_write(phydev, 14, 0x0006);
val = phy_read_paged(phydev, RTL821X_PAGE_MAC, 25);
val |= BIT(4);
phy_write_paged(phydev, RTL821X_PAGE_MAC, 25, val);
} else {
/* 100/1000M EEE Capability */
phy_write(phydev, 13, 0x0007);
phy_write(phydev, 14, 0x003C);
phy_write(phydev, 13, 0x0007);
phy_write(phydev, 14, 0x0000);
val = phy_read_paged(phydev, RTL821X_PAGE_MAC, 25);
val &= ~BIT(4);
phy_write_paged(phydev, RTL821X_PAGE_MAC, 25, val);
}
/* Restart AN if enabled */
if (an_enabled) {
val = phy_read(phydev, MII_BMCR);
val |= BMCR_ANRESTART;
phy_write(phydev, MII_BMCR, val);
}
/* GPHY page back to auto */
phy_write_paged(phydev, RTL821X_PAGE_GPHY, RTL821XEXT_MEDIA_PAGE_SELECT, RTL821X_MEDIA_PAGE_AUTO);
pr_info("%s done\n", __func__);
resume_polling(poll_state);
return 0;
}
static int rtl8218d_set_eee(struct phy_device *phydev, struct ethtool_eee *e)
{
int addr = phydev->mdio.addr;
u64 poll_state;
pr_info("In %s, port %d, enabled %d\n", __func__, addr, e->eee_enabled);
poll_state = disable_polling(addr);
rtl8218d_eee_set(phydev, (bool) e->eee_enabled);
resume_polling(poll_state);
return 0;
}
static int rtl8214c_match_phy_device(struct phy_device *phydev)
{
return phydev->phy_id == PHY_ID_RTL8214C;
}
static int rtl8380_configure_rtl8214c(struct phy_device *phydev)
{
u32 phy_id, val;
int mac = phydev->mdio.addr;
val = phy_read(phydev, 2);
phy_id = val << 16;
val = phy_read(phydev, 3);
phy_id |= val;
pr_debug("Phy on MAC %d: %x\n", mac, phy_id);
phydev_info(phydev, "Detected external RTL8214C\n");
/* GPHY auto conf */
phy_write_paged(phydev, RTL821X_PAGE_GPHY, RTL821XINT_MEDIA_PAGE_SELECT, RTL821X_MEDIA_PAGE_AUTO);
return 0;
}
static int rtl8380_configure_rtl8214fc(struct phy_device *phydev)
{
int mac = phydev->mdio.addr;
struct fw_header *h;
u32 *rtl8380_rtl8214fc_perchip;
u32 *rtl8380_rtl8214fc_perport;
u32 phy_id;
u32 val;
val = phy_read(phydev, 2);
phy_id = val << 16;
val = phy_read(phydev, 3);
phy_id |= val;
pr_debug("Phy on MAC %d: %x\n", mac, phy_id);
/* Read internal PHY id */
phy_write_paged(phydev, 0, RTL821XEXT_MEDIA_PAGE_SELECT, RTL821X_MEDIA_PAGE_COPPER);
phy_write_paged(phydev, 0x1f, 0x1b, 0x0002);
val = phy_read_paged(phydev, 0x1f, 0x1c);
if (val != 0x6276) {
phydev_err(phydev, "Expected external RTL8214FC, found PHY-ID %x\n", val);
return -1;
}
phydev_info(phydev, "Detected external RTL8214FC\n");
h = rtl838x_request_fw(phydev, &rtl838x_8214fc_fw, FIRMWARE_838X_8214FC_1);
if (!h)
return -1;
if (h->phy != 0x8214fc00) {
phydev_err(phydev, "Wrong firmware file: PHY mismatch.\n");
return -1;
}
rtl8380_rtl8214fc_perchip = (void *)h + sizeof(struct fw_header) + h->parts[0].start;
rtl8380_rtl8214fc_perport = (void *)h + sizeof(struct fw_header) + h->parts[1].start;
/* detect phy version */
phy_write_paged(phydev, RTL83XX_PAGE_RAW, 27, 0x0004);
val = phy_read_paged(phydev, RTL83XX_PAGE_RAW, 28);
val = phy_read(phydev, 16);
if (val & BMCR_PDOWN)
rtl8380_rtl8214fc_on_off(phydev, true);
else
rtl8380_phy_reset(phydev);
msleep(100);
phy_write_paged(phydev, 0, RTL821XEXT_MEDIA_PAGE_SELECT, RTL821X_MEDIA_PAGE_COPPER);
for (int i = 0; rtl8380_rtl8214fc_perchip[i * 3] &&
rtl8380_rtl8214fc_perchip[i * 3 + 1]; i++) {
u32 page = 0;
if (rtl8380_rtl8214fc_perchip[i * 3 + 1] == 0x1f)
page = rtl8380_rtl8214fc_perchip[i * 3 + 2];
if (rtl8380_rtl8214fc_perchip[i * 3 + 1] == 0x13 && page == 0x260) {
val = phy_read_paged(phydev, 0x260, 13);
val = (val & 0x1f00) | (rtl8380_rtl8214fc_perchip[i * 3 + 2] & 0xe0ff);
phy_write_paged(phydev, RTL83XX_PAGE_RAW,
rtl8380_rtl8214fc_perchip[i * 3 + 1], val);
} else {
phy_write_paged(phydev, RTL83XX_PAGE_RAW,
rtl8380_rtl8214fc_perchip[i * 3 + 1],
rtl8380_rtl8214fc_perchip[i * 3 + 2]);
}
}
/* Force copper medium */
for (int i = 0; i < 4; i++) {
phy_package_port_write_paged(phydev, i, RTL83XX_PAGE_RAW, RTL8XXX_PAGE_SELECT, RTL8XXX_PAGE_MAIN);
phy_package_port_write_paged(phydev, i, RTL83XX_PAGE_RAW, RTL821XEXT_MEDIA_PAGE_SELECT, RTL821X_MEDIA_PAGE_COPPER);
}
/* Enable PHY */
for (int i = 0; i < 4; i++) {
phy_package_port_write_paged(phydev, i, RTL83XX_PAGE_RAW, RTL8XXX_PAGE_SELECT, RTL8XXX_PAGE_MAIN);
phy_package_port_write_paged(phydev, i, RTL83XX_PAGE_RAW, 0x00, 0x1140);
}
mdelay(100);
/* Disable Autosensing */
for (int i = 0; i < 4; i++) {
int l;
for (l = 0; l < 100; l++) {
val = phy_package_port_read_paged(phydev, i, RTL821X_PAGE_GPHY, 0x10);
if ((val & 0x7) >= 3)
break;
}
if (l >= 100) {
phydev_err(phydev, "Could not disable autosensing\n");
return -1;
}
}
/* Request patch */
for (int i = 0; i < 4; i++) {
phy_package_port_write_paged(phydev, i, RTL83XX_PAGE_RAW, RTL8XXX_PAGE_SELECT, RTL821X_PAGE_PATCH);
phy_package_port_write_paged(phydev, i, RTL83XX_PAGE_RAW, 0x10, 0x0010);
}
mdelay(300);
/* Verify patch readiness */
for (int i = 0; i < 4; i++) {
int l;
for (l = 0; l < 100; l++) {
val = phy_package_port_read_paged(phydev, i, RTL821X_PAGE_STATE, 0x10);
if (val & 0x40)
break;
}
if (l >= 100) {
phydev_err(phydev, "Could not patch PHY\n");
return -1;
}
}
/* Use Broadcast ID method for patching */
rtl821x_phy_setup_package_broadcast(phydev, true);
for (int i = 0; rtl8380_rtl8214fc_perport[i * 2]; i++) {
phy_write_paged(phydev, RTL83XX_PAGE_RAW, rtl8380_rtl8214fc_perport[i * 2],
rtl8380_rtl8214fc_perport[i * 2 + 1]);
}
/* Disable broadcast ID */
rtl821x_phy_setup_package_broadcast(phydev, false);
/* Auto medium selection */
for (int i = 0; i < 4; i++) {
phy_write_paged(phydev, RTL83XX_PAGE_RAW, RTL8XXX_PAGE_SELECT, RTL8XXX_PAGE_MAIN);
phy_write_paged(phydev, RTL83XX_PAGE_RAW, RTL821XEXT_MEDIA_PAGE_SELECT, RTL821X_MEDIA_PAGE_AUTO);
}
return 0;
}
static int rtl8214fc_match_phy_device(struct phy_device *phydev)
{
int addr = phydev->mdio.addr;
return phydev->phy_id == PHY_ID_RTL8214FC && addr >= 24;
}
static int rtl8380_configure_serdes(struct phy_device *phydev)
{
u32 v;
u32 sds_conf_value;
int i;
struct fw_header *h;
u32 *rtl8380_sds_take_reset;
u32 *rtl8380_sds_common;
u32 *rtl8380_sds01_qsgmii_6275b;
u32 *rtl8380_sds23_qsgmii_6275b;
u32 *rtl8380_sds4_fiber_6275b;
u32 *rtl8380_sds5_fiber_6275b;
u32 *rtl8380_sds_reset;
u32 *rtl8380_sds_release_reset;
phydev_info(phydev, "Detected internal RTL8380 SERDES\n");
h = rtl838x_request_fw(phydev, &rtl838x_8218b_fw, FIRMWARE_838X_8380_1);
if (!h)
return -1;
if (h->magic != 0x83808380) {
phydev_err(phydev, "Wrong firmware file: magic number mismatch.\n");
return -1;
}
rtl8380_sds_take_reset = (void *)h + sizeof(struct fw_header) + h->parts[0].start;
rtl8380_sds_common = (void *)h + sizeof(struct fw_header) + h->parts[1].start;
rtl8380_sds01_qsgmii_6275b = (void *)h + sizeof(struct fw_header) + h->parts[2].start;
rtl8380_sds23_qsgmii_6275b = (void *)h + sizeof(struct fw_header) + h->parts[3].start;
rtl8380_sds4_fiber_6275b = (void *)h + sizeof(struct fw_header) + h->parts[4].start;
rtl8380_sds5_fiber_6275b = (void *)h + sizeof(struct fw_header) + h->parts[5].start;
rtl8380_sds_reset = (void *)h + sizeof(struct fw_header) + h->parts[6].start;
rtl8380_sds_release_reset = (void *)h + sizeof(struct fw_header) + h->parts[7].start;
/* Back up serdes power off value */
sds_conf_value = sw_r32(RTL838X_SDS_CFG_REG);
pr_info("SDS power down value: %x\n", sds_conf_value);
/* take serdes into reset */
i = 0;
while (rtl8380_sds_take_reset[2 * i]) {
sw_w32(rtl8380_sds_take_reset[2 * i + 1], rtl8380_sds_take_reset[2 * i]);
i++;
udelay(1000);
}
/* apply common serdes patch */
i = 0;
while (rtl8380_sds_common[2 * i]) {
sw_w32(rtl8380_sds_common[2 * i + 1], rtl8380_sds_common[2 * i]);
i++;
udelay(1000);
}
/* internal R/W enable */
sw_w32(3, RTL838X_INT_RW_CTRL);
/* SerDes ports 4 and 5 are FIBRE ports */
sw_w32_mask(0x7 | 0x38, 1 | (1 << 3), RTL838X_INT_MODE_CTRL);
/* SerDes module settings, SerDes 0-3 are QSGMII */
v = 0x6 << 25 | 0x6 << 20 | 0x6 << 15 | 0x6 << 10;
/* SerDes 4 and 5 are 1000BX FIBRE */
v |= 0x4 << 5 | 0x4;
sw_w32(v, RTL838X_SDS_MODE_SEL);
pr_info("PLL control register: %x\n", sw_r32(RTL838X_PLL_CML_CTRL));
sw_w32_mask(0xfffffff0, 0xaaaaaaaf & 0xf, RTL838X_PLL_CML_CTRL);
i = 0;
while (rtl8380_sds01_qsgmii_6275b[2 * i]) {
sw_w32(rtl8380_sds01_qsgmii_6275b[2 * i + 1],
rtl8380_sds01_qsgmii_6275b[2 * i]);
i++;
}
i = 0;
while (rtl8380_sds23_qsgmii_6275b[2 * i]) {
sw_w32(rtl8380_sds23_qsgmii_6275b[2 * i + 1], rtl8380_sds23_qsgmii_6275b[2 * i]);
i++;
}
i = 0;
while (rtl8380_sds4_fiber_6275b[2 * i]) {
sw_w32(rtl8380_sds4_fiber_6275b[2 * i + 1], rtl8380_sds4_fiber_6275b[2 * i]);
i++;
}
i = 0;
while (rtl8380_sds5_fiber_6275b[2 * i]) {
sw_w32(rtl8380_sds5_fiber_6275b[2 * i + 1], rtl8380_sds5_fiber_6275b[2 * i]);
i++;
}
i = 0;
while (rtl8380_sds_reset[2 * i]) {
sw_w32(rtl8380_sds_reset[2 * i + 1], rtl8380_sds_reset[2 * i]);
i++;
}
i = 0;
while (rtl8380_sds_release_reset[2 * i]) {
sw_w32(rtl8380_sds_release_reset[2 * i + 1], rtl8380_sds_release_reset[2 * i]);
i++;
}
pr_info("SDS power down value now: %x\n", sw_r32(RTL838X_SDS_CFG_REG));
sw_w32(sds_conf_value, RTL838X_SDS_CFG_REG);
pr_info("Configuration of SERDES done\n");
return 0;
}
static int rtl8390_configure_serdes(struct phy_device *phydev)
{
phydev_info(phydev, "Detected internal RTL8390 SERDES\n");
/* In autoneg state, force link, set SR4_CFG_EN_LINK_FIB1G */
sw_w32_mask(0, 1 << 18, RTL839X_SDS12_13_XSG0 + 0x0a);
/* Disable EEE: Clear FRE16_EEE_RSG_FIB1G, FRE16_EEE_STD_FIB1G,
* FRE16_C1_PWRSAV_EN_FIB1G, FRE16_C2_PWRSAV_EN_FIB1G
* and FRE16_EEE_QUIET_FIB1G
*/
sw_w32_mask(0x1f << 10, 0, RTL839X_SDS12_13_XSG0 + 0xe0);
return 0;
}
void rtl9300_sds_field_w(int sds, u32 page, u32 reg, int end_bit, int start_bit, u32 v)
