From 32221046a302245a63d5e00d16cf3008b5b31255 Mon Sep 17 00:00:00 2001
From: Steve Cornelius <steve.cornelius@freescale.com>
Date: Tue, 23 Jul 2013 20:47:32 -0700
Subject: [PATCH] MLKU-25-3 crypto: caam - add Secure Memory support
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit

This is a squash of the following i.MX BSP commits
(rel_imx_4.19.35_1.1.0_rc2)

1.  ae8175a3f1be ("MLK-9710-10 Add CCM defs for FIFO_STORE instruction")
2.  9512280d066b ("MLK-9769-11 Add SM register defs, and expanded driver-private storage.")
3.  a9dc44de8150 ("MLK-9769-10 Add Blob command bitdefs.")
4.  8f6a17b41917 ("ENGR00289885 [iMX6Q] Add Secure Memory and SECVIO support.")
5.  c7d4f9db1077 ("MLK-9710-11 Add internal key cover and external blob export/import to prototype SM-API")
6.  568e449edfca ("MLK-9710-12 Adapt sm_test as a black-key handling example")
7.  f42f12d9cb19 ("MLK-9710-13 Correct size in BLOB_OVERHEAD definition")
8.  022fc2b33f57 ("MLK-9710-14 Un-pad cache sizes for blob export/import")
9.  8d3e8c3c4dc1 ("MLK-9710-15 Correct size of padded key buffers")
10. 997fb2ff88ec ("MLK-9710-5 Unregister Secure Memory platform device upon shutdown")
11. 5316249198ee ("MLK-10897-1 ARM: imx7d: Add CAAM support for i.mx7d")
12. 07566f42a4ec ("MLK-11103 Missing register in Secure memory configuration v1")
13. 3004636304e1 ("MLK-12302 caam: Secure Memory platform device creation crashes")
14. 0e6ed5a819f7 ("MLK-13779 crypto: caam - initialize kslock spinlock")
15. b1254b6b5f52 ("Add missing NULL checks in CAAM sm")
16. 61f57509bc9a ("MLK-17992: caam: sm: Fix compilation warnings")
17. 41cf3d4c580c ("MLK-15473-1: crypto: caam: Add CAAM driver support for iMX8 soc family")
18. bb8742481209 ("MLK-17253-1: crypto: caam: Fix computation of SM pages addresses")
19. 308796dfae3b ("MLK-17253-2: crypto: caam: Use correct memory function for Secure Memory")
20. ba2cb6b5fb10 ("MLK-17732-2: SM store: Support iMX8QX and iMX8QM")
21. de710d376af6 ("MLK-17674-1: sm_store remove CONFIG_OF")
22. cfcae647434e ("MLK-17674-2: CAAM SM : get base address from device tree")
23. f49ebbd5eefa ("MLK-17992: caam: sm: Fix compilation warnings")
24. 345ead4338b9 ("MLK-17841: crypto: caam: Correct bugs in Secure Memory")
25. c17811f3fffc ("MLK-18082: crypto: caam: sm: Fix encap/decap function to handle errors")
26. 41bcba1d4c9b ("MLK-18082: crypto: caam: sm: Fix descriptor running functions")
27. b7385ab94784 ("MLK-20204: drivers: crypto: caam: sm: Remove deadcode")
28. 1d749430cb63 ("MLK-20204: drivers: crypto: caam: sm: test: Dealloc keyslot properly")
29. 6a5c2d9d358f ("crypto: caam - lower SM test verbosity")
30. 1a6bc92c0c87 ("MLK-21617: crypto: caam - update SM test error handling")

Signed-off-by: Dan Douglass <dan.douglass@nxp.com>
Signed-off-by: Victoria Milhoan <vicki.milhoan@freescale.com>
Signed-off-by: Steve Cornelius <steve.cornelius@nxp.com>
Signed-off-by: Octavian Purdila <octavian.purdila@nxp.com>
Signed-off-by: Radu Solea <radu.solea@nxp.com>
Signed-off-by: Franck LENORMAND <franck.lenormand@nxp.com>
Signed-off-by: Aymen Sghaier <aymen.sghaier@nxp.com>
Signed-off-by: Silvano di Ninno <silvano.dininno@nxp.com>

that have been reworked:

4.
-make SM depend on JR
-enable SM, SECVIO only on i.MX SoCs
-fix resource leak - add off_node_put() where needed

Split commit in three:
1 - SNVS/SECVIO driver
2 - Secure Memory driver
3 - DT changes

11.
Clock handling dropped - logic already upstream.

17.
Keep only Secure Memory related changes.
Changes related to page 0 registers have been added previously.
Other changes are dropped.

21.
Always use first jr in ctrlpriv->jr[] array to access registers
in page 0 (aliased in jr page), irrespective of SCU presence.

Signed-off-by: Horia Geantă <horia.geanta@nxp.com>
---
 drivers/crypto/caam/Kconfig    |   30 +
 drivers/crypto/caam/Makefile   |    2 +
 drivers/crypto/caam/ctrl.c     |   37 ++
 drivers/crypto/caam/desc.h     |   21 +
 drivers/crypto/caam/intern.h   |    4 +
 drivers/crypto/caam/regs.h     |  158 ++++-
 drivers/crypto/caam/sm.h       |  127 ++++
 drivers/crypto/caam/sm_store.c | 1332 ++++++++++++++++++++++++++++++++++++++++
 drivers/crypto/caam/sm_test.c  |  571 +++++++++++++++++
 9 files changed, 2279 insertions(+), 3 deletions(-)
 create mode 100644 drivers/crypto/caam/sm.h
 create mode 100644 drivers/crypto/caam/sm_store.c
 create mode 100644 drivers/crypto/caam/sm_test.c

--- a/drivers/crypto/caam/Kconfig
+++ b/drivers/crypto/caam/Kconfig
@@ -156,6 +156,36 @@ config CRYPTO_DEV_FSL_CAAM_RNG_TEST
 	  caam RNG. This test is several minutes long and executes
 	  just before the RNG is registered with the hw_random API.
 
+config CRYPTO_DEV_FSL_CAAM_SM
+	tristate "CAAM Secure Memory / Keystore API (EXPERIMENTAL)"
+	help
+	  Enables use of a prototype kernel-level Keystore API with CAAM
+	  Secure Memory for insertion/extraction of bus-protected secrets.
+
+config CRYPTO_DEV_FSL_CAAM_SM_SLOTSIZE
+	int "Size of each keystore slot in Secure Memory"
+	depends on CRYPTO_DEV_FSL_CAAM_SM
+	range 5 9
+	default 7
+	help
+	  Select size of allocation units to divide Secure Memory pages into
+	  (the size of a "slot" as referenced inside the API code).
+	  Established as powers of two.
+	  Examples:
+		5 => 32 bytes
+		6 => 64 bytes
+		7 => 128 bytes
+		8 => 256 bytes
+		9 => 512 bytes
+
+config CRYPTO_DEV_FSL_CAAM_SM_TEST
+	tristate "CAAM Secure Memory - Keystore Test/Example (EXPERIMENTAL)"
+	depends on CRYPTO_DEV_FSL_CAAM_SM
+	help
+	  Example thread to exercise the Keystore API and to verify that
+	  stored and recovered secrets can be used for general purpose
+	  encryption/decryption.
+
 config CRYPTO_DEV_FSL_CAAM_SECVIO
 	tristate "CAAM/SNVS Security Violation Handler (EXPERIMENTAL)"
 	help
--- a/drivers/crypto/caam/Makefile
+++ b/drivers/crypto/caam/Makefile
@@ -21,6 +21,8 @@ caam_jr-$(CONFIG_CRYPTO_DEV_FSL_CAAM_CRY
 caam_jr-$(CONFIG_CRYPTO_DEV_FSL_CAAM_AHASH_API) += caamhash.o
 caam_jr-$(CONFIG_CRYPTO_DEV_FSL_CAAM_RNG_API) += caamrng.o
 caam_jr-$(CONFIG_CRYPTO_DEV_FSL_CAAM_PKC_API) += caampkc.o pkc_desc.o
+caam_jr-$(CONFIG_CRYPTO_DEV_FSL_CAAM_SM) += sm_store.o
+caam_jr-$(CONFIG_CRYPTO_DEV_FSL_CAAM_SM_TEST) += sm_test.o
 caam_jr-$(CONFIG_CRYPTO_DEV_FSL_CAAM_SECVIO) += secvio.o
 
 caam-$(CONFIG_CRYPTO_DEV_FSL_CAAM_CRYPTO_API_QI) += qi.o
--- a/drivers/crypto/caam/ctrl.c
+++ b/drivers/crypto/caam/ctrl.c
@@ -17,6 +17,7 @@
 #include "jr.h"
 #include "desc_constr.h"
 #include "ctrl.h"
+#include "sm.h"
 
 bool caam_dpaa2;
 EXPORT_SYMBOL(caam_dpaa2);
@@ -573,6 +574,7 @@ static int caam_probe(struct platform_de
 	const struct soc_device_attribute *imx_soc_match;
 	struct device *dev;
 	struct device_node *nprop, *np;
+	struct resource res_regs;
 	struct caam_ctrl __iomem *ctrl;
 	struct caam_drv_private *ctrlpriv;
 	struct caam_perfmon __iomem *perfmon;
@@ -719,9 +721,44 @@ iomap_ctrl:
 			 BLOCK_OFFSET * DECO_BLOCK_NUMBER
 			 );
 
+	/* Only i.MX SoCs have sm */
+	if (!imx_soc_match)
+		goto mc_fw;
+
+	/* Get CAAM-SM node and of_iomap() and save */
+	np = of_find_compatible_node(NULL, NULL, "fsl,imx6q-caam-sm");
+	if (!np)
+		return -ENODEV;
+
+	/* Get CAAM SM registers base address from device tree */
+	ret = of_address_to_resource(np, 0, &res_regs);
+	if (ret) {
+		dev_err(dev, "failed to retrieve registers base from device tree\n");
+		of_node_put(np);
+		return -ENODEV;
+	}
+
+	ctrlpriv->sm_phy = res_regs.start;
+	ctrlpriv->sm_base = devm_ioremap_resource(dev, &res_regs);
+	if (IS_ERR(ctrlpriv->sm_base)) {
+		of_node_put(np);
+		return PTR_ERR(ctrlpriv->sm_base);
+	}
+
+	if (!of_machine_is_compatible("fsl,imx8mn") &&
+	    !of_machine_is_compatible("fsl,imx8mm") &&
+	    !of_machine_is_compatible("fsl,imx8mq") &&
+	    !of_machine_is_compatible("fsl,imx8qm") &&
+	    !of_machine_is_compatible("fsl,imx8qxp"))
+		ctrlpriv->sm_size = resource_size(&res_regs);
+	else
+		ctrlpriv->sm_size = PG_SIZE_64K;
+	of_node_put(np);
+
 	if (!reg_access)
 		goto set_dma_mask;
 
+mc_fw:
 	/*
 	 * Enable DECO watchdogs and, if this is a PHYS_ADDR_T_64BIT kernel,
 	 * long pointers in master configuration register.
--- a/drivers/crypto/caam/desc.h
+++ b/drivers/crypto/caam/desc.h
@@ -403,6 +403,10 @@
 #define FIFOST_TYPE_PKHA_N	 (0x08 << FIFOST_TYPE_SHIFT)
 #define FIFOST_TYPE_PKHA_A	 (0x0c << FIFOST_TYPE_SHIFT)
 #define FIFOST_TYPE_PKHA_B	 (0x0d << FIFOST_TYPE_SHIFT)
+#define FIFOST_TYPE_AF_SBOX_CCM_JKEK	(0x10 << FIFOST_TYPE_SHIFT)
+#define FIFOST_TYPE_AF_SBOX_CCM_TKEK	(0x11 << FIFOST_TYPE_SHIFT)
+#define FIFOST_TYPE_KEY_CCM_JKEK	(0x14 << FIFOST_TYPE_SHIFT)
+#define FIFOST_TYPE_KEY_CCM_TKEK	(0x15 << FIFOST_TYPE_SHIFT)
 #define FIFOST_TYPE_AF_SBOX_JKEK (0x20 << FIFOST_TYPE_SHIFT)
 #define FIFOST_TYPE_AF_SBOX_TKEK (0x21 << FIFOST_TYPE_SHIFT)
 #define FIFOST_TYPE_PKHA_E_JKEK	 (0x22 << FIFOST_TYPE_SHIFT)
@@ -1136,6 +1140,23 @@
 #define OP_PCL_PKPROT_ECC			 0x0002
 #define OP_PCL_PKPROT_F2M			 0x0001
 
