From 1ecb38eabd90efe93957d0a822a167560c39308a Mon Sep 17 00:00:00 2001
From: Xiangsheng Hou <xiangsheng.hou@mediatek.com>
Date: Wed, 20 Mar 2019 16:19:51 +0800
Subject: [PATCH 6/6] spi: spi-mem: MediaTek: Add SPI NAND Flash interface
 driver for MediaTek MT7622

Change-Id: I3e78406bb9b46b0049d3988a5c71c7069e4f809c
Signed-off-by: Xiangsheng Hou <xiangsheng.hou@mediatek.com>
---
 drivers/spi/Kconfig        |    9 +
 drivers/spi/Makefile       |    1 +
 drivers/spi/spi-mtk-snfi.c | 1183 ++++++++++++++++++++++++++++++++++++
 3 files changed, 1193 insertions(+)
 create mode 100644 drivers/spi/spi-mtk-snfi.c

--- a/drivers/spi/Makefile
+++ b/drivers/spi/Makefile
@@ -60,6 +60,7 @@ obj-$(CONFIG_SPI_MPC512x_PSC)		+= spi-mp
 obj-$(CONFIG_SPI_MPC52xx_PSC)		+= spi-mpc52xx-psc.o
 obj-$(CONFIG_SPI_MPC52xx)		+= spi-mpc52xx.o
 obj-$(CONFIG_SPI_MT65XX)                += spi-mt65xx.o
+obj-$(CONFIG_SPI_MTK_SNFI)              += spi-mtk-snfi.o
 obj-$(CONFIG_SPI_MT7621)		+= spi-mt7621.o
 obj-$(CONFIG_SPI_MTK_NOR)		+= spi-mtk-nor.o
 obj-$(CONFIG_SPI_MXIC)			+= spi-mxic.o
--- a/drivers/spi/Kconfig
+++ b/drivers/spi/Kconfig
@@ -427,6 +427,15 @@ config SPI_MT65XX
 	  say Y or M here.If you are not sure, say N.
 	  SPI drivers for Mediatek MT65XX and MT81XX series ARM SoCs.
 
+config SPI_MTK_SNFI
+	tristate "MediaTek SPI NAND interface"
+	select MTD_SPI_NAND
+	help
+	  This selects the SPI NAND FLASH interface(SNFI),
+	  which could be found on MediaTek Soc.
+	  Say Y or M here.If you are not sure, say N.
+	  Note Parallel Nand and SPI NAND is alternative on MediaTek SoCs.
+
 config SPI_MT7621
 	tristate "MediaTek MT7621 SPI Controller"
 	depends on RALINK || COMPILE_TEST
--- /dev/null
+++ b/drivers/spi/spi-mtk-snfi.c
@@ -0,0 +1,1200 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Driver for MediaTek SPI Nand interface
+ *
+ * Copyright (C) 2018 MediaTek Inc.
+ * Authors:	Xiangsheng Hou	<xiangsheng.hou@mediatek.com>
+ *
+ */
+
+#include <linux/clk.h>
+#include <linux/delay.h>
+#include <linux/dma-mapping.h>
+#include <linux/interrupt.h>
+#include <linux/iopoll.h>
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/mtk_ecc.h>
+#include <linux/mtd/spinand.h>
+#include <linux/module.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+#include <linux/platform_device.h>
+#include <linux/spi/spi.h>
+#include <linux/spi/spi-mem.h>
+
+/* NAND controller register definition */
+/* NFI control */
+#define NFI_CNFG		0x00
+#define		CNFG_DMA		BIT(0)
+#define		CNFG_READ_EN		BIT(1)
+#define		CNFG_DMA_BURST_EN	BIT(2)
+#define		CNFG_BYTE_RW		BIT(6)
+#define		CNFG_HW_ECC_EN		BIT(8)
+#define		CNFG_AUTO_FMT_EN	BIT(9)
+#define		CNFG_OP_PROGRAM		(3UL << 12)
+#define		CNFG_OP_CUST		(6UL << 12)
+#define NFI_PAGEFMT		0x04
+#define		PAGEFMT_512		0
+#define		PAGEFMT_2K		1
+#define		PAGEFMT_4K		2
+#define		PAGEFMT_FDM_SHIFT	8
+#define		PAGEFMT_FDM_ECC_SHIFT	12
+#define NFI_CON			0x08
+#define		CON_FIFO_FLUSH		BIT(0)
+#define		CON_NFI_RST		BIT(1)
+#define		CON_BRD			BIT(8)
+#define		CON_BWR			BIT(9)
+#define		CON_SEC_SHIFT		12
+#define NFI_INTR_EN		0x10
+#define		INTR_AHB_DONE_EN	BIT(6)
+#define NFI_INTR_STA		0x14
+#define NFI_CMD			0x20
+#define NFI_STA			0x60
+#define		STA_EMP_PAGE		BIT(12)
+#define		NAND_FSM_MASK		(0x1f << 24)
+#define		NFI_FSM_MASK		(0xf << 16)
+#define NFI_ADDRCNTR		0x70
+#define		CNTR_MASK		GENMASK(16, 12)
+#define		ADDRCNTR_SEC_SHIFT	12
+#define		ADDRCNTR_SEC(val) \
+		(((val) & CNTR_MASK) >> ADDRCNTR_SEC_SHIFT)
+#define NFI_STRADDR		0x80
+#define NFI_BYTELEN		0x84
+#define NFI_CSEL		0x90
+#define NFI_FDML(x)		(0xa0 + (x) * sizeof(u32) * 2)
+#define NFI_FDMM(x)		(0xa4 + (x) * sizeof(u32) * 2)
+#define NFI_MASTER_STA		0x224
+#define		MASTER_STA_MASK		0x0fff
+/* NFI_SPI control */
+#define SNFI_MAC_OUTL		0x504
+#define SNFI_MAC_INL		0x508
+#define SNFI_RD_CTL2		0x510
+#define		RD_CMD_MASK		0x00ff
+#define		RD_DUMMY_SHIFT		8
+#define SNFI_RD_CTL3		0x514
+#define		RD_ADDR_MASK		0xffff
+#define SNFI_MISC_CTL		0x538
+#define		RD_MODE_X2		BIT(16)
+#define		RD_MODE_X4		(2UL << 16)
+#define		RD_QDUAL_IO		(4UL << 16)
+#define		RD_MODE_MASK		(7UL << 16)
+#define		RD_CUSTOM_EN		BIT(6)
+#define		WR_CUSTOM_EN		BIT(7)
+#define		WR_X4_EN		BIT(20)
+#define		SW_RST			BIT(28)
+#define SNFI_MISC_CTL2		0x53c
+#define		WR_LEN_SHIFT		16
+#define SNFI_PG_CTL1		0x524
+#define		WR_LOAD_CMD_SHIFT	8
+#define SNFI_PG_CTL2		0x528
+#define		WR_LOAD_ADDR_MASK	0xffff
+#define SNFI_MAC_CTL		0x500
+#define		MAC_WIP			BIT(0)
+#define		MAC_WIP_READY		BIT(1)
+#define		MAC_TRIG		BIT(2)
+#define		MAC_EN			BIT(3)
+#define		MAC_SIO_SEL		BIT(4)
+#define SNFI_STA_CTL1		0x550
+#define		SPI_STATE_IDLE		0xf
+#define SNFI_CNFG		0x55c
+#define		SNFI_MODE_EN		BIT(0)
+#define SNFI_GPRAM_DATA		0x800
+#define		SNFI_GPRAM_MAX_LEN	16
+
+/* Dummy command trigger NFI to spi mode */
+#define NAND_CMD_DUMMYREAD	0x00
+#define NAND_CMD_DUMMYPROG	0x80
+
+#define MTK_TIMEOUT		500000
+#define MTK_RESET_TIMEOUT	1000000
+#define MTK_SNFC_MIN_SPARE	16
+#define KB(x)			((x) * 1024UL)
+
+/*
+ * supported spare size of each IP.