{
int l = end_bit - start_bit + 1;
u32 data = v;
if (l < 32) {
u32 mask = BIT(l) - 1;
data = rtl930x_read_sds_phy(sds, page, reg);
data &= ~(mask << start_bit);
data |= (v & mask) << start_bit;
}
rtl930x_write_sds_phy(sds, page, reg, data);
}
u32 rtl9300_sds_field_r(int sds, u32 page, u32 reg, int end_bit, int start_bit)
{
int l = end_bit - start_bit + 1;
u32 v = rtl930x_read_sds_phy(sds, page, reg);
if (l >= 32)
return v;
return (v >> start_bit) & (BIT(l) - 1);
}
/* Read the link and speed status of the internal SerDes of the RTL9300
*/
static int rtl9300_read_status(struct phy_device *phydev)
{
struct device *dev = &phydev->mdio.dev;
int phy_addr = phydev->mdio.addr;
struct device_node *dn;
u32 sds_num = 0, status, latch_status, mode;
if (dev->of_node) {
dn = dev->of_node;
if (of_property_read_u32(dn, "sds", &sds_num))
sds_num = -1;
pr_info("%s: Port %d, SerDes is %d\n", __func__, phy_addr, sds_num);
} else {
dev_err(dev, "No DT node.\n");
return -EINVAL;
}
if (sds_num < 0)
return 0;
mode = rtl9300_sds_mode_get(sds_num);
pr_info("%s got SDS mode %02x\n", __func__, mode);
if (mode == 0x1a) { /* 10GR mode */
status = rtl9300_sds_field_r(sds_num, 0x5, 0, 12, 12);
latch_status = rtl9300_sds_field_r(sds_num, 0x4, 1, 2, 2);
status |= rtl9300_sds_field_r(sds_num, 0x5, 0, 12, 12);
latch_status |= rtl9300_sds_field_r(sds_num, 0x4, 1, 2, 2);
} else {
status = rtl9300_sds_field_r(sds_num, 0x1, 29, 8, 0);
latch_status = rtl9300_sds_field_r(sds_num, 0x1, 30, 8, 0);
status |= rtl9300_sds_field_r(sds_num, 0x1, 29, 8, 0);
latch_status |= rtl9300_sds_field_r(sds_num, 0x1, 30, 8, 0);
}
pr_info("%s link status: status: %d, latch %d\n", __func__, status, latch_status);
if (latch_status) {
phydev->link = true;
if (mode == 0x1a)
phydev->speed = SPEED_10000;
else
phydev->speed = SPEED_1000;
phydev->duplex = DUPLEX_FULL;
}
return 0;
}
void rtl930x_sds_rx_rst(int sds_num, phy_interface_t phy_if)
{
int page = 0x2e; /* 10GR and USXGMII */
if (phy_if == PHY_INTERFACE_MODE_1000BASEX)
page = 0x24;
rtl9300_sds_field_w(sds_num, page, 0x15, 4, 4, 0x1);
mdelay(5);
rtl9300_sds_field_w(sds_num, page, 0x15, 4, 4, 0x0);
}
/* Force PHY modes on 10GBit Serdes
*/
void rtl9300_force_sds_mode(int sds, phy_interface_t phy_if)
{
int lc_value;
int sds_mode;
bool lc_on;
int lane_0 = (sds % 2) ? sds - 1 : sds;
u32 v;
pr_info("%s: SDS: %d, mode %d\n", __func__, sds, phy_if);
switch (phy_if) {
case PHY_INTERFACE_MODE_SGMII:
sds_mode = 0x2;
lc_on = false;
lc_value = 0x1;
break;
case PHY_INTERFACE_MODE_HSGMII:
sds_mode = 0x12;
lc_value = 0x3;
/* Configure LC */
break;
case PHY_INTERFACE_MODE_1000BASEX:
sds_mode = 0x04;
lc_on = false;
break;
case PHY_INTERFACE_MODE_2500BASEX:
sds_mode = 0x16;
lc_value = 0x3;
/* Configure LC */
break;
case PHY_INTERFACE_MODE_10GBASER:
sds_mode = 0x1a;
lc_on = true;
lc_value = 0x5;
break;
case PHY_INTERFACE_MODE_NA:
/* This will disable SerDes */
sds_mode = 0x1f;
break;
default:
pr_err("%s: unknown serdes mode: %s\n",
__func__, phy_modes(phy_if));
return;
}
pr_info("%s --------------------- serdes %d forcing to %x ...\n", __func__, sds, sds_mode);
/* Power down SerDes */
rtl9300_sds_field_w(sds, 0x20, 0, 7, 6, 0x3);
if (sds == 5) pr_info("%s after %x\n", __func__, rtl930x_read_sds_phy(sds, 0x20, 0));
if (sds == 5) pr_info("%s a %x\n", __func__, rtl930x_read_sds_phy(sds, 0x1f, 9));
/* Force mode enable */
rtl9300_sds_field_w(sds, 0x1f, 9, 6, 6, 0x1);
if (sds == 5) pr_info("%s b %x\n", __func__, rtl930x_read_sds_phy(sds, 0x1f, 9));
/* SerDes off */
rtl9300_sds_field_w(sds, 0x1f, 9, 11, 7, 0x1f);
if (phy_if == PHY_INTERFACE_MODE_NA)
return;
if (sds == 5) pr_info("%s c %x\n", __func__, rtl930x_read_sds_phy(sds, 0x20, 18));
/* Enable LC and ring */
rtl9300_sds_field_w(lane_0, 0x20, 18, 3, 0, 0xf);
if (sds == lane_0)
rtl9300_sds_field_w(lane_0, 0x20, 18, 5, 4, 0x1);
else
rtl9300_sds_field_w(lane_0, 0x20, 18, 7, 6, 0x1);
rtl9300_sds_field_w(sds, 0x20, 0, 5, 4, 0x3);
if (lc_on)
rtl9300_sds_field_w(lane_0, 0x20, 18, 11, 8, lc_value);
else
rtl9300_sds_field_w(lane_0, 0x20, 18, 15, 12, lc_value);
/* Force analog LC & ring on */
rtl9300_sds_field_w(lane_0, 0x21, 11, 3, 0, 0xf);
v = lc_on ? 0x3 : 0x1;
if (sds == lane_0)
rtl9300_sds_field_w(lane_0, 0x20, 18, 5, 4, v);
else
rtl9300_sds_field_w(lane_0, 0x20, 18, 7, 6, v);
/* Force SerDes mode */
rtl9300_sds_field_w(sds, 0x1f, 9, 6, 6, 1);
rtl9300_sds_field_w(sds, 0x1f, 9, 11, 7, sds_mode);
/* Toggle LC or Ring */
for (int i = 0; i < 20; i++) {
u32 cr_0, cr_1, cr_2;
u32 m_bit, l_bit;
mdelay(200);
rtl930x_write_sds_phy(lane_0, 0x1f, 2, 53);
m_bit = (lane_0 == sds) ? (4) : (5);
l_bit = (lane_0 == sds) ? (4) : (5);
cr_0 = rtl9300_sds_field_r(lane_0, 0x1f, 20, m_bit, l_bit);
mdelay(10);
cr_1 = rtl9300_sds_field_r(lane_0, 0x1f, 20, m_bit, l_bit);
mdelay(10);
cr_2 = rtl9300_sds_field_r(lane_0, 0x1f, 20, m_bit, l_bit);
if (cr_0 && cr_1 && cr_2) {
u32 t;
if (phy_if != PHY_INTERFACE_MODE_10GBASER)
break;
t = rtl9300_sds_field_r(sds, 0x6, 0x1, 2, 2);
rtl9300_sds_field_w(sds, 0x6, 0x1, 2, 2, 0x1);
/* Reset FSM */
rtl9300_sds_field_w(sds, 0x6, 0x2, 12, 12, 0x1);
mdelay(10);
rtl9300_sds_field_w(sds, 0x6, 0x2, 12, 12, 0x0);
mdelay(10);
/* Need to read this twice */
v = rtl9300_sds_field_r(sds, 0x5, 0, 12, 12);
v = rtl9300_sds_field_r(sds, 0x5, 0, 12, 12);
rtl9300_sds_field_w(sds, 0x6, 0x1, 2, 2, t);
/* Reset FSM again */
rtl9300_sds_field_w(sds, 0x6, 0x2, 12, 12, 0x1);
mdelay(10);
rtl9300_sds_field_w(sds, 0x6, 0x2, 12, 12, 0x0);
mdelay(10);
if (v == 1)
break;
}
m_bit = (phy_if == PHY_INTERFACE_MODE_10GBASER) ? 3 : 1;
l_bit = (phy_if == PHY_INTERFACE_MODE_10GBASER) ? 2 : 0;
rtl9300_sds_field_w(lane_0, 0x21, 11, m_bit, l_bit, 0x2);
mdelay(10);
rtl9300_sds_field_w(lane_0, 0x21, 11, m_bit, l_bit, 0x3);
}
rtl930x_sds_rx_rst(sds, phy_if);
/* Re-enable power */
rtl9300_sds_field_w(sds, 0x20, 0, 7, 6, 0);
pr_info("%s --------------------- serdes %d forced to %x DONE\n", __func__, sds, sds_mode);
}
void rtl9300_sds_tx_config(int sds, phy_interface_t phy_if)
{
/* parameters: rtl9303_80G_txParam_s2 */
int impedance = 0x8;
int pre_amp = 0x2;
int main_amp = 0x9;
int post_amp = 0x2;
int pre_en = 0x1;
int post_en = 0x1;
int page;
switch(phy_if) {
case PHY_INTERFACE_MODE_1000BASEX:
page = 0x25;
break;
case PHY_INTERFACE_MODE_HSGMII:
case PHY_INTERFACE_MODE_2500BASEX:
page = 0x29;
break;
case PHY_INTERFACE_MODE_10GBASER:
page = 0x2f;
break;
default:
pr_err("%s: unsupported PHY mode\n", __func__);
return;
}
rtl9300_sds_field_w(sds, page, 0x01, 15, 11, pre_amp);
rtl9300_sds_field_w(sds, page, 0x06, 4, 0, post_amp);
rtl9300_sds_field_w(sds, page, 0x07, 0, 0, pre_en);
rtl9300_sds_field_w(sds, page, 0x07, 3, 3, post_en);
rtl9300_sds_field_w(sds, page, 0x07, 8, 4, main_amp);
rtl9300_sds_field_w(sds, page, 0x18, 15, 12, impedance);
}
/* Wait for clock ready, this assumes the SerDes is in XGMII mode
* timeout is in ms
*/
int rtl9300_sds_clock_wait(int timeout)
{
u32 v;
unsigned long start = jiffies;
do {
rtl9300_sds_field_w(2, 0x1f, 0x2, 15, 0, 53);
v = rtl9300_sds_field_r(2, 0x1f, 20, 5, 4);
if (v == 3)
return 0;
} while (jiffies < start + (HZ / 1000) * timeout);
return 1;
}
void rtl9300_serdes_mac_link_config(int sds, bool tx_normal, bool rx_normal)
{
u32 v10, v1;
v10 = rtl930x_read_sds_phy(sds, 6, 2); /* 10GBit, page 6, reg 2 */
v1 = rtl930x_read_sds_phy(sds, 0, 0); /* 1GBit, page 0, reg 0 */
pr_info("%s: registers before %08x %08x\n", __func__, v10, v1);
v10 &= ~(BIT(13) | BIT(14));
v1 &= ~(BIT(8) | BIT(9));
v10 |= rx_normal ? 0 : BIT(13);
v1 |= rx_normal ? 0 : BIT(9);
v10 |= tx_normal ? 0 : BIT(14);
v1 |= tx_normal ? 0 : BIT(8);
rtl930x_write_sds_phy(sds, 6, 2, v10);
rtl930x_write_sds_phy(sds, 0, 0, v1);
v10 = rtl930x_read_sds_phy(sds, 6, 2);
v1 = rtl930x_read_sds_phy(sds, 0, 0);
pr_info("%s: registers after %08x %08x\n", __func__, v10, v1);
}
void rtl9300_sds_rxcal_dcvs_manual(u32 sds_num, u32 dcvs_id, bool manual, u32 dvcs_list[])
{
if (manual) {
switch(dcvs_id) {
case 0:
rtl9300_sds_field_w(sds_num, 0x2e, 0x1e, 14, 14, 0x1);
rtl9300_sds_field_w(sds_num, 0x2f, 0x03, 5, 5, dvcs_list[0]);
rtl9300_sds_field_w(sds_num, 0x2f, 0x03, 4, 0, dvcs_list[1]);
break;
case 1:
rtl9300_sds_field_w(sds_num, 0x2e, 0x1e, 13, 13, 0x1);
rtl9300_sds_field_w(sds_num, 0x2e, 0x1d, 15, 15, dvcs_list[0]);
rtl9300_sds_field_w(sds_num, 0x2e, 0x1d, 14, 11, dvcs_list[1]);
break;
case 2:
rtl9300_sds_field_w(sds_num, 0x2e, 0x1e, 12, 12, 0x1);
rtl9300_sds_field_w(sds_num, 0x2e, 0x1d, 10, 10, dvcs_list[0]);
rtl9300_sds_field_w(sds_num, 0x2e, 0x1d, 9, 6, dvcs_list[1]);
break;
case 3:
rtl9300_sds_field_w(sds_num, 0x2e, 0x1e, 11, 11, 0x1);
rtl9300_sds_field_w(sds_num, 0x2e, 0x1d, 5, 5, dvcs_list[0]);
rtl9300_sds_field_w(sds_num, 0x2e, 0x1d, 4, 1, dvcs_list[1]);
break;
case 4:
rtl9300_sds_field_w(sds_num, 0x2e, 0x01, 15, 15, 0x1);
rtl9300_sds_field_w(sds_num, 0x2e, 0x11, 10, 10, dvcs_list[0]);
rtl9300_sds_field_w(sds_num, 0x2e, 0x11, 9, 6, dvcs_list[1]);
break;
case 5:
rtl9300_sds_field_w(sds_num, 0x2e, 0x02, 11, 11, 0x1);
rtl9300_sds_field_w(sds_num, 0x2e, 0x11, 4, 4, dvcs_list[0]);
rtl9300_sds_field_w(sds_num, 0x2e, 0x11, 3, 0, dvcs_list[1]);
break;
default:
break;
}
} else {
switch(dcvs_id) {
case 0:
rtl9300_sds_field_w(sds_num, 0x2e, 0x1e, 14, 14, 0x0);
break;
case 1:
rtl9300_sds_field_w(sds_num, 0x2e, 0x1e, 13, 13, 0x0);
break;
case 2:
rtl9300_sds_field_w(sds_num, 0x2e, 0x1e, 12, 12, 0x0);
break;
case 3:
rtl9300_sds_field_w(sds_num, 0x2e, 0x1e, 11, 11, 0x0);
break;
case 4:
rtl9300_sds_field_w(sds_num, 0x2e, 0x01, 15, 15, 0x0);
break;