+/* Blob protocol protinfo bits */
+#define OP_PCL_BLOB_TK			0x0200
+#define OP_PCL_BLOB_EKT			0x0100
+
+#define OP_PCL_BLOB_K2KR_MEM		0x0000
+#define OP_PCL_BLOB_K2KR_C1KR		0x0010
+#define OP_PCL_BLOB_K2KR_C2KR		0x0030
+#define OP_PCL_BLOB_K2KR_AFHAS		0x0050
+#define OP_PCL_BLOB_K2KR_C2KR_SPLIT	0x0070
+
+#define OP_PCL_BLOB_PTXT_SECMEM		0x0008
+#define OP_PCL_BLOB_BLACK		0x0004
+
+#define OP_PCL_BLOB_FMT_NORMAL		0x0000
+#define OP_PCL_BLOB_FMT_MSTR		0x0002
+#define OP_PCL_BLOB_FMT_TEST		0x0003
+
 /* For non-protocol/alg-only op commands */
 #define OP_ALG_TYPE_SHIFT	24
 #define OP_ALG_TYPE_MASK	(0x7 << OP_ALG_TYPE_SHIFT)
--- a/drivers/crypto/caam/intern.h
+++ b/drivers/crypto/caam/intern.h
@@ -66,6 +66,7 @@ struct caam_drv_private_jr {
  * Driver-private storage for a single CAAM block instance
  */
 struct caam_drv_private {
+	struct device *smdev;
 
 	/* Physical-presence section */
 	struct caam_ctrl __iomem *ctrl; /* controller region */
@@ -73,6 +74,9 @@ struct caam_drv_private {
 	struct caam_assurance __iomem *assure;
 	struct caam_queue_if __iomem *qi; /* QI control region */
 	struct caam_job_ring __iomem *jr[4];	/* JobR's register space */
+	dma_addr_t __iomem *sm_base;	/* Secure memory storage base */
+	phys_addr_t sm_phy;		/* Secure memory storage physical */
+	u32 sm_size;
 
 	struct iommu_domain *domain;
 
--- a/drivers/crypto/caam/regs.h
+++ b/drivers/crypto/caam/regs.h
@@ -385,6 +385,12 @@ struct version_regs {
 #define CHA_VER_VID_MD_LP512	0x1ull
 #define CHA_VER_VID_MD_HP	0x2ull
 
+/*
+ * caam_perfmon - Performance Monitor/Secure Memory Status/
+ *                CAAM Global Status/Component Version IDs
+ *
+ * Spans f00-fff wherever instantiated
+ */
 struct sec_vid {
 	u16 ip_id;
 	u8 maj_rev;
@@ -415,17 +421,22 @@ struct caam_perfmon {
 #define CTPR_MS_PG_SZ_SHIFT	4
 	u32 comp_parms_ms;	/* CTPR - Compile Parameters Register	*/
 	u32 comp_parms_ls;	/* CTPR - Compile Parameters Register	*/
-	u64 rsvd1[2];
+	/* Secure Memory State Visibility */
+	u32 rsvd1;
+	u32 smstatus;	/* Secure memory status */
+	u32 rsvd2;
+	u32 smpartown;	/* Secure memory partition owner */
 
 	/* CAAM Global Status					fc0-fdf */
 	u64 faultaddr;	/* FAR  - Fault Address		*/
 	u32 faultliodn;	/* FALR - Fault Address LIODN	*/
 	u32 faultdetail;	/* FADR - Fault Addr Detail	*/
-	u32 rsvd2;
 #define CSTA_PLEND		BIT(10)
 #define CSTA_ALT_PLEND		BIT(18)
+	u32 rsvd3;
 	u32 status;		/* CSTA - CAAM Status */
-	u64 rsvd3;
+	u32 smpart;		/* Secure Memory Partition Parameters */
+	u32 smvid;		/* Secure Memory Version ID */
 
 	/* Component Instantiation Parameters			fe0-fff */
 	u32 rtic_id;		/* RVID - RTIC Version ID	*/
@@ -444,6 +455,62 @@ struct caam_perfmon {
 	u32 caam_id_ls;		/* CAAMVID - CAAM Version ID LS	*/
 };
 
+#define SMSTATUS_PART_SHIFT	28
+#define SMSTATUS_PART_MASK	(0xf << SMSTATUS_PART_SHIFT)
+#define SMSTATUS_PAGE_SHIFT	16
+#define SMSTATUS_PAGE_MASK	(0x7ff << SMSTATUS_PAGE_SHIFT)
+#define SMSTATUS_MID_SHIFT	8
+#define SMSTATUS_MID_MASK	(0x3f << SMSTATUS_MID_SHIFT)
+#define SMSTATUS_ACCERR_SHIFT	4
+#define SMSTATUS_ACCERR_MASK	(0xf << SMSTATUS_ACCERR_SHIFT)
+#define SMSTATUS_ACCERR_NONE	0
+#define SMSTATUS_ACCERR_ALLOC	1	/* Page not allocated */
+#define SMSTATUS_ACCESS_ID	2	/* Not granted by ID */
+#define SMSTATUS_ACCESS_WRITE	3	/* Writes not allowed */
+#define SMSTATUS_ACCESS_READ	4	/* Reads not allowed */
+#define SMSTATUS_ACCESS_NONKEY	6	/* Non-key reads not allowed */
+#define SMSTATUS_ACCESS_BLOB	9	/* Blob access not allowed */
+#define SMSTATUS_ACCESS_DESCB	10	/* Descriptor Blob access spans pages */
+#define SMSTATUS_ACCESS_NON_SM	11	/* Outside Secure Memory range */
+#define SMSTATUS_ACCESS_XPAGE	12	/* Access crosses pages */
+#define SMSTATUS_ACCESS_INITPG	13	/* Page still initializing */
+#define SMSTATUS_STATE_SHIFT	0
+#define SMSTATUS_STATE_MASK	(0xf << SMSTATUS_STATE_SHIFT)
+#define SMSTATUS_STATE_RESET	0
+#define SMSTATUS_STATE_INIT	1
+#define SMSTATUS_STATE_NORMAL	2
+#define SMSTATUS_STATE_FAIL	3
+
+/* up to 15 rings, 2 bits shifted by ring number */
+#define SMPARTOWN_RING_SHIFT	2
+#define SMPARTOWN_RING_MASK	3
+#define SMPARTOWN_AVAILABLE	0
+#define SMPARTOWN_NOEXIST	1
+#define SMPARTOWN_UNAVAILABLE	2
+#define SMPARTOWN_OURS		3
+
+/* Maximum number of pages possible */
+#define SMPART_MAX_NUMPG_SHIFT	16
+#define SMPART_MAX_NUMPG_MASK	(0x3f << SMPART_MAX_NUMPG_SHIFT)
+
+/* Maximum partition number */
+#define SMPART_MAX_PNUM_SHIFT	12
+#define SMPART_MAX_PNUM_MASK	(0xf << SMPART_MAX_PNUM_SHIFT)
+
+/* Highest possible page number */
+#define SMPART_MAX_PG_SHIFT	0
+#define SMPART_MAX_PG_MASK	(0x3f << SMPART_MAX_PG_SHIFT)
+
+/* Max size of a page */
+#define SMVID_PG_SIZE_SHIFT	16
+#define SMVID_PG_SIZE_MASK	(0x7 << SMVID_PG_SIZE_SHIFT)
+
+/* Major/Minor Version ID */
+#define SMVID_MAJ_VERS_SHIFT	8
+#define SMVID_MAJ_VERS		(0xf << SMVID_MAJ_VERS_SHIFT)
+#define SMVID_MIN_VERS_SHIFT	0
+#define SMVID_MIN_VERS		(0xf << SMVID_MIN_VERS_SHIFT)
+
 /* LIODN programming for DMA configuration */
 #define MSTRID_LOCK_LIODN	0x80000000
 #define MSTRID_LOCK_MAKETRUSTED	0x00010000	/* only for JR masterid */
@@ -648,6 +715,35 @@ struct caam_ctrl {
 #define JRSTART_JR2_START       0x00000004 /* Start Job ring 2 */
 #define JRSTART_JR3_START       0x00000008 /* Start Job ring 3 */
 
+/* Secure Memory Configuration - if you have it */
+/* Secure Memory Register Offset from JR Base Reg*/
+#define SM_V1_OFFSET 0x0f4
+#define SM_V2_OFFSET 0xa00
+
+/* Minimum SM Version ID requiring v2 SM register mapping */
+#define SMVID_V2 0x20105
+
+struct caam_secure_mem_v1 {
+	u32 sm_cmd;	/* SMCJRx - Secure memory command */
+	u32 rsvd1;
+	u32 sm_status;	/* SMCSJRx - Secure memory status */
+	u32 rsvd2;
+
+	u32 sm_perm;	/* SMAPJRx - Secure memory access perms */
+	u32 sm_group2;	/* SMAP2JRx - Secure memory access group 2 */
+	u32 sm_group1;	/* SMAP1JRx - Secure memory access group 1 */
+};
+
+struct caam_secure_mem_v2 {
+	u32 sm_perm;	/* SMAPJRx - Secure memory access perms */
+	u32 sm_group2;	/* SMAP2JRx - Secure memory access group 2 */
+	u32 sm_group1;	/* SMAP1JRx - Secure memory access group 1 */
+	u32 rsvd1[118];
+	u32 sm_cmd;	/* SMCJRx - Secure memory command */
+	u32 rsvd2;
+	u32 sm_status;	/* SMCSJRx - Secure memory status */
+};
+
 /*
  * caam_job_ring - direct job ring setup
  * 1-4 possible per instantiation, base + 1000/2000/3000/4000
@@ -818,6 +914,62 @@ struct caam_job_ring {
 