+ * order should be the same with the spare size bitfiled defination of
+ * register NFI_PAGEFMT.
+ */
+static const u8 spare_size_mt7622[] = {
+	16, 26, 27, 28
+};
+
+struct mtk_snfi_caps {
+	const u8 *spare_size;
+	u8 num_spare_size;
+	u32 nand_sec_size;
+	u8 nand_fdm_size;
+	u8 nand_fdm_ecc_size;
+	u8 ecc_parity_bits;
+	u8 pageformat_spare_shift;
+	u8 bad_mark_swap;
+};
+
+struct mtk_snfi_bad_mark_ctl {
+	void (*bm_swap)(struct spi_mem *mem, u8 *buf, int raw);
+	u32 sec;
+	u32 pos;
+};
+
+struct mtk_snfi_nand_chip {
+	struct mtk_snfi_bad_mark_ctl bad_mark;
+	u32 spare_per_sector;
+};
+
+struct mtk_snfi_clk {
+	struct clk *nfi_clk;
+	struct clk *spi_clk;
+};
+
+struct mtk_snfi {
+	const struct mtk_snfi_caps *caps;
+	struct mtk_snfi_nand_chip snfi_nand;
+	struct mtk_snfi_clk clk;
+	struct mtk_ecc_config ecc_cfg;
+	struct mtk_ecc *ecc;
+	struct completion done;
+	struct device *dev;
+
+	void __iomem *regs;
+
+	u8 *buffer;
+};
+
+static inline u8 *oob_ptr(struct spi_mem *mem, int i)
+{
+	struct spinand_device *spinand = spi_mem_get_drvdata(mem);
+	struct mtk_snfi *snfi = spi_controller_get_devdata(mem->spi->master);
+	struct mtk_snfi_nand_chip *snfi_nand = &snfi->snfi_nand;
+	u8 *poi;
+
+	/* map the sector's FDM data to free oob:
+	 * the beginning of the oob area stores the FDM data of bad mark
+	 */
+
+	if (i < snfi_nand->bad_mark.sec)
+		poi = spinand->oobbuf + (i + 1) * snfi->caps->nand_fdm_size;
+	else if (i == snfi_nand->bad_mark.sec)
+		poi = spinand->oobbuf;
+	else
+		poi = spinand->oobbuf + i * snfi->caps->nand_fdm_size;
+
+	return poi;
+}
+
+static inline int mtk_data_len(struct spi_mem *mem)
+{
+	struct mtk_snfi *snfi = spi_controller_get_devdata(mem->spi->master);
+	struct mtk_snfi_nand_chip *snfi_nand = &snfi->snfi_nand;
+
+	return snfi->caps->nand_sec_size + snfi_nand->spare_per_sector;
+}
+
+static inline u8 *mtk_oob_ptr(struct spi_mem *mem,
+			      const u8 *p, int i)
+{
+	struct mtk_snfi *snfi = spi_controller_get_devdata(mem->spi->master);
+
+	return (u8 *)p + i * mtk_data_len(mem) + snfi->caps->nand_sec_size;
+}
+
+static void mtk_snfi_bad_mark_swap(struct spi_mem *mem,
+				   u8 *buf, int raw)
+{
+	struct spinand_device *spinand = spi_mem_get_drvdata(mem);
+	struct mtk_snfi *snfi = spi_controller_get_devdata(mem->spi->master);
+	struct mtk_snfi_nand_chip *snfi_nand = &snfi->snfi_nand;
+	u32 bad_pos = snfi_nand->bad_mark.pos;
+
+	if (raw)
+		bad_pos += snfi_nand->bad_mark.sec * mtk_data_len(mem);
+	else
+		bad_pos += snfi_nand->bad_mark.sec * snfi->caps->nand_sec_size;
+
+	swap(spinand->oobbuf[0], buf[bad_pos]);
+}
+
+static void mtk_snfi_set_bad_mark_ctl(struct mtk_snfi_bad_mark_ctl *bm_ctl,
+				      struct spi_mem *mem)
+{
+	struct spinand_device *spinand = spi_mem_get_drvdata(mem);
+	struct mtd_info *mtd = spinand_to_mtd(spinand);
+
+	bm_ctl->bm_swap = mtk_snfi_bad_mark_swap;
+	bm_ctl->sec = mtd->writesize / mtk_data_len(mem);
+	bm_ctl->pos = mtd->writesize % mtk_data_len(mem);
+}
+
+static void mtk_snfi_mac_enable(struct mtk_snfi *snfi)
+{
+	u32 mac;
+
+	mac = readl(snfi->regs + SNFI_MAC_CTL);
+	mac &= ~MAC_SIO_SEL;
+	mac |= MAC_EN;
+
+	writel(mac, snfi->regs + SNFI_MAC_CTL);
+}
+
+static int mtk_snfi_mac_trigger(struct mtk_snfi *snfi)
+{
+	u32 mac, reg;
+	int ret = 0;
+
+	mac = readl(snfi->regs + SNFI_MAC_CTL);
+	mac |= MAC_TRIG;
+	writel(mac, snfi->regs + SNFI_MAC_CTL);
+
+	ret = readl_poll_timeout_atomic(snfi->regs + SNFI_MAC_CTL, reg,
+					reg & MAC_WIP_READY, 10,
+					MTK_TIMEOUT);
+	if (ret < 0) {
+		dev_err(snfi->dev, "polling wip ready for read timeout\n");
+		return -EIO;
+	}
+
+	ret = readl_poll_timeout_atomic(snfi->regs + SNFI_MAC_CTL, reg,
+					!(reg & MAC_WIP), 10,
+					MTK_TIMEOUT);
+	if (ret < 0) {
+		dev_err(snfi->dev, "polling flash update timeout\n");
+		return -EIO;
+	}
+
+	return ret;
+}
+
+static void mtk_snfi_mac_leave(struct mtk_snfi *snfi)
+{
+	u32 mac;
+
+	mac = readl(snfi->regs + SNFI_MAC_CTL);
+	mac &= ~(MAC_TRIG | MAC_EN | MAC_SIO_SEL);
+	writel(mac, snfi->regs + SNFI_MAC_CTL);
+}
+