case 5:
rtl9300_sds_field_w(sds_num, 0x2e, 0x02, 11, 11, 0x0);
break;
default:
break;
}
mdelay(1);
}
}
void rtl9300_sds_rxcal_dcvs_get(u32 sds_num, u32 dcvs_id, u32 dcvs_list[])
{
u32 dcvs_sign_out = 0, dcvs_coef_bin = 0;
bool dcvs_manual;
if (!(sds_num % 2))
rtl930x_write_sds_phy(sds_num, 0x1f, 0x2, 0x2f);
else
rtl930x_write_sds_phy(sds_num - 1, 0x1f, 0x2, 0x31);
/* ##Page0x2E, Reg0x15[9], REG0_RX_EN_TEST=[1] */
rtl9300_sds_field_w(sds_num, 0x2e, 0x15, 9, 9, 0x1);
/* ##Page0x21, Reg0x06[11 6], REG0_RX_DEBUG_SEL=[1 0 x x x x] */
rtl9300_sds_field_w(sds_num, 0x21, 0x06, 11, 6, 0x20);
switch(dcvs_id) {
case 0:
rtl9300_sds_field_w(sds_num, 0x2f, 0x0c, 5, 0, 0x22);
mdelay(1);
/* ##DCVS0 Read Out */
dcvs_sign_out = rtl9300_sds_field_r(sds_num, 0x1f, 0x14, 4, 4);
dcvs_coef_bin = rtl9300_sds_field_r(sds_num, 0x1f, 0x14, 3, 0);
dcvs_manual = !!rtl9300_sds_field_r(sds_num, 0x2e, 0x1e, 14, 14);
break;
case 1:
rtl9300_sds_field_w(sds_num, 0x2f, 0x0c, 5, 0, 0x23);
mdelay(1);
/* ##DCVS0 Read Out */
dcvs_coef_bin = rtl9300_sds_field_r(sds_num, 0x1f, 0x14, 4, 4);
dcvs_coef_bin = rtl9300_sds_field_r(sds_num, 0x1f, 0x14, 3, 0);
dcvs_manual = !!rtl9300_sds_field_r(sds_num, 0x2e, 0x1e, 13, 13);
break;
case 2:
rtl9300_sds_field_w(sds_num, 0x2f, 0x0c, 5, 0, 0x24);
mdelay(1);
/* ##DCVS0 Read Out */
dcvs_sign_out = rtl9300_sds_field_r(sds_num, 0x1f, 0x14, 4, 4);
dcvs_coef_bin = rtl9300_sds_field_r(sds_num, 0x1f, 0x14, 3, 0);
dcvs_manual = !!rtl9300_sds_field_r(sds_num, 0x2e, 0x1e, 12, 12);
break;
case 3:
rtl9300_sds_field_w(sds_num, 0x2f, 0x0c, 5, 0, 0x25);
mdelay(1);
/* ##DCVS0 Read Out */
dcvs_sign_out = rtl9300_sds_field_r(sds_num, 0x1f, 0x14, 4, 4);
dcvs_coef_bin = rtl9300_sds_field_r(sds_num, 0x1f, 0x14, 3, 0);
dcvs_manual = rtl9300_sds_field_r(sds_num, 0x2e, 0x1e, 11, 11);
break;
case 4:
rtl9300_sds_field_w(sds_num, 0x2f, 0x0c, 5, 0, 0x2c);
mdelay(1);
/* ##DCVS0 Read Out */
dcvs_sign_out = rtl9300_sds_field_r(sds_num, 0x1f, 0x14, 4, 4);
dcvs_coef_bin = rtl9300_sds_field_r(sds_num, 0x1f, 0x14, 3, 0);
dcvs_manual = !!rtl9300_sds_field_r(sds_num, 0x2e, 0x01, 15, 15);
break;
case 5:
rtl9300_sds_field_w(sds_num, 0x2f, 0x0c, 5, 0, 0x2d);
mdelay(1);
/* ##DCVS0 Read Out */
dcvs_sign_out = rtl9300_sds_field_r(sds_num, 0x1f, 0x14, 4, 4);
dcvs_coef_bin = rtl9300_sds_field_r(sds_num, 0x1f, 0x14, 3, 0);
dcvs_manual = rtl9300_sds_field_r(sds_num, 0x2e, 0x02, 11, 11);
break;
default:
break;
}
if (dcvs_sign_out)
pr_info("%s DCVS %u Sign: -", __func__, dcvs_id);
else
pr_info("%s DCVS %u Sign: +", __func__, dcvs_id);
pr_info("DCVS %u even coefficient = %u", dcvs_id, dcvs_coef_bin);
pr_info("DCVS %u manual = %u", dcvs_id, dcvs_manual);
dcvs_list[0] = dcvs_sign_out;
dcvs_list[1] = dcvs_coef_bin;
}
void rtl9300_sds_rxcal_leq_manual(u32 sds_num, bool manual, u32 leq_gray)
{
if (manual) {
rtl9300_sds_field_w(sds_num, 0x2e, 0x18, 15, 15, 0x1);
rtl9300_sds_field_w(sds_num, 0x2e, 0x16, 14, 10, leq_gray);
} else {
rtl9300_sds_field_w(sds_num, 0x2e, 0x18, 15, 15, 0x0);
mdelay(100);
}
}
void rtl9300_sds_rxcal_leq_offset_manual(u32 sds_num, bool manual, u32 offset)
{
if (manual) {
rtl9300_sds_field_w(sds_num, 0x2e, 0x17, 6, 2, offset);
} else {
rtl9300_sds_field_w(sds_num, 0x2e, 0x17, 6, 2, offset);
mdelay(1);
}
}
#define GRAY_BITS 5
u32 rtl9300_sds_rxcal_gray_to_binary(u32 gray_code)
{
int i, j, m;
u32 g[GRAY_BITS];
u32 c[GRAY_BITS];
u32 leq_binary = 0;
for(i = 0; i < GRAY_BITS; i++)
g[i] = (gray_code & BIT(i)) >> i;
m = GRAY_BITS - 1;
c[m] = g[m];
for(i = 0; i < m; i++) {
c[i] = g[i];
for(j = i + 1; j < GRAY_BITS; j++)
c[i] = c[i] ^ g[j];
}
for(i = 0; i < GRAY_BITS; i++)
leq_binary += c[i] << i;
return leq_binary;
}
u32 rtl9300_sds_rxcal_leq_read(int sds_num)
{
u32 leq_gray, leq_bin;
bool leq_manual;
if (!(sds_num % 2))
rtl930x_write_sds_phy(sds_num, 0x1f, 0x2, 0x2f);
else
rtl930x_write_sds_phy(sds_num - 1, 0x1f, 0x2, 0x31);
/* ##Page0x2E, Reg0x15[9], REG0_RX_EN_TEST=[1] */
rtl9300_sds_field_w(sds_num, 0x2e, 0x15, 9, 9, 0x1);
/* ##Page0x21, Reg0x06[11 6], REG0_RX_DEBUG_SEL=[0 1 x x x x] */
rtl9300_sds_field_w(sds_num, 0x21, 0x06, 11, 6, 0x10);
mdelay(1);
/* ##LEQ Read Out */
leq_gray = rtl9300_sds_field_r(sds_num, 0x1f, 0x14, 7, 3);
leq_manual = !!rtl9300_sds_field_r(sds_num, 0x2e, 0x18, 15, 15);
leq_bin = rtl9300_sds_rxcal_gray_to_binary(leq_gray);
pr_info("LEQ_gray: %u, LEQ_bin: %u", leq_gray, leq_bin);
pr_info("LEQ manual: %u", leq_manual);
return leq_bin;
}
void rtl9300_sds_rxcal_vth_manual(u32 sds_num, bool manual, u32 vth_list[])
{
if (manual) {
rtl9300_sds_field_w(sds_num, 0x2e, 0x0f, 13, 13, 0x1);
rtl9300_sds_field_w(sds_num, 0x2e, 0x13, 5, 3, vth_list[0]);
rtl9300_sds_field_w(sds_num, 0x2e, 0x13, 2, 0, vth_list[1]);
} else {
rtl9300_sds_field_w(sds_num, 0x2e, 0x0f, 13, 13, 0x0);
mdelay(10);
}
}
void rtl9300_sds_rxcal_vth_get(u32 sds_num, u32 vth_list[])
{
u32 vth_manual;
/* ##Page0x1F, Reg0x02[15 0], REG_DBGO_SEL=[0x002F]; */ /* Lane0 */
/* ##Page0x1F, Reg0x02[15 0], REG_DBGO_SEL=[0x0031]; */ /* Lane1 */
if (!(sds_num % 2))
rtl930x_write_sds_phy(sds_num, 0x1f, 0x2, 0x2f);
else
rtl930x_write_sds_phy(sds_num - 1, 0x1f, 0x2, 0x31);
/* ##Page0x2E, Reg0x15[9], REG0_RX_EN_TEST=[1] */
rtl9300_sds_field_w(sds_num, 0x2e, 0x15, 9, 9, 0x1);
/* ##Page0x21, Reg0x06[11 6], REG0_RX_DEBUG_SEL=[1 0 x x x x] */
rtl9300_sds_field_w(sds_num, 0x21, 0x06, 11, 6, 0x20);
/* ##Page0x2F, Reg0x0C[5 0], REG0_COEF_SEL=[0 0 1 1 0 0] */
rtl9300_sds_field_w(sds_num, 0x2f, 0x0c, 5, 0, 0xc);
mdelay(1);
/* ##VthP & VthN Read Out */
vth_list[0] = rtl9300_sds_field_r(sds_num, 0x1f, 0x14, 2, 0); /* v_thp set bin */
vth_list[1] = rtl9300_sds_field_r(sds_num, 0x1f, 0x14, 5, 3); /* v_thn set bin */
pr_info("vth_set_bin = %d", vth_list[0]);
pr_info("vth_set_bin = %d", vth_list[1]);
vth_manual = !!rtl9300_sds_field_r(sds_num, 0x2e, 0x0f, 13, 13);
pr_info("Vth Maunal = %d", vth_manual);
}
void rtl9300_sds_rxcal_tap_manual(u32 sds_num, int tap_id, bool manual, u32 tap_list[])
{
if (manual) {
switch(tap_id) {
case 0:
/* ##REG0_LOAD_IN_INIT[0]=1; REG0_TAP0_INIT[5:0]=Tap0_Value */
rtl9300_sds_field_w(sds_num, 0x2e, 0x0f, tap_id + 7, tap_id + 7, 0x1);
rtl9300_sds_field_w(sds_num, 0x2f, 0x03, 5, 5, tap_list[0]);
rtl9300_sds_field_w(sds_num, 0x2f, 0x03, 4, 0, tap_list[1]);
break;
case 1:
rtl9300_sds_field_w(sds_num, 0x2e, 0x0f, tap_id + 7, tap_id + 7, 0x1);
rtl9300_sds_field_w(sds_num, 0x21, 0x07, 6, 6, tap_list[0]);
rtl9300_sds_field_w(sds_num, 0x2e, 0x09, 11, 6, tap_list[1]);
rtl9300_sds_field_w(sds_num, 0x21, 0x07, 5, 5, tap_list[2]);
rtl9300_sds_field_w(sds_num, 0x2f, 0x12, 5, 0, tap_list[3]);
break;
case 2:
rtl9300_sds_field_w(sds_num, 0x2e, 0x0f, tap_id + 7, tap_id + 7, 0x1);
rtl9300_sds_field_w(sds_num, 0x2e, 0x09, 5, 5, tap_list[0]);
rtl9300_sds_field_w(sds_num, 0x2e, 0x09, 4, 0, tap_list[1]);
rtl9300_sds_field_w(sds_num, 0x2e, 0x0a, 11, 11, tap_list[2]);
rtl9300_sds_field_w(sds_num, 0x2e, 0x0a, 10, 6, tap_list[3]);
break;
case 3:
rtl9300_sds_field_w(sds_num, 0x2e, 0x0f, tap_id + 7, tap_id + 7, 0x1);
rtl9300_sds_field_w(sds_num, 0x2e, 0x0a, 5, 5, tap_list[0]);
rtl9300_sds_field_w(sds_num, 0x2e, 0x0a, 4, 0, tap_list[1]);
rtl9300_sds_field_w(sds_num, 0x2e, 0x06, 5, 5, tap_list[2]);
rtl9300_sds_field_w(sds_num, 0x2e, 0x06, 4, 0, tap_list[3]);
break;
case 4:
rtl9300_sds_field_w(sds_num, 0x2e, 0x0f, tap_id + 7, tap_id + 7, 0x1);
rtl9300_sds_field_w(sds_num, 0x2f, 0x01, 5, 5, tap_list[0]);
rtl9300_sds_field_w(sds_num, 0x2f, 0x01, 4, 0, tap_list[1]);
rtl9300_sds_field_w(sds_num, 0x2e, 0x06, 11, 11, tap_list[2]);
rtl9300_sds_field_w(sds_num, 0x2e, 0x06, 10, 6, tap_list[3]);
break;
default:
break;
}
} else {
rtl9300_sds_field_w(sds_num, 0x2e, 0x0f, tap_id + 7, tap_id + 7, 0x0);
mdelay(10);
}
}
void rtl9300_sds_rxcal_tap_get(u32 sds_num, u32 tap_id, u32 tap_list[])
{
u32 tap0_sign_out;
u32 tap0_coef_bin;
u32 tap_sign_out_even;
u32 tap_coef_bin_even;
u32 tap_sign_out_odd;
u32 tap_coef_bin_odd;
bool tap_manual;
if (!(sds_num % 2))
rtl930x_write_sds_phy(sds_num, 0x1f, 0x2, 0x2f);
else
rtl930x_write_sds_phy(sds_num - 1, 0x1f, 0x2, 0x31);
/* ##Page0x2E, Reg0x15[9], REG0_RX_EN_TEST=[1] */
rtl9300_sds_field_w(sds_num, 0x2e, 0x15, 9, 9, 0x1);
/* ##Page0x21, Reg0x06[11 6], REG0_RX_DEBUG_SEL=[1 0 x x x x] */
rtl9300_sds_field_w(sds_num, 0x21, 0x06, 11, 6, 0x20);
if (!tap_id) {
/* ##Page0x2F, Reg0x0C[5 0], REG0_COEF_SEL=[0 0 0 0 0 1] */
rtl9300_sds_field_w(sds_num, 0x2f, 0x0c, 5, 0, 0);
/* ##Tap1 Even Read Out */
mdelay(1);
tap0_sign_out = rtl9300_sds_field_r(sds_num, 0x1f, 0x14, 5, 5);
tap0_coef_bin = rtl9300_sds_field_r(sds_num, 0x1f, 0x14, 4, 0);
if (tap0_sign_out == 1)
pr_info("Tap0 Sign : -");
else
pr_info("Tap0 Sign : +");
pr_info("tap0_coef_bin = %d", tap0_coef_bin);
tap_list[0] = tap0_sign_out;
tap_list[1] = tap0_coef_bin;
tap_manual = !!rtl9300_sds_field_r(sds_num, 0x2e, 0x0f, 7, 7);
pr_info("tap0 manual = %u",tap_manual);
} else {
/* ##Page0x2F, Reg0x0C[5 0], REG0_COEF_SEL=[0 0 0 0 0 1] */
rtl9300_sds_field_w(sds_num, 0x2f, 0x0c, 5, 0, tap_id);
mdelay(1);
/* ##Tap1 Even Read Out */
tap_sign_out_even = rtl9300_sds_field_r(sds_num, 0x1f, 0x14, 5, 5);
tap_coef_bin_even = rtl9300_sds_field_r(sds_num, 0x1f, 0x14, 4, 0);
/* ##Page0x2F, Reg0x0C[5 0], REG0_COEF_SEL=[0 0 0 1 1 0] */
rtl9300_sds_field_w(sds_num, 0x2f, 0x0c, 5, 0, (tap_id + 5));
/* ##Tap1 Odd Read Out */
tap_sign_out_odd = rtl9300_sds_field_r(sds_num, 0x1f, 0x14, 5, 5);
tap_coef_bin_odd = rtl9300_sds_field_r(sds_num, 0x1f, 0x14, 4, 0);
if (tap_sign_out_even == 1)
pr_info("Tap %u even sign: -", tap_id);
else
