/* * sata_oxnas * A driver to interface the 934 based sata core present in the ox820 * with libata and scsi * based on sata_oxnas driver by Ma Haijun <mahaijuns@gmail.com> * based on ox820 sata code by: * Copyright (c) 2007 Oxford Semiconductor Ltd. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include <linux/ata.h> #include <linux/libata.h> #include <linux/of_platform.h> #include <linux/delay.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/clk.h> #include <linux/reset.h> #include <mach/utils.h> /* sgdma request structure */ struct sgdma_request { volatile u32 qualifier; volatile u32 control; dma_addr_t src_pa; dma_addr_t dst_pa; } __packed __aligned(4); /* Controller information */ enum { SATA_OXNAS_MAX_PRD = 254, SATA_OXNAS_DMA_SIZE = SATA_OXNAS_MAX_PRD * sizeof(struct ata_bmdma_prd) + sizeof(struct sgdma_request), SATA_OXNAS_MAX_PORTS = 2, /** The different Oxsemi SATA core version numbers */ SATA_OXNAS_CORE_VERSION = 0x1f3, SATA_OXNAS_IRQ_FLAG = IRQF_SHARED, SATA_OXNAS_HOST_FLAGS = (ATA_FLAG_SATA | ATA_FLAG_PIO_DMA | ATA_FLAG_NO_ATAPI /*| ATA_FLAG_NCQ*/), SATA_OXNAS_QUEUE_DEPTH = 32, SATA_OXNAS_DMA_BOUNDARY = 0xFFFFFFFF, }; /* * SATA Port Registers */ enum { /** sata host port register offsets */ ORB1 = 0x00, ORB2 = 0x04, ORB3 = 0x08, ORB4 = 0x0C, ORB5 = 0x10, MASTER_STATUS = 0x10, FIS_CTRL = 0x18, FIS_DATA = 0x1C, INT_STATUS = 0x30, INT_CLEAR = 0x30, INT_ENABLE = 0x34, INT_DISABLE = 0x38, VERSION = 0x3C, SATA_CONTROL = 0x5C, SATA_COMMAND = 0x60, HID_FEATURES = 0x64, PORT_CONTROL = 0x68, DRIVE_CONTROL = 0x6C, /** These registers allow access to the link layer registers that reside in a different clock domain to the processor bus */ LINK_DATA = 0x70, LINK_RD_ADDR = 0x74, LINK_WR_ADDR = 0x78, LINK_CONTROL = 0x7C, /* window control */ WIN1LO = 0x80, WIN1HI = 0x84, WIN2LO = 0x88, WIN2HI = 0x8C, WIN0_CONTROL = 0x90, }; /** sata port register bits */ enum{ /** * commands to issue in the master status to tell it to move shadow , * registers to the actual device , */ SATA_OPCODE_MASK = 0x00000007, CMD_WRITE_TO_ORB_REGS_NO_COMMAND = 0x4, CMD_WRITE_TO_ORB_REGS = 0x2, CMD_SYNC_ESCAPE = 0x7, CMD_CORE_BUSY = (1 << 7), CMD_DRIVE_SELECT_SHIFT = 12, CMD_DRIVE_SELECT_MASK = (0xf << CMD_DRIVE_SELECT_SHIFT), /** interrupt bits */ INT_END_OF_CMD = 1 << 0, INT_LINK_SERROR = 1 << 1, INT_ERROR = 1 << 2, INT_LINK_IRQ = 1 << 3, INT_REG_ACCESS_ERR = 1 << 7, INT_BIST_FIS = 1 << 11, INT_MASKABLE = INT_END_OF_CMD | INT_LINK_SERROR | INT_ERROR | INT_LINK_IRQ | INT_REG_ACCESS_ERR | INT_BIST_FIS, INT_WANT = INT_END_OF_CMD | INT_LINK_SERROR | INT_REG_ACCESS_ERR | INT_ERROR, INT_ERRORS = INT_LINK_SERROR | INT_REG_ACCESS_ERR | INT_ERROR, /** raw interrupt bits, unmaskable, but do not generate interrupts */ RAW_END_OF_CMD = INT_END_OF_CMD << 16, RAW_LINK_SERROR = INT_LINK_SERROR << 16, RAW_ERROR = INT_ERROR << 16, RAW_LINK_IRQ = INT_LINK_IRQ << 16, RAW_REG_ACCESS_ERR = INT_REG_ACCESS_ERR << 16, RAW_BIST_FIS = INT_BIST_FIS << 16, RAW_WANT = INT_WANT << 16, RAW_ERRORS = INT_ERRORS << 16, /** * variables to write to the device control register to set the current * device, ie. master or slave. */ DR_CON_48 = 2, DR_CON_28 = 0, SATA_CTL_ERR_MASK = 0x00000016, }; /* ATA SGDMA register offsets */ enum { SGDMA_CONTROL = 0x0, SGDMA_STATUS = 0x4, SGDMA_REQUESTPTR = 0x8, SGDMA_RESETS = 0xC, SGDMA_CORESIZE = 0x10, }; /* DMA controller register offsets */ enum { DMA_CONTROL = 0x0, DMA_CORESIZE = 0x20, DMA_CONTROL_RESET = (1 << 12), }; enum { /* see DMA core docs for the values. Out means from memory (bus A) out * to disk (bus B) */ SGDMA_REQCTL0OUT = 0x0497c03d, /* burst mode disabled when no micro code used */ SGDMA_REQCTL0IN = 0x0493a3c1, SGDMA_REQCTL1OUT = 0x0497c07d, SGDMA_REQCTL1IN = 0x0497a3c5, SGDMA_CONTROL_NOGO = 0x3e, SGDMA_CONTROL_GO = SGDMA_CONTROL_NOGO | 1, SGDMA_ERRORMASK = 0x3f, SGDMA_BUSY = 0x80, SGDMA_RESETS_CTRL = 1 << 0, SGDMA_RESETS_ARBT = 1 << 1, SGDMA_RESETS_AHB = 1 << 2, SGDMA_RESETS_ALL = SGDMA_RESETS_CTRL | SGDMA_RESETS_ARBT | SGDMA_RESETS_AHB, /* Final EOTs */ SGDMA_REQQUAL = 0x00220001, }; /** SATA core register offsets */ enum { DM_DBG1 = 0x000, RAID_SET = 0x004, DM_DBG2 = 0x008, DATACOUNT_PORT0 = 0x010, DATACOUNT_PORT1 = 0x014, CORE_INT_STATUS = 0x030, CORE_INT_CLEAR = 0x030, CORE_INT_ENABLE = 0x034, CORE_INT_DISABLE = 0x038, CORE_REBUILD_ENABLE = 0x050, CORE_FAILED_PORT_R = 0x054, DEVICE_CONTROL = 0x068, EXCESS = 0x06C, RAID_SIZE_LOW = 0x070, RAID_SIZE_HIGH = 0x074, PORT_ERROR_MASK = 0x078, IDLE_STATUS = 0x07C, RAID_CONTROL = 0x090, DATA_PLANE_CTRL = 0x0AC, CORE_DATAPLANE_STAT = 0x0b8, PROC_PC = 0x100, CONFIG_IN = 0x3d8, PROC_START = 0x3f0, PROC_RESET = 0x3f4, UCODE_STORE = 0x1000, RAID_WP_BOT_LOW = 0x1FF0, RAID_WP_BOT_HIGH = 0x1FF4, RAID_WP_TOP_LOW = 0x1FF8, RAID_WP_TOP_HIGH = 0x1FFC, DATA_MUX_RAM0 = 0x8000, DATA_MUX_RAM1 = 0xA000, PORT_SIZE = 0x10000, }; enum { /* Sata core debug1 register bits */ CORE_PORT0_DATA_DIR_BIT = 20, CORE_PORT1_DATA_DIR_BIT = 21, CORE_PORT0_DATA_DIR = 1 << CORE_PORT0_DATA_DIR_BIT, CORE_PORT1_DATA_DIR = 1 << CORE_PORT1_DATA_DIR_BIT, /** sata core control register bits */ SCTL_CLR_ERR = 0x00003016, RAID_CLR_ERR = 0x0000011e, /* Interrupts direct from the ports */ NORMAL_INTS_WANTED = 0x00000303, /* shift these left by port number */ COREINT_HOST = 0x00000001, COREINT_END = 0x00000100, CORERAW_HOST = COREINT_HOST << 16, CORERAW_END = COREINT_END << 16, /* Interrupts from the RAID controller only */ RAID_INTS_WANTED = 0x00008300, /* The bits in the IDLE_STATUS that, when set indicate an idle core */ IDLE_CORES = (1 << 18) | (1 << 19), /* Data plane control error-mask mask and bit, these bit in the data * plane control mask out errors from the ports that prevent the SGDMA * care from sending an interrupt */ DPC_ERROR_MASK = 0x00000300, DPC_ERROR_MASK_BIT = 0x00000100, /* enable jbod micro-code */ DPC_JBOD_UCODE = 1 << 0, DPC_FIS_SWCH = 1 << 1, /** Device Control register bits */ DEVICE_CONTROL_DMABT = 1 << 4, DEVICE_CONTROL_ABORT = 1 << 2, DEVICE_CONTROL_PAD = 1 << 3, DEVICE_CONTROL_PADPAT = 1 << 16, DEVICE_CONTROL_PRTRST = 1 << 8, DEVICE_CONTROL_RAMRST = 1 << 12, DEVICE_CONTROL_ATA_ERR_OVERRIDE = 1 << 28, /** oxsemi HW raid modes */ OXNASSATA_NOTRAID = 0, OXNASSATA_RAID0 = 1, OXNASSATA_RAID1 = 2, /** OX820 specific HW-RAID register values */ RAID_TWODISKS = 3, UNKNOWN_MODE = ~0, CONFIG_IN_RESUME = 2, }; /* SATA PHY Registers */ enum { PHY_STAT = 0x00, PHY_DATA = 0x04, }; enum { STAT_READ_VALID = (1 << 21), STAT_CR_ACK = (1 << 20), STAT_CR_READ = (1 << 19), STAT_CR_WRITE = (1 << 18), STAT_CAP_DATA = (1 << 17), STAT_CAP_ADDR = (1 << 16), STAT_ACK_ANY = STAT_CR_ACK | STAT_CR_READ | STAT_CR_WRITE | STAT_CAP_DATA | STAT_CAP_ADDR, CR_READ_ENABLE = (1 << 16), CR_WRITE_ENABLE = (1 << 17), CR_CAP_DATA = (1 << 18), }; enum { /* Link layer registers */ SERROR_IRQ_MASK = 5, }; enum { OXNAS_SATA_SOFTRESET = 1, OXNAS_SATA_REINIT = 2, }; enum { OXNAS_SATA_UCODE_RAID0, OXNAS_SATA_UCODE_RAID1, OXNAS_SATA_UCODE_JBOD, OXNAS_SATA_UCODE_NONE, }; enum { SATA_UNLOCKED, SATA_WRITER, SATA_READER, SATA_REBUILD, SATA_HWRAID, SATA_SCSI_STACK }; typedef irqreturn_t (*oxnas_sata_isr_callback_t)(int, unsigned long, int); struct sata_oxnas_host_priv { void __iomem *port_base; void __iomem *dmactl_base; void __iomem *sgdma_base; void __iomem *core_base; void __iomem *phy_base; dma_addr_t dma_base; void __iomem *dma_base_va; size_t dma_size; int irq; int n_ports; int current_ucode; u32 port_frozen; u32 port_in_eh; struct clk *clk; struct reset_control *rst_sata; struct reset_control *rst_link; struct reset_control *rst_phy; spinlock_t phy_lock; spinlock_t core_lock; int core_locked; int reentrant_port_no; int hw_lock_count; int direct_lock_count; void *locker_uid; int current_locker_type; int scsi_nonblocking_attempts; oxnas_sata_isr_callback_t isr_callback; void *isr_arg; wait_queue_head_t fast_wait_queue; wait_queue_head_t scsi_wait_queue; }; struct sata_oxnas_port_priv { void __iomem *port_base; void __iomem *dmactl_base; void __iomem *sgdma_base; void __iomem *core_base; struct sgdma_request *sgdma_request; dma_addr_t sgdma_request_pa; }; static u8 sata_oxnas_check_status(struct ata_port *ap); static int sata_oxnas_cleanup(struct ata_host *ah); static void sata_oxnas_tf_load(struct ata_port *ap, const struct ata_taskfile *tf); static void sata_oxnas_irq_on(struct ata_port *ap); static void sata_oxnas_post_reset_init(struct ata_port *ap); static int sata_oxnas_acquire_hw(struct ata_port *ap, int may_sleep, int timeout_jiffies); static void sata_oxnas_release_hw(struct ata_port *ap); static const void *HW_LOCKER_UID = (void *)0xdeadbeef; /*************************************************************************** * ASIC access ***************************************************************************/ static void wait_cr_ack(void __iomem *phy_base) { while ((ioread32(phy_base + PHY_STAT) >> 16) & 0x1f) ; /* wait for an ack bit to be set */ } static u16 read_cr(void __iomem *phy_base, u16 address) { iowrite32((u32)address, phy_base + PHY_STAT); wait_cr_ack(phy_base); iowrite32(CR_READ_ENABLE, phy_base + PHY_DATA); wait_cr_ack(phy_base); return (u16)ioread32(phy_base + PHY_STAT); } static void write_cr(void __iomem *phy_base, u16 data, u16 address) { iowrite32((u32)address, phy_base + PHY_STAT); wait_cr_ack(phy_base); iowrite32((data | CR_CAP_DATA), phy_base + PHY_DATA); wait_cr_ack(phy_base); iowrite32(CR_WRITE_ENABLE, phy_base + PHY_DATA); wait_cr_ack(phy_base); } #define PH_GAIN 2 #define FR_GAIN 3 #define PH_GAIN_OFFSET 6 #define FR_GAIN_OFFSET 8 #define PH_GAIN_MASK (0x3 << PH_GAIN_OFFSET) #define FR_GAIN_MASK (0x3 << FR_GAIN_OFFSET) #define USE_INT_SETTING (1<<5) void workaround5458(struct ata_host *ah) { struct sata_oxnas_host_priv *hd = ah->private_data; void __iomem *phy_base = hd->phy_base; u16 rx_control; unsigned i; for (i = 0; i < 2; i++) { rx_control = read_cr(phy_base, 0x201d + (i << 8)); rx_control &= ~(PH_GAIN_MASK | FR_GAIN_MASK); rx_control |= PH_GAIN << PH_GAIN_OFFSET; rx_control |= (FR_GAIN << FR_GAIN_OFFSET) | USE_INT_SETTING; write_cr(phy_base, rx_control, 0x201d+(i<<8)); } } /** * allows access to the link layer registers * @param link_reg the link layer register to access (oxsemi indexing ie * 00 = static config, 04 = phy ctrl) */ void sata_oxnas_link_write(struct ata_port *ap, unsigned int link_reg, u32 val) { struct sata_oxnas_port_priv *pd = ap->private_data; struct sata_oxnas_host_priv *hd = ap->host->private_data; void __iomem *port_base = pd->port_base; u32 patience; unsigned long flags; DPRINTK("P%d [0x%02x]->0x%08x\n", ap->port_no, link_reg, val); spin_lock_irqsave(&hd->phy_lock, flags); iowrite32(val, port_base + LINK_DATA); /* accessed twice as a work around for a bug in the SATA abp bridge * hardware (bug 6828) */ iowrite32(link_reg , port_base + LINK_WR_ADDR); ioread32(port_base + LINK_WR_ADDR); for (patience = 0x100000; patience > 0; --patience) { if (ioread32(port_base + LINK_CONTROL) & 0x00000001) break; } spin_unlock_irqrestore(&hd->phy_lock, flags); } static int sata_oxnas_scr_write_port(struct ata_port *ap, unsigned int sc_reg, u32 val) { sata_oxnas_link_write(ap, 0x20 + (sc_reg * 4), val); return 0; } static int sata_oxnas_scr_write(struct ata_link *link, unsigned int sc_reg, u32 val) { return sata_oxnas_scr_write_port(link->ap, sc_reg, val); } u32 sata_oxnas_link_read(struct ata_port *ap, unsigned int link_reg) { struct sata_oxnas_port_priv *pd = ap->private_data; struct sata_oxnas_host_priv *hd = ap->host->private_data; void __iomem *port_base = pd->port_base; u32 result; u32 patience; unsigned long flags; spin_lock_irqsave(&hd->phy_lock, flags); /* accessed twice as a work around for a bug in the SATA abp bridge * hardware (bug 6828) */ iowrite32(link_reg, port_base + LINK_RD_ADDR); ioread32(port_base + LINK_RD_ADDR); for (patience = 0x100000; patience > 0; --patience) { if (ioread32(port_base + LINK_CONTROL) & 0x00000001) break; } if (patience == 0) DPRINTK("link read timed out for port %d\n", ap->port_no); result = ioread32(port_base + LINK_DATA); spin_unlock_irqrestore(&hd->phy_lock, flags); return result; } static int sata_oxnas_scr_read_port(struct ata_port *ap, unsigned int sc_reg, u32 *val) { *val = sata_oxnas_link_read(ap, 0x20 + (sc_reg*4)); return 0; } static int sata_oxnas_scr_read(struct ata_link *link, unsigned int sc_reg, u32 *val) { return sata_oxnas_scr_read_port(link->ap, sc_reg, val); } /** * sata_oxnas_irq_clear is called during probe just before the interrupt handler is * registered, to be sure hardware is quiet. It clears and masks interrupt bits * in the SATA core. * * @param ap hardware with the registers in */ static void sata_oxnas_irq_clear(struct ata_port *ap) { struct sata_oxnas_port_priv *port_priv = ap->private_data; /* clear pending interrupts */ iowrite32(~0, port_priv->port_base + INT_CLEAR); iowrite32(COREINT_END, port_priv->core_base + CORE_INT_CLEAR); } /** * qc_issue is used to make a command active, once the hardware and S/G tables * have been prepared. IDE BMDMA drivers use the helper function * ata_qc_issue_prot() for taskfile protocol-based dispatch. More advanced * drivers roll their own ->qc_issue implementation, using this as the * "issue new ATA command to hardware" hook. * @param qc the queued command to issue */ static unsigned int sata_oxnas_qc_issue(struct ata_queued_cmd *qc) { struct sata_oxnas_port_priv *pd = qc->ap->private_data; struct sata_oxnas_host_priv *hd = qc->ap->host->private_data; void __iomem *port_base = pd->port_base; void __iomem *core_base = pd->core_base; int port_no = qc->ap->port_no; int no_microcode = (hd->current_ucode == UNKNOWN_MODE); u32 reg; /* check the core is idle */ if (ioread32(port_base + SATA_COMMAND) & CMD_CORE_BUSY) { int count = 0; DPRINTK("core busy for a command on port %d\n", qc->ap->port_no); do { mdelay(1); if (++count > 100) { DPRINTK("core busy for a command on port %d\n", qc->ap->port_no); /* CrazyDumpDebug(); */ sata_oxnas_cleanup(qc->ap->host); } } while (ioread32(port_base + SATA_COMMAND) & CMD_CORE_BUSY); } /* enable passing of error signals to DMA sub-core by clearing the * appropriate bit */ reg = ioread32(core_base + DATA_PLANE_CTRL); if (no_microcode) reg |= (DPC_ERROR_MASK_BIT | (DPC_ERROR_MASK_BIT << 1)); reg &= ~(DPC_ERROR_MASK_BIT << port_no); iowrite32(reg, core_base + DATA_PLANE_CTRL); /* Disable all interrupts for ports and RAID controller */ iowrite32(~0, port_base + INT_DISABLE); /* Disable all interrupts for core */ iowrite32(~0, core_base + CORE_INT_DISABLE); wmb(); /* Load the command settings into the orb registers */ sata_oxnas_tf_load(qc->ap, &qc->tf); /* both pio and dma commands use dma */ if (ata_is_dma(qc->tf.protocol) || ata_is_pio(qc->tf.protocol)) { /* Start the DMA */ iowrite32(SGDMA_CONTROL_GO, pd->sgdma_base + SGDMA_CONTROL); wmb(); } /* enable End of command interrupt */ iowrite32(INT_WANT, port_base + INT_ENABLE); iowrite32(COREINT_END, core_base + CORE_INT_ENABLE); wmb(); /* Start the command */ reg = ioread32(port_base + SATA_COMMAND); reg &= ~SATA_OPCODE_MASK; reg |= CMD_WRITE_TO_ORB_REGS; iowrite32(reg , port_base + SATA_COMMAND); wmb(); return 0; } /** * Will schedule the libATA error handler on the premise that there has * been a hotplug event on the port specified */ void sata_oxnas_checkforhotplug(struct ata_port *ap) { DPRINTK("ENTER\n"); ata_ehi_hotplugged(&ap->link.eh_info); ata_port_freeze(ap); } /**************************************************************************/ /* Locking */ /**************************************************************************/ /** * The underlying function that controls access to the sata core * * @return non-zero indicates that you have acquired exclusive access to the * sata core. */ static int __acquire_sata_core( struct ata_host *ah, int port_no, oxnas_sata_isr_callback_t callback, void *arg, int may_sleep, int timeout_jiffies, int hw_access, void *uid, int locker_type) { unsigned long end = jiffies + timeout_jiffies; int acquired = 0; unsigned long flags; int timed_out = 0; struct sata_oxnas_host_priv *hd; DEFINE_WAIT(wait); if (!ah) return acquired; hd = ah->private_data; spin_lock_irqsave(&hd->core_lock, flags); DPRINTK("Entered uid %p, port %d, h/w count %d, d count %d, " "callback %p, hw_access %d, core_locked %d, " "reentrant_port_no %d, isr_callback %p\n", uid, port_no, hd->hw_lock_count, hd->direct_lock_count, callback, hw_access, hd->core_locked, hd->reentrant_port_no, hd->isr_callback); while (!timed_out) { if (hd->core_locked || (!hw_access && hd->scsi_nonblocking_attempts)) { /* Can only allow access if from SCSI/SATA stack and if * reentrant access is allowed and this access is to the * same port for which the lock is current held */ if (hw_access && (port_no == hd->reentrant_port_no)) { BUG_ON(!hd->hw_lock_count); ++(hd->hw_lock_count); DPRINTK("Allow SCSI/SATA re-entrant access to " "uid %p port %d\n", uid, port_no); acquired = 1; break; } else if (!hw_access) { if ((locker_type == SATA_READER) && (hd->current_locker_type == SATA_READER)) { WARN(1, "Already locked by reader, " "uid %p, locker_uid %p, " "port %d, h/w count %d, " "d count %d, hw_access %d\n", uid, hd->locker_uid, port_no, hd->hw_lock_count, hd->direct_lock_count, hw_access); goto check_uid; } if ((locker_type != SATA_READER) && (locker_type != SATA_WRITER)) { goto wait_for_lock; } check_uid: WARN(uid == hd->locker_uid, "Attempt to lock " "by locker type %d uid %p, already " "locked by locker type %d with " "locker_uid %p, port %d, " "h/w count %d, d count %d, " "hw_access %d\n", locker_type, uid, hd->current_locker_type, hd->locker_uid, port_no, hd->hw_lock_count, hd->direct_lock_count, hw_access); } } else { WARN(hd->hw_lock_count || hd->direct_lock_count, "Core unlocked but counts non-zero: uid %p, " "locker_uid %p, port %d, h/w count %d, " "d count %d, hw_access %d\n", uid, hd->locker_uid, port_no, hd->hw_lock_count, hd->direct_lock_count, hw_access); BUG_ON(hd->current_locker_type != SATA_UNLOCKED); WARN(hd->locker_uid, "Attempt to lock uid %p when " "locker_uid %p is non-zero, port %d, " "h/w count %d, d count %d, hw_access %d\n", uid, hd->locker_uid, port_no, hd->hw_lock_count, hd->direct_lock_count, hw_access); if (!hw_access) { /* Direct access attempting to acquire * non-contented lock */ /* Must have callback for direct access */ BUG_ON(!callback); /* Sanity check lock state */ BUG_ON(hd->reentrant_port_no != -1); hd->isr_callback = callback; hd->isr_arg = arg; ++(hd->direct_lock_count); hd->current_locker_type = locker_type; } else { /* SCSI/SATA attempting to acquire * non-contented lock */ /* No callbacks for SCSI/SATA access */ BUG_ON(callback); /* No callback args for SCSI/SATA access */ BUG_ON(arg); /* Sanity check lock state */ BUG_ON(hd->isr_callback); BUG_ON(hd->isr_arg); ++(hd->hw_lock_count); hd->reentrant_port_no = port_no; hd->current_locker_type = SATA_SCSI_STACK; } hd->core_locked = 1; hd->locker_uid = uid; acquired = 1; break; } wait_for_lock: if (!may_sleep) { DPRINTK("Denying for uid %p locker_type %d, " "hw_access %d, port %d, current_locker_type %d as " "cannot sleep\n", uid, locker_type, hw_access, port_no, hd->current_locker_type); if (hw_access) ++(hd->scsi_nonblocking_attempts); break; } /* Core is locked and we're allowed to sleep, so wait to be * awoken when the core is unlocked */ for (;;) { prepare_to_wait(hw_access ? &hd->scsi_wait_queue : &hd->fast_wait_queue, &wait, TASK_UNINTERRUPTIBLE); if (!hd->core_locked && !(!hw_access && hd->scsi_nonblocking_attempts)) { /* We're going to use variables that will have * been changed by the waker prior to clearing * core_locked so we need to ensure we see * changes to all those variables */ smp_rmb(); break; } if (time_after(jiffies, end)) { printk(KERN_WARNING "__acquire_sata_core() " "uid %p failing for port %d timed out, " "locker_uid %p, h/w count %d, " "d count %d, callback %p, hw_access %d, " "core_locked %d, reentrant_port_no %d, " "isr_callback %p, isr_arg %p\n", uid, port_no, hd->locker_uid, hd->hw_lock_count, hd->direct_lock_count, callback, hw_access, hd->core_locked, hd->reentrant_port_no, hd->isr_callback, hd->isr_arg); timed_out = 1; break; } spin_unlock_irqrestore(&hd->core_lock, flags); if (!schedule_timeout(4*HZ)) { printk(KERN_INFO "__acquire_sata_core() uid %p, " "locker_uid %p, timed-out of " "schedule(), checking overall timeout\n", uid, hd->locker_uid); } spin_lock_irqsave(&hd->core_lock, flags); } finish_wait(hw_access ? &hd->scsi_wait_queue : &hd->fast_wait_queue, &wait); } if (hw_access && acquired) { if (hd->scsi_nonblocking_attempts) hd->scsi_nonblocking_attempts = 0; /* Wake any other SCSI/SATA waiters so they can get reentrant * access to the same port if appropriate. This is because if * the SATA core is locked by fast access, or SCSI/SATA access * to other port, then can have >1 SCSI/SATA waiters on the wait * list so want to give reentrant accessors a chance to get * access ASAP */ if (!list_empty(&hd->scsi_wait_queue.task_list)) wake_up(&hd->scsi_wait_queue); } DPRINTK("Leaving uid %p with acquired = %d, port %d, callback %p\n", uid, acquired, port_no, callback); spin_unlock_irqrestore(&hd->core_lock, flags); return acquired; } int sata_core_has_fast_waiters(struct ata_host *ah) { int has_waiters; unsigned long flags; struct sata_oxnas_host_priv *hd = ah->private_data; spin_lock_irqsave(&hd->core_lock, flags); has_waiters = !list_empty(&hd->fast_wait_queue.task_list); spin_unlock_irqrestore(&hd->core_lock, flags); return has_waiters; } EXPORT_SYMBOL(sata_core_has_fast_waiters); int sata_core_has_scsi_waiters(struct ata_host *ah) { int has_waiters; unsigned long flags; struct sata_oxnas_host_priv *hd = ah->private_data; spin_lock_irqsave(&hd->core_lock, flags); has_waiters = hd->scsi_nonblocking_attempts || !list_empty(&hd->scsi_wait_queue.task_list); spin_unlock_irqrestore(&hd->core_lock, flags); return has_waiters; } EXPORT_SYMBOL(sata_core_has_scsi_waiters); /* * ata_port operation to gain ownership of the SATA hardware prior to issuing * a command against a SATA host. Allows any number of users of the port against * which the lock was first acquired, thus enforcing that only one SATA core * port may be operated on at once. */ static int sata_oxnas_acquire_hw( struct ata_port *ap, int may_sleep, int timeout_jiffies) { return __acquire_sata_core(ap->host, ap->port_no, NULL, 0, may_sleep, timeout_jiffies, 1, (void *)HW_LOCKER_UID, SATA_SCSI_STACK); } /* * operation to release ownership of the SATA hardware */ static void sata_oxnas_release_hw(struct ata_port *ap) { unsigned long flags; int released = 0; struct sata_oxnas_host_priv *hd = ap->host->private_data; spin_lock_irqsave(&hd->core_lock, flags); DPRINTK("Entered port_no = %d, h/w count %d, d count %d, " "core locked = %d, reentrant_port_no = %d, isr_callback %p\n", ap->port_no, hd->hw_lock_count, hd->direct_lock_count, hd->core_locked, hd->reentrant_port_no, hd->isr_callback); if (!hd->core_locked) { /* Nobody holds the SATA lock */ printk(KERN_WARNING "Nobody holds SATA lock, port_no %d\n", ap->port_no); released = 1; } else if (!hd->hw_lock_count) { /* SCSI/SATA has released without holding the lock */ printk(KERN_WARNING "SCSI/SATA does not hold SATA lock, " "port_no %d\n", ap->port_no); } else { /* Trap incorrect usage */ BUG_ON(hd->reentrant_port_no == -1); BUG_ON(ap->port_no != hd->reentrant_port_no); BUG_ON(hd->direct_lock_count); BUG_ON(hd->current_locker_type != SATA_SCSI_STACK); WARN(!hd->locker_uid || (hd->locker_uid != HW_LOCKER_UID), "Invalid locker uid %p, h/w count %d, d count %d, " "reentrant_port_no %d, core_locked %d, " "isr_callback %p\n", hd->locker_uid, hd->hw_lock_count, hd->direct_lock_count, hd->reentrant_port_no, hd->core_locked, hd->isr_callback); if (--(hd->hw_lock_count)) { DPRINTK("Still nested port_no %d\n", ap->port_no); } else { DPRINTK("Release port_no %d\n", ap->port_no); hd->reentrant_port_no = -1; hd->isr_callback = NULL; hd->current_locker_type = SATA_UNLOCKED; hd->locker_uid = 0; hd->core_locked = 0; released = 1; wake_up(!list_empty(&hd->scsi_wait_queue.task_list) ? &hd->scsi_wait_queue : &hd->fast_wait_queue); } } DPRINTK("Leaving, port_no %d, count %d\n", ap->port_no, hd->hw_lock_count); spin_unlock_irqrestore(&hd->core_lock, flags); /* CONFIG_SATA_OX820_DIRECT_HWRAID */ /* if (released) ox820hwraid_restart_queue(); } */ } static inline int sata_oxnas_is_host_frozen(struct ata_host *ah) { struct sata_oxnas_host_priv *hd = ah->private_data; smp_rmb(); return hd->port_in_eh || hd->port_frozen; } static inline u32 sata_oxnas_hostportbusy(struct ata_port *ap) { struct sata_oxnas_host_priv *hd = ap->host->private_data; return (ioread32(hd->port_base + SATA_COMMAND) & CMD_CORE_BUSY) || (hd->n_ports > 1 && (ioread32(hd->port_base + PORT_SIZE + SATA_COMMAND) & CMD_CORE_BUSY)); } static inline u32 sata_oxnas_hostdmabusy(struct ata_port *ap) { struct sata_oxnas_port_priv *pd = ap->private_data; return ioread32(pd->sgdma_base + SGDMA_STATUS) & SGDMA_BUSY; } /** * Turns on the cores clock and resets it */ static void sata_oxnas_reset_core(struct ata_host *ah) { struct sata_oxnas_host_priv *host_priv = ah->private_data; int n; DPRINTK("ENTER\n"); clk_prepare_enable(host_priv->clk); reset_control_assert(host_priv->rst_sata); reset_control_assert(host_priv->rst_link); reset_control_assert(host_priv->rst_phy); udelay(50); /* un-reset the PHY, then Link and Controller */ reset_control_deassert(host_priv->rst_phy); udelay(50); reset_control_deassert(host_priv->rst_sata); reset_control_deassert(host_priv->rst_link); udelay(50); workaround5458(ah); /* tune for sata compatibility */ sata_oxnas_link_write(ah->ports[0], 0x60, 0x2988); for (n = 0; n < host_priv->n_ports; n++) { /* each port in turn */ sata_oxnas_link_write(ah->ports[n], 0x70, 0x55629); } udelay(50); } /** * Called after an identify device command has worked out what kind of device * is on the port * * @param port The port to configure * @param pdev The hardware associated with controlling the port */ static void sata_oxnas_dev_config(struct ata_device *pdev) { struct sata_oxnas_port_priv *pd = pdev->link->ap->private_data; void __iomem *port_base = pd->port_base; u32 reg; DPRINTK("ENTER\n"); /* Set the bits to put the port into 28 or 48-bit node */ reg = ioread32(port_base + DRIVE_CONTROL); reg &= ~3; reg |= (pdev->flags & ATA_DFLAG_LBA48) ? DR_CON_48 : DR_CON_28; iowrite32(reg, port_base + DRIVE_CONTROL); /* if this is an ATA-6 disk, put port into ATA-5 auto translate mode */ if (pdev->flags & ATA_DFLAG_LBA48) { reg = ioread32(port_base + PORT_CONTROL); reg |= 2; iowrite32(reg, port_base + PORT_CONTROL); } } /** * called to write a taskfile into the ORB registers * @param ap hardware with the registers in * @param tf taskfile to write to the registers */ static void sata_oxnas_tf_load(struct ata_port *ap, const struct ata_taskfile *tf) { u32 count = 0; u32 Orb1 = 0; u32 Orb2 = 0; u32 Orb3 = 0; u32 Orb4 = 0; u32 Command_Reg; struct sata_oxnas_port_priv *port_priv = ap->private_data; void __iomem *port_base = port_priv->port_base; unsigned int is_addr = tf->flags & ATA_TFLAG_ISADDR; /* wait a maximum of 10ms for the core to be idle */ do { Command_Reg = ioread32(port_base + SATA_COMMAND); if (!(Command_Reg & CMD_CORE_BUSY)) break; count++; udelay(50); } while (count < 200); /* check if the ctl register has interrupts disabled or enabled and * modify the interrupt enable registers on the ata core as required */ if (tf->ctl & ATA_NIEN) { /* interrupts disabled */ u32 mask = (COREINT_END << ap->port_no); iowrite32(mask, port_priv->core_base + CORE_INT_DISABLE); sata_oxnas_irq_clear(ap); } else { sata_oxnas_irq_on(ap); } Orb2 |= (tf->command) << 24; /* write 48 or 28 bit tf parameters */ if (is_addr) { /* set LBA bit as it's an address */ Orb1 |= (tf->device & ATA_LBA) << 24; if (tf->flags & ATA_TFLAG_LBA48) { Orb1 |= ATA_LBA << 24; Orb2 |= (tf->hob_nsect) << 8; Orb3 |= (tf->hob_lbal) << 24; Orb4 |= (tf->hob_lbam) << 0; Orb4 |= (tf->hob_lbah) << 8; Orb4 |= (tf->hob_feature) << 16; } else { Orb3 |= (tf->device & 0xf) << 24; } /* write 28-bit lba */ Orb2 |= (tf->nsect) << 0; Orb2 |= (tf->feature) << 16; Orb3 |= (tf->lbal) << 0; Orb3 |= (tf->lbam) << 8; Orb3 |= (tf->lbah) << 16; Orb4 |= (tf->ctl) << 24; } if (tf->flags & ATA_TFLAG_DEVICE) Orb1 |= (tf->device) << 24; ap->last_ctl = tf->ctl; /* write values to registers */ iowrite32(Orb1, port_base + ORB1); iowrite32(Orb2, port_base + ORB2); iowrite32(Orb3, port_base + ORB3); iowrite32(Orb4, port_base + ORB4); } void sata_oxnas_set_mode(struct ata_host *ah, u32 mode, u32 force) { struct sata_oxnas_host_priv *host_priv = ah->private_data; void __iomem *core_base = host_priv->core_base; unsigned int *src; void __iomem *dst; unsigned int progmicrocode = 0; unsigned int changeparameters = 0; u32 previous_mode; /* these micro-code programs _should_ include the version word */ /* JBOD */ static const unsigned int jbod[] = { 0x07B400AC, 0x0228A280, 0x00200001, 0x00204002, 0x00224001, 0x00EE0009, 0x00724901, 0x01A24903, 0x00E40009, 0x00224001, 0x00621120, 0x0183C908, 0x00E20005, 0x00718908, 0x0198A206, 0x00621124, 0x0183C908, 0x00E20046, 0x00621104, 0x0183C908, 0x00E20015, 0x00EE009D, 0x01A3E301, 0x00E2001B, 0x0183C900, 0x00E2001B, 0x00210001, 0x00EE0020, 0x01A3E302, 0x00E2009D, 0x0183C901, 0x00E2009D, 0x00210002, 0x0235D700, 0x0208A204, 0x0071C908, 0x000F8207, 0x000FC207, 0x0071C920, 0x000F8507, 0x000FC507, 0x0228A240, 0x02269A40, 0x00094004, 0x00621104, 0x0180C908, 0x00E40031, 0x00621112, 0x01A3C801, 0x00E2002B, 0x00294000, 0x0228A220, 0x01A69ABF, 0x002F8000, 0x002FC000, 0x0198A204, 0x0001C022, 0x01B1A220, 0x0001C106, 0x00088007, 0x0183C903, 0x00E2009D, 0x0228A220, 0x0071890C, 0x0208A206, 0x0198A206, 0x0001C022, 0x01B1A220, 0x0001C106, 0x00088007, 0x00EE009D, 0x00621104, 0x0183C908, 0x00E2004A, 0x00EE009D, 0x01A3C901, 0x00E20050, 0x0021E7FF, 0x0183E007, 0x00E2009D, 0x00EE0054, 0x0061600B, 0x0021E7FF, 0x0183C507, 0x00E2009D, 0x01A3E301, 0x00E2005A, 0x0183C900, 0x00E2005A, 0x00210001, 0x00EE005F, 0x01A3E302, 0x00E20005, 0x0183C901, 0x00E20005, 0x00210002, 0x0235D700, 0x0208A204, 0x000F8109, 0x000FC109, 0x0071C918, 0x000F8407, 0x000FC407, 0x0001C022, 0x01A1A2BF, 0x0001C106, 0x00088007, 0x02269A40, 0x00094004, 0x00621112, 0x01A3C801, 0x00E4007F, 0x00621104, 0x0180C908, 0x00E4008D, 0x00621128, 0x0183C908, 0x00E2006C, 0x01A3C901, 0x00E2007B, 0x0021E7FF, 0x0183E007, 0x00E2007F, 0x00EE006C, 0x0061600B, 0x0021E7FF, 0x0183C507, 0x00E4006C, 0x00621111, 0x01A3C801, 0x00E2007F, 0x00621110, 0x01A3C801, 0x00E20082, 0x0228A220, 0x00621119, 0x01A3C801, 0x00E20086, 0x0001C022, 0x01B1A220, 0x0001C106, 0x00088007, 0x0198A204, 0x00294000, 0x01A69ABF, 0x002F8000, 0x002FC000, 0x0183C903, 0x00E20005, 0x0228A220, 0x0071890C, 0x0208A206, 0x0198A206, 0x0001C022, 0x01B1A220, 0x0001C106, 0x00088007, 0x00EE009D, 0x00621128, 0x0183C908, 0x00E20005, 0x00621104, 0x0183C908, 0x00E200A6, 0x0062111C, 0x0183C908, 0x00E20005, 0x0071890C, 0x0208A206, 0x0198A206, 0x00718908, 0x0208A206, 0x00EE0005, ~0 }; /* Bi-Modal RAID-0/1 */ static const unsigned int raid[] = { 0x00F20145, 0x00EE20FA, 0x00EE20A7, 0x0001C009, 0x00EE0004, 0x00220000, 0x0001000B, 0x037003FF, 0x00700018, 0x037003FE, 0x037043FD, 0x00704118, 0x037043FC, 0x01A3D240, 0x00E20017, 0x00B3C235, 0x00E40018, 0x0093C104, 0x00E80014, 0x0093C004, 0x00E80017, 0x01020000, 0x00274020, 0x00EE0083, 0x0080C904, 0x0093C104, 0x00EA0020, 0x0093C103, 0x00EC001F, 0x00220002, 0x00924104, 0x0005C009, 0x00EE0058, 0x0093CF04, 0x00E80026, 0x00900F01, 0x00600001, 0x00910400, 0x00EE0058, 0x00601604, 0x01A00003, 0x00E2002C, 0x01018000, 0x00274040, 0x00EE0083, 0x0093CF03, 0x00EC0031, 0x00220003, 0x00924F04, 0x0005C009, 0x00810104, 0x00B3C235, 0x00E20037, 0x0022C000, 0x00218210, 0x00EE0039, 0x0022C001, 0x00218200, 0x00600401, 0x00A04901, 0x00604101, 0x01A0C401, 0x00E20040, 0x00216202, 0x00EE0041, 0x00216101, 0x02018506, 0x00EE2141, 0x00904901, 0x00E20049, 0x00A00401, 0x00600001, 0x02E0C301, 0x00EE2141, 0x00216303, 0x037003EE, 0x01A3C001, 0x00E40105, 0x00250080, 0x00204000, 0x002042F1, 0x0004C001, 0x00230001, 0x00100006, 0x02C18605, 0x00100006, 0x01A3D502, 0x00E20055, 0x00EE0053, 0x00004009, 0x00000004, 0x00B3C235, 0x00E40062, 0x0022C001, 0x0020C000, 0x00EE2141, 