 #define JRCR_RESET                  0x01
 
+/* secure memory command */
+#define SMC_PAGE_SHIFT	16
+#define SMC_PAGE_MASK	(0xffff << SMC_PAGE_SHIFT)
+#define SMC_PART_SHIFT	8
+#define SMC_PART_MASK	(0x0f << SMC_PART_SHIFT)
+#define SMC_CMD_SHIFT	0
+#define SMC_CMD_MASK	(0x0f << SMC_CMD_SHIFT)
+
+#define SMC_CMD_ALLOC_PAGE	0x01	/* allocate page to this partition */
+#define SMC_CMD_DEALLOC_PAGE	0x02	/* deallocate page from partition */
+#define SMC_CMD_DEALLOC_PART	0x03	/* deallocate partition */
+#define SMC_CMD_PAGE_INQUIRY	0x05	/* find partition associate with page */
+
+/* secure memory (command) status */
+#define SMCS_PAGE_SHIFT		16
+#define SMCS_PAGE_MASK		(0x0fff << SMCS_PAGE_SHIFT)
+#define SMCS_CMDERR_SHIFT	14
+#define SMCS_CMDERR_MASK	(3 << SMCS_CMDERR_SHIFT)
+#define SMCS_ALCERR_SHIFT	12
+#define SMCS_ALCERR_MASK	(3 << SMCS_ALCERR_SHIFT)
+#define SMCS_PGOWN_SHIFT	6
+#define SMCS_PGWON_MASK		(3 << SMCS_PGOWN_SHIFT)
+#define SMCS_PART_SHIFT		0
+#define SMCS_PART_MASK		(0xf << SMCS_PART_SHIFT)
+
+#define SMCS_CMDERR_NONE	0
+#define SMCS_CMDERR_INCOMP	1	/* Command not yet complete */
+#define SMCS_CMDERR_SECFAIL	2	/* Security failure occurred */
+#define SMCS_CMDERR_OVERFLOW	3	/* Command overflow */
+
+#define SMCS_ALCERR_NONE	0
+#define SMCS_ALCERR_PSPERR	1	/* Partion marked PSP (dealloc only) */
+#define SMCS_ALCERR_PAGEAVAIL	2	/* Page not available */
+#define SMCS_ALCERR_PARTOWN	3	/* Partition ownership error */
+
+#define SMCS_PGOWN_AVAIL	0	/* Page is available */
+#define SMCS_PGOWN_NOEXIST	1	/* Page initializing or nonexistent */
+#define SMCS_PGOWN_NOOWN	2	/* Page owned by another processor */
+#define SMCS_PGOWN_OWNED	3	/* Page belongs to this processor */
+
+/* secure memory access permissions */
+#define SMCS_PERM_KEYMOD_SHIFT	16
+#define SMCA_PERM_KEYMOD_MASK	(0xff << SMCS_PERM_KEYMOD_SHIFT)
+#define SMCA_PERM_CSP_ZERO	0x8000	/* Zero when deallocated or released */
+#define SMCA_PERM_PSP_LOCK	0x4000	/* Part./pages can't be deallocated */
+#define SMCA_PERM_PERM_LOCK	0x2000	/* Lock permissions */
+#define SMCA_PERM_GRP_LOCK	0x1000	/* Lock access groups */
+#define SMCA_PERM_RINGID_SHIFT	10
+#define SMCA_PERM_RINGID_MASK	(3 << SMCA_PERM_RINGID_SHIFT)
+#define SMCA_PERM_G2_BLOB	0x0080	/* Group 2 blob import/export */
+#define SMCA_PERM_G2_WRITE	0x0020	/* Group 2 write */
+#define SMCA_PERM_G2_READ	0x0010	/* Group 2 read */
+#define SMCA_PERM_G1_BLOB	0x0008	/* Group 1... */
+#define SMCA_PERM_G1_WRITE	0x0002
+#define SMCA_PERM_G1_READ	0x0001
+
 /*
  * caam_assurance - Assurance Controller View
  * base + 0x6000 padded out to 0x1000
--- /dev/null
+++ b/drivers/crypto/caam/sm.h
@@ -0,0 +1,127 @@
+/* SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause) */
+/*
+ * CAAM Secure Memory/Keywrap API Definitions
+ *
+ * Copyright 2008-2015 Freescale Semiconductor, Inc.
+ * Copyright 2016-2019 NXP
+ */
+
+#ifndef SM_H
+#define SM_H
+
+
+/* Storage access permissions */
+#define SM_PERM_READ 0x01
+#define SM_PERM_WRITE 0x02
+#define SM_PERM_BLOB 0x03
+
+/* Define treatment of secure memory vs. general memory blobs */
+#define SM_SECMEM 0
+#define SM_GENMEM 1
+
+/* Define treatment of red/black keys */
+#define RED_KEY 0
+#define BLACK_KEY 1
+
+/* Define key encryption/covering options */
+#define KEY_COVER_ECB 0	/* cover key in AES-ECB */
+#define KEY_COVER_CCM 1 /* cover key with AES-CCM */
+
+/*
+ * Round a key size up to an AES blocksize boundary so to allow for
+ * padding out to a full block
+ */
+#define AES_BLOCK_PAD(x) ((x % 16) ? ((x >> 4) + 1) << 4 : x)
+
+/* Define space required for BKEK + MAC tag storage in any blob */
+#define BLOB_OVERHEAD (32 + 16)
+
+/* Keystore maintenance functions */
+void sm_init_keystore(struct device *dev);
+u32 sm_detect_keystore_units(struct device *dev);
+int sm_establish_keystore(struct device *dev, u32 unit);
+void sm_release_keystore(struct device *dev, u32 unit);
+void caam_sm_shutdown(struct platform_device *pdev);
+int caam_sm_example_init(struct platform_device *pdev);
+
+/* Keystore accessor functions */
+extern int sm_keystore_slot_alloc(struct device *dev, u32 unit, u32 size,
+				  u32 *slot);
+extern int sm_keystore_slot_dealloc(struct device *dev, u32 unit, u32 slot);
+extern int sm_keystore_slot_load(struct device *dev, u32 unit, u32 slot,
+				 const u8 *key_data, u32 key_length);
+extern int sm_keystore_slot_read(struct device *dev, u32 unit, u32 slot,
+				 u32 key_length, u8 *key_data);
+extern int sm_keystore_cover_key(struct device *dev, u32 unit, u32 slot,
+				 u16 key_length, u8 keyauth);
+extern int sm_keystore_slot_export(struct device *dev, u32 unit, u32 slot,
+				   u8 keycolor, u8 keyauth, u8 *outbuf,
+				   u16 keylen, u8 *keymod);
+extern int sm_keystore_slot_import(struct device *dev, u32 unit, u32 slot,
+				   u8 keycolor, u8 keyauth, u8 *inbuf,
+				   u16 keylen, u8 *keymod);
+
+/* Prior functions from legacy API, deprecated */
+extern int sm_keystore_slot_encapsulate(struct device *dev, u32 unit,
+					u32 inslot, u32 outslot, u16 secretlen,
+					u8 *keymod, u16 keymodlen);
+extern int sm_keystore_slot_decapsulate(struct device *dev, u32 unit,
+					u32 inslot, u32 outslot, u16 secretlen,
+					u8 *keymod, u16 keymodlen);
+
+/* Data structure to hold per-slot information */
+struct keystore_data_slot_info {
+	u8	allocated;	/* Track slot assignments */
+	u32	key_length;	/* Size of the key */
+};
+
+/* Data structure to hold keystore information */
+struct keystore_data {
+	void	*base_address;	/* Virtual base of secure memory pages */
+	void	*phys_address;	/* Physical base of secure memory pages */
+	u32	slot_count;	/* Number of slots in the keystore */
+	struct keystore_data_slot_info *slot; /* Per-slot information */
+};
+
+/* store the detected attributes of a secure memory page */
+struct sm_page_descriptor {
+	u16 phys_pagenum;	/* may be discontiguous */
+	u16 own_part;		/* Owning partition */
+	void *pg_base;		/* Calculated virtual address */
+	void *pg_phys;		/* Calculated physical address */
+	struct keystore_data *ksdata;
+};
+
+struct caam_drv_private_sm {
+	struct device *parentdev;	/* this ends up as the controller */
+	struct device *smringdev;	/* ring that owns this instance */
+	struct platform_device *sm_pdev;  /* Secure Memory platform device */
+	spinlock_t kslock ____cacheline_aligned;
+
+	/* SM Register offset from JR base address */
+	u32 sm_reg_offset;
+
+	/* Default parameters for geometry */
+	u32 max_pages;		/* maximum pages this instance can support */
+	u32 top_partition;	/* highest partition number in this instance */
+	u32 top_page;		/* highest page number in this instance */
+	u32 page_size;		/* page size */
+	u32 slot_size;		/* selected size of each storage block */
+
+	/* Partition/Page Allocation Map */
+	u32 localpages;		/* Number of pages we can access */
+	struct sm_page_descriptor *pagedesc;	/* Allocated per-page */
+
+	/* Installed handlers for keystore access */
+	int (*data_init)(struct device *dev, u32 unit);
+	void (*data_cleanup)(struct device *dev, u32 unit);
+	int (*slot_alloc)(struct device *dev, u32 unit, u32 size, u32 *slot);
+	int (*slot_dealloc)(struct device *dev, u32 unit, u32 slot);
+	void *(*slot_get_address)(struct device *dev, u32 unit, u32 handle);
+	void *(*slot_get_physical)(struct device *dev, u32 unit, u32 handle);
+	u32 (*slot_get_base)(struct device *dev, u32 unit, u32 handle);
+	u32 (*slot_get_offset)(struct device *dev, u32 unit, u32 handle);
+	u32 (*slot_get_slot_size)(struct device *dev, u32 unit, u32 handle);
+};
+
+#endif /* SM_H */
--- /dev/null
+++ b/drivers/crypto/caam/sm_store.c
@@ -0,0 +1,1332 @@
+// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
+/*
+ * CAAM Secure Memory Storage Interface
+ *
+ * Copyright 2008-2015 Freescale Semiconductor, Inc.
+ * Copyright 2016-2019 NXP
+ *
+ * Loosely based on the SHW Keystore API for SCC/SCC2
+ * Experimental implementation and NOT intended for upstream use. Expect
+ * this interface to be amended significantly in the future once it becomes
+ * integrated into live applications.
+ *
+ * Known issues:
+ *
+ * - Executes one instance of an secure memory "driver". This is tied to the
+ *   fact that job rings can't run as standalone instances in the present
+ *   configuration.
+ *
+ * - It does not expose a userspace interface. The value of a userspace
+ *   interface for access to secrets is a point for further architectural
+ *   discussion.
+ *
+ * - Partition/permission management is not part of this interface. It
+ *   depends on some level of "knowledge" agreed upon between bootloader,
+ *   provisioning applications, and OS-hosted software (which uses this
+ *   driver).
+ *
+ * - No means of identifying the location or purpose of secrets managed by
+ *   this interface exists; "slot location" and format of a given secret
+ *   needs to be agreed upon between bootloader, provisioner, and OS-hosted
+ *   application.
+ */
+
+#include "compat.h"
+#include "regs.h"
+#include "jr.h"
+#include "desc.h"
+#include "intern.h"
+#include "error.h"
+#include "sm.h"
+#include <linux/of_address.h>
+
+#define SECMEM_KEYMOD_LEN 8
+#define GENMEM_KEYMOD_LEN 16
+
+#ifdef SM_DEBUG_CONT
+void sm_show_page(struct device *dev, struct sm_page_descriptor *pgdesc)
+{
+	struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev);
+	u32 i, *smdata;
+
+	dev_info(dev, "physical page %d content at 0x%08x\n",
+		 pgdesc->phys_pagenum, pgdesc->pg_base);
+	smdata = pgdesc->pg_base;
+	for (i = 0; i < (smpriv->page_size / sizeof(u32)); i += 4)
+		dev_info(dev, "[0x%08x] 0x%08x 0x%08x 0x%08x 0x%08x\n",
+			 (u32)&smdata[i], smdata[i], smdata[i+1], smdata[i+2],
+			 smdata[i+3]);
+}
+#endif
+
+#define INITIAL_DESCSZ 16	/* size of tmp buffer for descriptor const. */
+
+static __always_inline u32 sm_send_cmd(struct caam_drv_private_sm *smpriv,
+					     struct caam_drv_private_jr *jrpriv,
+					     u32 cmd, u32 *status)
+{
+	void __iomem *write_address;
+	void __iomem *read_address;
+
+	if (smpriv->sm_reg_offset == SM_V1_OFFSET) {
+		struct caam_secure_mem_v1 *sm_regs_v1;
+
+		sm_regs_v1 = (struct caam_secure_mem_v1 *)
+			((void *)jrpriv->rregs + SM_V1_OFFSET);
+		write_address = &sm_regs_v1->sm_cmd;
+		read_address = &sm_regs_v1->sm_status;
+
+	} else if (smpriv->sm_reg_offset == SM_V2_OFFSET) {
+		struct caam_secure_mem_v2 *sm_regs_v2;
+
+		sm_regs_v2 = (struct caam_secure_mem_v2 *)
+			((void *)jrpriv->rregs + SM_V2_OFFSET);
+		write_address = &sm_regs_v2->sm_cmd;