pr_info("Tap %u even sign: +", tap_id);
pr_info("Tap %u even coefficient = %u", tap_id, tap_coef_bin_even);
if (tap_sign_out_odd == 1)
pr_info("Tap %u odd sign: -", tap_id);
else
pr_info("Tap %u odd sign: +", tap_id);
pr_info("Tap %u odd coefficient = %u", tap_id,tap_coef_bin_odd);
tap_list[0] = tap_sign_out_even;
tap_list[1] = tap_coef_bin_even;
tap_list[2] = tap_sign_out_odd;
tap_list[3] = tap_coef_bin_odd;
tap_manual = rtl9300_sds_field_r(sds_num, 0x2e, 0x0f, tap_id + 7, tap_id + 7);
pr_info("tap %u manual = %d",tap_id, tap_manual);
}
}
void rtl9300_do_rx_calibration_1(int sds, phy_interface_t phy_mode)
{
/* From both rtl9300_rxCaliConf_serdes_myParam and rtl9300_rxCaliConf_phy_myParam */
int tap0_init_val = 0x1f; /* Initial Decision Fed Equalizer 0 tap */
int vth_min = 0x0;
pr_info("start_1.1.1 initial value for sds %d\n", sds);
rtl930x_write_sds_phy(sds, 6, 0, 0);
/* FGCAL */
rtl9300_sds_field_w(sds, 0x2e, 0x01, 14, 14, 0x00);
rtl9300_sds_field_w(sds, 0x2e, 0x1c, 10, 5, 0x20);
rtl9300_sds_field_w(sds, 0x2f, 0x02, 0, 0, 0x01);
/* DCVS */
rtl9300_sds_field_w(sds, 0x2e, 0x1e, 14, 11, 0x00);
rtl9300_sds_field_w(sds, 0x2e, 0x01, 15, 15, 0x00);
rtl9300_sds_field_w(sds, 0x2e, 0x02, 11, 11, 0x00);
rtl9300_sds_field_w(sds, 0x2e, 0x1c, 4, 0, 0x00);
rtl9300_sds_field_w(sds, 0x2e, 0x1d, 15, 11, 0x00);
rtl9300_sds_field_w(sds, 0x2e, 0x1d, 10, 6, 0x00);
rtl9300_sds_field_w(sds, 0x2e, 0x1d, 5, 1, 0x00);
rtl9300_sds_field_w(sds, 0x2e, 0x02, 10, 6, 0x00);
rtl9300_sds_field_w(sds, 0x2e, 0x11, 4, 0, 0x00);
rtl9300_sds_field_w(sds, 0x2f, 0x00, 3, 0, 0x0f);
rtl9300_sds_field_w(sds, 0x2e, 0x04, 6, 6, 0x01);
rtl9300_sds_field_w(sds, 0x2e, 0x04, 7, 7, 0x01);
/* LEQ (Long Term Equivalent signal level) */
rtl9300_sds_field_w(sds, 0x2e, 0x16, 14, 8, 0x00);
/* DFE (Decision Fed Equalizer) */
rtl9300_sds_field_w(sds, 0x2f, 0x03, 5, 0, tap0_init_val);
rtl9300_sds_field_w(sds, 0x2e, 0x09, 11, 6, 0x00);
rtl9300_sds_field_w(sds, 0x2e, 0x09, 5, 0, 0x00);
rtl9300_sds_field_w(sds, 0x2e, 0x0a, 5, 0, 0x00);
rtl9300_sds_field_w(sds, 0x2f, 0x01, 5, 0, 0x00);
rtl9300_sds_field_w(sds, 0x2f, 0x12, 5, 0, 0x00);
rtl9300_sds_field_w(sds, 0x2e, 0x0a, 11, 6, 0x00);
rtl9300_sds_field_w(sds, 0x2e, 0x06, 5, 0, 0x00);
rtl9300_sds_field_w(sds, 0x2f, 0x01, 5, 0, 0x00);
/* Vth */
rtl9300_sds_field_w(sds, 0x2e, 0x13, 5, 3, 0x07);
rtl9300_sds_field_w(sds, 0x2e, 0x13, 2, 0, 0x07);
rtl9300_sds_field_w(sds, 0x2f, 0x0b, 5, 3, vth_min);
pr_info("end_1.1.1 --\n");
pr_info("start_1.1.2 Load DFE init. value\n");
rtl9300_sds_field_w(sds, 0x2e, 0x0f, 13, 7, 0x7f);
pr_info("end_1.1.2\n");
pr_info("start_1.1.3 disable LEQ training,enable DFE clock\n");
rtl9300_sds_field_w(sds, 0x2e, 0x17, 7, 7, 0x00);
rtl9300_sds_field_w(sds, 0x2e, 0x17, 6, 2, 0x00);
rtl9300_sds_field_w(sds, 0x2e, 0x0c, 8, 8, 0x00);
rtl9300_sds_field_w(sds, 0x2e, 0x0b, 4, 4, 0x01);
rtl9300_sds_field_w(sds, 0x2e, 0x12, 14, 14, 0x00);
rtl9300_sds_field_w(sds, 0x2f, 0x02, 15, 15, 0x00);
pr_info("end_1.1.3 --\n");
pr_info("start_1.1.4 offset cali setting\n");
rtl9300_sds_field_w(sds, 0x2e, 0x0f, 15, 14, 0x03);
pr_info("end_1.1.4\n");
pr_info("start_1.1.5 LEQ and DFE setting\n");
/* TODO: make this work for DAC cables of different lengths */
/* For a 10GBit serdes wit Fibre, SDS 8 or 9 */
if (phy_mode == PHY_INTERFACE_MODE_10GBASER || PHY_INTERFACE_MODE_1000BASEX)
rtl9300_sds_field_w(sds, 0x2e, 0x16, 3, 2, 0x02);
else
pr_err("%s not PHY-based or SerDes, implement DAC!\n", __func__);
/* No serdes, check for Aquantia PHYs */
rtl9300_sds_field_w(sds, 0x2e, 0x16, 3, 2, 0x02);
rtl9300_sds_field_w(sds, 0x2e, 0x0f, 6, 0, 0x5f);
rtl9300_sds_field_w(sds, 0x2f, 0x05, 7, 2, 0x1f);
rtl9300_sds_field_w(sds, 0x2e, 0x19, 9, 5, 0x1f);
rtl9300_sds_field_w(sds, 0x2f, 0x0b, 15, 9, 0x3c);
rtl9300_sds_field_w(sds, 0x2e, 0x0b, 1, 0, 0x03);
pr_info("end_1.1.5\n");
}
void rtl9300_do_rx_calibration_2_1(u32 sds_num)
{
pr_info("start_1.2.1 ForegroundOffsetCal_Manual\n");
/* Gray config endis to 1 */
rtl9300_sds_field_w(sds_num, 0x2f, 0x02, 2, 2, 0x01);
/* ForegroundOffsetCal_Manual(auto mode) */
rtl9300_sds_field_w(sds_num, 0x2e, 0x01, 14, 14, 0x00);
pr_info("end_1.2.1");
}
void rtl9300_do_rx_calibration_2_2(int sds_num)
{
/* Force Rx-Run = 0 */
rtl9300_sds_field_w(sds_num, 0x2e, 0x15, 8, 8, 0x0);
rtl930x_sds_rx_rst(sds_num, PHY_INTERFACE_MODE_10GBASER);
}
void rtl9300_do_rx_calibration_2_3(int sds_num)
{
u32 fgcal_binary, fgcal_gray;
u32 offset_range;
pr_info("start_1.2.3 Foreground Calibration\n");
while(1) {
if (!(sds_num % 2))
rtl930x_write_sds_phy(sds_num, 0x1f, 0x2, 0x2f);
else
rtl930x_write_sds_phy(sds_num -1 , 0x1f, 0x2, 0x31);
/* ##Page0x2E, Reg0x15[9], REG0_RX_EN_TEST=[1] */
rtl9300_sds_field_w(sds_num, 0x2e, 0x15, 9, 9, 0x1);
/* ##Page0x21, Reg0x06[11 6], REG0_RX_DEBUG_SEL=[1 0 x x x x] */
rtl9300_sds_field_w(sds_num, 0x21, 0x06, 11, 6, 0x20);
/* ##Page0x2F, Reg0x0C[5 0], REG0_COEF_SEL=[0 0 1 1 1 1] */
rtl9300_sds_field_w(sds_num, 0x2f, 0x0c, 5, 0, 0xf);
/* ##FGCAL read gray */
fgcal_gray = rtl9300_sds_field_r(sds_num, 0x1f, 0x14, 5, 0);
/* ##Page0x2F, Reg0x0C[5 0], REG0_COEF_SEL=[0 0 1 1 1 0] */
rtl9300_sds_field_w(sds_num, 0x2f, 0x0c, 5, 0, 0xe);
/* ##FGCAL read binary */
fgcal_binary = rtl9300_sds_field_r(sds_num, 0x1f, 0x14, 5, 0);
pr_info("%s: fgcal_gray: %d, fgcal_binary %d\n",
__func__, fgcal_gray, fgcal_binary);
offset_range = rtl9300_sds_field_r(sds_num, 0x2e, 0x15, 15, 14);
if (fgcal_binary > 60 || fgcal_binary < 3) {
if (offset_range == 3) {
pr_info("%s: Foreground Calibration result marginal!", __func__);
break;
} else {
offset_range++;
rtl9300_sds_field_w(sds_num, 0x2e, 0x15, 15, 14, offset_range);
rtl9300_do_rx_calibration_2_2(sds_num);
}
} else {
break;
}
}
pr_info("%s: end_1.2.3\n", __func__);
}
void rtl9300_do_rx_calibration_2(int sds)
{
rtl930x_sds_rx_rst(sds, PHY_INTERFACE_MODE_10GBASER);
rtl9300_do_rx_calibration_2_1(sds);
rtl9300_do_rx_calibration_2_2(sds);
rtl9300_do_rx_calibration_2_3(sds);
}
void rtl9300_sds_rxcal_3_1(int sds_num, phy_interface_t phy_mode)
{
pr_info("start_1.3.1");
/* ##1.3.1 */
if (phy_mode != PHY_INTERFACE_MODE_10GBASER && phy_mode != PHY_INTERFACE_MODE_1000BASEX)
rtl9300_sds_field_w(sds_num, 0x2e, 0xc, 8, 8, 0);
rtl9300_sds_field_w(sds_num, 0x2e, 0x17, 7, 7, 0x0);
rtl9300_sds_rxcal_leq_manual(sds_num, false, 0);
pr_info("end_1.3.1");
}
void rtl9300_sds_rxcal_3_2(int sds_num, phy_interface_t phy_mode)
{
u32 sum10 = 0, avg10, int10;
int dac_long_cable_offset;
bool eq_hold_enabled;
int i;
if (phy_mode == PHY_INTERFACE_MODE_10GBASER || phy_mode == PHY_INTERFACE_MODE_1000BASEX) {
/* rtl9300_rxCaliConf_serdes_myParam */
dac_long_cable_offset = 3;
eq_hold_enabled = true;
} else {
/* rtl9300_rxCaliConf_phy_myParam */
dac_long_cable_offset = 0;
eq_hold_enabled = false;
}
if (phy_mode == PHY_INTERFACE_MODE_1000BASEX)
pr_warn("%s: LEQ only valid for 10GR!\n", __func__);
pr_info("start_1.3.2");
for(i = 0; i < 10; i++) {
sum10 += rtl9300_sds_rxcal_leq_read(sds_num);
mdelay(10);
}
avg10 = (sum10 / 10) + (((sum10 % 10) >= 5) ? 1 : 0);
int10 = sum10 / 10;
pr_info("sum10:%u, avg10:%u, int10:%u", sum10, avg10, int10);
if (phy_mode == PHY_INTERFACE_MODE_10GBASER || phy_mode == PHY_INTERFACE_MODE_1000BASEX) {
if (dac_long_cable_offset) {
rtl9300_sds_rxcal_leq_offset_manual(sds_num, 1, dac_long_cable_offset);
rtl9300_sds_field_w(sds_num, 0x2e, 0x17, 7, 7, eq_hold_enabled);
if (phy_mode == PHY_INTERFACE_MODE_10GBASER)
rtl9300_sds_rxcal_leq_manual(sds_num, true, avg10);
} else {
if (sum10 >= 5) {
rtl9300_sds_rxcal_leq_offset_manual(sds_num, 1, 3);
rtl9300_sds_field_w(sds_num, 0x2e, 0x17, 7, 7, 0x1);
if (phy_mode == PHY_INTERFACE_MODE_10GBASER)
rtl9300_sds_rxcal_leq_manual(sds_num, true, avg10);
} else {
rtl9300_sds_rxcal_leq_offset_manual(sds_num, 1, 0);
rtl9300_sds_field_w(sds_num, 0x2e, 0x17, 7, 7, 0x1);
if (phy_mode == PHY_INTERFACE_MODE_10GBASER)
rtl9300_sds_rxcal_leq_manual(sds_num, true, avg10);
}
}
}
pr_info("Sds:%u LEQ = %u",sds_num, rtl9300_sds_rxcal_leq_read(sds_num));
pr_info("end_1.3.2");
}
void rtl9300_do_rx_calibration_3(int sds_num, phy_interface_t phy_mode)
{
rtl9300_sds_rxcal_3_1(sds_num, phy_mode);
if (phy_mode == PHY_INTERFACE_MODE_10GBASER || phy_mode == PHY_INTERFACE_MODE_1000BASEX)
rtl9300_sds_rxcal_3_2(sds_num, phy_mode);
}
void rtl9300_do_rx_calibration_4_1(int sds_num)
{
u32 vth_list[2] = {0, 0};
u32 tap0_list[4] = {0, 0, 0, 0};
pr_info("start_1.4.1");
/* ##1.4.1 */
rtl9300_sds_rxcal_vth_manual(sds_num, false, vth_list);
rtl9300_sds_rxcal_tap_manual(sds_num, 0, false, tap0_list);
mdelay(200);
pr_info("end_1.4.1");
}
void rtl9300_do_rx_calibration_4_2(u32 sds_num)
{
u32 vth_list[2];
u32 tap_list[4];
pr_info("start_1.4.2");
rtl9300_sds_rxcal_vth_get(sds_num, vth_list);
rtl9300_sds_rxcal_vth_manual(sds_num, true, vth_list);
mdelay(100);
rtl9300_sds_rxcal_tap_get(sds_num, 0, tap_list);
rtl9300_sds_rxcal_tap_manual(sds_num, 0, true, tap_list);
pr_info("end_1.4.2");
}
void rtl9300_do_rx_calibration_4(u32 sds_num)
{
rtl9300_do_rx_calibration_4_1(sds_num);
rtl9300_do_rx_calibration_4_2(sds_num);
}
void rtl9300_do_rx_calibration_5_2(u32 sds_num)
{
u32 tap1_list[4] = {0};
u32 tap2_list[4] = {0};
u32 tap3_list[4] = {0};
u32 tap4_list[4] = {0};
pr_info("start_1.5.2");
rtl9300_sds_rxcal_tap_manual(sds_num, 1, false, tap1_list);
rtl9300_sds_rxcal_tap_manual(sds_num, 2, false, tap2_list);
rtl9300_sds_rxcal_tap_manual(sds_num, 3, false, tap3_list);
rtl9300_sds_rxcal_tap_manual(sds_num, 4, false, tap4_list);
mdelay(30);
pr_info("end_1.5.2");
}
void rtl9300_do_rx_calibration_5(u32 sds_num, phy_interface_t phy_mode)