0x0020C001, 0x00EE2141, 0x00EE006B, 0x0022C000, 0x0060D207, 0x00EE2141, 0x00B3C242, 0x00E20069, 0x01A3D601, 0x00E2006E, 0x02E0C301, 0x00EE2141, 0x00230001, 0x00301303, 0x00EE007B, 0x00218210, 0x01A3C301, 0x00E20073, 0x00216202, 0x00EE0074, 0x00216101, 0x02018506, 0x00214000, 0x037003EE, 0x01A3C001, 0x00E40108, 0x00230001, 0x00100006, 0x00250080, 0x00204000, 0x002042F1, 0x0004C001, 0x00EE007F, 0x0024C000, 0x01A3D1F0, 0x00E20088, 0x00230001, 0x00300000, 0x01A3D202, 0x00E20085, 0x00EE00A5, 0x00B3C800, 0x00E20096, 0x00218000, 0x00924709, 0x0005C009, 0x00B20802, 0x00E40093, 0x037103FD, 0x00710418, 0x037103FC, 0x00EE0006, 0x00220000, 0x0001000F, 0x00EE0006, 0x00800B0C, 0x00B00001, 0x00204000, 0x00208550, 0x00208440, 0x002083E0, 0x00208200, 0x00208100, 0x01008000, 0x037083EE, 0x02008212, 0x02008216, 0x01A3C201, 0x00E400A5, 0x0100C000, 0x00EE20FA, 0x02800000, 0x00208000, 0x00B24C00, 0x00E400AD, 0x00224001, 0x00724910, 0x0005C009, 0x00B3CDC4, 0x00E200D5, 0x00B3CD29, 0x00E200D5, 0x00B3CD20, 0x00E200D5, 0x00B3CD24, 0x00E200D5, 0x00B3CDC5, 0x00E200D2, 0x00B3CD39, 0x00E200D2, 0x00B3CD30, 0x00E200D2, 0x00B3CD34, 0x00E200D2, 0x00B3CDCA, 0x00E200CF, 0x00B3CD35, 0x00E200CF, 0x00B3CDC8, 0x00E200CC, 0x00B3CD25, 0x00E200CC, 0x00B3CD40, 0x00E200CB, 0x00B3CD42, 0x00E200CB, 0x01018000, 0x00EE0083, 0x0025C000, 0x036083EE, 0x0000800D, 0x00EE00D8, 0x036083EE, 0x00208035, 0x00EE00DA, 0x036083EE, 0x00208035, 0x00EE00DA, 0x00208007, 0x036083EE, 0x00208025, 0x036083EF, 0x02400000, 0x01A3D208, 0x00E200D8, 0x0067120A, 0x0021C000, 0x0021C224, 0x00220000, 0x00404B1C, 0x00600105, 0x00800007, 0x0020C00E, 0x00214000, 0x01004000, 0x01A0411F, 0x00404E01, 0x01A3C101, 0x00E200F1, 0x00B20800, 0x00E400D8, 0x00220001, 0x0080490B, 0x00B04101, 0x0040411C, 0x00EE00E1, 0x02269A01, 0x01020000, 0x02275D80, 0x01A3D202, 0x00E200F4, 0x01B75D80, 0x01030000, 0x01B69A01, 0x00EE00D8, 0x01A3D204, 0x00E40104, 0x00224000, 0x0020C00E, 0x0020001E, 0x00214000, 0x01004000, 0x0212490E, 0x00214001, 0x01004000, 0x02400000, 0x00B3D702, 0x00E80112, 0x00EE010E, 0x00B3D702, 0x00E80112, 0x00B3D702, 0x00E4010E, 0x00230001, 0x00EE0140, 0x00200005, 0x036003EE, 0x00204001, 0x00EE0116, 0x00230001, 0x00100006, 0x02C18605, 0x00100006, 0x01A3D1F0, 0x00E40083, 0x037003EE, 0x01A3C002, 0x00E20121, 0x0020A300, 0x0183D102, 0x00E20124, 0x037003EE, 0x01A00005, 0x036003EE, 0x01A0910F, 0x00B3C20F, 0x00E2012F, 0x01A3D502, 0x00E20116, 0x01A3C002, 0x00E20116, 0x00B3D702, 0x00E4012C, 0x00300000, 0x00EE011F, 0x02C18605, 0x00100006, 0x00EE0116, 0x01A3D1F0, 0x00E40083, 0x037003EE, 0x01A3C004, 0x00E20088, 0x00200003, 0x036003EE, 0x01A3D502, 0x00E20136, 0x00230001, 0x00B3C101, 0x00E4012C, 0x00100006, 0x02C18605, 0x00100006, 0x00204000, 0x00EE0116, 0x00100006, 0x01A3D1F0, 0x00E40083, 0x01000000, 0x02400000, ~0 }; DPRINTK("ENTER: mode:%d, force:%d\n", mode, force); if (force) previous_mode = UNKNOWN_MODE; else previous_mode = host_priv->current_ucode; if (mode == previous_mode) return; host_priv->current_ucode = mode; /* decide what needs to be done using the STD in my logbook */ switch (previous_mode) { case OXNASSATA_RAID1: switch (mode) { case OXNASSATA_RAID0: changeparameters = 1; break; case OXNASSATA_NOTRAID: changeparameters = 1; progmicrocode = 1; break; } break; case OXNASSATA_RAID0: switch (mode) { case OXNASSATA_RAID1: changeparameters = 1; break; case OXNASSATA_NOTRAID: changeparameters = 1; progmicrocode = 1; break; } break; case OXNASSATA_NOTRAID: switch (mode) { case OXNASSATA_RAID0: case OXNASSATA_RAID1: changeparameters = 1; progmicrocode = 1; break; } break; case UNKNOWN_MODE: changeparameters = 1; progmicrocode = 1; break; } /* no need to reprogram everything if already in the right mode */ if (progmicrocode) { /* reset micro-code processor */ iowrite32(1, core_base + PROC_RESET); wmb(); /* select micro-code */ switch (mode) { case OXNASSATA_RAID1: case OXNASSATA_RAID0: VPRINTK("Loading RAID micro-code\n"); src = (unsigned int *)&raid[1]; break; case OXNASSATA_NOTRAID: VPRINTK("Loading JBOD micro-code\n"); src = (unsigned int *)&jbod[1]; break; default: BUG(); break; } /* load micro code */ dst = core_base + UCODE_STORE; while (*src != ~0) { iowrite32(*src, dst); src++; dst += sizeof(*src); } wmb(); } if (changeparameters) { u32 reg; /* set other mode dependent flags */ switch (mode) { case OXNASSATA_RAID1: /* clear JBOD mode */ reg = ioread32(core_base + DATA_PLANE_CTRL); reg |= DPC_JBOD_UCODE; reg &= ~DPC_FIS_SWCH; iowrite32(reg, core_base + DATA_PLANE_CTRL); wmb(); /* set the hardware up for RAID-1 */ iowrite32(0, core_base + RAID_WP_BOT_LOW); iowrite32(0, core_base + RAID_WP_BOT_HIGH); iowrite32(0xffffffff, core_base + RAID_WP_TOP_LOW); iowrite32(0x7fffffff, core_base + RAID_WP_TOP_HIGH); iowrite32(0, core_base + RAID_SIZE_LOW); iowrite32(0, core_base + RAID_SIZE_HIGH); wmb(); break; case OXNASSATA_RAID0: /* clear JBOD mode */ reg = ioread32(core_base + DATA_PLANE_CTRL); reg |= DPC_JBOD_UCODE; reg &= ~DPC_FIS_SWCH; iowrite32(reg, core_base + DATA_PLANE_CTRL); wmb(); /* set the hardware up for RAID-1 */ iowrite32(0, core_base + RAID_WP_BOT_LOW); iowrite32(0, core_base + RAID_WP_BOT_HIGH); iowrite32(0xffffffff, core_base + RAID_WP_TOP_LOW); iowrite32(0x7fffffff, core_base + RAID_WP_TOP_HIGH); iowrite32(0xffffffff, core_base + RAID_SIZE_LOW); iowrite32(0x7fffffff, core_base + RAID_SIZE_HIGH); wmb(); break; case OXNASSATA_NOTRAID: /* enable jbod mode */ reg = ioread32(core_base + DATA_PLANE_CTRL); reg &= ~DPC_JBOD_UCODE; reg &= ~DPC_FIS_SWCH; iowrite32(reg, core_base + DATA_PLANE_CTRL); wmb(); /* start micro-code processor*/ iowrite32(1, core_base + PROC_START); break; default: reg = ioread32(core_base + DATA_PLANE_CTRL); reg |= DPC_JBOD_UCODE; reg &= ~DPC_FIS_SWCH; iowrite32(reg, core_base + DATA_PLANE_CTRL); wmb(); break; } } } /** * sends a sync-escape if there is a link present */ static inline void sata_oxnas_send_sync_escape(struct ata_port *ap) { struct sata_oxnas_port_priv *pd = ap->private_data; u32 reg; /* read the SSTATUS register and only send a sync escape if there is a * link active */ if ((sata_oxnas_link_read(ap, 0x20) & 3) == 3) { reg = ioread32(pd->port_base + SATA_COMMAND); reg &= ~SATA_OPCODE_MASK; reg |= CMD_SYNC_ESCAPE; iowrite32(reg, pd->port_base + SATA_COMMAND); } } /* clears errors */ static inline void sata_oxnas_clear_CS_error(struct ata_port *ap) { struct sata_oxnas_port_priv *pd = ap->private_data; u32 *base = pd->port_base; u32 reg; reg = ioread32(base + SATA_CONTROL); reg &= SATA_CTL_ERR_MASK; iowrite32(reg, base + SATA_CONTROL); } static inline void sata_oxnas_reset_sgdma(struct ata_port *ap) { struct sata_oxnas_port_priv *pd = ap->private_data; iowrite32(SGDMA_RESETS_CTRL, pd->sgdma_base + SGDMA_RESETS); } static inline void sata_oxnas_reset_dma(struct ata_port *ap, int assert) { struct sata_oxnas_port_priv *pd = ap->private_data; u32 reg; reg = ioread32(pd->dmactl_base + DMA_CONTROL); if (assert) reg |= DMA_CONTROL_RESET; else reg &= ~DMA_CONTROL_RESET; iowrite32(reg, pd->dmactl_base + DMA_CONTROL); }; /** * Clears the error caused by the core's registers being accessed when the * core is busy. */ static inline void sata_oxnas_clear_reg_access_error(struct ata_port *ap) { struct sata_oxnas_port_priv *pd = ap->private_data; u32 *base = pd->port_base; u32 reg; reg = ioread32(base + INT_STATUS); DPRINTK("ENTER\n"); if (reg & INT_REG_ACCESS_ERR) { DPRINTK("clearing register access error on port %d\n", ap->port_no); iowrite32(INT_REG_ACCESS_ERR, base + INT_STATUS); } reg = ioread32(base + INT_STATUS); if (reg & INT_REG_ACCESS_ERR) DPRINTK("register access error didn't clear\n"); } static inline void sata_oxnas_clear_sctl_error(struct ata_port *ap) { struct sata_oxnas_port_priv *pd = ap->private_data; u32 *base = pd->port_base; u32 reg; reg = ioread32(base + SATA_CONTROL); reg |= SCTL_CLR_ERR; iowrite32(reg, base + SATA_CONTROL); } static inline void sata_oxnas_clear_raid_error(struct ata_host *ah) { return; }; /** * Clean up all the state machines in the sata core. * @return post cleanup action required */ static int sata_oxnas_cleanup(struct