+		read_address = &sm_regs_v2->sm_status;
+
+	} else {
+		return -EINVAL;
+	}
+
+	wr_reg32(write_address, cmd);
+
+	udelay(10);
+
+	/* Read until the command has terminated and the status is correct */
+	do {
+		*status = rd_reg32(read_address);
+	} while (((*status & SMCS_CMDERR_MASK) >>  SMCS_CMDERR_SHIFT)
+				   == SMCS_CMDERR_INCOMP);
+
+	return 0;
+}
+
+/*
+ * Construct a black key conversion job descriptor
+ *
+ * This function constructs a job descriptor capable of performing
+ * a key blackening operation on a plaintext secure memory resident object.
+ *
+ * - desc	pointer to a pointer to the descriptor generated by this
+ *		function. Caller will be responsible to kfree() this
+ *		descriptor after execution.
+ * - key	physical pointer to the plaintext, which will also hold
+ *		the result. Since encryption occurs in place, caller must
+ *              ensure that the space is large enough to accommodate the
+ *              blackened key
+ * - keysz	size of the plaintext
+ * - auth	if a CCM-covered key is required, use KEY_COVER_CCM, else
+ *		use KEY_COVER_ECB.
+ *
+ * KEY to key1 from @key_addr LENGTH 16 BYTES;
+ * FIFO STORE from key1[ecb] TO @key_addr LENGTH 16 BYTES;
+ *
+ * Note that this variant uses the JDKEK only; it does not accommodate the
+ * trusted key encryption key at this time.
+ *
+ */
+static int blacken_key_jobdesc(u32 **desc, void *key, u16 keysz, bool auth)
+{
+	u32 *tdesc, tmpdesc[INITIAL_DESCSZ];
+	u16 dsize, idx;
+
+	memset(tmpdesc, 0, INITIAL_DESCSZ * sizeof(u32));
+	idx = 1;
+
+	/* Load key to class 1 key register */
+	tmpdesc[idx++] = CMD_KEY | CLASS_1 | (keysz & KEY_LENGTH_MASK);
+	tmpdesc[idx++] = (uintptr_t)key;
+
+	/* ...and write back out via FIFO store*/
+	tmpdesc[idx] = CMD_FIFO_STORE | CLASS_1 | (keysz & KEY_LENGTH_MASK);
+
+	/* plus account for ECB/CCM option in FIFO_STORE */
+	if (auth == KEY_COVER_ECB)
+		tmpdesc[idx] |= FIFOST_TYPE_KEY_KEK;
+	else
+		tmpdesc[idx] |= FIFOST_TYPE_KEY_CCM_JKEK;
+
+	idx++;
+	tmpdesc[idx++] = (uintptr_t)key;
+
+	/* finish off the job header */
+	tmpdesc[0] = CMD_DESC_HDR | HDR_ONE | (idx & HDR_DESCLEN_MASK);
+	dsize = idx * sizeof(u32);
+
+	/* now allocate execution buffer and coat it with executable */
+	tdesc = kmalloc(dsize, GFP_KERNEL | GFP_DMA);
+	if (tdesc == NULL)
+		return 0;
+
+	memcpy(tdesc, tmpdesc, dsize);
+	*desc = tdesc;
+
+	return dsize;
+}
+
+/*
+ * Construct a blob encapsulation job descriptor
+ *
+ * This function dynamically constructs a blob encapsulation job descriptor
+ * from the following arguments:
+ *
+ * - desc	pointer to a pointer to the descriptor generated by this
+ *		function. Caller will be responsible to kfree() this
+ *		descriptor after execution.
+ * - keymod	Physical pointer to a key modifier, which must reside in a
+ *		contiguous piece of memory. Modifier will be assumed to be
+ *		8 bytes long for a blob of type SM_SECMEM, or 16 bytes long
+ *		for a blob of type SM_GENMEM (see blobtype argument).
+ * - secretbuf	Physical pointer to a secret, normally a black or red key,
+ *		possibly residing within an accessible secure memory page,
+ *		of the secret to be encapsulated to an output blob.
+ * - outbuf	Physical pointer to the destination buffer to receive the
+ *		encapsulated output. This buffer will need to be 48 bytes
+ *		larger than the input because of the added encapsulation data.
+ *		The generated descriptor will account for the increase in size,
+ *		but the caller must also account for this increase in the
+ *		buffer allocator.
+ * - secretsz	Size of input secret, in bytes. This is limited to 65536
+ *		less the size of blob overhead, since the length embeds into
+ *		DECO pointer in/out instructions.
+ * - keycolor   Determines if the source data is covered (black key) or
+ *		plaintext (red key). RED_KEY or BLACK_KEY are defined in
+ *		for this purpose.
+ * - blobtype	Determine if encapsulated blob should be a secure memory
+ *		blob (SM_SECMEM), with partition data embedded with key
+ *		material, or a general memory blob (SM_GENMEM).
+ * - auth	If BLACK_KEY source is covered via AES-CCM, specify
+ *		KEY_COVER_CCM, else uses AES-ECB (KEY_COVER_ECB).
+ *
+ * Upon completion, desc points to a buffer containing a CAAM job
+ * descriptor which encapsulates data into an externally-storable blob
+ * suitable for use across power cycles.
+ *
+ * This is an example of a black key encapsulation job into a general memory
+ * blob. Notice the 16-byte key modifier in the LOAD instruction. Also note
+ * the output 48 bytes longer than the input:
+ *
+ * [00] B0800008       jobhdr: stidx=0 len=8
+ * [01] 14400010           ld: ccb2-key len=16 offs=0
+ * [02] 08144891               ptr->@0x08144891
+ * [03] F800003A    seqoutptr: len=58
+ * [04] 01000000               out_ptr->@0x01000000
+ * [05] F000000A     seqinptr: len=10
+ * [06] 09745090               in_ptr->@0x09745090
+ * [07] 870D0004    operation: encap blob  reg=memory, black, format=normal
+ *
+ * This is an example of a red key encapsulation job for storing a red key
+ * into a secure memory blob. Note the 8 byte modifier on the 12 byte offset
+ * in the LOAD instruction; this accounts for blob permission storage:
+ *
+ * [00] B0800008       jobhdr: stidx=0 len=8
+ * [01] 14400C08           ld: ccb2-key len=8 offs=12
+ * [02] 087D0784               ptr->@0x087d0784
+ * [03] F8000050    seqoutptr: len=80
+ * [04] 09251BB2               out_ptr->@0x09251bb2
+ * [05] F0000020     seqinptr: len=32
+ * [06] 40000F31               in_ptr->@0x40000f31
+ * [07] 870D0008    operation: encap blob  reg=memory, red, sec_mem,
+ *                             format=normal
+ *
+ * Note: this function only generates 32-bit pointers at present, and should
+ * be refactored using a scheme that allows both 32 and 64 bit addressing
+ */
+
+static int blob_encap_jobdesc(u32 **desc, dma_addr_t keymod,
+			      void *secretbuf, dma_addr_t outbuf,
+			      u16 secretsz, u8 keycolor, u8 blobtype, u8 auth)
+{
+	u32 *tdesc, tmpdesc[INITIAL_DESCSZ];
+	u16 dsize, idx;
+
+	memset(tmpdesc, 0, INITIAL_DESCSZ * sizeof(u32));
+	idx = 1;
+
+	/*
+	 * Key modifier works differently for secure/general memory blobs
+	 * This accounts for the permission/protection data encapsulated
+	 * within the blob if a secure memory blob is requested
+	 */
+	if (blobtype == SM_SECMEM)
+		tmpdesc[idx++] = CMD_LOAD | LDST_CLASS_2_CCB |
+				 LDST_SRCDST_BYTE_KEY |
+				 ((12 << LDST_OFFSET_SHIFT) & LDST_OFFSET_MASK)
+				 | (8 & LDST_LEN_MASK);
+	else /* is general memory blob */
+		tmpdesc[idx++] = CMD_LOAD | LDST_CLASS_2_CCB |
+				 LDST_SRCDST_BYTE_KEY | (16 & LDST_LEN_MASK);
+
+	tmpdesc[idx++] = (u32)keymod;
+
+	/*
+	 * Encapsulation output must include space for blob key encryption
+	 * key and MAC tag
+	 */
+	tmpdesc[idx++] = CMD_SEQ_OUT_PTR | (secretsz + BLOB_OVERHEAD);
+	tmpdesc[idx++] = (u32)outbuf;
+
+	/* Input data, should be somewhere in secure memory */
+	tmpdesc[idx++] = CMD_SEQ_IN_PTR | secretsz;
+	tmpdesc[idx++] = (uintptr_t)secretbuf;
+
+	/* Set blob encap, then color */
+	tmpdesc[idx] = CMD_OPERATION | OP_TYPE_ENCAP_PROTOCOL | OP_PCLID_BLOB;
+
+	if (blobtype == SM_SECMEM)
+		tmpdesc[idx] |= OP_PCL_BLOB_PTXT_SECMEM;
+
+	if (auth == KEY_COVER_CCM)
+		tmpdesc[idx] |= OP_PCL_BLOB_EKT;
+
+	if (keycolor == BLACK_KEY)
+		tmpdesc[idx] |= OP_PCL_BLOB_BLACK;
+
+	idx++;
+	tmpdesc[0] = CMD_DESC_HDR | HDR_ONE | (idx & HDR_DESCLEN_MASK);
+	dsize = idx * sizeof(u32);
+
+	tdesc = kmalloc(dsize, GFP_KERNEL | GFP_DMA);
+	if (tdesc == NULL)
+		return 0;
+
+	memcpy(tdesc, tmpdesc, dsize);
+	*desc = tdesc;
+	return dsize;
+}
+
+/*
+ * Construct a blob decapsulation job descriptor
+ *
+ * This function dynamically constructs a blob decapsulation job descriptor
+ * from the following arguments:
+ *
+ * - desc	pointer to a pointer to the descriptor generated by this
+ *		function. Caller will be responsible to kfree() this
+ *		descriptor after execution.
+ * - keymod	Physical pointer to a key modifier, which must reside in a
+ *		contiguous piece of memory. Modifier will be assumed to be
+ *		8 bytes long for a blob of type SM_SECMEM, or 16 bytes long
+ *		for a blob of type SM_GENMEM (see blobtype argument).
+ * - blobbuf	Physical pointer (into external memory) of the blob to
+ *		be decapsulated. Blob must reside in a contiguous memory
+ *		segment.
+ * - outbuf	Physical pointer of the decapsulated output, possibly into
+ *		a location within a secure memory page. Must be contiguous.
+ * - secretsz	Size of encapsulated secret in bytes (not the size of the
+ *		input blob).
+ * - keycolor   Determines if decapsulated content is encrypted (BLACK_KEY)
+ *		or left as plaintext (RED_KEY).
+ * - blobtype	Determine if encapsulated blob should be a secure memory
+ *		blob (SM_SECMEM), with partition data embedded with key
+ *		material, or a general memory blob (SM_GENMEM).
+ * - auth	If decapsulation path is specified by BLACK_KEY, then if
+ *		AES-CCM is requested for key covering use KEY_COVER_CCM, else
+ *		use AES-ECB (KEY_COVER_ECB).
+ *
+ * Upon completion, desc points to a buffer containing a CAAM job descriptor
+ * that decapsulates a key blob from external memory into a black (encrypted)
+ * key or red (plaintext) content.
+ *
+ * This is an example of a black key decapsulation job from a general memory
+ * blob. Notice the 16-byte key modifier in the LOAD instruction.
+ *
+ * [00] B0800008       jobhdr: stidx=0 len=8
+ * [01] 14400010           ld: ccb2-key len=16 offs=0
+ * [02] 08A63B7F               ptr->@0x08a63b7f
+ * [03] F8000010    seqoutptr: len=16
+ * [04] 01000000               out_ptr->@0x01000000
+ * [05] F000003A     seqinptr: len=58
+ * [06] 01000010               in_ptr->@0x01000010
+ * [07] 860D0004    operation: decap blob  reg=memory, black, format=normal
+ *
+ * This is an example of a red key decapsulation job for restoring a red key
+ * from a secure memory blob. Note the 8 byte modifier on the 12 byte offset
+ * in the LOAD instruction:
+ *
+ * [00] B0800008       jobhdr: stidx=0 len=8
+ * [01] 14400C08           ld: ccb2-key len=8 offs=12
+ * [02] 01000000               ptr->@0x01000000
+ * [03] F8000020    seqoutptr: len=32
+ * [04] 400000E6               out_ptr->@0x400000e6
+ * [05] F0000050     seqinptr: len=80
+ * [06] 08F0C0EA               in_ptr->@0x08f0c0ea
+ * [07] 860D0008    operation: decap blob  reg=memory, red, sec_mem,
+ *			       format=normal
+ *
+ * Note: this function only generates 32-bit pointers at present, and should