+static int mtk_snfi_mac_op(struct mtk_snfi *snfi)
+{
+	int ret = 0;
+
+	mtk_snfi_mac_enable(snfi);
+
+	ret = mtk_snfi_mac_trigger(snfi);
+	if (ret)
+		return ret;
+
+	mtk_snfi_mac_leave(snfi);
+
+	return ret;
+}
+
+static irqreturn_t mtk_snfi_irq(int irq, void *id)
+{
+	struct mtk_snfi *snfi = id;
+	u16 sta, ien;
+
+	sta = readw(snfi->regs + NFI_INTR_STA);
+	ien = readw(snfi->regs + NFI_INTR_EN);
+
+	if (!(sta & ien))
+		return IRQ_NONE;
+
+	writew(~sta & ien, snfi->regs + NFI_INTR_EN);
+	complete(&snfi->done);
+
+	return IRQ_HANDLED;
+}
+
+static int mtk_snfi_enable_clk(struct device *dev, struct mtk_snfi_clk *clk)
+{
+	int ret;
+
+	ret = clk_prepare_enable(clk->nfi_clk);
+	if (ret) {
+		dev_err(dev, "failed to enable nfi clk\n");
+		return ret;
+	}
+
+	ret = clk_prepare_enable(clk->spi_clk);
+	if (ret) {
+		dev_err(dev, "failed to enable spi clk\n");
+		clk_disable_unprepare(clk->nfi_clk);
+		return ret;
+	}
+
+	return 0;
+}
+
+static void mtk_snfi_disable_clk(struct mtk_snfi_clk *clk)
+{
+	clk_disable_unprepare(clk->nfi_clk);
+	clk_disable_unprepare(clk->spi_clk);
+}
+
+static int mtk_snfi_reset(struct mtk_snfi *snfi)
+{
+	u32 val;
+	int ret;
+
+	/* SW reset controller */
+	val = readl(snfi->regs + SNFI_MISC_CTL) | SW_RST;
+	writel(val, snfi->regs + SNFI_MISC_CTL);
+
+	ret = readw_poll_timeout(snfi->regs + SNFI_STA_CTL1, val,
+				 !(val & SPI_STATE_IDLE), 50,
+				 MTK_RESET_TIMEOUT);
+	if (ret) {
+		dev_warn(snfi->dev, "spi state active in reset [0x%x] = 0x%x\n",
+			 SNFI_STA_CTL1, val);
+		return ret;
+	}
+
+	val = readl(snfi->regs + SNFI_MISC_CTL);
+	val &= ~SW_RST;
+	writel(val, snfi->regs + SNFI_MISC_CTL);
+
+	/* reset all registers and force the NFI master to terminate */
+	writew(CON_FIFO_FLUSH | CON_NFI_RST, snfi->regs + NFI_CON);
+	ret = readw_poll_timeout(snfi->regs + NFI_STA, val,
+				 !(val & (NFI_FSM_MASK | NAND_FSM_MASK)), 50,
+				 MTK_RESET_TIMEOUT);
+	if (ret) {
+		dev_warn(snfi->dev, "nfi active in reset [0x%x] = 0x%x\n",
+			 NFI_STA, val);
+		return ret;
+	}
+
+	return 0;
+}
+
+static int mtk_snfi_set_spare_per_sector(struct spinand_device *spinand,
+					 const struct mtk_snfi_caps *caps,
+					 u32 *sps)
+{
+	struct mtd_info *mtd = spinand_to_mtd(spinand);
+	const u8 *spare = caps->spare_size;
+	u32 sectors, i, closest_spare = 0;
+
+	sectors = mtd->writesize / caps->nand_sec_size;
+	*sps = mtd->oobsize / sectors;
+
+	if (*sps < MTK_SNFC_MIN_SPARE)
+		return -EINVAL;
+
+	for (i = 0; i < caps->num_spare_size; i++) {
+		if (*sps >= spare[i] && spare[i] >= spare[closest_spare]) {
+			closest_spare = i;
+			if (*sps == spare[i])
+				break;
+		}
+	}
+
+	*sps = spare[closest_spare];
+
+	return 0;
+}
+
+static void mtk_snfi_read_fdm_data(struct spi_mem *mem,
+				   u32 sectors)
+{
+	struct mtk_snfi *snfi = spi_controller_get_devdata(mem->spi->master);
+	const struct mtk_snfi_caps *caps = snfi->caps;
+	u32 vall, valm;
+	int i, j;
+	u8 *oobptr;
+
+	for (i = 0; i < sectors; i++) {
+		oobptr = oob_ptr(mem, i);
+		vall = readl(snfi->regs + NFI_FDML(i));
+		valm = readl(snfi->regs + NFI_FDMM(i));
+
+		for (j = 0; j < caps->nand_fdm_size; j++)
+			oobptr[j] = (j >= 4 ? valm : vall) >> ((j % 4) * 8);
+	}
+}
+
+static void mtk_snfi_write_fdm_data(struct spi_mem *mem,
+				    u32 sectors)
+{
+	struct mtk_snfi *snfi = spi_controller_get_devdata(mem->spi->master);
+	const struct mtk_snfi_caps *caps = snfi->caps;
+	u32 vall, valm;
+	int i, j;
+	u8 *oobptr;
+
+	for (i = 0; i < sectors; i++) {
+		oobptr = oob_ptr(mem, i);
+		vall = 0;
+		valm = 0;
+		for (j = 0; j < 8; j++) {
+			if (j < 4)
+				vall |= (j < caps->nand_fdm_size ? oobptr[j] :
+					 0xff) << (j * 8);
+			else
+				valm |= (j < caps->nand_fdm_size ? oobptr[j] :
+					 0xff) << ((j - 4) * 8);
+		}
+		writel(vall, snfi->regs + NFI_FDML(i));
+		writel(valm, snfi->regs + NFI_FDMM(i));
+	}
+}
+
+static int mtk_snfi_update_ecc_stats(struct spi_mem *mem,
+				     u8 *buf, u32 sectors)
+{
+	struct spinand_device *spinand = spi_mem_get_drvdata(mem);
+	struct mtd_info *mtd = spinand_to_mtd(spinand);