ata_host *ah) { struct sata_oxnas_host_priv *hd = ah->private_data; int actions_required = 0; int n; printk(KERN_INFO "sata_oxnas: resetting SATA core\n"); /* core not recovering, reset it */ mdelay(5); sata_oxnas_reset_core(ah); mdelay(5); actions_required |= OXNAS_SATA_REINIT; /* Perform any SATA core re-initialisation after reset post reset init * needs to be called for both ports as there's one reset for both * ports */ for (n = 0; n < hd->n_ports; n++) sata_oxnas_post_reset_init(ah->ports[n]); return actions_required; } /** * ata_qc_new - Request an available ATA command, for queueing * @ap: Port associated with device @dev * @return non zero will refuse a new command, zero will may grant on subject * to conditions elsewhere. * */ static int sata_oxnas_qc_new(struct ata_port *ap) { struct sata_oxnas_host_priv *hd = ap->host->private_data; DPRINTK("port %d\n", ap->port_no); smp_rmb(); if (hd->port_frozen || hd->port_in_eh) return 1; else return !sata_oxnas_acquire_hw(ap, 0, 0); } /** * releases the lock on the port the command used */ static void sata_oxnas_qc_free(struct ata_queued_cmd *qc) { DPRINTK("\n"); sata_oxnas_release_hw(qc->ap); } static void sata_oxnas_freeze(struct ata_port *ap) { struct sata_oxnas_host_priv *hd = ap->host->private_data; DPRINTK("\n"); hd->port_frozen |= BIT(ap->port_no); smp_wmb(); } static void sata_oxnas_thaw(struct ata_port *ap) { struct sata_oxnas_host_priv *hd = ap->host->private_data; DPRINTK("\n"); hd->port_frozen &= ~BIT(ap->port_no); smp_wmb(); } void sata_oxnas_freeze_host(struct ata_port *ap) { struct sata_oxnas_host_priv *hd = ap->host->private_data; DPRINTK("ENTER\n"); hd->port_in_eh |= BIT(ap->port_no); smp_wmb(); } void sata_oxnas_thaw_host(struct ata_port *ap) { struct sata_oxnas_host_priv *hd = ap->host->private_data; DPRINTK("ENTER\n"); hd->port_in_eh &= ~BIT(ap->port_no); smp_wmb(); } static void sata_oxnas_post_internal_cmd(struct ata_queued_cmd *qc) { DPRINTK("ENTER\n"); /* If the core is busy here, make it idle */ if (qc->flags & ATA_QCFLAG_FAILED) sata_oxnas_cleanup(qc->ap->host); } /** * turn on the interrupts * * @param ap Hardware with the registers in */ static void sata_oxnas_irq_on(struct ata_port *ap) { struct sata_oxnas_port_priv *pd = ap->private_data; u32 mask = (COREINT_END << ap->port_no); /* Clear pending interrupts */ iowrite32(~0, pd->port_base + INT_CLEAR); iowrite32(mask, pd->core_base + CORE_INT_STATUS); wmb(); /* enable End of command interrupt */ iowrite32(INT_WANT, pd->port_base + INT_ENABLE); iowrite32(mask, pd->core_base + CORE_INT_ENABLE); } /** @return true if the port has a cable connected */ int sata_oxnas_check_link(struct ata_port *ap) { int reg; sata_oxnas_scr_read_port(ap, SCR_STATUS, ®); /* Check for the cable present indicated by SCR status bit-0 set */ return reg & 0x1; } /** * ata_std_postreset - standard postreset callback * @link: the target ata_link * @classes: classes of attached devices * * This function is invoked after a successful reset. Note that * the device might have been reset more than once using * different reset methods before postreset is invoked. * * LOCKING: * Kernel thread context (may sleep) */ static void sata_oxnas_postreset(struct ata_link *link, unsigned int *classes) { struct ata_port *ap = link->ap; struct sata_oxnas_host_priv *hd = ap->host->private_data; unsigned int dev; DPRINTK("ENTER\n"); ata_std_postreset(link, classes); /* turn on phy error detection by removing the masks */ sata_oxnas_link_write(ap->host->ports[0], 0x0c, 0x30003); if (hd->n_ports > 1) sata_oxnas_link_write(ap->host->ports[1], 0x0c, 0x30003); /* bail out if no device is present */ if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) { DPRINTK("EXIT, no device\n"); return; } /* go through all the devices and configure them */ for (dev = 0; dev < ATA_MAX_DEVICES; ++dev) { if (ap->link.device[dev].class == ATA_DEV_ATA) sata_oxnas_dev_config(&(ap->link.device[dev])); } DPRINTK("EXIT\n"); } /** * Called to read the hardware registers / DMA buffers, to * obtain the current set of taskfile register values. * @param ap hardware with the registers in * @param tf taskfile to read the registers into */ static void sata_oxnas_tf_read(struct ata_port *ap, struct ata_taskfile *tf) { struct sata_oxnas_port_priv *port_priv = ap->private_data; void __iomem *port_base = port_priv->port_base; /* read the orb registers */ u32 Orb1 = ioread32(port_base + ORB1); u32 Orb2 = ioread32(port_base + ORB2); u32 Orb3 = ioread32(port_base + ORB3); u32 Orb4 = ioread32(port_base + ORB4); /* read common 28/48 bit tf parameters */ tf->device = (Orb1 >> 24); tf->nsect = (Orb2 >> 0); tf->feature = (Orb2 >> 16); tf->command = sata_oxnas_check_status(ap); /* read 48 or 28 bit tf parameters */ if (tf->flags & ATA_TFLAG_LBA48) { tf->hob_nsect = (Orb2 >> 8); tf->lbal = (Orb3 >> 0); tf->lbam = (Orb3 >> 8); tf->lbah = (Orb3 >> 16); tf->hob_lbal = (Orb3 >> 24); tf->hob_lbam = (Orb4 >> 0); tf->hob_lbah = (Orb4 >> 8); /* feature ext and control are write only */ } else { /* read 28-bit lba */ tf->lbal = (Orb3 >> 0); tf->lbam = (Orb3 >> 8); tf->lbah = (Orb3 >> 16); } } /** * Read a result task-file from the sata core registers. */ static bool sata_oxnas_qc_fill_rtf(struct ata_queued_cmd *qc) { /* Read the most recently received FIS from the SATA core ORB registers and convert to an ATA taskfile */ sata_oxnas_tf_read(qc->ap, &qc->result_tf); return true; } /** * Reads the Status ATA shadow register from hardware. * * @return The status register */ static u8 sata_oxnas_check_status(struct ata_port *ap) { u32 Reg; u8 status; struct sata_oxnas_port_priv *port_priv = ap->private_data; void __iomem *port_base = port_priv->port_base; /* read byte 3 of Orb2 register */ status = ioread32(port_base + ORB2) >> 24; /* check for the drive going missing indicated by SCR status bits * 0-3 = 0 */ sata_oxnas_scr_read_port(ap, SCR_STATUS, &Reg); if (!(Reg & 0x1)) { status |= ATA_DF; status |= ATA_ERR; } return status; } static inline void sata_oxnas_reset_ucode(struct ata_host *ah, int force, int no_microcode) { struct sata_oxnas_host_priv *hd = ah->private_data; DPRINTK("ENTER\n"); if (no_microcode) { u32 reg; sata_oxnas_set_mode(ah, UNKNOWN_MODE, force); reg = ioread32(hd->core_base + DEVICE_CONTROL); reg |= DEVICE_CONTROL_ATA_ERR_OVERRIDE; iowrite32(reg, hd->core_base + DEVICE_CONTROL); } else { /* JBOD uCode */ sata_oxnas_set_mode(ah, OXNASSATA_NOTRAID, force); /* Turn the work around off as it may have been left on by any * HW-RAID code that we've been working with */ iowrite32(0x0, hd->core_base + PORT_ERROR_MASK); } } /** * Prepare as much as possible for a command without involving anything that is * shared between ports. */ static void sata_oxnas_qc_prep(struct ata_queued_cmd *qc) { struct sata_oxnas_port_priv *pd; int port_no = qc->ap->port_no; /* if the port's not connected, complete now with an error */ if (!sata_oxnas_check_link(qc->ap)) { ata_port_err(qc->ap, "port %d not connected completing with error\n", port_no); qc->err_mask |= AC_ERR_ATA_BUS; ata_qc_complete(qc); } sata_oxnas_reset_ucode(qc->ap->host, 0, 0); /* both pio and dma commands use dma */ if (ata_is_dma(qc->tf.protocol) || ata_is_pio(qc->tf.protocol)) { /* program the scatterlist into the prd table */ ata_bmdma_qc_prep(qc); /* point the sgdma controller at the dma request structure */ pd = qc->ap->private_data; iowrite32(pd->sgdma_request_pa, pd->sgdma_base + SGDMA_REQUESTPTR); /* setup the request table */ if (port_no == 0) { pd->sgdma_request->control = (qc->dma_dir == DMA_FROM_DEVICE) ? SGDMA_REQCTL0IN : SGDMA_REQCTL0OUT; } else { pd->sgdma_request->control = (qc->dma_dir == DMA_FROM_DEVICE) ? SGDMA_REQCTL1IN : SGDMA_REQCTL1OUT; } pd->sgdma_request->qualifier = SGDMA_REQQUAL; pd->sgdma_request->src_pa = qc->ap->bmdma_prd_dma; pd->sgdma_request->dst_pa = qc->ap->bmdma_prd_dma; smp_wmb(); /* tell it to wait */ iowrite32(SGDMA_CONTROL_NOGO, pd->sgdma_base + SGDMA_CONTROL); } } static int sata_oxnas_port_start(struct ata_port *ap) { struct sata_oxnas_host_priv *host_priv = ap->host->private_data; struct device *dev = ap->host->dev; struct sata_oxnas_port_priv *pp; void *mem; dma_addr_t mem_dma; DPRINTK("ENTER\n"); pp = kzalloc(sizeof(*pp), GFP_KERNEL); if (!pp) return -ENOMEM; pp->port_base = host_priv->port_base + (ap->port_no ? PORT_SIZE : 0); pp->dmactl_base = host_priv->dmactl_base + (ap->port_no ? DMA_CORESIZE : 0); pp->sgdma_base = host_priv->sgdma_base + (ap->port_no ? SGDMA_CORESIZE : 0); pp->core_base = host_priv->core_base; /* preallocated */ if (host_priv->dma_size >= SATA_OXNAS_DMA_SIZE * host_priv->n_ports) { DPRINTK("using preallocated DMA\n"); mem_dma = host_priv->dma_base + (ap->port_no ? SATA_OXNAS_DMA_SIZE : 0); mem = ioremap(mem_dma, SATA_OXNAS_DMA_SIZE); } else { mem = dma_alloc_coherent(dev, SATA_OXNAS_DMA_SIZE, &mem_dma, GFP_KERNEL); } if (!mem) goto err_ret; pp->sgdma_request_pa = mem_dma; pp->sgdma_request = mem; ap->bmdma_prd_dma = mem_dma + sizeof(struct sgdma_request); ap->bmdma_prd = mem + sizeof(struct sgdma_request); ap->private_data = pp; sata_oxnas_post_reset_init(ap); return 0; err_ret: kfree(pp); return -ENOMEM; } static void sata_oxnas_port_stop(struct ata_port *ap) { struct device *dev = ap->host->dev; struct sata_oxnas_port_priv *pp = ap->private_data; struct sata_oxnas_host_priv *host_priv = ap->host->private_data; DPRINTK("ENTER\n"); ap->private_data = NULL; if (host_priv->dma_size) { iounmap(pp->sgdma_request); } else { dma_free_coherent(dev, SATA_OXNAS_DMA_SIZE, pp->sgdma_request, pp->sgdma_request_pa); } kfree(pp); } static void sata_oxnas_post_reset_init(struct ata_port *ap) { uint dev; /* force to load u-code only once after reset */ sata_oxnas_reset_ucode(ap->host, !ap->port_no, 0); /* turn on phy error detection by removing the masks */ sata_oxnas_link_write(ap, 0x0C, 0x30003); /* enable hotplug event detection */ sata_oxnas_scr_write_port(ap, SCR_ERROR, ~0); sata_oxnas_scr_write_port(ap, SERROR_IRQ_MASK, 0x03feffff); sata_oxnas_scr_write_port(ap, SCR_ACTIVE, ~0 & ~(1 << 26) & ~(1 << 16)); /* enable interrupts for ports */ sata_oxnas_irq_on(ap); /* go through all the devices and configure them */ for (dev = 0; dev < ATA_MAX_DEVICES; ++dev) { if (ap->link.device[dev].class == ATA_DEV_ATA) { sata_std_hardreset(&ap->link, NULL, jiffies + HZ); sata_oxnas_dev_config(&(ap->link.device[dev])); } } /* clean up any remaining errors */ sata_oxnas_scr_write_port(ap, SCR_ERROR, ~0); VPRINTK("done\n"); } /** * host_stop() is called when the rmmod or hot unplug process begins. The * hook must stop all hardware interrupts, DMA engines, etc. * * @param ap hardware with the registers in */ static void sata_oxnas_host_stop(struct ata_host *host_set) { DPRINTK("\n"); } #define ERROR_HW_ACQUIRE_TIMEOUT_JIFFIES (10 * HZ) static void sata_oxnas_error_handler(struct ata_port *ap) { DPRINTK("Enter port_no %d\n", ap->port_no); sata_oxnas_freeze_host(ap); /* If the core is busy here, make it idle */ sata_oxnas_cleanup(ap->host); ata_std_error_handler(ap); sata_oxnas_thaw_host(ap); } static int sata_oxnas_softreset(struct ata_link *link, unsigned int *class, unsigned long deadline) { struct ata_port *ap = link->ap; struct sata_oxnas_port_priv *pd = ap->private_data; void __iomem *port_base = pd->port_base; int rc; struct ata_taskfile tf; u32 Command_Reg; DPRINTK("ENTER\n"); port_base = pd->port_base; if (ata_link_offline(link)) { DPRINTK("PHY reports no device\n"); *class = ATA_DEV_NONE; goto out; } /* write value to register */ iowrite32(0, port_base + ORB1); iowrite32(0, port_base + ORB2); iowrite32(0, port_base + ORB3); iowrite32((ap->ctl) << 24, port_base + ORB4); /* command the core to send a control FIS */ Command_Reg = ioread32(port_base + SATA_COMMAND); Command_Reg &= ~SATA_OPCODE_MASK; Command_Reg |= CMD_WRITE_TO_ORB_REGS_NO_COMMAND; iowrite32(Command_Reg, port_base + SATA_COMMAND); udelay(20); /* FIXME: flush */ /* write value to register */ iowrite32((ap->ctl | ATA_SRST) << 24, port_base + ORB4); /* command the core to send a control FIS */ Command_Reg &= ~SATA_OPCODE_MASK; Command_Reg |= CMD_WRITE_TO_ORB_REGS_NO_COMMAND; iowrite32(Command_Reg, port_base + SATA_COMMAND); udelay(20); /* FIXME: flush */ /* write value to register */ iowrite32((ap->ctl) << 24, port_base + ORB4); /* command the core to send a control FIS */ Command_Reg &= ~SATA_OPCODE_MASK; Command_Reg |= CMD_WRITE_TO_ORB_REGS_NO_COMMAND; iowrite32(Command_Reg, port_base + SATA_COMMAND); msleep(150); rc = ata_sff_wait_ready(link, deadline); /* if link is occupied, -ENODEV too is an error */ if (rc && (rc != -ENODEV || sata_scr_valid(link))) { ata_link_printk(link, KERN_ERR, "SRST failed (errno=%d)\n", rc); return rc; } /* determine by signature whether we have ATA or ATAPI devices */ sata_oxnas_tf_read(ap, &tf); *class = ata_dev_classify(&tf); if (*class == ATA_DEV_UNKNOWN) *class = ATA_DEV_NONE; out: DPRINTK("EXIT, class=%u\n", *class); return 0; } int sata_oxnas_init_controller(struct ata_host *host) { return 0; } /** * Ref bug-6320 * * This code is a work around for a DMA hardware bug that will repeat the * penultimate 8-bytes on some reads. This code will check that the amount * of data transferred is a multiple of 512 bytes, if not the in it will * fetch the correct data from a buffer in the SATA core and copy it into * memory. * * @param port SATA port to check and if necessary, correct. */ static int sata_oxnas_bug_6320_detect(struct ata_port *ap) { struct sata_oxnas_port_priv *pd = ap->private_data; void __iomem *core_base = pd->core_base; int is_read; int quads_transferred; int remainder; int sector_quads_remaining; int bug_present = 0; /* Only want to apply fix to reads */ is_read = !(ioread32(core_base + DM_DBG1) & (ap->port_no ? BIT(CORE_PORT1_DATA_DIR_BIT) : BIT(CORE_PORT0_DATA_DIR_BIT))); /* Check for an incomplete transfer, i.e. not a multiple of 512 bytes transferred (datacount_port register counts quads transferred) */ quads_transferred = ioread32(core_base + (ap->port_no ? DATACOUNT_PORT1 : DATACOUNT_PORT0)); remainder = quads_transferred & 0x7f; sector_quads_remaining = remainder ? (0x80 - remainder) : 0; if (is_read && (sector_quads_remaining == 2)) { bug_present = 1; } else if (sector_quads_remaining) { if (is_read) { ata_port_warn(ap, "SATA read fixup cannot deal with " "%d quads remaining\n", sector_quads_remaining); } else { ata_port_warn(ap, "SATA write fixup of %d quads " "remaining not supported\n", sector_quads_remaining); } } return bug_present; } /* This port done an interrupt */ static void sata_oxnas_port_irq(struct ata_port *ap, int force_error) { struct ata_queued_cmd *qc; struct sata_oxnas_port_priv *pd = ap->private_data; void __iomem *port_base = pd->port_base; u32 int_status; unsigned long flags = 0; DPRINTK("ENTER port %d irqstatus %x\n", ap->port_no, ioread32(port_base + INT_STATUS)); if (ap->qc_active & (1 << ATA_TAG_INTERNAL)) { qc = ata_qc_from_tag(ap, ATA_TAG_INTERNAL); DPRINTK("completing non-ncq cmd\n"); if (qc) ata_qc_complete(qc); return; } qc = ata_qc_from_tag(ap, ap->link.active_tag); /* record the port's interrupt */ int_status = ioread32(port_base + INT_STATUS); /* If there's no command associated with this IRQ, ignore it. We may get * spurious interrupts when cleaning-up after a failed command, ignore * these too. */ if (likely(qc)) { /* get the status before any error cleanup */ qc->err_mask = ac_err_mask(sata_oxnas_check_status(ap)); if (force_error) { /* Pretend there has been a link error */ qc->err_mask |= AC_ERR_ATA_BUS; DPRINTK(" ####force error####\n"); } /* tell libata we're done */ local_irq_save(flags); sata_oxnas_irq_clear(ap); local_irq_restore(flags); ata_qc_complete(qc); } else { VPRINTK("Ignoring interrupt, can't find the command tag=" "%d %08x\n", ap->link.active_tag, ap->qc_active); } /* maybe a hotplug event */ if (unlikely(int_status & INT_LINK_SERROR)) { u32 serror; sata_oxnas_scr_read_port(ap, SCR_ERROR, &serror); if (serror & (SERR_DEV_XCHG | SERR_PHYRDY_CHG)) { ata_ehi_hotplugged(&ap->link.eh_info); ata_port_freeze(ap); } } } /** * irq_handler is the interrupt handling routine registered with the system, * by libata. */ static irqreturn_t sata_oxnas_interrupt(int irq, void *dev_instance) { struct ata_host *ah = dev_instance; struct sata_oxnas_host_priv *hd = ah->private_data; void __iomem *core_base = hd->core_base; u32 int_status; irqreturn_t ret = IRQ_NONE; u32 port_no; u32 mask; int bug_present; /* loop until there are no more interrupts */ while ((int_status = (ioread32(core_base + CORE_INT_STATUS)) & (COREINT_END | (COREINT_END << 1)))) { /* clear any interrupt */ iowrite32(int_status, core_base + CORE_INT_CLEAR); /* Only need workaround_bug_6320 for single disk systems as dual * disk will use uCode which prevents this read underrun problem * from occurring. * All single disk systems will use port 0 */ for (port_no = 0; port_no < hd->n_ports; ++port_no) { /* check the raw end of command interrupt to see if the * port is done */ mask = (COREINT_END << port_no); if (!