{
if (phy_mode == PHY_INTERFACE_MODE_10GBASER) /* dfeTap1_4Enable true */
rtl9300_do_rx_calibration_5_2(sds_num);
}
void rtl9300_do_rx_calibration_dfe_disable(u32 sds_num)
{
u32 tap1_list[4] = {0};
u32 tap2_list[4] = {0};
u32 tap3_list[4] = {0};
u32 tap4_list[4] = {0};
rtl9300_sds_rxcal_tap_manual(sds_num, 1, true, tap1_list);
rtl9300_sds_rxcal_tap_manual(sds_num, 2, true, tap2_list);
rtl9300_sds_rxcal_tap_manual(sds_num, 3, true, tap3_list);
rtl9300_sds_rxcal_tap_manual(sds_num, 4, true, tap4_list);
mdelay(10);
}
void rtl9300_do_rx_calibration(int sds, phy_interface_t phy_mode)
{
u32 latch_sts;
rtl9300_do_rx_calibration_1(sds, phy_mode);
rtl9300_do_rx_calibration_2(sds);
rtl9300_do_rx_calibration_4(sds);
rtl9300_do_rx_calibration_5(sds, phy_mode);
mdelay(20);
/* Do this only for 10GR mode, SDS active in mode 0x1a */
if (rtl9300_sds_field_r(sds, 0x1f, 9, 11, 7) == 0x1a) {
pr_info("%s: SDS enabled\n", __func__);
latch_sts = rtl9300_sds_field_r(sds, 0x4, 1, 2, 2);
mdelay(1);
latch_sts = rtl9300_sds_field_r(sds, 0x4, 1, 2, 2);
if (latch_sts) {
rtl9300_do_rx_calibration_dfe_disable(sds);
rtl9300_do_rx_calibration_4(sds);
rtl9300_do_rx_calibration_5(sds, phy_mode);
}
}
}
int rtl9300_sds_sym_err_reset(int sds_num, phy_interface_t phy_mode)
{
switch (phy_mode) {
case PHY_INTERFACE_MODE_XGMII:
break;
case PHY_INTERFACE_MODE_10GBASER:
/* Read twice to clear */
rtl930x_read_sds_phy(sds_num, 5, 1);
rtl930x_read_sds_phy(sds_num, 5, 1);
break;
case PHY_INTERFACE_MODE_1000BASEX:
rtl9300_sds_field_w(sds_num, 0x1, 24, 2, 0, 0);
rtl9300_sds_field_w(sds_num, 0x1, 3, 15, 8, 0);
rtl9300_sds_field_w(sds_num, 0x1, 2, 15, 0, 0);
break;
default:
pr_info("%s unsupported phy mode\n", __func__);
return -1;
}
return 0;
}
u32 rtl9300_sds_sym_err_get(int sds_num, phy_interface_t phy_mode)
{
u32 v = 0;
switch (phy_mode) {
case PHY_INTERFACE_MODE_XGMII:
break;
case PHY_INTERFACE_MODE_10GBASER:
v = rtl930x_read_sds_phy(sds_num, 5, 1);
return v & 0xff;
default:
pr_info("%s unsupported PHY-mode\n", __func__);
}
return v;
}
int rtl9300_sds_check_calibration(int sds_num, phy_interface_t phy_mode)
{
u32 errors1, errors2;
rtl9300_sds_sym_err_reset(sds_num, phy_mode);
rtl9300_sds_sym_err_reset(sds_num, phy_mode);
/* Count errors during 1ms */
errors1 = rtl9300_sds_sym_err_get(sds_num, phy_mode);
mdelay(1);
errors2 = rtl9300_sds_sym_err_get(sds_num, phy_mode);
switch (phy_mode) {
case PHY_INTERFACE_MODE_XGMII:
if ((errors2 - errors1 > 100) ||
(errors1 >= 0xffff00) || (errors2 >= 0xffff00)) {
pr_info("%s XSGMII error rate too high\n", __func__);
return 1;
}
break;
case PHY_INTERFACE_MODE_10GBASER:
if (errors2 > 0) {
pr_info("%s 10GBASER error rate too high\n", __func__);
return 1;
}
break;
default:
return 1;
}
return 0;
}
void rtl9300_phy_enable_10g_1g(int sds_num)
{
u32 v;
/* Enable 1GBit PHY */
v = rtl930x_read_sds_phy(sds_num, PHY_PAGE_2, MII_BMCR);
pr_info("%s 1gbit phy: %08x\n", __func__, v);
v &= ~BMCR_PDOWN;
rtl930x_write_sds_phy(sds_num, PHY_PAGE_2, MII_BMCR, v);
pr_info("%s 1gbit phy enabled: %08x\n", __func__, v);
/* Enable 10GBit PHY */
v = rtl930x_read_sds_phy(sds_num, PHY_PAGE_4, MII_BMCR);
pr_info("%s 10gbit phy: %08x\n", __func__, v);
v &= ~BMCR_PDOWN;
rtl930x_write_sds_phy(sds_num, PHY_PAGE_4, MII_BMCR, v);
pr_info("%s 10gbit phy after: %08x\n", __func__, v);
/* dal_longan_construct_mac_default_10gmedia_fiber */
v = rtl930x_read_sds_phy(sds_num, 0x1f, 11);
pr_info("%s set medium: %08x\n", __func__, v);
v |= BIT(1);
rtl930x_write_sds_phy(sds_num, 0x1f, 11, v);
pr_info("%s set medium after: %08x\n", __func__, v);
}
#define RTL930X_MAC_FORCE_MODE_CTRL (0xCA1C)
/* phy_mode = PHY_INTERFACE_MODE_10GBASER, sds_mode = 0x1a */
int rtl9300_serdes_setup(int sds_num, phy_interface_t phy_mode)
{
int sds_mode;
int calib_tries = 0;
switch (phy_mode) {
case PHY_INTERFACE_MODE_HSGMII:
sds_mode = 0x12;
break;
case PHY_INTERFACE_MODE_1000BASEX:
sds_mode = 0x04;
break;
case PHY_INTERFACE_MODE_XGMII:
sds_mode = 0x10;
break;
case PHY_INTERFACE_MODE_10GBASER:
sds_mode = 0x1a;
break;
case PHY_INTERFACE_MODE_USXGMII:
sds_mode = 0x0d;
break;
default:
pr_err("%s: unknown serdes mode: %s\n", __func__, phy_modes(phy_mode));
return -EINVAL;
}
/* Maybe use dal_longan_sds_init */
/* dal_longan_construct_serdesConfig_init */ /* Serdes Construct */
rtl9300_phy_enable_10g_1g(sds_num);
/* Set Serdes Mode */
rtl9300_sds_set(sds_num, 0x1a); /* 0x1b: RTK_MII_10GR1000BX_AUTO */
/* Do RX calibration */
do {
rtl9300_do_rx_calibration(sds_num, phy_mode);
calib_tries++;
mdelay(50);
} while (rtl9300_sds_check_calibration(sds_num, phy_mode) && calib_tries < 3);
return 0;
}
typedef struct {
u8 page;
u8 reg;
u16 data;
} sds_config;
sds_config rtl9300_a_sds_10gr_lane0[] =
{
/* 1G */
{0x00, 0x0E, 0x3053}, {0x01, 0x14, 0x0100}, {0x21, 0x03, 0x8206},
{0x21, 0x05, 0x40B0}, {0x21, 0x06, 0x0010}, {0x21, 0x07, 0xF09F},
{0x21, 0x0C, 0x0007}, {0x21, 0x0D, 0x6009}, {0x21, 0x0E, 0x0000},
{0x21, 0x0F, 0x0008}, {0x24, 0x00, 0x0668}, {0x24, 0x02, 0xD020},
{0x24, 0x06, 0xC000}, {0x24, 0x0B, 0x1892}, {0x24, 0x0F, 0xFFDF},
{0x24, 0x12, 0x03C4}, {0x24, 0x13, 0x027F}, {0x24, 0x14, 0x1311},
{0x24, 0x16, 0x00C9}, {0x24, 0x17, 0xA100}, {0x24, 0x1A, 0x0001},
{0x24, 0x1C, 0x0400}, {0x25, 0x01, 0x0300}, {0x25, 0x02, 0x1017},
{0x25, 0x03, 0xFFDF}, {0x25, 0x05, 0x7F7C}, {0x25, 0x07, 0x8100},
{0x25, 0x08, 0x0001}, {0x25, 0x09, 0xFFD4}, {0x25, 0x0A, 0x7C2F},
{0x25, 0x0E, 0x003F}, {0x25, 0x0F, 0x0121}, {0x25, 0x10, 0x0020},
{0x25, 0x11, 0x8840}, {0x2B, 0x13, 0x0050}, {0x2B, 0x18, 0x8E88},
{0x2B, 0x19, 0x4902}, {0x2B, 0x1D, 0x2501}, {0x2D, 0x13, 0x0050},
{0x2D, 0x18, 0x8E88}, {0x2D, 0x19, 0x4902}, {0x2D, 0x1D, 0x2641},
{0x2F, 0x13, 0x0050}, {0x2F, 0x18, 0x8E88}, {0x2F, 0x19, 0x4902},
{0x2F, 0x1D, 0x66E1},
/* 3.125G */
{0x28, 0x00, 0x0668}, {0x28, 0x02, 0xD020}, {0x28, 0x06, 0xC000},
{0x28, 0x0B, 0x1892}, {0x28, 0x0F, 0xFFDF}, {0x28, 0x12, 0x01C4},
{0x28, 0x13, 0x027F}, {0x28, 0x14, 0x1311}, {0x28, 0x16, 0x00C9},
{0x28, 0x17, 0xA100}, {0x28, 0x1A, 0x0001}, {0x28, 0x1C, 0x0400},
{0x29, 0x01, 0x0300}, {0x29, 0x02, 0x1017}, {0x29, 0x03, 0xFFDF},
{0x29, 0x05, 0x7F7C}, {0x29, 0x07, 0x8100}, {0x29, 0x08, 0x0001},
{0x29, 0x09, 0xFFD4}, {0x29, 0x0A, 0x7C2F}, {0x29, 0x0E, 0x003F},
{0x29, 0x0F, 0x0121}, {0x29, 0x10, 0x0020}, {0x29, 0x11, 0x8840},
/* 10G */
{0x06, 0x0D, 0x0F00}, {0x06, 0x00, 0x0000}, {0x06, 0x01, 0xC800},
{0x21, 0x03, 0x8206}, {0x21, 0x05, 0x40B0}, {0x21, 0x06, 0x0010},
{0x21, 0x07, 0xF09F}, {0x21, 0x0C, 0x0007}, {0x21, 0x0D, 0x6009},
{0x21, 0x0E, 0x0000}, {0x21, 0x0F, 0x0008}, {0x2E, 0x00, 0xA668},
{0x2E, 0x02, 0xD020}, {0x2E, 0x06, 0xC000}, {0x2E, 0x0B, 0x1892},
{0x2E, 0x0F, 0xFFDF}, {0x2E, 0x11, 0x8280}, {0x2E, 0x12, 0x0044},
{0x2E, 0x13, 0x027F}, {0x2E, 0x14, 0x1311}, {0x2E, 0x17, 0xA100},
{0x2E, 0x1A, 0x0001}, {0x2E, 0x1C, 0x0400}, {0x2F, 0x01, 0x0300},
{0x2F, 0x02, 0x1217}, {0x2F, 0x03, 0xFFDF}, {0x2F, 0x05, 0x7F7C},
{0x2F, 0x07, 0x80C4}, {0x2F, 0x08, 0x0001}, {0x2F, 0x09, 0xFFD4},
{0x2F, 0x0A, 0x7C2F}, {0x2F, 0x0E, 0x003F}, {0x2F, 0x0F, 0x0121},
{0x2F, 0x10, 0x0020}, {0x2F, 0x11, 0x8840}, {0x2F, 0x14, 0xE008},
{0x2B, 0x13, 0x0050}, {0x2B, 0x18, 0x8E88}, {0x2B, 0x19, 0x4902},
{0x2B, 0x1D, 0x2501}, {0x2D, 0x13, 0x0050}, {0x2D, 0x17, 0x4109},
{0x2D, 0x18, 0x8E88}, {0x2D, 0x19, 0x4902}, {0x2D, 0x1C, 0x1109},
{0x2D, 0x1D, 0x2641}, {0x2F, 0x13, 0x0050}, {0x2F, 0x18, 0x8E88},
{0x2F, 0x19, 0x4902}, {0x2F, 0x1D, 0x76E1},
};
sds_config rtl9300_a_sds_10gr_lane1[] =
{
/* 1G */
{0x00, 0x0E, 0x3053}, {0x01, 0x14, 0x0100}, {0x21, 0x03, 0x8206},
{0x21, 0x06, 0x0010}, {0x21, 0x07, 0xF09F}, {0x21, 0x0A, 0x0003},
{0x21, 0x0B, 0x0005}, {0x21, 0x0C, 0x0007}, {0x21, 0x0D, 0x6009},
{0x21, 0x0E, 0x0000}, {0x21, 0x0F, 0x0008}, {0x24, 0x00, 0x0668},
{0x24, 0x02, 0xD020}, {0x24, 0x06, 0xC000}, {0x24, 0x0B, 0x1892},
{0x24, 0x0F, 0xFFDF}, {0x24, 0x12, 0x03C4}, {0x24, 0x13, 0x027F},
{0x24, 0x14, 0x1311}, {0x24, 0x16, 0x00C9}, {0x24, 0x17, 0xA100},
{0x24, 0x1A, 0x0001}, {0x24, 0x1C, 0x0400}, {0x25, 0x00, 0x820F},
{0x25, 0x01, 0x0300}, {0x25, 0x02, 0x1017}, {0x25, 0x03, 0xFFDF},
{0x25, 0x05, 0x7F7C}, {0x25, 0x07, 0x8100}, {0x25, 0x08, 0x0001},
{0x25, 0x09, 0xFFD4}, {0x25, 0x0A, 0x7C2F}, {0x25, 0x0E, 0x003F},
{0x25, 0x0F, 0x0121}, {0x25, 0x10, 0x0020}, {0x25, 0x11, 0x8840},
{0x2B, 0x13, 0x3D87}, {0x2B, 0x14, 0x3108}, {0x2D, 0x13, 0x3C87},
{0x2D, 0x14, 0x1808},
/* 3.125G */
{0x28, 0x00, 0x0668}, {0x28, 0x02, 0xD020}, {0x28, 0x06, 0xC000},
{0x28, 0x0B, 0x1892}, {0x28, 0x0F, 0xFFDF}, {0x28, 0x12, 0x01C4},
{0x28, 0x13, 0x027F}, {0x28, 0x14, 0x1311}, {0x28, 0x16, 0x00C9},
{0x28, 0x17, 0xA100}, {0x28, 0x1A, 0x0001}, {0x28, 0x1C, 0x0400},
{0x29, 0x00, 0x820F}, {0x29, 0x01, 0x0300}, {0x29, 0x02, 0x1017},
{0x29, 0x03, 0xFFDF}, {0x29, 0x05, 0x7F7C}, {0x29, 0x07, 0x8100},
{0x29, 0x08, 0x0001}, {0x29, 0x0A, 0x7C2F}, {0x29, 0x0E, 0x003F},
{0x29, 0x0F, 0x0121}, {0x29, 0x10, 0x0020}, {0x29, 0x11, 0x8840},
/* 10G */
{0x06, 0x0D, 0x0F00}, {0x06, 0x00, 0x0000}, {0x06, 0x01, 0xC800},
{0x21, 0x03, 0x8206}, {0x21, 0x05, 0x40B0}, {0x21, 0x06, 0x0010},
{0x21, 0x07, 0xF09F}, {0x21, 0x0A, 0x0003}, {0x21, 0x0B, 0x0005},
{0x21, 0x0C, 0x0007}, {0x21, 0x0D, 0x6009}, {0x21, 0x0E, 0x0000},
{0x21, 0x0F, 0x0008}, {0x2E, 0x00, 0xA668}, {0x2E, 0x02, 0xD020},
{0x2E, 0x06, 0xC000}, {0x2E, 0x0B, 0x1892}, {0x2E, 0x0F, 0xFFDF},
{0x2E, 0x11, 0x8280}, {0x2E, 0x12, 0x0044}, {0x2E, 0x13, 0x027F},
{0x2E, 0x14, 0x1311}, {0x2E, 0x17, 0xA100}, {0x2E, 0x1A, 0x0001},
{0x2E, 0x1C, 0x0400}, {0x2F, 0x00, 0x820F}, {0x2F, 0x01, 0x0300},