+ * be refactored using a scheme that allows both 32 and 64 bit addressing
+ */
+
+static int blob_decap_jobdesc(u32 **desc, dma_addr_t keymod, dma_addr_t blobbuf,
+			      u8 *outbuf, u16 secretsz, u8 keycolor,
+			      u8 blobtype, u8 auth)
+{
+	u32 *tdesc, tmpdesc[INITIAL_DESCSZ];
+	u16 dsize, idx;
+
+	memset(tmpdesc, 0, INITIAL_DESCSZ * sizeof(u32));
+	idx = 1;
+
+	/* Load key modifier */
+	if (blobtype == SM_SECMEM)
+		tmpdesc[idx++] = CMD_LOAD | LDST_CLASS_2_CCB |
+				 LDST_SRCDST_BYTE_KEY |
+				 ((12 << LDST_OFFSET_SHIFT) & LDST_OFFSET_MASK)
+				 | (8 & LDST_LEN_MASK);
+	else /* is general memory blob */
+		tmpdesc[idx++] = CMD_LOAD | LDST_CLASS_2_CCB |
+				 LDST_SRCDST_BYTE_KEY | (16 & LDST_LEN_MASK);
+
+	tmpdesc[idx++] = (u32)keymod;
+
+	/* Compensate BKEK + MAC tag over size of encapsulated secret */
+	tmpdesc[idx++] = CMD_SEQ_IN_PTR | (secretsz + BLOB_OVERHEAD);
+	tmpdesc[idx++] = (u32)blobbuf;
+	tmpdesc[idx++] = CMD_SEQ_OUT_PTR | secretsz;
+	tmpdesc[idx++] = (uintptr_t)outbuf;
+
+	/* Decapsulate from secure memory partition to black blob */
+	tmpdesc[idx] = CMD_OPERATION | OP_TYPE_DECAP_PROTOCOL | OP_PCLID_BLOB;
+
+	if (blobtype == SM_SECMEM)
+		tmpdesc[idx] |= OP_PCL_BLOB_PTXT_SECMEM;
+
+	if (auth == KEY_COVER_CCM)
+		tmpdesc[idx] |= OP_PCL_BLOB_EKT;
+
+	if (keycolor == BLACK_KEY)
+		tmpdesc[idx] |= OP_PCL_BLOB_BLACK;
+
+	idx++;
+	tmpdesc[0] = CMD_DESC_HDR | HDR_ONE | (idx & HDR_DESCLEN_MASK);
+	dsize = idx * sizeof(u32);
+
+	tdesc = kmalloc(dsize, GFP_KERNEL | GFP_DMA);
+	if (tdesc == NULL)
+		return 0;
+
+	memcpy(tdesc, tmpdesc, dsize);
+	*desc = tdesc;
+	return dsize;
+}
+
+/*
+ * Pseudo-synchronous ring access functions for carrying out key
+ * encapsulation and decapsulation
+ */
+
+struct sm_key_job_result {
+	int error;
+	struct completion completion;
+};
+
+void sm_key_job_done(struct device *dev, u32 *desc, u32 err, void *context)
+{
+	struct sm_key_job_result *res = context;
+
+	if (err)
+		caam_jr_strstatus(dev, err);
+
+	res->error = err;	/* save off the error for postprocessing */
+
+	complete(&res->completion);	/* mark us complete */
+}
+
+static int sm_key_job(struct device *ksdev, u32 *jobdesc)
+{
+	struct sm_key_job_result testres = {0};
+	struct caam_drv_private_sm *kspriv;
+	int rtn = 0;
+
+	kspriv = dev_get_drvdata(ksdev);
+
+	init_completion(&testres.completion);
+
+	rtn = caam_jr_enqueue(kspriv->smringdev, jobdesc, sm_key_job_done,
+			      &testres);
+	if (rtn)
+		goto exit;
+
+	wait_for_completion_interruptible(&testres.completion);
+	rtn = testres.error;
+
+exit:
+	return rtn;
+}
+
+/*
+ * Following section establishes the default methods for keystore access
+ * They are NOT intended for use external to this module
+ *
+ * In the present version, these are the only means for the higher-level
+ * interface to deal with the mechanics of accessing the phyiscal keystore
+ */
+
+
+int slot_alloc(struct device *dev, u32 unit, u32 size, u32 *slot)
+{
+	struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev);
+	struct keystore_data *ksdata = smpriv->pagedesc[unit].ksdata;
+	u32 i;
+#ifdef SM_DEBUG
+	dev_info(dev, "slot_alloc(): requesting slot for %d bytes\n", size);
+#endif
+
+	if (size > smpriv->slot_size)
+		return -EKEYREJECTED;
+
+	for (i = 0; i < ksdata->slot_count; i++) {
+		if (ksdata->slot[i].allocated == 0) {
+			ksdata->slot[i].allocated = 1;
+			(*slot) = i;
+#ifdef SM_DEBUG
+			dev_info(dev, "slot_alloc(): new slot %d allocated\n",
+				 *slot);
+#endif
+			return 0;
+		}
+	}
+
+	return -ENOSPC;
+}
+EXPORT_SYMBOL(slot_alloc);
+
+int slot_dealloc(struct device *dev, u32 unit, u32 slot)
+{
+	struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev);
+	struct keystore_data *ksdata = smpriv->pagedesc[unit].ksdata;
+	u8 __iomem *slotdata;
+
+#ifdef SM_DEBUG
+	dev_info(dev, "slot_dealloc(): releasing slot %d\n", slot);
+#endif
+	if (slot >= ksdata->slot_count)
+		return -EINVAL;
+	slotdata = ksdata->base_address + slot * smpriv->slot_size;
+
+	if (ksdata->slot[slot].allocated == 1) {
+		/* Forcibly overwrite the data from the keystore */
+		memset_io(ksdata->base_address + slot * smpriv->slot_size, 0,
+		       smpriv->slot_size);
+
+		ksdata->slot[slot].allocated = 0;
+#ifdef SM_DEBUG
+		dev_info(dev, "slot_dealloc(): slot %d released\n", slot);
+#endif
+		return 0;
+	}
+
+	return -EINVAL;
+}
+EXPORT_SYMBOL(slot_dealloc);
+
+void *slot_get_address(struct device *dev, u32 unit, u32 slot)
+{
+	struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev);
+	struct keystore_data *ksdata = smpriv->pagedesc[unit].ksdata;
+
+	if (slot >= ksdata->slot_count)
+		return NULL;
+
+#ifdef SM_DEBUG
+	dev_info(dev, "slot_get_address(): slot %d is 0x%08x\n", slot,
+		 (u32)ksdata->base_address + slot * smpriv->slot_size);
+#endif
+
+	return ksdata->base_address + slot * smpriv->slot_size;
+}
+
+void *slot_get_physical(struct device *dev, u32 unit, u32 slot)
+{
+	struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev);
+	struct keystore_data *ksdata = smpriv->pagedesc[unit].ksdata;
+
+	if (slot >= ksdata->slot_count)
+		return NULL;
+
+#ifdef SM_DEBUG
+	dev_info(dev, "%s: slot %d is 0x%08x\n", __func__, slot,
+		 (u32)ksdata->phys_address + slot * smpriv->slot_size);
+#endif
+
+	return ksdata->phys_address + slot * smpriv->slot_size;
+}
+
+u32 slot_get_base(struct device *dev, u32 unit, u32 slot)
+{
+	struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev);
+	struct keystore_data *ksdata = smpriv->pagedesc[unit].ksdata;
+
+	/*
+	 * There could potentially be more than one secure partition object
+	 * associated with this keystore.  For now, there is just one.
+	 */
+
+	(void)slot;
+
+#ifdef SM_DEBUG
+	dev_info(dev, "slot_get_base(): slot %d = 0x%08x\n",
+		slot, (u32)ksdata->base_address);
+#endif
+
+	return (uintptr_t)(ksdata->base_address);
+}
+
+u32 slot_get_offset(struct device *dev, u32 unit, u32 slot)
+{
+	struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev);
+	struct keystore_data *ksdata = smpriv->pagedesc[unit].ksdata;
+
+	if (slot >= ksdata->slot_count)
+		return -EINVAL;
+
+#ifdef SM_DEBUG
+	dev_info(dev, "slot_get_offset(): slot %d = %d\n", slot,
+		slot * smpriv->slot_size);
+#endif
+
+	return slot * smpriv->slot_size;
+}
+
+u32 slot_get_slot_size(struct device *dev, u32 unit, u32 slot)
+{
+	struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev);
+
+
+#ifdef SM_DEBUG
+	dev_info(dev, "slot_get_slot_size(): slot %d = %d\n", slot,
+		 smpriv->slot_size);
+#endif
+	/* All slots are the same size in the default implementation */
+	return smpriv->slot_size;
+}
+
+
+
+int kso_init_data(struct device *dev, u32 unit)
+{
+	struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev);
+	struct keystore_data *keystore_data = NULL;
+	u32 slot_count;
+	u32 keystore_data_size;
+
+	/*
+	 * Calculate the required size of the keystore data structure, based
+	 * on the number of keys that can fit in the partition.
+	 */
+	slot_count = smpriv->page_size / smpriv->slot_size;
+#ifdef SM_DEBUG
+	dev_info(dev, "kso_init_data: %d slots initializing\n", slot_count);
+#endif
+
+	keystore_data_size = sizeof(struct keystore_data) +
+				slot_count *
+				sizeof(struct keystore_data_slot_info);
+
+	keystore_data = kzalloc(keystore_data_size, GFP_KERNEL);
+
+	if (!keystore_data)
+		return -ENOMEM;
+
+#ifdef SM_DEBUG
+	dev_info(dev, "kso_init_data: keystore data size = %d\n",
+		 keystore_data_size);
+#endif
+
+	/*
+	 * Place the slot information structure directly after the keystore data
+	 * structure.
+	 */
+	keystore_data->slot = (struct keystore_data_slot_info *)
+			      (keystore_data + 1);
+	keystore_data->slot_count = slot_count;
+
+	smpriv->pagedesc[unit].ksdata = keystore_data;
+	smpriv->pagedesc[unit].ksdata->base_address =
+		smpriv->pagedesc[unit].pg_base;
+	smpriv->pagedesc[unit].ksdata->phys_address =
+		smpriv->pagedesc[unit].pg_phys;
+
+	return 0;
+}
+
+void kso_cleanup_data(struct device *dev, u32 unit)
+{
+	struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev);
+	struct keystore_data *keystore_data = NULL;
+
+	if (smpriv->pagedesc[unit].ksdata != NULL)
+		keystore_data = smpriv->pagedesc[unit].ksdata;
+
+	/* Release the allocated keystore management data */
+	kfree(smpriv->pagedesc[unit].ksdata);
+
+	return;
+}
+
+
+
+/*
+ * Keystore management section
+ */
+
+void sm_init_keystore(struct device *dev)
+{
+	struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev);
+
+	smpriv->data_init = kso_init_data;
+	smpriv->data_cleanup = kso_cleanup_data;
+	smpriv->slot_alloc = slot_alloc;
+	smpriv->slot_dealloc = slot_dealloc;
+	smpriv->slot_get_address = slot_get_address;
+	smpriv->slot_get_physical = slot_get_physical;
+	smpriv->slot_get_base = slot_get_base;
+	smpriv->slot_get_offset = slot_get_offset;
+	smpriv->slot_get_slot_size = slot_get_slot_size;
+#ifdef SM_DEBUG
+	dev_info(dev, "sm_init_keystore(): handlers installed\n");
+#endif
+}
+EXPORT_SYMBOL(sm_init_keystore);
+
+/* Return available pages/units */
+u32 sm_detect_keystore_units(struct device *dev)
+{
+	struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev);
+
+	return smpriv->localpages;
+}
+EXPORT_SYMBOL(sm_detect_keystore_units);
+
+/*
+ * Do any keystore specific initializations
+ */
+int sm_establish_keystore(struct device *dev, u32 unit)
+{
+	struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev);
+
+#ifdef SM_DEBUG
+	dev_info(dev, "sm_establish_keystore(): unit %d initializing\n", unit);
+#endif
+
+	if (smpriv->data_init == NULL)
+		return -EINVAL;
+
+	/* Call the data_init function for any user setup */
+	return smpriv->data_init(dev, unit);
+}
+EXPORT_SYMBOL(sm_establish_keystore);
+
+void sm_release_keystore(struct device *dev, u32 unit)
+{
+	struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev);
+
+#ifdef SM_DEBUG
+	dev_info(dev, "sm_establish_keystore(): unit %d releasing\n", unit);
+#endif
+	if ((smpriv != NULL) && (smpriv->data_cleanup != NULL))
+		smpriv->data_cleanup(dev, unit);
+
+	return;
+}
+EXPORT_SYMBOL(sm_release_keystore);
+
+/*
+ * Subsequent interfacce (sm_keystore_*) forms the accessor interfacce to
+ * the keystore
+ */
+int sm_keystore_slot_alloc(struct device *dev, u32 unit, u32 size, u32 *slot)
+{
+	struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev);
+	int retval = -EINVAL;
+
+	spin_lock(&smpriv->kslock);
+
+	if ((smpriv->slot_alloc == NULL) ||
+	    (smpriv->pagedesc[unit].ksdata == NULL))
+		goto out;
+
+	retval =  smpriv->slot_alloc(dev, unit, size, slot);
+
+out:
+	spin_unlock(&smpriv->kslock);
+	return retval;
+}
+EXPORT_SYMBOL(sm_keystore_slot_alloc);
+
+int sm_keystore_slot_dealloc(struct device *dev, u32 unit, u32 slot)
+{
+	struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev);
+	int retval = -EINVAL;
+
+	spin_lock(&smpriv->kslock);
+
+	if ((smpriv->slot_alloc == NULL) ||
+	    (smpriv->pagedesc[unit].ksdata == NULL))
+		goto out;
+
+	retval = smpriv->slot_dealloc(dev, unit, slot);
+out:
+	spin_unlock(&smpriv->kslock);
+	return retval;
+}
+EXPORT_SYMBOL(sm_keystore_slot_dealloc);
+
+int sm_keystore_slot_load(struct device *dev, u32 unit, u32 slot,
+			  const u8 *key_data, u32 key_length)
+{
+	struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev);
+	int retval = -EINVAL;
+	u32 slot_size;
+	u8 __iomem *slot_location;
+
+	spin_lock(&smpriv->kslock);
+
+	slot_size = smpriv->slot_get_slot_size(dev, unit, slot);
+
+	if (key_length > slot_size) {
+		retval = -EFBIG;
+		goto out;
+	}
+
+	slot_location = smpriv->slot_get_address(dev, unit, slot);
+
+	memcpy_toio(slot_location, key_data, key_length);
+
+	retval = 0;
+
+out:
+	spin_unlock(&smpriv->kslock);
+	return retval;
+}
+EXPORT_SYMBOL(sm_keystore_slot_load);
+
+int sm_keystore_slot_read(struct device *dev, u32 unit, u32 slot,
+			  u32 key_length, u8 *key_data)
+{
+	struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev);
+	int retval = -EINVAL;
+	u8 __iomem *slot_addr;
+	u32 slot_size;
+
+	spin_lock(&smpriv->kslock);
+
+	slot_addr = smpriv->slot_get_address(dev, unit, slot);
+	slot_size = smpriv->slot_get_slot_size(dev, unit, slot);
+
+	if (key_length > slot_size) {
+		retval = -EKEYREJECTED;
+		goto out;
+	}
+
+	memcpy_fromio(key_data, slot_addr, key_length);
+	retval = 0;
+
+out:
+	spin_unlock(&smpriv->kslock);
+	return retval;
+}
+EXPORT_SYMBOL(sm_keystore_slot_read);
+
+/*
+ * Blacken a clear key in a slot. Operates "in place".
+ * Limited to class 1 keys at the present time
+ */
+int sm_keystore_cover_key(struct device *dev, u32 unit, u32 slot,
+			  u16 key_length, u8 keyauth)
+{
+	struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev);
+	int retval = 0;
+	u8 __iomem *slotaddr;
+	void *slotphys;
+	u32 dsize, jstat;
+	u32 __iomem *coverdesc = NULL;
+
+	/* Get the address of the object in the slot */
+	slotaddr = (u8 *)smpriv->slot_get_address(dev, unit, slot);
+	slotphys = (u8 *)smpriv->slot_get_physical(dev, unit, slot);
+
+	dsize = blacken_key_jobdesc(&coverdesc, slotphys, key_length, keyauth);
+	if (!dsize)
+		return -ENOMEM;
+	jstat = sm_key_job(dev, coverdesc);
+	if (jstat)
+		retval = -EIO;
+
+	kfree(coverdesc);
+	return retval;
+}
+EXPORT_SYMBOL(sm_keystore_cover_key);
+
+/* Export a black/red key to a blob in external memory */
+int sm_keystore_slot_export(struct device *dev, u32 unit, u32 slot, u8 keycolor,
+			    u8 keyauth, u8 *outbuf, u16 keylen, u8 *keymod)
+{
+	struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev);
+	int retval = 0;
+	u8 __iomem *slotaddr, *lkeymod;
+	u8 __iomem *slotphys;
+	dma_addr_t keymod_dma, outbuf_dma;
+	u32 dsize, jstat;
+	u32 __iomem *encapdesc = NULL;
+	struct device *dev_for_dma_op;
+
+	/* Use the ring as device for DMA operations */
+	dev_for_dma_op = smpriv->smringdev;
+
+	/* Get the base address(es) of the specified slot */
+	slotaddr = (u8 *)smpriv->slot_get_address(dev, unit, slot);
+	slotphys = smpriv->slot_get_physical(dev, unit, slot);
+
+	/* Allocate memory for key modifier compatible with DMA */
+	lkeymod = kmalloc(SECMEM_KEYMOD_LEN, GFP_KERNEL | GFP_DMA);
+	if (!lkeymod) {
+		retval = (-ENOMEM);
+		goto exit;
+	}
+
+	/* Get DMA address for the key modifier */
+	keymod_dma = dma_map_single(dev_for_dma_op, lkeymod,
+					SECMEM_KEYMOD_LEN, DMA_TO_DEVICE);
+	if (dma_mapping_error(dev_for_dma_op, keymod_dma)) {
+		dev_err(dev, "unable to map keymod: %p\n", lkeymod);
+		retval = (-ENOMEM);
+		goto free_keymod;
+	}
+
+	/* Copy the keymod and synchronize the DMA */
+	memcpy(lkeymod, keymod, SECMEM_KEYMOD_LEN);
+	dma_sync_single_for_device(dev_for_dma_op, keymod_dma,
+					SECMEM_KEYMOD_LEN, DMA_TO_DEVICE);
+
+	/* Get DMA address for the destination */
+	outbuf_dma = dma_map_single(dev_for_dma_op, outbuf,
+				keylen + BLOB_OVERHEAD, DMA_FROM_DEVICE);
+	if (dma_mapping_error(dev_for_dma_op, outbuf_dma)) {
+		dev_err(dev, "unable to map outbuf: %p\n", outbuf);
+		retval = (-ENOMEM);
+		goto unmap_keymod;
+	}
+
+	/* Build the encapsulation job descriptor */
+	dsize = blob_encap_jobdesc(&encapdesc, keymod_dma, slotphys, outbuf_dma,
+				   keylen, keycolor, SM_SECMEM, keyauth);
+	if (!dsize) {
+		dev_err(dev, "can't alloc an encapsulation descriptor\n");
+		retval = -ENOMEM;
+		goto unmap_outbuf;
+	}
+
+	/* Run the job */
+	jstat = sm_key_job(dev, encapdesc);
+	if (jstat) {
+		retval = (-EIO);
+		goto free_desc;
+	}
+
+	/* Synchronize the data received */
+	dma_sync_single_for_cpu(dev_for_dma_op, outbuf_dma,
+			keylen + BLOB_OVERHEAD, DMA_FROM_DEVICE);
+
+free_desc:
+	kfree(encapdesc);
+
+unmap_outbuf:
+	dma_unmap_single(dev_for_dma_op, outbuf_dma, keylen + BLOB_OVERHEAD,
+			DMA_FROM_DEVICE);
+
+unmap_keymod:
+	dma_unmap_single(dev_for_dma_op, keymod_dma, SECMEM_KEYMOD_LEN,
+			DMA_TO_DEVICE);
+
+free_keymod:
+	kfree(lkeymod);
+
+exit:
+	return retval;
+}
+EXPORT_SYMBOL(sm_keystore_slot_export);
+
+/* Import a black/red key from a blob residing in external memory */
+int sm_keystore_slot_import(struct device *dev, u32 unit, u32 slot, u8 keycolor,
+			    u8 keyauth, u8 *inbuf, u16 keylen, u8 *keymod)
+{
+	struct caam_drv_private_sm *smpriv = dev_get_drvdata(dev);
+	int retval = 0;
+	u8 __iomem *slotaddr, *lkeymod;
+	u8 __iomem *slotphys;
+	dma_addr_t keymod_dma, inbuf_dma;
+	u32 dsize, jstat;
+	u32 __iomem *decapdesc = NULL;
+	struct device *dev_for_dma_op;
+
+	/* Use the ring as device for DMA operations */
+	dev_for_dma_op = smpriv->smringdev;
+
+	/* Get the base address(es) of the specified slot */
+	slotaddr = (u8 *)smpriv->slot_get_address(dev, unit, slot);
+	slotphys = smpriv->slot_get_physical(dev, unit, slot);
+
+	/* Allocate memory for key modifier compatible with DMA */
+	lkeymod = kmalloc(SECMEM_KEYMOD_LEN, GFP_KERNEL | GFP_DMA);
+	if (!lkeymod) {
+		retval = (-ENOMEM);
+		goto exit;
+	}
+
+	/* Get DMA address for the key modifier */
+	keymod_dma = dma_map_single(dev_for_dma_op, lkeymod,
+					SECMEM_KEYMOD_LEN, DMA_TO_DEVICE);
+	if (dma_mapping_error(dev_for_dma_op, keymod_dma)) {
+		dev_err(dev, "unable to map keymod: %p\n", lkeymod);
+		retval = (-ENOMEM);
+		goto free_keymod;
+	}
+
+	/* Copy the keymod and synchronize the DMA */
+	memcpy(lkeymod, keymod, SECMEM_KEYMOD_LEN);
+	dma_sync_single_for_device(dev_for_dma_op, keymod_dma,
+					SECMEM_KEYMOD_LEN, DMA_TO_DEVICE);
+
+	/* Get DMA address for the input */
+	inbuf_dma = dma_map_single(dev_for_dma_op, inbuf,
+					keylen + BLOB_OVERHEAD, DMA_TO_DEVICE);
+	if (dma_mapping_error(dev_for_dma_op, inbuf_dma)) {
+		dev_err(dev, "unable to map inbuf: %p\n", (void *)inbuf_dma);
+		retval = (-ENOMEM);
+		goto unmap_keymod;
+	}
+
+	/* synchronize the DMA */
+	dma_sync_single_for_device(dev_for_dma_op, inbuf_dma,
+					keylen + BLOB_OVERHEAD, DMA_TO_DEVICE);
+
+	/* Build the encapsulation job descriptor */
+	dsize = blob_decap_jobdesc(&decapdesc, keymod_dma, inbuf_dma, slotphys,
+				   keylen, keycolor, SM_SECMEM, keyauth);
+	if (!dsize) {
+		dev_err(dev, "can't alloc a decapsulation descriptor\n");
+		retval = -ENOMEM;
+		goto unmap_inbuf;
+	}
+
+	/* Run the job */
+	jstat = sm_key_job(dev, decapdesc);
+
+	/*
+	 * May want to expand upon error meanings a bit. Any CAAM status
+	 * is reported as EIO, but we might want to look for something more
+	 * meaningful for something like an ICV error on restore, otherwise
+	 * the caller is left guessing.
+	 */
+	if (jstat) {
+		retval = (-EIO);
+		goto free_desc;
+	}
+
+free_desc:
+	kfree(decapdesc);
+
+unmap_inbuf:
+	dma_unmap_single(dev_for_dma_op, inbuf_dma, keylen + BLOB_OVERHEAD,
+			DMA_TO_DEVICE);
+
+unmap_keymod:
+	dma_unmap_single(dev_for_dma_op, keymod_dma, SECMEM_KEYMOD_LEN,
+			DMA_TO_DEVICE);
+
+free_keymod:
+	kfree(lkeymod);
+
+exit:
+	return retval;
+}
+EXPORT_SYMBOL(sm_keystore_slot_import);
+
+/*
+ * Initialization/shutdown subsystem
+ * Assumes statically-invoked startup/shutdown from the controller driver
+ * for the present time, to be reworked when a device tree becomes
+ * available. This code will not modularize in present form.
+ *
+ * Also, simply uses ring 0 for execution at the present
+ */
+
+int caam_sm_startup(struct platform_device *pdev)
+{
+	struct device *ctrldev, *smdev;
+	struct caam_drv_private *ctrlpriv;
+	struct caam_drv_private_sm *smpriv;
+	struct caam_drv_private_jr *jrpriv;	/* need this for reg page */
+	struct platform_device *sm_pdev;
+	struct sm_page_descriptor *lpagedesc;
+	u32 page, pgstat, lpagect, detectedpage, smvid, smpart;
+	int ret = 0;
+
+	struct device_node *np;
+	ctrldev = &pdev->dev;
+	ctrlpriv = dev_get_drvdata(ctrldev);
+
+	/*
+	 * If ctrlpriv is NULL, it's probably because the caam driver wasn't
+	 * properly initialized (e.g. RNG4 init failed). Thus, bail out here.
+	 */
+	if (!ctrlpriv) {
+		ret = -ENODEV;
+		goto exit;
+	}
+
+	/*
+	 * Set up the private block for secure memory
+	 * Only one instance is possible
+	 */
+	smpriv = kzalloc(sizeof(struct caam_drv_private_sm), GFP_KERNEL);
+	if (smpriv == NULL) {
+		dev_err(ctrldev, "can't alloc private mem for secure memory\n");
+		ret = -ENOMEM;
+		goto exit;
+	}
+	smpriv->parentdev = ctrldev; /* copy of parent dev is handy */
+	spin_lock_init(&smpriv->kslock);
+
+	/* Create the dev */
+	np = of_find_compatible_node(NULL, NULL, "fsl,imx6q-caam-sm");
+	if (np)
+		of_node_clear_flag(np, OF_POPULATED);
+	sm_pdev = of_platform_device_create(np, "caam_sm", ctrldev);
+
+	if (sm_pdev == NULL) {
+		ret = -EINVAL;
+		goto free_smpriv;
+	}
+
+	/* Save a pointer to the platform device for Secure Memory */
+	smpriv->sm_pdev = sm_pdev;
+	smdev = &sm_pdev->dev;
+	dev_set_drvdata(smdev, smpriv);
+	ctrlpriv->smdev = smdev;
+
+	/* Set the Secure Memory Register Map Version */
+	smvid = rd_reg32(&ctrlpriv->jr[0]->perfmon.smvid);
+	smpart = rd_reg32(&ctrlpriv->jr[0]->perfmon.smpart);
+
+	if (smvid < SMVID_V2)
+		smpriv->sm_reg_offset = SM_V1_OFFSET;
+	else
+		smpriv->sm_reg_offset = SM_V2_OFFSET;
+
+	/*
+	 * Collect configuration limit data for reference
+	 * This batch comes from the partition data/vid registers in perfmon
+	 */
+	smpriv->max_pages = ((smpart & SMPART_MAX_NUMPG_MASK) >>