+	struct mtk_snfi *snfi = spi_controller_get_devdata(mem->spi->master);
+	struct mtk_ecc_stats stats;
+	int rc, i;
+
+	rc = readl(snfi->regs + NFI_STA) & STA_EMP_PAGE;
+	if (rc) {
+		memset(buf, 0xff, sectors * snfi->caps->nand_sec_size);
+		for (i = 0; i < sectors; i++)
+			memset(spinand->oobbuf, 0xff,
+			       snfi->caps->nand_fdm_size);
+		return 0;
+	}
+
+	mtk_ecc_get_stats(snfi->ecc, &stats, sectors);
+	mtd->ecc_stats.corrected += stats.corrected;
+	mtd->ecc_stats.failed += stats.failed;
+
+	return 0;
+}
+
+static int mtk_snfi_hw_runtime_config(struct spi_mem *mem)
+{
+	struct spinand_device *spinand = spi_mem_get_drvdata(mem);
+	struct mtd_info *mtd = spinand_to_mtd(spinand);
+	struct nand_device *nand = mtd_to_nanddev(mtd);
+	struct mtk_snfi *snfi = spi_controller_get_devdata(mem->spi->master);
+	const struct mtk_snfi_caps *caps = snfi->caps;
+	struct mtk_snfi_nand_chip *snfi_nand = &snfi->snfi_nand;
+	u32 fmt, spare, i = 0;
+	int ret;
+
+	ret = mtk_snfi_set_spare_per_sector(spinand, caps, &spare);
+	if (ret)
+		return ret;
+
+	/* calculate usable oob bytes for ecc parity data */
+	snfi_nand->spare_per_sector = spare;
+	spare -= caps->nand_fdm_size;
+
+	nand->memorg.oobsize = snfi_nand->spare_per_sector
+		* (mtd->writesize / caps->nand_sec_size);
+	mtd->oobsize = nanddev_per_page_oobsize(nand);
+
+	snfi->ecc_cfg.strength = (spare << 3) / caps->ecc_parity_bits;
+	mtk_ecc_adjust_strength(snfi->ecc, &snfi->ecc_cfg.strength);
+
+	switch (mtd->writesize) {
+	case 512:
+		fmt = PAGEFMT_512;
+		break;
+	case KB(2):
+		fmt = PAGEFMT_2K;
+		break;
+	case KB(4):
+		fmt = PAGEFMT_4K;
+		break;
+	default:
+		dev_err(snfi->dev, "invalid page len: %d\n", mtd->writesize);
+		return -EINVAL;
+	}
+
+	/* Setup PageFormat */
+	while (caps->spare_size[i] != snfi_nand->spare_per_sector) {
+		i++;
+		if (i == (caps->num_spare_size - 1)) {
+			dev_err(snfi->dev, "invalid spare size %d\n",
+				snfi_nand->spare_per_sector);
+			return -EINVAL;
+		}
+	}
+
+	fmt |= i << caps->pageformat_spare_shift;
+	fmt |= caps->nand_fdm_size << PAGEFMT_FDM_SHIFT;
+	fmt |= caps->nand_fdm_ecc_size << PAGEFMT_FDM_ECC_SHIFT;
+	writel(fmt, snfi->regs + NFI_PAGEFMT);
+
+	snfi->ecc_cfg.len = caps->nand_sec_size + caps->nand_fdm_ecc_size;
+
+	mtk_snfi_set_bad_mark_ctl(&snfi_nand->bad_mark, mem);
+
+	return 0;
+}
+
+static int mtk_snfi_read_from_cache(struct spi_mem *mem,
+				    const struct spi_mem_op *op, int oob_on)
+{
+	struct mtk_snfi *snfi = spi_controller_get_devdata(mem->spi->master);
+	struct spinand_device *spinand = spi_mem_get_drvdata(mem);
+	struct mtd_info *mtd = spinand_to_mtd(spinand);
+	u32 sectors = mtd->writesize / snfi->caps->nand_sec_size;
+	struct mtk_snfi_nand_chip *snfi_nand = &snfi->snfi_nand;
+	u32 reg, len, col_addr = 0;
+	int dummy_cycle, ret;
+	dma_addr_t dma_addr;
+
+	len = sectors * (snfi->caps->nand_sec_size
+	      + snfi_nand->spare_per_sector);
+
+	dma_addr = dma_map_single(snfi->dev, snfi->buffer,
+				  len, DMA_FROM_DEVICE);
+	ret = dma_mapping_error(snfi->dev, dma_addr);
+	if (ret) {
+		dev_err(snfi->dev, "dma mapping error\n");
+		return -EINVAL;
+	}
+
+	/* set Read cache command and dummy cycle */
+	dummy_cycle = (op->dummy.nbytes << 3) >> (ffs(op->dummy.buswidth) - 1);
+	reg = ((op->cmd.opcode & RD_CMD_MASK) |
+	       (dummy_cycle << RD_DUMMY_SHIFT));
+	writel(reg, snfi->regs + SNFI_RD_CTL2);
+
+	writel((col_addr & RD_ADDR_MASK), snfi->regs + SNFI_RD_CTL3);
+
+	reg = readl(snfi->regs + SNFI_MISC_CTL);
+	reg |= RD_CUSTOM_EN;
+	reg &= ~(RD_MODE_MASK | WR_X4_EN);
+
+	/* set data and addr buswidth */
+	if (op->data.buswidth == 4)
+		reg |= RD_MODE_X4;
+	else if (op->data.buswidth == 2)
+		reg |= RD_MODE_X2;
+
+	if (op->addr.buswidth == 4 || op->addr.buswidth == 2)
+		reg |= RD_QDUAL_IO;
+	writel(reg, snfi->regs + SNFI_MISC_CTL);
+
+	writel(len, snfi->regs + SNFI_MISC_CTL2);
+	writew(sectors << CON_SEC_SHIFT, snfi->regs + NFI_CON);
+	reg = readw(snfi->regs + NFI_CNFG);
+	reg |= CNFG_READ_EN | CNFG_DMA_BURST_EN | CNFG_DMA | CNFG_OP_CUST;
+
+	if (!oob_on) {