{0x2F, 0x02, 0x1217}, {0x2F, 0x03, 0xFFDF}, {0x2F, 0x05, 0x7F7C},
{0x2F, 0x07, 0x80C4}, {0x2F, 0x08, 0x0001}, {0x2F, 0x09, 0xFFD4},
{0x2F, 0x0A, 0x7C2F}, {0x2F, 0x0E, 0x003F}, {0x2F, 0x0F, 0x0121},
{0x2F, 0x10, 0x0020}, {0x2F, 0x11, 0x8840}, {0x2B, 0x13, 0x3D87},
{0x2B, 0x14, 0x3108}, {0x2D, 0x13, 0x3C87}, {0x2D, 0x14, 0x1808},
};
int rtl9300_sds_cmu_band_get(int sds)
{
u32 page;
u32 en;
u32 cmu_band;
/* page = rtl9300_sds_cmu_page_get(sds); */
page = 0x25; /* 10GR and 1000BX */
sds = (sds % 2) ? (sds - 1) : (sds);
rtl9300_sds_field_w(sds, page, 0x1c, 15, 15, 1);
rtl9300_sds_field_w(sds + 1, page, 0x1c, 15, 15, 1);
en = rtl9300_sds_field_r(sds, page, 27, 1, 1);
if(!en) { /* Auto mode */
rtl930x_write_sds_phy(sds, 0x1f, 0x02, 31);
cmu_band = rtl9300_sds_field_r(sds, 0x1f, 0x15, 5, 1);
} else {
cmu_band = rtl9300_sds_field_r(sds, page, 30, 4, 0);
}
return cmu_band;
}
int rtl9300_configure_serdes(struct phy_device *phydev)
{
int phy_mode = PHY_INTERFACE_MODE_10GBASER;
struct device *dev = &phydev->mdio.dev;
int calib_tries = 0;
u32 sds_num = 0;
int sds_mode;
if (dev->of_node) {
struct device_node *dn = dev->of_node;
int phy_addr = phydev->mdio.addr;
if (of_property_read_u32(dn, "sds", &sds_num))
sds_num = -1;
pr_info("%s: Port %d, SerDes is %d\n", __func__, phy_addr, sds_num);
} else {
dev_err(dev, "No DT node.\n");
return -EINVAL;
}
if (sds_num < 0)
return 0;
if (phy_mode != PHY_INTERFACE_MODE_10GBASER) /* TODO: for now we only patch 10GR SerDes */
return 0;
switch (phy_mode) {
case PHY_INTERFACE_MODE_HSGMII:
sds_mode = 0x12;
break;
case PHY_INTERFACE_MODE_1000BASEX:
sds_mode = 0x04;
break;
case PHY_INTERFACE_MODE_XGMII:
sds_mode = 0x10;
break;
case PHY_INTERFACE_MODE_10GBASER:
sds_mode = 0x1a;
break;
case PHY_INTERFACE_MODE_USXGMII:
sds_mode = 0x0d;
break;
default:
pr_err("%s: unknown serdes mode: %s\n", __func__, phy_modes(phy_mode));
return -EINVAL;
}
pr_info("%s CMU BAND is %d\n", __func__, rtl9300_sds_cmu_band_get(sds_num));
/* Turn Off Serdes */
rtl9300_sds_rst(sds_num, 0x1f);
pr_info("%s PATCHING SerDes %d\n", __func__, sds_num);
if (sds_num % 2) {
for (int i = 0; i < sizeof(rtl9300_a_sds_10gr_lane1) / sizeof(sds_config); ++i) {
rtl930x_write_sds_phy(sds_num, rtl9300_a_sds_10gr_lane1[i].page,
rtl9300_a_sds_10gr_lane1[i].reg,
rtl9300_a_sds_10gr_lane1[i].data);
}
} else {
for (int i = 0; i < sizeof(rtl9300_a_sds_10gr_lane0) / sizeof(sds_config); ++i) {
rtl930x_write_sds_phy(sds_num, rtl9300_a_sds_10gr_lane0[i].page,
rtl9300_a_sds_10gr_lane0[i].reg,
rtl9300_a_sds_10gr_lane0[i].data);
}
}
rtl9300_phy_enable_10g_1g(sds_num);
/* Disable MAC */
sw_w32_mask(0, 1, RTL930X_MAC_FORCE_MODE_CTRL);
mdelay(20);
/* ----> dal_longan_sds_mode_set */
pr_info("%s: Configuring RTL9300 SERDES %d, mode %02x\n", __func__, sds_num, sds_mode);
/* Configure link to MAC */
rtl9300_serdes_mac_link_config(sds_num, true, true); /* MAC Construct */
/* Disable MAC */
sw_w32_mask(0, 1, RTL930X_MAC_FORCE_MODE_CTRL);
mdelay(20);
rtl9300_force_sds_mode(sds_num, PHY_INTERFACE_MODE_NA);
/* Re-Enable MAC */
sw_w32_mask(1, 0, RTL930X_MAC_FORCE_MODE_CTRL);
rtl9300_force_sds_mode(sds_num, phy_mode);
/* Do RX calibration */
do {
rtl9300_do_rx_calibration(sds_num, phy_mode);
calib_tries++;
mdelay(50);
} while (rtl9300_sds_check_calibration(sds_num, phy_mode) && calib_tries < 3);
if (calib_tries >= 3)
pr_err("%s CALIBTRATION FAILED\n", __func__);
rtl9300_sds_tx_config(sds_num, phy_mode);
/* The clock needs only to be configured on the FPGA implementation */
return 0;
}
void rtl9310_sds_field_w(int sds, u32 page, u32 reg, int end_bit, int start_bit, u32 v)
{
int l = end_bit - start_bit + 1;
u32 data = v;
if (l < 32) {
u32 mask = BIT(l) - 1;
data = rtl930x_read_sds_phy(sds, page, reg);
data &= ~(mask << start_bit);
data |= (v & mask) << start_bit;
}
rtl931x_write_sds_phy(sds, page, reg, data);
}
u32 rtl9310_sds_field_r(int sds, u32 page, u32 reg, int end_bit, int start_bit)
{
int l = end_bit - start_bit + 1;
u32 v = rtl931x_read_sds_phy(sds, page, reg);
if (l >= 32)
return v;
return (v >> start_bit) & (BIT(l) - 1);
}
static void rtl931x_sds_rst(u32 sds)
{
u32 o, v, o_mode;
int shift = ((sds & 0x3) << 3);
/* TODO: We need to lock this! */
o = sw_r32(RTL931X_PS_SERDES_OFF_MODE_CTRL_ADDR);
v = o | BIT(sds);
sw_w32(v, RTL931X_PS_SERDES_OFF_MODE_CTRL_ADDR);
o_mode = sw_r32(RTL931X_SERDES_MODE_CTRL + 4 * (sds >> 2));
v = BIT(7) | 0x1F;
sw_w32_mask(0xff << shift, v << shift, RTL931X_SERDES_MODE_CTRL + 4 * (sds >> 2));
sw_w32(o_mode, RTL931X_SERDES_MODE_CTRL + 4 * (sds >> 2));
sw_w32(o, RTL931X_PS_SERDES_OFF_MODE_CTRL_ADDR);
}
static void rtl931x_symerr_clear(u32 sds, phy_interface_t mode)
{
switch (mode) {
case PHY_INTERFACE_MODE_NA:
break;
case PHY_INTERFACE_MODE_XGMII:
u32 xsg_sdsid_0, xsg_sdsid_1;
if (sds < 2)
xsg_sdsid_0 = sds;
else
xsg_sdsid_0 = (sds - 1) * 2;
xsg_sdsid_1 = xsg_sdsid_0 + 1;
for (int i = 0; i < 4; ++i) {
rtl9310_sds_field_w(xsg_sdsid_0, 0x1, 24, 2, 0, i);
rtl9310_sds_field_w(xsg_sdsid_0, 0x1, 3, 15, 8, 0x0);
rtl9310_sds_field_w(xsg_sdsid_0, 0x1, 2, 15, 0, 0x0);
}
for (int i = 0; i < 4; ++i) {
rtl9310_sds_field_w(xsg_sdsid_1, 0x1, 24, 2, 0, i);
rtl9310_sds_field_w(xsg_sdsid_1, 0x1, 3, 15, 8, 0x0);
rtl9310_sds_field_w(xsg_sdsid_1, 0x1, 2, 15, 0, 0x0);
}
rtl9310_sds_field_w(xsg_sdsid_0, 0x1, 0, 15, 0, 0x0);
rtl9310_sds_field_w(xsg_sdsid_0, 0x1, 1, 15, 8, 0x0);
rtl9310_sds_field_w(xsg_sdsid_1, 0x1, 0, 15, 0, 0x0);
rtl9310_sds_field_w(xsg_sdsid_1, 0x1, 1, 15, 8, 0x0);
break;
default:
break;
}
return;
}
static u32 rtl931x_get_analog_sds(u32 sds)
{
u32 sds_map[] = { 0, 1, 2, 3, 6, 7, 10, 11, 14, 15, 18, 19, 22, 23 };
if (sds < 14)
return sds_map[sds];
return sds;
}
void rtl931x_sds_fiber_disable(u32 sds)
{
u32 v = 0x3F;
u32 asds = rtl931x_get_analog_sds(sds);
rtl9310_sds_field_w(asds, 0x1F, 0x9, 11, 6, v);
}
static void rtl931x_sds_fiber_mode_set(u32 sds, phy_interface_t mode)
{
u32 val, asds = rtl931x_get_analog_sds(sds);
/* clear symbol error count before changing mode */
rtl931x_symerr_clear(sds, mode);
val = 0x9F;
sw_w32(val, RTL931X_SERDES_MODE_CTRL + 4 * (sds >> 2));
switch (mode) {
case PHY_INTERFACE_MODE_SGMII:
val = 0x5;
break;
case PHY_INTERFACE_MODE_1000BASEX:
/* serdes mode FIBER1G */
val = 0x9;
break;
case PHY_INTERFACE_MODE_10GBASER:
case PHY_INTERFACE_MODE_10GKR:
val = 0x35;
break;
/* case MII_10GR1000BX_AUTO:
val = 0x39;
break; */
case PHY_INTERFACE_MODE_USXGMII:
val = 0x1B;
break;
default:
val = 0x25;
}
pr_info("%s writing analog SerDes Mode value %02x\n", __func__, val);
rtl9310_sds_field_w(asds, 0x1F, 0x9, 11, 6, val);
return;
}
static int rtl931x_sds_cmu_page_get(phy_interface_t mode)
{
switch (mode) {
case PHY_INTERFACE_MODE_SGMII:
case PHY_INTERFACE_MODE_1000BASEX: /* MII_1000BX_FIBER / 100BX_FIBER / 1000BX100BX_AUTO */
return 0x24;
case PHY_INTERFACE_MODE_HSGMII:
case PHY_INTERFACE_MODE_2500BASEX: /* MII_2500Base_X: */
return 0x28;
/* case MII_HISGMII_5G: */
/* return 0x2a; */
case PHY_INTERFACE_MODE_QSGMII:
return 0x2a; /* Code also has 0x34 */
case PHY_INTERFACE_MODE_XAUI: /* MII_RXAUI_LITE: */
return 0x2c;
case PHY_INTERFACE_MODE_XGMII: /* MII_XSGMII */
case PHY_INTERFACE_MODE_10GKR:
case PHY_INTERFACE_MODE_10GBASER: /* MII_10GR */
return 0x2e;
default:
return -1;
}
return -1;
}
static void rtl931x_cmu_type_set(u32 asds, phy_interface_t mode, int chiptype)
{
int cmu_type = 0; /* Clock Management Unit */
u32 cmu_page = 0;
u32 frc_cmu_spd;
u32 evenSds;
u32 lane, frc_lc_mode_bitnum, frc_lc_mode_val_bitnum;
switch (mode) {
case PHY_INTERFACE_MODE_NA:
case PHY_INTERFACE_MODE_10GKR:
case PHY_INTERFACE_MODE_XGMII:
case PHY_INTERFACE_MODE_10GBASER:
case PHY_INTERFACE_MODE_USXGMII:
return;
/* case MII_10GR1000BX_AUTO:
if (chiptype)
rtl9310_sds_field_w(asds, 0x24, 0xd, 14, 14, 0);
return; */
case PHY_INTERFACE_MODE_QSGMII:
cmu_type = 1;
frc_cmu_spd = 0;
break;
case PHY_INTERFACE_MODE_HSGMII:
cmu_type = 1;
frc_cmu_spd = 1;
break;
case PHY_INTERFACE_MODE_1000BASEX:
cmu_type = 1;
frc_cmu_spd = 0;
break;
/* case MII_1000BX100BX_AUTO:
cmu_type = 1;
frc_cmu_spd = 0;
break; */
case PHY_INTERFACE_MODE_SGMII:
cmu_type = 1;
frc_cmu_spd = 0;
break;
case PHY_INTERFACE_MODE_2500BASEX:
cmu_type = 1;
frc_cmu_spd = 1;
break;
default:
pr_info("SerDes %d mode is invalid\n", asds);
return;
}
if (cmu_type == 1)
cmu_page = rtl931x_sds_cmu_page_get(mode);
lane = asds % 2;
if (!lane) {
frc_lc_mode_bitnum = 4;
frc_lc_mode_val_bitnum = 5;
} else {
frc_lc_mode_bitnum = 6;
frc_lc_mode_val_bitnum = 7;
}
evenSds = asds - lane;
pr_info("%s: cmu_type %0d cmu_page %x frc_cmu_spd %d lane %d asds %d\n",
__func__, cmu_type, cmu_page, frc_cmu_spd, lane, asds);
if (cmu_type == 1) {
pr_info("%s A CMU page 0x28 0x7 %08x\n", __func__, rtl931x_read_sds_phy(asds, 0x28, 0x7));
rtl9310_sds_field_w(asds, cmu_page, 0x7, 15, 15, 0);
pr_info("%s B CMU page 0x28 0x7 %08x\n", __func__, rtl931x_read_sds_phy(asds, 0x28, 0x7));
if (chiptype) {
rtl9310_sds_field_w(asds, cmu_page, 0xd, 14, 14, 0);
}
rtl9310_sds_field_w(evenSds, 0x20, 0x12, 3, 2, 0x3);
rtl9310_sds_field_w(evenSds, 0x20, 0x12, frc_lc_mode_bitnum, frc_lc_mode_bitnum, 1);
rtl9310_sds_field_w(evenSds, 0x20, 0x12, frc_lc_mode_val_bitnum, frc_lc_mode_val_bitnum, 0);
rtl9310_sds_field_w(evenSds, 0x20, 0x12, 12, 12, 1);
rtl9310_sds_field_w(evenSds, 0x20, 0x12, 15, 13, frc_cmu_spd);
}
pr_info("%s CMU page 0x28 0x7 %08x\n", __func__, rtl931x_read_sds_phy(asds, 0x28, 0x7));
return;
}
static void rtl931x_sds_rx_rst(u32 sds)
{
u32 asds = rtl931x_get_analog_sds(sds);
if (sds < 2)
return;
rtl931x_write_sds_phy(asds, 0x2e, 0x12, 0x2740);