+			    SMPART_MAX_NUMPG_SHIFT) + 1;
+	smpriv->top_partition = ((smpart & SMPART_MAX_PNUM_MASK) >>
+				SMPART_MAX_PNUM_SHIFT) + 1;
+	smpriv->top_page =  ((smpart & SMPART_MAX_PG_MASK) >>
+				SMPART_MAX_PG_SHIFT) + 1;
+	smpriv->page_size = 1024 << ((smvid & SMVID_PG_SIZE_MASK) >>
+				SMVID_PG_SIZE_SHIFT);
+	smpriv->slot_size = 1 << CONFIG_CRYPTO_DEV_FSL_CAAM_SM_SLOTSIZE;
+
+#ifdef SM_DEBUG
+	dev_info(smdev, "max pages = %d, top partition = %d\n",
+			smpriv->max_pages, smpriv->top_partition);
+	dev_info(smdev, "top page = %d, page size = %d (total = %d)\n",
+			smpriv->top_page, smpriv->page_size,
+			smpriv->top_page * smpriv->page_size);
+	dev_info(smdev, "selected slot size = %d\n", smpriv->slot_size);
+#endif
+
+	/*
+	 * Now probe for partitions/pages to which we have access. Note that
+	 * these have likely been set up by a bootloader or platform
+	 * provisioning application, so we have to assume that we "inherit"
+	 * a configuration and work within the constraints of what it might be.
+	 *
+	 * Assume use of the zeroth ring in the present iteration (until
+	 * we can divorce the controller and ring drivers, and then assign
+	 * an SM instance to any ring instance).
+	 */
+	smpriv->smringdev = caam_jr_alloc();
+	if (!smpriv->smringdev) {
+		dev_err(smdev, "Device for job ring not created\n");
+		ret = -ENODEV;
+		goto unregister_smpdev;
+	}
+
+	jrpriv = dev_get_drvdata(smpriv->smringdev);
+	lpagect = 0;
+	pgstat = 0;
+	lpagedesc = kzalloc(sizeof(struct sm_page_descriptor)
+			    * smpriv->max_pages, GFP_KERNEL);
+	if (lpagedesc == NULL) {
+		ret = -ENOMEM;
+		goto free_smringdev;
+	}
+
+	for (page = 0; page < smpriv->max_pages; page++) {
+		u32 page_ownership;
+
+		if (sm_send_cmd(smpriv, jrpriv,
+				((page << SMC_PAGE_SHIFT) & SMC_PAGE_MASK) |
+				(SMC_CMD_PAGE_INQUIRY & SMC_CMD_MASK),
+				&pgstat)) {
+			ret = -EINVAL;
+			goto free_lpagedesc;
+		}
+
+		page_ownership = (pgstat & SMCS_PGWON_MASK) >> SMCS_PGOWN_SHIFT;
+		if ((page_ownership == SMCS_PGOWN_OWNED)
+			|| (page_ownership == SMCS_PGOWN_NOOWN)) {
+			/* page allocated */
+			lpagedesc[page].phys_pagenum =
+				(pgstat & SMCS_PAGE_MASK) >> SMCS_PAGE_SHIFT;
+			lpagedesc[page].own_part =
+				(pgstat & SMCS_PART_SHIFT) >> SMCS_PART_MASK;
+			lpagedesc[page].pg_base = (u8 *)ctrlpriv->sm_base +
+				(smpriv->page_size * page);
+			if (ctrlpriv->scu_en) {
+/* FIXME: get different addresses viewed by CPU and CAAM from
+ * platform property
+ */
+				lpagedesc[page].pg_phys = (u8 *)0x20800000 +
+					(smpriv->page_size * page);
+			} else {
+				lpagedesc[page].pg_phys =
+					(u8 *) ctrlpriv->sm_phy +
+					(smpriv->page_size * page);
+			}
+			lpagect++;
+#ifdef SM_DEBUG
+			dev_info(smdev,
+				"physical page %d, owning partition = %d\n",
+				lpagedesc[page].phys_pagenum,
+				lpagedesc[page].own_part);
+#endif
+		}
+	}
+
+	smpriv->pagedesc = kzalloc(sizeof(struct sm_page_descriptor) * lpagect,
+				   GFP_KERNEL);
+	if (smpriv->pagedesc == NULL) {
+		ret = -ENOMEM;
+		goto free_lpagedesc;
+	}
+	smpriv->localpages = lpagect;
+
+	detectedpage = 0;
+	for (page = 0; page < smpriv->max_pages; page++) {
+		if (lpagedesc[page].pg_base != NULL) {	/* e.g. live entry */
+			memcpy(&smpriv->pagedesc[detectedpage],
+			       &lpagedesc[page],
+			       sizeof(struct sm_page_descriptor));
+#ifdef SM_DEBUG_CONT
+			sm_show_page(smdev, &smpriv->pagedesc[detectedpage]);
+#endif
+			detectedpage++;
+		}
+	}
+
+	kfree(lpagedesc);
+
+	sm_init_keystore(smdev);
+
+	goto exit;
+
+free_lpagedesc:
+	kfree(lpagedesc);
+free_smringdev:
+	caam_jr_free(smpriv->smringdev);
+unregister_smpdev:
+	of_device_unregister(smpriv->sm_pdev);
+free_smpriv:
+	kfree(smpriv);
+
+exit:
+	return ret;
+}
+
+void caam_sm_shutdown(struct platform_device *pdev)
+{
+	struct device *ctrldev, *smdev;
+	struct caam_drv_private *priv;
+	struct caam_drv_private_sm *smpriv;
+
+	ctrldev = &pdev->dev;
+	priv = dev_get_drvdata(ctrldev);
+	smdev = priv->smdev;
+
+	/* Return if resource not initialized by startup */
+	if (smdev == NULL)
+		return;
+
+	smpriv = dev_get_drvdata(smdev);
+
+	caam_jr_free(smpriv->smringdev);
+
+	/* Remove Secure Memory Platform Device */
+	of_device_unregister(smpriv->sm_pdev);
+
+	kfree(smpriv->pagedesc);
+	kfree(smpriv);
+}
+EXPORT_SYMBOL(caam_sm_shutdown);
+
+static void  __exit caam_sm_exit(void)
+{
+	struct device_node *dev_node;
+	struct platform_device *pdev;
+
+	dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0");
+	if (!dev_node) {
+		dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec4.0");
+		if (!dev_node)
+			return;
+	}
+
+	pdev = of_find_device_by_node(dev_node);
+	if (!pdev)
+		return;
+
+	of_node_put(dev_node);
+
+	caam_sm_shutdown(pdev);
+
+	return;
+}
+
+static int __init caam_sm_init(void)
+{
+	struct device_node *dev_node;
+	struct platform_device *pdev;
+
+	/*
+	 * Do of_find_compatible_node() then of_find_device_by_node()
+	 * once a functional device tree is available
+	 */
+	dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0");
+	if (!dev_node) {
+		dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec4.0");
+		if (!dev_node)
+			return -ENODEV;
+	}
+
+	pdev = of_find_device_by_node(dev_node);
+	if (!pdev)
+		return -ENODEV;
+
+	of_node_get(dev_node);
+
+	caam_sm_startup(pdev);
+
+	return 0;
+}
+
+module_init(caam_sm_init);
+module_exit(caam_sm_exit);
+
+MODULE_LICENSE("Dual BSD/GPL");
+MODULE_DESCRIPTION("FSL CAAM Secure Memory / Keystore");
+MODULE_AUTHOR("Freescale Semiconductor - NMSG/MAD");
--- /dev/null
+++ b/drivers/crypto/caam/sm_test.c
@@ -0,0 +1,571 @@
+// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
+/*
+ * Secure Memory / Keystore Exemplification Module
+ *
+ * Copyright 2012-2015 Freescale Semiconductor, Inc.
+ * Copyright 2016-2019 NXP
+ *
+ * This module has been overloaded as an example to show:
+ * - Secure memory subsystem initialization/shutdown
+ * - Allocation/deallocation of "slots" in a secure memory page
+ * - Loading and unloading of key material into slots
+ * - Covering of secure memory objects into "black keys" (ECB only at present)
+ * - Verification of key covering (by differentiation only)
+ * - Exportation of keys into secure memory blobs (with display of result)
+ * - Importation of keys from secure memory blobs (with display of result)
+ * - Verification of re-imported keys where possible.
+ *
+ * The module does not show the use of key objects as working key register
+ * source material at this time.
+ *
+ * This module can use a substantial amount of refactoring, which may occur
+ * after the API gets some mileage. Furthermore, expect this module to
+ * eventually disappear once the API is integrated into "real" software.
+ */
+
+#include "compat.h"
+#include "regs.h"
+#include "intern.h"
+#include "desc.h"
+#include "error.h"
+#include "jr.h"
+#include "sm.h"
+
+/* Fixed known pattern for a key modifier */
+static u8 skeymod[] = {
+	0x0f, 0x0e, 0x0d, 0x0c, 0x0b, 0x0a, 0x09, 0x08,
+	0x07, 0x06, 0x05, 0x04, 0x03, 0x02, 0x01, 0x00
+};
+
+/* Fixed known pattern for a key */
+static u8 clrkey[] = {
+	0x00, 0x01, 0x02, 0x03, 0x04, 0x0f, 0x06, 0x07,
+	0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
+	0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
+	0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
+	0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27,
+	0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
+	0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
+	0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
+	0x40, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
+	0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
+	0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
+	0x58, 0x59, 0x5a, 0x5b, 0x5c, 0x5d, 0x5e, 0x5f,
+	0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
+	0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
+	0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
+	0x78, 0x79, 0x7a, 0x7b, 0x7c, 0x7d, 0x7e, 0x7f,
+	0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
+	0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
+	0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
+	0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
+	0xa0, 0xa1, 0xa2, 0xa3, 0xa4, 0xa5, 0xa6, 0xa7,
+	0xa8, 0xa9, 0xaa, 0xab, 0xac, 0xad, 0xae, 0xaf,
+	0xb0, 0xb1, 0xb2, 0xb3, 0xb4, 0xb5, 0xb6, 0xb7,
+	0xb8, 0xb9, 0xba, 0xbb, 0xbc, 0xbd, 0xbe, 0xbf,
+	0xc0, 0xc1, 0xc2, 0xc3, 0xc4, 0xc5, 0xc6, 0xc7,
+	0xc8, 0xc9, 0xca, 0xcb, 0xcc, 0xcd, 0xce, 0xcf,
+	0xd0, 0xd1, 0xd2, 0xd3, 0xd4, 0xd5, 0xd6, 0xd7,
+	0xd8, 0xd9, 0xda, 0xdb, 0xdc, 0xdd, 0xde, 0xdf,
+	0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7,
+	0xe8, 0xe9, 0xea, 0xeb, 0xec, 0xed, 0xee, 0xef,
+	0xf0, 0xf1, 0xf2, 0xf3, 0xf4, 0xf5, 0xf6, 0xf7,
+	0xf8, 0xf9, 0xfa, 0xfb, 0xfc, 0xfd, 0xfe, 0xff
+};
+
+static void key_display(struct device *dev, const char *label, u16 size,
+			u8 *key)
+{
+	unsigned i;
+
+	dev_dbg(dev, "%s", label);
+	for (i = 0; i < size; i += 8)
+		dev_dbg(dev,
+			"[%04d] %02x %02x %02x %02x %02x %02x %02x %02x\n",
+			i, key[i], key[i + 1], key[i + 2], key[i + 3],
+			key[i + 4], key[i + 5], key[i + 6], key[i + 7]);
+}
+
+int caam_sm_example_init(struct platform_device *pdev)
+{
+	struct device *ctrldev, *ksdev;
+	struct caam_drv_private *ctrlpriv;
+	struct caam_drv_private_sm *kspriv;
+	u32 unit, units;
+	int rtnval;
+	u8 clrkey8[8], clrkey16[16], clrkey24[24], clrkey32[32];
+	u8 blkkey8[AES_BLOCK_PAD(8)], blkkey16[AES_BLOCK_PAD(16)];
+	u8 blkkey24[AES_BLOCK_PAD(24)], blkkey32[AES_BLOCK_PAD(32)];
+	u8 rstkey8[AES_BLOCK_PAD(8)], rstkey16[AES_BLOCK_PAD(16)];
+	u8 rstkey24[AES_BLOCK_PAD(24)], rstkey32[AES_BLOCK_PAD(32)];
+	u8 __iomem *blob8, *blob16, *blob24, *blob32;
+	u32 keyslot8, keyslot16, keyslot24, keyslot32 = 0;
+
+	blob8 = blob16 = blob24 = blob32 = NULL;
+
+	/*
+	 * 3.5.x and later revs for MX6 should be able to ditch this
+	 * and detect via dts property
+	 */
+	ctrldev = &pdev->dev;
+	ctrlpriv = dev_get_drvdata(ctrldev);
+
+	/*
+	 * If ctrlpriv is NULL, it's probably because the caam driver wasn't
+	 * properly initialized (e.g. RNG4 init failed). Thus, bail out here.
+	 */
+	if (!ctrlpriv)
+		return -ENODEV;
+
+	ksdev = ctrlpriv->smdev;
+	kspriv = dev_get_drvdata(ksdev);
+	if (kspriv == NULL)
+		return -ENODEV;
+
+	/* What keystores are available ? */
+	units = sm_detect_keystore_units(ksdev);
+	if (!units)
+		dev_err(ksdev, "blkkey_ex: no keystore units available\n");
+
+	/*
+	 * MX6 bootloader stores some stuff in unit 0, so let's