+		reg |= CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN;
+		writew(reg, snfi->regs + NFI_CNFG);
+
+		snfi->ecc_cfg.mode = ECC_NFI_MODE;
+		snfi->ecc_cfg.sectors = sectors;
+		snfi->ecc_cfg.op = ECC_DECODE;
+		ret = mtk_ecc_enable(snfi->ecc, &snfi->ecc_cfg);
+		if (ret) {
+			dev_err(snfi->dev, "ecc enable failed\n");
+			/* clear NFI_CNFG */
+			reg &= ~(CNFG_READ_EN | CNFG_DMA_BURST_EN | CNFG_DMA |
+				CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN);
+			writew(reg, snfi->regs + NFI_CNFG);
+			goto out;
+		}
+	} else {
+		writew(reg, snfi->regs + NFI_CNFG);
+	}
+
+	writel(lower_32_bits(dma_addr), snfi->regs + NFI_STRADDR);
+	readw(snfi->regs + NFI_INTR_STA);
+	writew(INTR_AHB_DONE_EN, snfi->regs + NFI_INTR_EN);
+
+	init_completion(&snfi->done);
+
+	/* set dummy command to trigger NFI enter SPI mode */
+	writew(NAND_CMD_DUMMYREAD, snfi->regs + NFI_CMD);
+	reg = readl(snfi->regs + NFI_CON) | CON_BRD;
+	writew(reg, snfi->regs + NFI_CON);
+
+	ret = wait_for_completion_timeout(&snfi->done, msecs_to_jiffies(500));
+	if (!ret) {
+		dev_err(snfi->dev, "read ahb done timeout\n");
+		writew(0, snfi->regs + NFI_INTR_EN);
+		ret = -ETIMEDOUT;
+		goto out;
+	}
+
+	ret = readl_poll_timeout_atomic(snfi->regs + NFI_BYTELEN, reg,
+					ADDRCNTR_SEC(reg) >= sectors, 10,
+					MTK_TIMEOUT);
+	if (ret < 0) {
+		dev_err(snfi->dev, "polling read byte len timeout\n");
+		ret = -EIO;
+	} else {
+		if (!oob_on) {
+			ret = mtk_ecc_wait_done(snfi->ecc, ECC_DECODE);
+			if (ret) {
+				dev_warn(snfi->dev, "wait ecc done timeout\n");
+			} else {
+				mtk_snfi_update_ecc_stats(mem, snfi->buffer,
+							  sectors);
+				mtk_snfi_read_fdm_data(mem, sectors);
+			}
+		}
+	}
+
+	if (oob_on)
+		goto out;
+
+	mtk_ecc_disable(snfi->ecc);
+out:
+	dma_unmap_single(snfi->dev, dma_addr, len, DMA_FROM_DEVICE);
+	writel(0, snfi->regs + NFI_CON);
+	writel(0, snfi->regs + NFI_CNFG);
+	reg = readl(snfi->regs + SNFI_MISC_CTL);
+	reg &= ~RD_CUSTOM_EN;
+	writel(reg, snfi->regs + SNFI_MISC_CTL);
+
+	return ret;
+}
+
+static int mtk_snfi_write_to_cache(struct spi_mem *mem,
+				   const struct spi_mem_op *op,
+				   int oob_on)
+{
+	struct mtk_snfi *snfi = spi_controller_get_devdata(mem->spi->master);
+	struct spinand_device *spinand = spi_mem_get_drvdata(mem);
+	struct mtd_info *mtd = spinand_to_mtd(spinand);
+	u32 sectors = mtd->writesize / snfi->caps->nand_sec_size;
+	struct mtk_snfi_nand_chip *snfi_nand = &snfi->snfi_nand;
+	u32 reg, len, col_addr = 0;
+	dma_addr_t dma_addr;
+	int ret;
+
+	len = sectors * (snfi->caps->nand_sec_size
+	      + snfi_nand->spare_per_sector);
+
+	dma_addr = dma_map_single(snfi->dev, snfi->buffer, len,
+				  DMA_TO_DEVICE);
+	ret = dma_mapping_error(snfi->dev, dma_addr);
+	if (ret) {
+		dev_err(snfi->dev, "dma mapping error\n");
+		return -EINVAL;
+	}
+
+	/* set program load cmd and address */
+	reg = (op->cmd.opcode << WR_LOAD_CMD_SHIFT);
+	writel(reg, snfi->regs + SNFI_PG_CTL1);
+	writel(col_addr & WR_LOAD_ADDR_MASK, snfi->regs + SNFI_PG_CTL2);
+
+	reg = readl(snfi->regs + SNFI_MISC_CTL);
+	reg |= WR_CUSTOM_EN;
+	reg &= ~(RD_MODE_MASK | WR_X4_EN);
+
+	if (op->data.buswidth == 4)
+		reg |= WR_X4_EN;
+	writel(reg, snfi->regs + SNFI_MISC_CTL);
+
+	writel(len << WR_LEN_SHIFT, snfi->regs + SNFI_MISC_CTL2);
+	writew(sectors << CON_SEC_SHIFT, snfi->regs + NFI_CON);
+
+	reg = readw(snfi->regs + NFI_CNFG);
+	reg &= ~(CNFG_READ_EN | CNFG_BYTE_RW);
+	reg |= CNFG_DMA | CNFG_DMA_BURST_EN | CNFG_OP_PROGRAM;
+
+	if (!oob_on) {
+		reg |= CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN;
+		writew(reg, snfi->regs + NFI_CNFG);
+
+		snfi->ecc_cfg.mode = ECC_NFI_MODE;
+		snfi->ecc_cfg.op = ECC_ENCODE;
+		ret = mtk_ecc_enable(snfi->ecc, &snfi->ecc_cfg);
+		if (ret) {
+			dev_err(snfi->dev, "ecc enable failed\n");
+			/* clear NFI_CNFG */
+			reg &= ~(CNFG_DMA_BURST_EN | CNFG_DMA |
+					CNFG_AUTO_FMT_EN | CNFG_HW_ECC_EN);
+			writew(reg, snfi->regs + NFI_CNFG);
+			dma_unmap_single(snfi->dev, dma_addr, len,
+					 DMA_FROM_DEVICE);
+			goto out;
+		}
+		/* write OOB into the FDM registers (OOB area in MTK NAND) */