rtl931x_write_sds_phy(asds, 0x2f, 0x0, 0x0);
rtl931x_write_sds_phy(asds, 0x2f, 0x2, 0x2010);
rtl931x_write_sds_phy(asds, 0x20, 0x0, 0xc10);
rtl931x_write_sds_phy(asds, 0x2e, 0x12, 0x27c0);
rtl931x_write_sds_phy(asds, 0x2f, 0x0, 0xc000);
rtl931x_write_sds_phy(asds, 0x2f, 0x2, 0x6010);
rtl931x_write_sds_phy(asds, 0x20, 0x0, 0xc30);
mdelay(50);
}
// Currently not used
// static void rtl931x_sds_disable(u32 sds)
// {
// u32 v = 0x1f;
// v |= BIT(7);
// sw_w32(v, RTL931X_SERDES_MODE_CTRL + (sds >> 2) * 4);
// }
static void rtl931x_sds_mii_mode_set(u32 sds, phy_interface_t mode)
{
u32 val;
switch (mode) {
case PHY_INTERFACE_MODE_QSGMII:
val = 0x6;
break;
case PHY_INTERFACE_MODE_XGMII:
val = 0x10; /* serdes mode XSGMII */
break;
case PHY_INTERFACE_MODE_USXGMII:
case PHY_INTERFACE_MODE_2500BASEX:
val = 0xD;
break;
case PHY_INTERFACE_MODE_HSGMII:
val = 0x12;
break;
case PHY_INTERFACE_MODE_SGMII:
val = 0x2;
break;
default:
return;
}
val |= (1 << 7);
sw_w32(val, RTL931X_SERDES_MODE_CTRL + 4 * (sds >> 2));
}
static sds_config sds_config_10p3125g_type1[] = {
{ 0x2E, 0x00, 0x0107 }, { 0x2E, 0x01, 0x01A3 }, { 0x2E, 0x02, 0x6A24 },
{ 0x2E, 0x03, 0xD10D }, { 0x2E, 0x04, 0x8000 }, { 0x2E, 0x05, 0xA17E },
{ 0x2E, 0x06, 0xE31D }, { 0x2E, 0x07, 0x800E }, { 0x2E, 0x08, 0x0294 },
{ 0x2E, 0x09, 0x0CE4 }, { 0x2E, 0x0A, 0x7FC8 }, { 0x2E, 0x0B, 0xE0E7 },
{ 0x2E, 0x0C, 0x0200 }, { 0x2E, 0x0D, 0xDF80 }, { 0x2E, 0x0E, 0x0000 },
{ 0x2E, 0x0F, 0x1FC2 }, { 0x2E, 0x10, 0x0C3F }, { 0x2E, 0x11, 0x0000 },
{ 0x2E, 0x12, 0x27C0 }, { 0x2E, 0x13, 0x7E1D }, { 0x2E, 0x14, 0x1300 },
{ 0x2E, 0x15, 0x003F }, { 0x2E, 0x16, 0xBE7F }, { 0x2E, 0x17, 0x0090 },
{ 0x2E, 0x18, 0x0000 }, { 0x2E, 0x19, 0x4000 }, { 0x2E, 0x1A, 0x0000 },
{ 0x2E, 0x1B, 0x8000 }, { 0x2E, 0x1C, 0x011F }, { 0x2E, 0x1D, 0x0000 },
{ 0x2E, 0x1E, 0xC8FF }, { 0x2E, 0x1F, 0x0000 }, { 0x2F, 0x00, 0xC000 },
{ 0x2F, 0x01, 0xF000 }, { 0x2F, 0x02, 0x6010 }, { 0x2F, 0x12, 0x0EE7 },
{ 0x2F, 0x13, 0x0000 }
};
static sds_config sds_config_10p3125g_cmu_type1[] = {
{ 0x2F, 0x03, 0x4210 }, { 0x2F, 0x04, 0x0000 }, { 0x2F, 0x05, 0x0019 },
{ 0x2F, 0x06, 0x18A6 }, { 0x2F, 0x07, 0x2990 }, { 0x2F, 0x08, 0xFFF4 },
{ 0x2F, 0x09, 0x1F08 }, { 0x2F, 0x0A, 0x0000 }, { 0x2F, 0x0B, 0x8000 },
{ 0x2F, 0x0C, 0x4224 }, { 0x2F, 0x0D, 0x0000 }, { 0x2F, 0x0E, 0x0000 },
{ 0x2F, 0x0F, 0xA470 }, { 0x2F, 0x10, 0x8000 }, { 0x2F, 0x11, 0x037B }
};
void rtl931x_sds_init(u32 sds, phy_interface_t mode)
{
u32 board_sds_tx_type1[] = {
0x01c3, 0x01c3, 0x01c3, 0x01a3, 0x01a3, 0x01a3,
0x0143, 0x0143, 0x0143, 0x0143, 0x0163, 0x0163,
};
u32 board_sds_tx[] = {
0x1a00, 0x1a00, 0x0200, 0x0200, 0x0200, 0x0200,
0x01a3, 0x01a3, 0x01a3, 0x01a3, 0x01e3, 0x01e3
};
u32 board_sds_tx2[] = {
0x0dc0, 0x01c0, 0x0200, 0x0180, 0x0160, 0x0123,
0x0123, 0x0163, 0x01a3, 0x01a0, 0x01c3, 0x09c3,
};
u32 asds, dSds, ori, model_info, val;
int chiptype = 0;
asds = rtl931x_get_analog_sds(sds);
if (sds > 13)
return;
pr_info("%s: set sds %d to mode %d\n", __func__, sds, mode);
val = rtl9310_sds_field_r(asds, 0x1F, 0x9, 11, 6);
pr_info("%s: fibermode %08X stored mode 0x%x analog SDS %d", __func__,
rtl931x_read_sds_phy(asds, 0x1f, 0x9), val, asds);
pr_info("%s: SGMII mode %08X in 0x24 0x9 analog SDS %d", __func__,
rtl931x_read_sds_phy(asds, 0x24, 0x9), asds);
pr_info("%s: CMU mode %08X stored even SDS %d", __func__,
rtl931x_read_sds_phy(asds & ~1, 0x20, 0x12), asds & ~1);
pr_info("%s: serdes_mode_ctrl %08X", __func__, RTL931X_SERDES_MODE_CTRL + 4 * (sds >> 2));
pr_info("%s CMU page 0x24 0x7 %08x\n", __func__, rtl931x_read_sds_phy(asds, 0x24, 0x7));
pr_info("%s CMU page 0x26 0x7 %08x\n", __func__, rtl931x_read_sds_phy(asds, 0x26, 0x7));
pr_info("%s CMU page 0x28 0x7 %08x\n", __func__, rtl931x_read_sds_phy(asds, 0x28, 0x7));
pr_info("%s XSG page 0x0 0xe %08x\n", __func__, rtl931x_read_sds_phy(dSds, 0x0, 0xe));
pr_info("%s XSG2 page 0x0 0xe %08x\n", __func__, rtl931x_read_sds_phy(dSds + 1, 0x0, 0xe));
model_info = sw_r32(RTL93XX_MODEL_NAME_INFO);
if ((model_info >> 4) & 0x1) {
pr_info("detected chiptype 1\n");
chiptype = 1;
} else {
pr_info("detected chiptype 0\n");
}
if (sds < 2)
dSds = sds;
else
dSds = (sds - 1) * 2;
pr_info("%s: 2.5gbit %08X dsds %d", __func__,
rtl931x_read_sds_phy(dSds, 0x1, 0x14), dSds);
pr_info("%s: RTL931X_PS_SERDES_OFF_MODE_CTRL_ADDR 0x%08X\n", __func__, sw_r32(RTL931X_PS_SERDES_OFF_MODE_CTRL_ADDR));
ori = sw_r32(RTL931X_PS_SERDES_OFF_MODE_CTRL_ADDR);
val = ori | (1 << sds);
sw_w32(val, RTL931X_PS_SERDES_OFF_MODE_CTRL_ADDR);
switch (mode) {
case PHY_INTERFACE_MODE_NA:
break;
case PHY_INTERFACE_MODE_XGMII: /* MII_XSGMII */
if (chiptype) {
u32 xsg_sdsid_1;
xsg_sdsid_1 = dSds + 1;
/* fifo inv clk */
rtl9310_sds_field_w(dSds, 0x1, 0x1, 7, 4, 0xf);
rtl9310_sds_field_w(dSds, 0x1, 0x1, 3, 0, 0xf);
rtl9310_sds_field_w(xsg_sdsid_1, 0x1, 0x1, 7, 4, 0xf);
rtl9310_sds_field_w(xsg_sdsid_1, 0x1, 0x1, 3, 0, 0xf);
}
rtl9310_sds_field_w(dSds, 0x0, 0xE, 12, 12, 1);
rtl9310_sds_field_w(dSds + 1, 0x0, 0xE, 12, 12, 1);
break;
case PHY_INTERFACE_MODE_USXGMII: /* MII_USXGMII_10GSXGMII/10GDXGMII/10GQXGMII: */
u32 op_code = 0x6003;
u32 evenSds;
if (chiptype) {
rtl9310_sds_field_w(asds, 0x6, 0x2, 12, 12, 1);
for (int i = 0; i < sizeof(sds_config_10p3125g_type1) / sizeof(sds_config); ++i) {
rtl931x_write_sds_phy(asds, sds_config_10p3125g_type1[i].page - 0x4, sds_config_10p3125g_type1[i].reg, sds_config_10p3125g_type1[i].data);
}
evenSds = asds - (asds % 2);
for (int i = 0; i < sizeof(sds_config_10p3125g_cmu_type1) / sizeof(sds_config); ++i) {
rtl931x_write_sds_phy(evenSds,
sds_config_10p3125g_cmu_type1[i].page - 0x4, sds_config_10p3125g_cmu_type1[i].reg, sds_config_10p3125g_cmu_type1[i].data);
}
rtl9310_sds_field_w(asds, 0x6, 0x2, 12, 12, 0);
} else {
rtl9310_sds_field_w(asds, 0x2e, 0xd, 6, 0, 0x0);
rtl9310_sds_field_w(asds, 0x2e, 0xd, 7, 7, 0x1);
rtl9310_sds_field_w(asds, 0x2e, 0x1c, 5, 0, 0x1E);
rtl9310_sds_field_w(asds, 0x2e, 0x1d, 11, 0, 0x00);
rtl9310_sds_field_w(asds, 0x2e, 0x1f, 11, 0, 0x00);
rtl9310_sds_field_w(asds, 0x2f, 0x0, 11, 0, 0x00);
rtl9310_sds_field_w(asds, 0x2f, 0x1, 11, 0, 0x00);
rtl9310_sds_field_w(asds, 0x2e, 0xf, 12, 6, 0x7F);
rtl931x_write_sds_phy(asds, 0x2f, 0x12, 0xaaa);
rtl931x_sds_rx_rst(sds);
rtl931x_write_sds_phy(asds, 0x7, 0x10, op_code);
rtl931x_write_sds_phy(asds, 0x6, 0x1d, 0x0480);
rtl931x_write_sds_phy(asds, 0x6, 0xe, 0x0400);
}
break;
case PHY_INTERFACE_MODE_10GBASER: /* MII_10GR / MII_10GR1000BX_AUTO: */
/* configure 10GR fiber mode=1 */
rtl9310_sds_field_w(asds, 0x1f, 0xb, 1, 1, 1);
/* init fiber_1g */
rtl9310_sds_field_w(dSds, 0x3, 0x13, 15, 14, 0);
rtl9310_sds_field_w(dSds, 0x2, 0x0, 12, 12, 1);
rtl9310_sds_field_w(dSds, 0x2, 0x0, 6, 6, 1);
rtl9310_sds_field_w(dSds, 0x2, 0x0, 13, 13, 0);
/* init auto */
rtl9310_sds_field_w(asds, 0x1f, 13, 15, 0, 0x109e);
rtl9310_sds_field_w(asds, 0x1f, 0x6, 14, 10, 0x8);
rtl9310_sds_field_w(asds, 0x1f, 0x7, 10, 4, 0x7f);
break;
case PHY_INTERFACE_MODE_HSGMII:
rtl9310_sds_field_w(dSds, 0x1, 0x14, 8, 8, 1);
break;
case PHY_INTERFACE_MODE_1000BASEX: /* MII_1000BX_FIBER */
rtl9310_sds_field_w(dSds, 0x3, 0x13, 15, 14, 0);
rtl9310_sds_field_w(dSds, 0x2, 0x0, 12, 12, 1);
rtl9310_sds_field_w(dSds, 0x2, 0x0, 6, 6, 1);
rtl9310_sds_field_w(dSds, 0x2, 0x0, 13, 13, 0);
break;
case PHY_INTERFACE_MODE_SGMII:
rtl9310_sds_field_w(asds, 0x24, 0x9, 15, 15, 0);
break;
case PHY_INTERFACE_MODE_2500BASEX:
rtl9310_sds_field_w(dSds, 0x1, 0x14, 8, 8, 1);
break;
case PHY_INTERFACE_MODE_QSGMII:
default:
pr_info("%s: PHY mode %s not supported by SerDes %d\n",
__func__, phy_modes(mode), sds);
return;
}
rtl931x_cmu_type_set(asds, mode, chiptype);
if (sds >= 2 && sds <= 13) {
if (chiptype)
rtl931x_write_sds_phy(asds, 0x2E, 0x1, board_sds_tx_type1[sds - 2]);
else {
val = 0xa0000;
sw_w32(val, RTL931X_CHIP_INFO_ADDR);
val = sw_r32(RTL931X_CHIP_INFO_ADDR);
if (val & BIT(28)) /* consider 9311 etc. RTL9313_CHIP_ID == HWP_CHIP_ID(unit)) */
{
rtl931x_write_sds_phy(asds, 0x2E, 0x1, board_sds_tx2[sds - 2]);
} else {
rtl931x_write_sds_phy(asds, 0x2E, 0x1, board_sds_tx[sds - 2]);
}
val = 0;
sw_w32(val, RTL931X_CHIP_INFO_ADDR);
}
}
val = ori & ~BIT(sds);
sw_w32(val, RTL931X_PS_SERDES_OFF_MODE_CTRL_ADDR);
pr_debug("%s: RTL931X_PS_SERDES_OFF_MODE_CTRL_ADDR 0x%08X\n", __func__, sw_r32(RTL931X_PS_SERDES_OFF_MODE_CTRL_ADDR));
if (mode == PHY_INTERFACE_MODE_XGMII ||
mode == PHY_INTERFACE_MODE_QSGMII ||
mode == PHY_INTERFACE_MODE_HSGMII ||
mode == PHY_INTERFACE_MODE_SGMII ||
mode == PHY_INTERFACE_MODE_USXGMII) {
if (mode == PHY_INTERFACE_MODE_XGMII)
rtl931x_sds_mii_mode_set(sds, mode);
else
rtl931x_sds_fiber_mode_set(sds, mode);
}
}
int rtl931x_sds_cmu_band_set(int sds, bool enable, u32 band, phy_interface_t mode)
{
u32 asds;
int page = rtl931x_sds_cmu_page_get(mode);
sds -= (sds % 2);
sds = sds & ~1;
asds = rtl931x_get_analog_sds(sds);
page += 1;
if (enable) {
rtl9310_sds_field_w(asds, page, 0x7, 13, 13, 0);
rtl9310_sds_field_w(asds, page, 0x7, 11, 11, 0);
} else {
rtl9310_sds_field_w(asds, page, 0x7, 13, 13, 0);
rtl9310_sds_field_w(asds, page, 0x7, 11, 11, 0);
}
rtl9310_sds_field_w(asds, page, 0x7, 4, 0, band);
rtl931x_sds_rst(sds);
return 0;
}
int rtl931x_sds_cmu_band_get(int sds, phy_interface_t mode)
{
int page = rtl931x_sds_cmu_page_get(mode);
u32 asds, band;
sds -= (sds % 2);
asds = rtl931x_get_analog_sds(sds);
page += 1;
rtl931x_write_sds_phy(asds, 0x1f, 0x02, 73);
rtl9310_sds_field_w(asds, page, 0x5, 15, 15, 1);
band = rtl9310_sds_field_r(asds, 0x1f, 0x15, 8, 3);
pr_info("%s band is: %d\n", __func__, band);
return band;