(int_status & mask)) continue; /* this port had an interrupt, clear it */ iowrite32(mask, core_base + CORE_INT_CLEAR); /* check for bug 6320 only if no microcode was loaded */ bug_present = (hd->current_ucode == UNKNOWN_MODE) && sata_oxnas_bug_6320_detect(ah->ports[port_no]); sata_oxnas_port_irq(ah->ports[port_no], bug_present); ret = IRQ_HANDLED; } } return ret; } /* * scsi mid-layer and libata interface structures */ static struct scsi_host_template sata_oxnas_sht = { ATA_NCQ_SHT("sata_oxnas"), .can_queue = SATA_OXNAS_QUEUE_DEPTH, .sg_tablesize = SATA_OXNAS_MAX_PRD, .dma_boundary = ATA_DMA_BOUNDARY, .unchecked_isa_dma = 0, }; static struct ata_port_operations sata_oxnas_ops = { .inherits = &sata_port_ops, .qc_prep = sata_oxnas_qc_prep, .qc_issue = sata_oxnas_qc_issue, .qc_fill_rtf = sata_oxnas_qc_fill_rtf, .qc_new = sata_oxnas_qc_new, .qc_free = sata_oxnas_qc_free, .scr_read = sata_oxnas_scr_read, .scr_write = sata_oxnas_scr_write, .freeze = sata_oxnas_freeze, .thaw = sata_oxnas_thaw, .softreset = sata_oxnas_softreset, /* .hardreset = sata_oxnas_hardreset, */ .postreset = sata_oxnas_postreset, .error_handler = sata_oxnas_error_handler, .post_internal_cmd = sata_oxnas_post_internal_cmd, .port_start = sata_oxnas_port_start, .port_stop = sata_oxnas_port_stop, .host_stop = sata_oxnas_host_stop, /* .pmp_attach = sata_oxnas_pmp_attach, */ /* .pmp_detach = sata_oxnas_pmp_detach, */ .sff_check_status = sata_oxnas_check_status, .acquire_hw = sata_oxnas_acquire_hw, }; static const struct ata_port_info sata_oxnas_port_info = { .flags = SATA_OXNAS_HOST_FLAGS, .pio_mask = ATA_PIO4, .udma_mask = ATA_UDMA6, .port_ops = &sata_oxnas_ops, }; static int sata_oxnas_probe(struct platform_device *ofdev) { int retval = -ENXIO; int n_ports = 0; void __iomem *port_base = NULL; void __iomem *dmactl_base = NULL; void __iomem *sgdma_base = NULL; void __iomem *core_base = NULL; void __iomem *phy_base = NULL; struct reset_control *rstc; struct resource res = {}; struct sata_oxnas_host_priv *host_priv = NULL; int irq = 0; struct ata_host *host = NULL; struct clk *clk = NULL; const struct ata_port_info *ppi[] = { &sata_oxnas_port_info, NULL }; of_property_read_u32(ofdev->dev.of_node, "nr-ports", &n_ports); if (n_ports < 1 || n_ports > SATA_OXNAS_MAX_PORTS) goto error_exit_with_cleanup; port_base = of_iomap(ofdev->dev.of_node, 0); if (!port_base) goto error_exit_with_cleanup; dmactl_base = of_iomap(ofdev->dev.of_node, 1); if (!dmactl_base) goto error_exit_with_cleanup; sgdma_base = of_iomap(ofdev->dev.of_node, 2); if (!sgdma_base) goto error_exit_with_cleanup; core_base = of_iomap(ofdev->dev.of_node, 3); if (!core_base) goto error_exit_with_cleanup; phy_base = of_iomap(ofdev->dev.of_node, 4); if (!phy_base) goto error_exit_with_cleanup; host_priv = devm_kzalloc(&ofdev->dev, sizeof(struct sata_oxnas_host_priv), GFP_KERNEL); if (!host_priv) goto error_exit_with_cleanup; host_priv->port_base = port_base; host_priv->dmactl_base = dmactl_base; host_priv->sgdma_base = sgdma_base; host_priv->core_base = core_base; host_priv->phy_base = phy_base; host_priv->n_ports = n_ports; host_priv->current_ucode = UNKNOWN_MODE; if (!of_address_to_resource(ofdev->dev.of_node, 5, &res)) { host_priv->dma_base = res.start; host_priv->dma_size = resource_size(&res); } irq = irq_of_parse_and_map(ofdev->dev.of_node, 0); if (!irq) { dev_err(&ofdev->dev, "invalid irq from platform\n"); goto error_exit_with_cleanup; } host_priv->irq = irq; clk = of_clk_get(ofdev->dev.of_node, 0); if (IS_ERR(clk)) { retval = PTR_ERR(clk); clk = NULL; goto error_exit_with_cleanup; } host_priv->clk = clk; rstc = devm_reset_control_get(&ofdev->dev, "sata"); if (IS_ERR(rstc)) { retval = PTR_ERR(rstc); goto error_exit_with_cleanup; } host_priv->rst_sata = rstc; rstc = devm_reset_control_get(&ofdev->dev, "link"); if (IS_ERR(rstc)) { retval = PTR_ERR(rstc); goto error_exit_with_cleanup; } host_priv->rst_link = rstc; rstc = devm_reset_control_get(&ofdev->dev, "phy"); if (IS_ERR(rstc)) { retval = PTR_ERR(rstc); goto error_exit_with_cleanup; } host_priv->rst_phy = rstc; /* allocate host structure */ host = ata_host_alloc_pinfo(&ofdev->dev, ppi, n_ports); if (!host) { retval = -ENOMEM; goto error_exit_with_cleanup; } host->private_data = host_priv; host->iomap = port_base; /* initialize core locking and queues */ init_waitqueue_head(&host_priv->fast_wait_queue); init_waitqueue_head(&host_priv->scsi_wait_queue); spin_lock_init(&host_priv->phy_lock); spin_lock_init(&host_priv->core_lock); host_priv->core_locked = 0; host_priv->reentrant_port_no = -1; host_priv->hw_lock_count = 0; host_priv->direct_lock_count = 0; host_priv->locker_uid = 0; host_priv->current_locker_type = SATA_UNLOCKED; host_priv->isr_arg = NULL; host_priv->isr_callback = NULL; /* initialize host controller */ retval = sata_oxnas_init_controller(host); if (retval) goto error_exit_with_cleanup; /* * Now, register with libATA core, this will also initiate the * device discovery process, invoking our port_start() handler & * error_handler() to execute a dummy softreset EH session */ ata_host_activate(host, irq, sata_oxnas_interrupt, SATA_OXNAS_IRQ_FLAG, &sata_oxnas_sht); return 0; error_exit_with_cleanup: if (irq) irq_dispose_mapping(host_priv->irq); if (clk) clk_put(clk); if (host) ata_host_detach(host); if (port_base) iounmap(port_base); if (sgdma_base) iounmap(sgdma_base); if (core_base) iounmap(core_base); if (phy_base) iounmap(phy_base); return retval; } static int sata_oxnas_remove(struct platform_device *ofdev) { struct ata_host *host = dev_get_drvdata(&ofdev->dev); struct sata_oxnas_host_priv *host_priv = host->private_data; ata_host_detach(host); irq_dispose_mapping(host_priv->irq); iounmap(host_priv->port_base); iounmap(host_priv->sgdma_base); iounmap(host_priv->core_base); /* reset Controller, Link and PHY */ reset_control_assert(host_priv->rst_sata); reset_control_assert(host_priv->rst_link); reset_control_assert(host_priv->rst_phy); /* Disable the clock to the SATA block */ clk_disable_unprepare(host_priv->clk); clk_put(host_priv->clk); return 0; } #ifdef CONFIG_PM static int sata_oxnas_suspend(struct platform_device *op, pm_message_t state) { struct ata_host *host = dev_get_drvdata(&op->dev); return ata_host_suspend(host, state); } static int sata_oxnas_resume(struct platform_device *op) { struct ata_host *host = dev_get_drvdata(&op->dev); int ret; ret = sata_oxnas_init_controller(host); if (ret) { dev_err(&op->dev, "Error initializing hardware\n"); return ret; } ata_host_resume(host); return 0; } #endif static struct of_device_id oxnas_sata_match[] = { { .compatible = "plxtech,nas782x-sata", }, {}, }; MODULE_DEVICE_TABLE(of, oxnas_sata_match); static struct platform_driver oxnas_sata_driver = { .driver = { .name = "oxnas-sata", .owner = THIS_MODULE, .of_match_table = oxnas_sata_match, }, .probe = sata_oxnas_probe, .remove = sata_oxnas_remove, #ifdef CONFIG_PM .suspend = sata_oxnas_suspend, .resume = sata_oxnas_resume, #endif }; module_platform_driver(oxnas_sata_driver); MODULE_LICENSE("GPL"); MODULE_VERSION("1.0"); MODULE_AUTHOR("Oxford Semiconductor Ltd."); MODULE_DESCRIPTION("low-level driver for Oxford 934 SATA core");