+		mtk_snfi_write_fdm_data(mem, sectors);
+	} else {
+		writew(reg, snfi->regs + NFI_CNFG);
+	}
+	writel(lower_32_bits(dma_addr), snfi->regs + NFI_STRADDR);
+	readw(snfi->regs + NFI_INTR_STA);
+	writew(INTR_AHB_DONE_EN, snfi->regs + NFI_INTR_EN);
+
+	init_completion(&snfi->done);
+
+	/* set dummy command to trigger NFI enter SPI mode */
+	writew(NAND_CMD_DUMMYPROG, snfi->regs + NFI_CMD);
+	reg = readl(snfi->regs + NFI_CON) | CON_BWR;
+	writew(reg, snfi->regs + NFI_CON);
+
+	ret = wait_for_completion_timeout(&snfi->done, msecs_to_jiffies(500));
+	if (!ret) {
+		dev_err(snfi->dev, "custom program done timeout\n");
+		writew(0, snfi->regs + NFI_INTR_EN);
+		ret = -ETIMEDOUT;
+		goto ecc_disable;
+	}
+
+	ret = readl_poll_timeout_atomic(snfi->regs + NFI_ADDRCNTR, reg,
+					ADDRCNTR_SEC(reg) >= sectors,
+					10, MTK_TIMEOUT);
+	if (ret)
+		dev_err(snfi->dev, "hwecc write timeout\n");
+
+ecc_disable:
+	mtk_ecc_disable(snfi->ecc);
+
+out:
+	dma_unmap_single(snfi->dev, dma_addr, len, DMA_TO_DEVICE);
+	writel(0, snfi->regs + NFI_CON);
+	writel(0, snfi->regs + NFI_CNFG);
+	reg = readl(snfi->regs + SNFI_MISC_CTL);
+	reg &= ~WR_CUSTOM_EN;
+	writel(reg, snfi->regs + SNFI_MISC_CTL);
+
+	return ret;
+}
+
+static int mtk_snfi_read(struct spi_mem *mem,
+			 const struct spi_mem_op *op)
+{
+	struct spinand_device *spinand = spi_mem_get_drvdata(mem);
+	struct mtk_snfi *snfi = spi_controller_get_devdata(mem->spi->master);
+	struct mtd_info *mtd = spinand_to_mtd(spinand);
+	struct mtk_snfi_nand_chip *snfi_nand = &snfi->snfi_nand;
+	u32 col_addr = op->addr.val;
+	int i, ret, sectors, oob_on = false;
+
+	if (col_addr == mtd->writesize)
+		oob_on = true;
+
+	ret = mtk_snfi_read_from_cache(mem, op, oob_on);
+	if (ret) {
+		dev_warn(snfi->dev, "read from cache fail\n");
+		return ret;
+	}
+
+	sectors = mtd->writesize / snfi->caps->nand_sec_size;
+	for (i = 0; i < sectors; i++) {
+		if (oob_on)
+			memcpy(oob_ptr(mem, i),
+			       mtk_oob_ptr(mem, snfi->buffer, i),
+			       snfi->caps->nand_fdm_size);
+
+		if (i == snfi_nand->bad_mark.sec && snfi->caps->bad_mark_swap)
+			snfi_nand->bad_mark.bm_swap(mem, snfi->buffer,
+							oob_on);
+	}
+
+	if (!oob_on)
+		memcpy(spinand->databuf, snfi->buffer, mtd->writesize);
+
+	return ret;
+}
+
+static int mtk_snfi_write(struct spi_mem *mem,
+			  const struct spi_mem_op *op)
+{
+	struct spinand_device *spinand = spi_mem_get_drvdata(mem);
+	struct mtk_snfi *snfi = spi_controller_get_devdata(mem->spi->master);
+	struct mtd_info *mtd = spinand_to_mtd(spinand);
+	struct mtk_snfi_nand_chip *snfi_nand = &snfi->snfi_nand;
+	u32 ret, i, sectors, col_addr = op->addr.val;
+	int oob_on = false;
+
+	if (col_addr == mtd->writesize)
+		oob_on = true;
+
+	sectors = mtd->writesize / snfi->caps->nand_sec_size;
+	memset(snfi->buffer, 0xff, mtd->writesize + mtd->oobsize);
+
+	if (!oob_on)
+		memcpy(snfi->buffer, spinand->databuf, mtd->writesize);
+
+	for (i = 0; i < sectors; i++) {
+		if (i == snfi_nand->bad_mark.sec && snfi->caps->bad_mark_swap)
+			snfi_nand->bad_mark.bm_swap(mem, snfi->buffer, oob_on);
+
+		if (oob_on)
+			memcpy(mtk_oob_ptr(mem, snfi->buffer, i),
+			       oob_ptr(mem, i),
+			       snfi->caps->nand_fdm_size);
+	}
+
+	ret = mtk_snfi_write_to_cache(mem, op, oob_on);
+	if (ret)
+		dev_warn(snfi->dev, "write to cache fail\n");
+
+	return ret;
+}
+
+static int mtk_snfi_command_exec(struct mtk_snfi *snfi,
+				 const u8 *txbuf, u8 *rxbuf,
+				 const u32 txlen, const u32 rxlen)
+{
+	u32 tmp, i, j, reg, m;
+	u8 *p_tmp = (u8 *)(&tmp);
+	int ret = 0;
+
+	/* Moving tx data to NFI_SPI GPRAM */
+	for (i = 0, m = 0; i < txlen; ) {
+		for (j = 0, tmp = 0; i < txlen && j < 4; i++, j++)
+			p_tmp[j] = txbuf[i];
+
+		writel(tmp, snfi->regs + SNFI_GPRAM_DATA + m);
+		m += 4;
+	}
+
+	writel(txlen, snfi->regs + SNFI_MAC_OUTL);
+	writel(rxlen, snfi->regs + SNFI_MAC_INL);
+	ret = mtk_snfi_mac_op(snfi);
+	if (ret)
+		return ret;
+
+	/* For NULL input data, this loop will be skipped */
+	if (rxlen)
+		for (i = 0, m = 0; i < rxlen; ) {
+			reg = readl(snfi->regs +