}
int rtl931x_link_sts_get(u32 sds)
{
u32 sts, sts1, latch_sts, latch_sts1;
if (0){
u32 xsg_sdsid_0, xsg_sdsid_1;
xsg_sdsid_0 = sds < 2 ? sds : (sds - 1) * 2;
xsg_sdsid_1 = xsg_sdsid_0 + 1;
sts = rtl9310_sds_field_r(xsg_sdsid_0, 0x1, 29, 8, 0);
sts1 = rtl9310_sds_field_r(xsg_sdsid_1, 0x1, 29, 8, 0);
latch_sts = rtl9310_sds_field_r(xsg_sdsid_0, 0x1, 30, 8, 0);
latch_sts1 = rtl9310_sds_field_r(xsg_sdsid_1, 0x1, 30, 8, 0);
} else {
u32 asds, dsds;
asds = rtl931x_get_analog_sds(sds);
sts = rtl9310_sds_field_r(asds, 0x5, 0, 12, 12);
latch_sts = rtl9310_sds_field_r(asds, 0x4, 1, 2, 2);
dsds = sds < 2 ? sds : (sds - 1) * 2;
latch_sts1 = rtl9310_sds_field_r(dsds, 0x2, 1, 2, 2);
sts1 = rtl9310_sds_field_r(dsds, 0x2, 1, 2, 2);
}
pr_info("%s: serdes %d sts %d, sts1 %d, latch_sts %d, latch_sts1 %d\n", __func__,
sds, sts, sts1, latch_sts, latch_sts1);
return sts1;
}
static int rtl8214fc_sfp_insert(void *upstream, const struct sfp_eeprom_id *id)
{
struct phy_device *phydev = upstream;
rtl8214fc_media_set(phydev, true);
return 0;
}
static void rtl8214fc_sfp_remove(void *upstream)
{
struct phy_device *phydev = upstream;
rtl8214fc_media_set(phydev, false);
}
static const struct sfp_upstream_ops rtl8214fc_sfp_ops = {
.attach = phy_sfp_attach,
.detach = phy_sfp_detach,
.module_insert = rtl8214fc_sfp_insert,
.module_remove = rtl8214fc_sfp_remove,
};
static int rtl8214fc_phy_probe(struct phy_device *phydev)
{
struct device *dev = &phydev->mdio.dev;
int addr = phydev->mdio.addr;
int ret = 0;
/* 839x has internal SerDes */
if (soc_info.id == 0x8393)
return -ENODEV;
/* All base addresses of the PHYs start at multiples of 8 */
devm_phy_package_join(dev, phydev, addr & (~7),
sizeof(struct rtl83xx_shared_private));
if (!(addr % 8)) {
struct rtl83xx_shared_private *shared = phydev->shared->priv;
shared->name = "RTL8214FC";
/* Configuration must be done while patching still possible */
ret = rtl8380_configure_rtl8214fc(phydev);
if (ret)
return ret;
}
return phy_sfp_probe(phydev, &rtl8214fc_sfp_ops);
}
static int rtl8214c_phy_probe(struct phy_device *phydev)
{
struct device *dev = &phydev->mdio.dev;
int addr = phydev->mdio.addr;
/* All base addresses of the PHYs start at multiples of 8 */
devm_phy_package_join(dev, phydev, addr & (~7),
sizeof(struct rtl83xx_shared_private));
if (!(addr % 8)) {
struct rtl83xx_shared_private *shared = phydev->shared->priv;
shared->name = "RTL8214C";
/* Configuration must be done whil patching still possible */
return rtl8380_configure_rtl8214c(phydev);
}
return 0;
}
static int rtl8218b_ext_phy_probe(struct phy_device *phydev)
{
struct device *dev = &phydev->mdio.dev;
int addr = phydev->mdio.addr;
/* All base addresses of the PHYs start at multiples of 8 */
devm_phy_package_join(dev, phydev, addr & (~7),
sizeof(struct rtl83xx_shared_private));
if (!(addr % 8)) {
struct rtl83xx_shared_private *shared = phydev->shared->priv;
shared->name = "RTL8218B (external)";
if (soc_info.family == RTL8380_FAMILY_ID) {
/* Configuration must be done while patching still possible */
return rtl8380_configure_ext_rtl8218b(phydev);
}
}
return 0;
}
static int rtl8218b_int_phy_probe(struct phy_device *phydev)
{
struct device *dev = &phydev->mdio.dev;
int addr = phydev->mdio.addr;
if (soc_info.family != RTL8380_FAMILY_ID)
return -ENODEV;
if (addr >= 24)
return -ENODEV;
pr_debug("%s: id: %d\n", __func__, addr);
/* All base addresses of the PHYs start at multiples of 8 */
devm_phy_package_join(dev, phydev, addr & (~7),
sizeof(struct rtl83xx_shared_private));
if (!(addr % 8)) {
struct rtl83xx_shared_private *shared = phydev->shared->priv;
shared->name = "RTL8218B (internal)";
/* Configuration must be done while patching still possible */
return rtl8380_configure_int_rtl8218b(phydev);
}
return 0;
}
static int rtl8218d_phy_probe(struct phy_device *phydev)
{
struct device *dev = &phydev->mdio.dev;
int addr = phydev->mdio.addr;
pr_debug("%s: id: %d\n", __func__, addr);
/* All base addresses of the PHYs start at multiples of 8 */
devm_phy_package_join(dev, phydev, addr & (~7),
sizeof(struct rtl83xx_shared_private));
/* All base addresses of the PHYs start at multiples of 8 */
if (!(addr % 8)) {
struct rtl83xx_shared_private *shared = phydev->shared->priv;
shared->name = "RTL8218D";
/* Configuration must be done while patching still possible */
/* TODO: return configure_rtl8218d(phydev); */
}
return 0;
}
static int rtl838x_serdes_probe(struct phy_device *phydev)
{
int addr = phydev->mdio.addr;
if (soc_info.family != RTL8380_FAMILY_ID)
return -ENODEV;
if (addr < 24)
return -ENODEV;
/* On the RTL8380M, PHYs 24-27 connect to the internal SerDes */
if (soc_info.id == 0x8380) {
if (addr == 24)
return rtl8380_configure_serdes(phydev);
return 0;
}
return -ENODEV;
}
static int rtl8393_serdes_probe(struct phy_device *phydev)
{
int addr = phydev->mdio.addr;
pr_info("%s: id: %d\n", __func__, addr);
if (soc_info.family != RTL8390_FAMILY_ID)
return -ENODEV;
if (addr < 24)
return -ENODEV;
return rtl8390_configure_serdes(phydev);
}
static int rtl8390_serdes_probe(struct phy_device *phydev)
{
int addr = phydev->mdio.addr;
if (soc_info.family != RTL8390_FAMILY_ID)
return -ENODEV;
if (addr < 24)
return -ENODEV;
return rtl8390_configure_generic(phydev);
}
static int rtl9300_serdes_probe(struct phy_device *phydev)
{
if (soc_info.family != RTL9300_FAMILY_ID)
return -ENODEV;
phydev_info(phydev, "Detected internal RTL9300 Serdes\n");
return rtl9300_configure_serdes(phydev);
}
static struct phy_driver rtl83xx_phy_driver[] = {
{
PHY_ID_MATCH_MODEL(PHY_ID_RTL8214C),
.name = "Realtek RTL8214C",
.features = PHY_GBIT_FEATURES,
.flags = PHY_HAS_REALTEK_PAGES,
.match_phy_device = rtl8214c_match_phy_device,
.probe = rtl8214c_phy_probe,
.suspend = genphy_suspend,
.resume = genphy_resume,
.set_loopback = genphy_loopback,
},
{
PHY_ID_MATCH_MODEL(PHY_ID_RTL8214FC),
.name = "Realtek RTL8214FC",
.features = PHY_GBIT_FIBRE_FEATURES,
.flags = PHY_HAS_REALTEK_PAGES,
.match_phy_device = rtl8214fc_match_phy_device,
.probe = rtl8214fc_phy_probe,
.suspend = rtl8214fc_suspend,
.resume = rtl8214fc_resume,
.set_loopback = genphy_loopback,
.set_port = rtl8214fc_set_port,
.get_port = rtl8214fc_get_port,
.set_eee = rtl8214fc_set_eee,
.get_eee = rtl8214fc_get_eee,
},
{
PHY_ID_MATCH_MODEL(PHY_ID_RTL8218B_E),
.name = "Realtek RTL8218B (external)",
.features = PHY_GBIT_FEATURES,
.flags = PHY_HAS_REALTEK_PAGES,
.match_phy_device = rtl8218b_ext_match_phy_device,
.probe = rtl8218b_ext_phy_probe,
.suspend = genphy_suspend,
.resume = genphy_resume,
.set_loopback = genphy_loopback,
.set_eee = rtl8218b_set_eee,
.get_eee = rtl8218b_get_eee,
},
{
PHY_ID_MATCH_MODEL(PHY_ID_RTL8218D),
.name = "REALTEK RTL8218D",
.features = PHY_GBIT_FEATURES,
.flags = PHY_HAS_REALTEK_PAGES,
.probe = rtl8218d_phy_probe,
.suspend = genphy_suspend,
.resume = genphy_resume,
.set_loopback = genphy_loopback,
.set_eee = rtl8218d_set_eee,
.get_eee = rtl8218d_get_eee,
},
{
PHY_ID_MATCH_MODEL(PHY_ID_RTL8221B),
.name = "REALTEK RTL8221B",
.features = PHY_GBIT_FEATURES,
.flags = PHY_HAS_REALTEK_PAGES,
.suspend = genphy_suspend,
.resume = genphy_resume,
.set_loopback = genphy_loopback,
.read_page = rtl8226_read_page,
.write_page = rtl8226_write_page,
.read_status = rtl8226_read_status,
.config_aneg = rtl8226_config_aneg,
.set_eee = rtl8226_set_eee,
.get_eee = rtl8226_get_eee,
},
{
PHY_ID_MATCH_MODEL(PHY_ID_RTL8226),
.name = "REALTEK RTL8226",
.features = PHY_GBIT_FEATURES,
.flags = PHY_HAS_REALTEK_PAGES,
.suspend = genphy_suspend,
.resume = genphy_resume,
.set_loopback = genphy_loopback,
.read_page = rtl8226_read_page,
.write_page = rtl8226_write_page,
.read_status = rtl8226_read_status,
.config_aneg = rtl8226_config_aneg,
.set_eee = rtl8226_set_eee,
.get_eee = rtl8226_get_eee,
},
{
PHY_ID_MATCH_MODEL(PHY_ID_RTL8218B_I),
.name = "Realtek RTL8218B (internal)",
.features = PHY_GBIT_FEATURES,
.flags = PHY_HAS_REALTEK_PAGES,
.probe = rtl8218b_int_phy_probe,
.suspend = genphy_suspend,
.resume = genphy_resume,
.set_loopback = genphy_loopback,
.set_eee = rtl8218b_set_eee,
.get_eee = rtl8218b_get_eee,
},
{
PHY_ID_MATCH_MODEL(PHY_ID_RTL8218B_I),
.name = "Realtek RTL8380 SERDES",
.features = PHY_GBIT_FIBRE_FEATURES,
.flags = PHY_HAS_REALTEK_PAGES,
.probe = rtl838x_serdes_probe,
.suspend = genphy_suspend,
.resume = genphy_resume,
.set_loopback = genphy_loopback,
.read_status = rtl8380_read_status,
},
{
PHY_ID_MATCH_MODEL(PHY_ID_RTL8393_I),
.name = "Realtek RTL8393 SERDES",
.features = PHY_GBIT_FIBRE_FEATURES,
.flags = PHY_HAS_REALTEK_PAGES,
.probe = rtl8393_serdes_probe,
.suspend = genphy_suspend,
.resume = genphy_resume,
.set_loopback = genphy_loopback,
.read_status = rtl8393_read_status,
},
{
PHY_ID_MATCH_MODEL(PHY_ID_RTL8390_GENERIC),
.name = "Realtek RTL8390 Generic",
.features = PHY_GBIT_FIBRE_FEATURES,
.flags = PHY_HAS_REALTEK_PAGES,
.probe = rtl8390_serdes_probe,
.suspend = genphy_suspend,
.resume = genphy_resume,
.set_loopback = genphy_loopback,
},
{
PHY_ID_MATCH_MODEL(PHY_ID_RTL9300_I),
.name = "REALTEK RTL9300 SERDES",
.features = PHY_GBIT_FIBRE_FEATURES,
.flags = PHY_HAS_REALTEK_PAGES,
.probe = rtl9300_serdes_probe,
.suspend = genphy_suspend,
.resume = genphy_resume,
.set_loopback = genphy_loopback,
.read_status = rtl9300_read_status,
},
};
module_phy_driver(rtl83xx_phy_driver);
static struct mdio_device_id __maybe_unused rtl83xx_tbl[] = {
{ PHY_ID_MATCH_MODEL(PHY_ID_RTL8214FC) },
{ }
};
MODULE_DEVICE_TABLE(mdio, rtl83xx_tbl);
MODULE_AUTHOR("B. Koblitz");
MODULE_DESCRIPTION("RTL83xx PHY driver");
MODULE_LICENSE("GPL");