+					    SNFI_GPRAM_DATA + m);
+			for (j = 0; i < rxlen && j < 4; i++, j++, rxbuf++) {
+				if (m == 0 && i == 0)
+					j = i + txlen;
+				*rxbuf = (reg >> (j * 8)) & 0xFF;
+			}
+			m += 4;
+		}
+
+	return ret;
+}
+
+/*
+ * mtk_snfi_exec_op - to process command/data to send to the
+ * SPI NAND by mtk controller
+ */
+static int mtk_snfi_exec_op(struct spi_mem *mem,
+			    const struct spi_mem_op *op)
+
+{
+	struct mtk_snfi *snfi = spi_controller_get_devdata(mem->spi->master);
+	struct spinand_device *spinand = spi_mem_get_drvdata(mem);
+	struct mtd_info *mtd = spinand_to_mtd(spinand);
+	struct nand_device *nand = mtd_to_nanddev(mtd);
+	const struct spi_mem_op *read_cache;
+	const struct spi_mem_op *write_cache;
+	const struct spi_mem_op *update_cache;
+	u32 tmpbufsize, txlen = 0, rxlen = 0;
+	u8 *txbuf, *rxbuf = NULL, *buf;
+	int i, ret = 0;
+	
+	ret = mtk_snfi_reset(snfi);
+	if (ret) {
+		dev_warn(snfi->dev, "reset spi memory controller fail\n");
+		return ret;
+	}
+
+	/*if bbt initial, framework have detect nand information */
+	if (nand->bbt.cache) {
+		read_cache = spinand->op_templates.read_cache;
+		write_cache = spinand->op_templates.write_cache;
+		update_cache = spinand->op_templates.update_cache;
+
+		ret = mtk_snfi_hw_runtime_config(mem);
+		if (ret)
+			return ret;
+
+		/* For Read/Write with cache, Erase use framework flow */
+		if (op->cmd.opcode == read_cache->cmd.opcode) {
+			ret = mtk_snfi_read(mem, op);
+			if (ret)
+				dev_warn(snfi->dev, "snfi read fail\n");
+			
+			return ret;
+		} else if ((op->cmd.opcode == write_cache->cmd.opcode)
+			       	|| (op->cmd.opcode == update_cache->cmd.opcode)) {
+			ret = mtk_snfi_write(mem, op);
+			if (ret)
+				dev_warn(snfi->dev, "snfi write fail\n");
+			
+			return ret;
+		}
+	}
+
+	tmpbufsize = sizeof(op->cmd.opcode) + op->addr.nbytes +
+		     op->dummy.nbytes + op->data.nbytes;
+
+	txbuf = kzalloc(tmpbufsize, GFP_KERNEL);
+	if (!txbuf)
+		return -ENOMEM;
+
+	txbuf[txlen++] = op->cmd.opcode;
+
+	if (op->addr.nbytes)
+		for (i = 0; i < op->addr.nbytes; i++)
+			txbuf[txlen++] = op->addr.val >>
+					(8 * (op->addr.nbytes - i - 1));
+
+	txlen += op->dummy.nbytes;
+
+	if (op->data.dir == SPI_MEM_DATA_OUT)
+		for (i = 0; i < op->data.nbytes; i++) {
+			buf = (u8 *)op->data.buf.out;
+			txbuf[txlen++] = buf[i];
+		}
+
+	if (op->data.dir == SPI_MEM_DATA_IN) {
+		rxbuf = (u8 *)op->data.buf.in;
+		rxlen += op->data.nbytes;
+	}
+
+	ret = mtk_snfi_command_exec(snfi, txbuf, rxbuf, txlen, rxlen);
+	kfree(txbuf);
+
+	return ret;
+}
+
+static int mtk_snfi_init(struct mtk_snfi *snfi)
+{
+	int ret;
+
+	/* Reset the state machine and data FIFO */
+	ret = mtk_snfi_reset(snfi);
+	if (ret) {
+		dev_warn(snfi->dev, "MTK reset controller fail\n");
+		return ret;
+	}
+
+	snfi->buffer = devm_kzalloc(snfi->dev, 4096 + 256, GFP_KERNEL);
+	if (!snfi->buffer)
+		return  -ENOMEM;
+
+	/* Clear interrupt, read clear. */
+	readw(snfi->regs + NFI_INTR_STA);
+	writew(0, snfi->regs + NFI_INTR_EN);
+
+	writel(0, snfi->regs + NFI_CON);
+	writel(0, snfi->regs + NFI_CNFG);
+
+	/* Change to NFI_SPI mode. */
+	writel(SNFI_MODE_EN, snfi->regs + SNFI_CNFG);
+
+	return 0;
+}
+
+static int mtk_snfi_check_buswidth(u8 width)
+{
+	switch (width) {
+	case 1:
+	case 2:
+	case 4:
+		return 0;
+
+	default:
+		break;
+	}
+
+	return -ENOTSUPP;
+}
+
+static bool mtk_snfi_supports_op(struct spi_mem *mem,
+				 const struct spi_mem_op *op)
+{
+	int ret = 0;
+
+	/* For MTK Spi Nand controller, cmd buswidth just support 1 bit*/
+	if (op->cmd.buswidth != 1)
+		ret = -ENOTSUPP;
+
+	if (op->addr.nbytes)
+		ret |= mtk_snfi_check_buswidth(op->addr.buswidth);
+
+	if (op->dummy.nbytes)
+		ret |= mtk_snfi_check_buswidth(op->dummy.buswidth);
+
+	if (op->data.nbytes)
+		ret |= mtk_snfi_check_buswidth(op->data.buswidth);
+
+	if (ret)
+		return false;
+
+	return true;
+}
+
+static const struct spi_controller_mem_ops mtk_snfi_ops = {
+	.supports_op = mtk_snfi_supports_op,
+	.exec_op = mtk_snfi_exec_op,
+};
+
+static const struct mtk_snfi_caps snfi_mt7622 = {
+	.spare_size = spare_size_mt7622,
+	.num_spare_size = 4,
+	.nand_sec_size = 512,
+	.nand_fdm_size = 8,
+	.nand_fdm_ecc_size = 1,
+	.ecc_parity_bits = 13,
+	.pageformat_spare_shift = 4,
+	.bad_mark_swap = 0,
+};
+
+static const struct mtk_snfi_caps snfi_mt7629 = {
+	.spare_size = spare_size_mt7622,
+	.num_spare_size = 4,
+	.nand_sec_size = 512,
+	.nand_fdm_size = 8,
+	.nand_fdm_ecc_size = 1,
+	.ecc_parity_bits = 13,
+	.pageformat_spare_shift = 4,
+	.bad_mark_swap = 1,
+};
+
+static const struct of_device_id mtk_snfi_id_table[] = {
+	{ .compatible = "mediatek,mt7622-snfi", .data = &snfi_mt7622, },
+	{ .compatible = "mediatek,mt7629-snfi", .data = &snfi_mt7629, },
+	{  /* sentinel */ }
+};
+
+static int mtk_snfi_probe(struct platform_device *pdev)
+{
+	struct device *dev = &pdev->dev;
+	struct device_node *np = dev->of_node;
+	struct spi_controller *ctlr;
+	struct mtk_snfi *snfi;
+	struct resource *res;
+	int ret = 0, irq;
+
+	ctlr = spi_alloc_master(&pdev->dev, sizeof(*snfi));
+	if (!ctlr)
+		return -ENOMEM;
+
+	snfi = spi_controller_get_devdata(ctlr);
+	snfi->caps = of_device_get_match_data(dev);
+	snfi->dev = dev;
+
+	snfi->ecc = of_mtk_ecc_get(np);
+	if (IS_ERR_OR_NULL(snfi->ecc))
+		goto err_put_master;
+
+	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+	snfi->regs = devm_ioremap_resource(dev, res);
+	if (IS_ERR(snfi->regs)) {
+		ret = PTR_ERR(snfi->regs);
+		goto release_ecc;
+	}
+
+	/* find the clocks */
+	snfi->clk.nfi_clk = devm_clk_get(dev, "nfi_clk");
+	if (IS_ERR(snfi->clk.nfi_clk)) {
+		dev_err(dev, "no nfi clk\n");
+		ret = PTR_ERR(snfi->clk.nfi_clk);
+		goto release_ecc;
+	}
+
+	snfi->clk.spi_clk = devm_clk_get(dev, "spi_clk");
+	if (IS_ERR(snfi->clk.spi_clk)) {
+		dev_err(dev, "no spi clk\n");
+		ret = PTR_ERR(snfi->clk.spi_clk);
+		goto release_ecc;
+	}
+
+	ret = mtk_snfi_enable_clk(dev, &snfi->clk);
+	if (ret)
+		goto release_ecc;
+
+	/* find the irq */
+	irq = platform_get_irq(pdev, 0);
+	if (irq < 0) {
+		dev_err(dev, "no snfi irq resource\n");
+		ret = -EINVAL;
+		goto clk_disable;
+	}
+
+	ret = devm_request_irq(dev, irq, mtk_snfi_irq, 0, "mtk-snfi", snfi);
+	if (ret) {
+		dev_err(dev, "failed to request snfi irq\n");
+		goto clk_disable;
+	}
+
+	ret = dma_set_mask(dev, DMA_BIT_MASK(32));
+	if (ret) {
+		dev_err(dev, "failed to set dma mask\n");
+		goto clk_disable;
+	}
+
+	ctlr->dev.of_node = np;
+	ctlr->mem_ops = &mtk_snfi_ops;
+
+	platform_set_drvdata(pdev, snfi);
+	ret = mtk_snfi_init(snfi);
+	if (ret) {
+		dev_err(dev, "failed to init snfi\n");
+		goto clk_disable;
+	}
+
+	ret = devm_spi_register_master(dev, ctlr);
+	if (ret)
+		goto clk_disable;
+
+	return 0;
+
+clk_disable:
+	mtk_snfi_disable_clk(&snfi->clk);
+
+release_ecc:
+	mtk_ecc_release(snfi->ecc);
+
+err_put_master:
+	spi_master_put(ctlr);
+
+	dev_err(dev, "MediaTek SPI NAND interface probe failed %d\n", ret);
+	return ret;
+}
+
+static int mtk_snfi_remove(struct platform_device *pdev)
+{
+	struct mtk_snfi *snfi = platform_get_drvdata(pdev);
+
+	mtk_snfi_disable_clk(&snfi->clk);
+
+	return 0;
+}
+
+static int mtk_snfi_suspend(struct platform_device *pdev, pm_message_t state)
+{
+	struct mtk_snfi *snfi = platform_get_drvdata(pdev);
+
+	mtk_snfi_disable_clk(&snfi->clk);
+
+	return 0;
+}
+
+static int mtk_snfi_resume(struct platform_device *pdev)
+{
+	struct device *dev = &pdev->dev;
+	struct mtk_snfi *snfi = dev_get_drvdata(dev);
+	int ret;
+
+	ret = mtk_snfi_enable_clk(dev, &snfi->clk);
+	if (ret)
+		return ret;
+
+	ret = mtk_snfi_init(snfi);
+	if (ret)
+		dev_err(dev, "failed to init snfi controller\n");
+
+	return ret;
+}
+
+static struct platform_driver mtk_snfi_driver = {
+	.driver = {
+		.name	= "mtk-snfi",
+		.of_match_table = mtk_snfi_id_table,
+	},
+	.probe		= mtk_snfi_probe,
+	.remove		= mtk_snfi_remove,
+	.suspend	= mtk_snfi_suspend,
+	.resume		= mtk_snfi_resume,
+};
+
+module_platform_driver(mtk_snfi_driver);
+
+MODULE_LICENSE("GPL v2");
+MODULE_AUTHOR("Xiangsheng Hou <xiangsheng.hou@mediatek.com>");
+MODULE_DESCRIPTION("Mediatek SPI Memory Interface Driver");