+	 * use 1 or above
+	 */
+	if (units < 2) {
+		dev_err(ksdev, "blkkey_ex: insufficient keystore units\n");
+		return -ENODEV;
+	}
+	unit = 1;
+
+	dev_info(ksdev, "blkkey_ex: %d keystore units available\n", units);
+
+	/* Initialize/Establish Keystore */
+	sm_establish_keystore(ksdev, unit);	/* Initalize store in #1 */
+
+	/*
+	 * Now let's set up buffers for blobs in DMA-able memory. All are
+	 * larger than need to be so that blob size can be seen.
+	 */
+	blob8 = kzalloc(128, GFP_KERNEL | GFP_DMA);
+	blob16 = kzalloc(128, GFP_KERNEL | GFP_DMA);
+	blob24 = kzalloc(128, GFP_KERNEL | GFP_DMA);
+	blob32 = kzalloc(128, GFP_KERNEL | GFP_DMA);
+
+	if ((blob8 == NULL) || (blob16 == NULL) || (blob24 == NULL) ||
+	    (blob32 == NULL)) {
+		rtnval = -ENOMEM;
+		dev_err(ksdev, "blkkey_ex: can't get blob buffers\n");
+		goto freemem;
+	}
+
+	/* Initialize clear keys with a known and recognizable pattern */
+	memcpy(clrkey8, clrkey, 8);
+	memcpy(clrkey16, clrkey, 16);
+	memcpy(clrkey24, clrkey, 24);
+	memcpy(clrkey32, clrkey, 32);
+
+	memset(blkkey8, 0, AES_BLOCK_PAD(8));
+	memset(blkkey16, 0, AES_BLOCK_PAD(16));
+	memset(blkkey24, 0, AES_BLOCK_PAD(24));
+	memset(blkkey32, 0, AES_BLOCK_PAD(32));
+
+	memset(rstkey8, 0, AES_BLOCK_PAD(8));
+	memset(rstkey16, 0, AES_BLOCK_PAD(16));
+	memset(rstkey24, 0, AES_BLOCK_PAD(24));
+	memset(rstkey32, 0, AES_BLOCK_PAD(32));
+
+	/*
+	 * Allocate keyslots. Since we're going to blacken keys in-place,
+	 * we want slots big enough to pad out to the next larger AES blocksize
+	 * so pad them out.
+	 */
+	rtnval = sm_keystore_slot_alloc(ksdev, unit, AES_BLOCK_PAD(8),
+					&keyslot8);
+	if (rtnval)
+		goto freemem;
+
+	rtnval = sm_keystore_slot_alloc(ksdev, unit, AES_BLOCK_PAD(16),
+					&keyslot16);
+	if (rtnval)
+		goto dealloc_slot8;
+
+	rtnval = sm_keystore_slot_alloc(ksdev, unit, AES_BLOCK_PAD(24),
+					&keyslot24);
+	if (rtnval)
+		goto dealloc_slot16;
+
+	rtnval = sm_keystore_slot_alloc(ksdev, unit, AES_BLOCK_PAD(32),
+					&keyslot32);
+	if (rtnval)
+		goto dealloc_slot24;
+
+
+	/* Now load clear key data into the newly allocated slots */
+	rtnval = sm_keystore_slot_load(ksdev, unit, keyslot8, clrkey8, 8);
+	if (rtnval)
+		goto dealloc;
+
+	rtnval = sm_keystore_slot_load(ksdev, unit, keyslot16, clrkey16, 16);
+	if (rtnval)
+		goto dealloc;
+
+	rtnval = sm_keystore_slot_load(ksdev, unit, keyslot24, clrkey24, 24);
+	if (rtnval)
+		goto dealloc;
+
+	rtnval = sm_keystore_slot_load(ksdev, unit, keyslot32, clrkey32, 32);
+	if (rtnval)
+		goto dealloc;
+
+	/*
+	 * All cleartext keys are loaded into slots (in an unprotected
+	 * partition at this time)
+	 *
+	 * Cover keys in-place
+	 */
+	rtnval = sm_keystore_cover_key(ksdev, unit, keyslot8, 8, KEY_COVER_ECB);
+	if (rtnval) {
+		dev_err(ksdev, "blkkey_ex: can't cover 64-bit key\n");
+		goto dealloc;
+	}
+
+	rtnval = sm_keystore_cover_key(ksdev, unit, keyslot16, 16,
+				       KEY_COVER_ECB);
+	if (rtnval) {
+		dev_err(ksdev, "blkkey_ex: can't cover 128-bit key\n");
+		goto dealloc;
+	}
+
+	rtnval = sm_keystore_cover_key(ksdev, unit, keyslot24, 24,
+				       KEY_COVER_ECB);
+	if (rtnval) {
+		dev_err(ksdev, "blkkey_ex: can't cover 192-bit key\n");
+		goto dealloc;
+	}
+
+	rtnval = sm_keystore_cover_key(ksdev, unit, keyslot32, 32,
+				       KEY_COVER_ECB);
+	if (rtnval) {
+		dev_err(ksdev, "blkkey_ex: can't cover 256-bit key\n");
+		goto dealloc;
+	}
+
+	/*
+	 * Keys should be covered and appear sufficiently "random"
+	 * as a result of the covering (blackening) process. Assuming
+	 * non-secure mode, read them back out for examination; they should
+	 * appear as random data, completely differing from the clear
+	 * inputs. So, this will read them back from secure memory and
+	 * compare them. If they match the clear key, then the covering
+	 * operation didn't occur.
+	 */
+
+	rtnval = sm_keystore_slot_read(ksdev, unit, keyslot8, AES_BLOCK_PAD(8),
+				       blkkey8);
+	if (rtnval) {
+		dev_err(ksdev, "blkkey_ex: can't read 64-bit black key\n");
+		goto dealloc;
+	}
+
+	rtnval = sm_keystore_slot_read(ksdev, unit, keyslot16,
+				       AES_BLOCK_PAD(16), blkkey16);
+	if (rtnval) {
+		dev_err(ksdev, "blkkey_ex: can't read 128-bit black key\n");
+		goto dealloc;
+	}
+
+	rtnval = sm_keystore_slot_read(ksdev, unit, keyslot24,
+				       AES_BLOCK_PAD(24), blkkey24);
+	if (rtnval) {
+		dev_err(ksdev, "blkkey_ex: can't read 192-bit black key\n");
+		goto dealloc;
+	}
+
+	rtnval = sm_keystore_slot_read(ksdev, unit, keyslot32,
+				       AES_BLOCK_PAD(32), blkkey32);
+	if (rtnval) {
+		dev_err(ksdev, "blkkey_ex: can't read 256-bit black key\n");
+		goto dealloc;
+	}
+
+	rtnval = -EINVAL;
+	if (!memcmp(blkkey8, clrkey8, 8)) {
+		dev_err(ksdev, "blkkey_ex: 64-bit key cover failed\n");
+		goto dealloc;
+	}
+
+	if (!memcmp(blkkey16, clrkey16, 16)) {
+		dev_err(ksdev, "blkkey_ex: 128-bit key cover failed\n");
+		goto dealloc;
+	}
+
+	if (!memcmp(blkkey24, clrkey24, 24)) {
+		dev_err(ksdev, "blkkey_ex: 192-bit key cover failed\n");
+		goto dealloc;
+	}
+
+	if (!memcmp(blkkey32, clrkey32, 32)) {
+		dev_err(ksdev, "blkkey_ex: 256-bit key cover failed\n");
+		goto dealloc;
+	}
+
+
+	key_display(ksdev, "64-bit clear key:", 8, clrkey8);
+	key_display(ksdev, "64-bit black key:", AES_BLOCK_PAD(8), blkkey8);
+
+	key_display(ksdev, "128-bit clear key:", 16, clrkey16);
+	key_display(ksdev, "128-bit black key:", AES_BLOCK_PAD(16), blkkey16);
+
+	key_display(ksdev, "192-bit clear key:", 24, clrkey24);
+	key_display(ksdev, "192-bit black key:", AES_BLOCK_PAD(24), blkkey24);
+
+	key_display(ksdev, "256-bit clear key:", 32, clrkey32);
+	key_display(ksdev, "256-bit black key:", AES_BLOCK_PAD(32), blkkey32);
+
+	/*
+	 * Now encapsulate all keys as SM blobs out to external memory
+	 * Blobs will appear as random-looking blocks of data different
+	 * from the original source key, and 48 bytes longer than the
+	 * original key, to account for the extra data encapsulated within.
+	 */
+	key_display(ksdev, "64-bit unwritten blob:", 96, blob8);
+	key_display(ksdev, "128-bit unwritten blob:", 96, blob16);
+	key_display(ksdev, "196-bit unwritten blob:", 96, blob24);
+	key_display(ksdev, "256-bit unwritten blob:", 96, blob32);
+
+	rtnval = sm_keystore_slot_export(ksdev, unit, keyslot8, BLACK_KEY,
+					 KEY_COVER_ECB, blob8, 8, skeymod);
+	if (rtnval) {
+		dev_err(ksdev, "blkkey_ex: can't encapsulate 64-bit key\n");
+		goto dealloc;
+	}
+
+	rtnval = sm_keystore_slot_export(ksdev, unit, keyslot16, BLACK_KEY,
+					 KEY_COVER_ECB, blob16, 16, skeymod);
+	if (rtnval) {
+		dev_err(ksdev, "blkkey_ex: can't encapsulate 128-bit key\n");
+		goto dealloc;
+	}
+
+	rtnval = sm_keystore_slot_export(ksdev, unit, keyslot24, BLACK_KEY,
+					 KEY_COVER_ECB, blob24, 24, skeymod);
+	if (rtnval) {
+		dev_err(ksdev, "blkkey_ex: can't encapsulate 192-bit key\n");
+		goto dealloc;
+	}
+
+	rtnval = sm_keystore_slot_export(ksdev, unit, keyslot32, BLACK_KEY,
+					 KEY_COVER_ECB, blob32, 32, skeymod);
+	if (rtnval) {
+		dev_err(ksdev, "blkkey_ex: can't encapsulate 256-bit key\n");
+		goto dealloc;
+	}
+
+	key_display(ksdev, "64-bit black key in blob:", 96, blob8);
+	key_display(ksdev, "128-bit black key in blob:", 96, blob16);
+	key_display(ksdev, "192-bit black key in blob:", 96, blob24);
+	key_display(ksdev, "256-bit black key in blob:", 96, blob32);
+
+	/*
+	 * Now re-import black keys from secure-memory blobs stored
+	 * in general memory from the previous operation. Since we are
+	 * working with black keys, and since power has not cycled, the
+	 * restored black keys should match the original blackened keys
+	 * (this would not be true if the blobs were save in some non-volatile
+	 * store, and power was cycled between the save and restore)
+	 */
+	rtnval = sm_keystore_slot_import(ksdev, unit, keyslot8, BLACK_KEY,
+					 KEY_COVER_ECB, blob8, 8, skeymod);
+	if (rtnval) {
+		dev_err(ksdev, "blkkey_ex: can't decapsulate 64-bit blob\n");
+		goto dealloc;
+	}
+
+	rtnval = sm_keystore_slot_import(ksdev, unit, keyslot16, BLACK_KEY,
+					 KEY_COVER_ECB, blob16, 16, skeymod);
+	if (rtnval) {
+		dev_err(ksdev, "blkkey_ex: can't decapsulate 128-bit blob\n");
+		goto dealloc;
+	}
+
+	rtnval = sm_keystore_slot_import(ksdev, unit, keyslot24, BLACK_KEY,
+					 KEY_COVER_ECB, blob24, 24, skeymod);
+	if (rtnval) {
+		dev_err(ksdev, "blkkey_ex: can't decapsulate 196-bit blob\n");
+		goto dealloc;
+	}
+
+	rtnval = sm_keystore_slot_import(ksdev, unit, keyslot32, BLACK_KEY,
+					 KEY_COVER_ECB, blob32, 32, skeymod);
+	if (rtnval) {
+		dev_err(ksdev, "blkkey_ex: can't decapsulate 256-bit blob\n");
+		goto dealloc;
+	}
+
+
+	/*
+	 * Blobs are now restored as black keys. Read those black keys back
+	 * for a comparison with the original black key, they should match
+	 */
+	rtnval = sm_keystore_slot_read(ksdev, unit, keyslot8, AES_BLOCK_PAD(8),
+				       rstkey8);
+	if (rtnval) {
+		dev_err(ksdev,
+			"blkkey_ex: can't read restored 64-bit black key\n");
+		goto dealloc;
+	}
+
+	rtnval = sm_keystore_slot_read(ksdev, unit, keyslot16,
+				       AES_BLOCK_PAD(16), rstkey16);
+	if (rtnval) {
+		dev_err(ksdev,
+			"blkkey_ex: can't read restored 128-bit black key\n");
+		goto dealloc;
+	}
+
+	rtnval = sm_keystore_slot_read(ksdev, unit, keyslot24,
+				       AES_BLOCK_PAD(24), rstkey24);
+	if (rtnval) {
+		dev_err(ksdev,
+			"blkkey_ex: can't read restored 196-bit black key\n");
+		goto dealloc;
+	}
+
+	rtnval = sm_keystore_slot_read(ksdev, unit, keyslot32,
+				       AES_BLOCK_PAD(32), rstkey32);
+	if (rtnval) {
+		dev_err(ksdev,
+			"blkkey_ex: can't read restored 256-bit black key\n");
+		goto dealloc;
+	}
+
+	key_display(ksdev, "restored 64-bit black key:", AES_BLOCK_PAD(8),
+		    rstkey8);
+	key_display(ksdev, "restored 128-bit black key:", AES_BLOCK_PAD(16),
+		    rstkey16);
+	key_display(ksdev, "restored 192-bit black key:", AES_BLOCK_PAD(24),
+		    rstkey24);
+	key_display(ksdev, "restored 256-bit black key:", AES_BLOCK_PAD(32),
+		    rstkey32);
+
+	/*
+	 * Compare the restored black keys with the original blackened keys
+	 * As long as we're operating within the same power cycle, a black key
+	 * restored from a blob should match the original black key IF the
+	 * key happens to be of a size that matches a multiple of the AES
+	 * blocksize. Any key that is padded to fill the block size will not
+	 * match, excepting a key that exceeds a block; only the first full
+	 * blocks will match (assuming ECB).
+	 *
+	 * Therefore, compare the 16 and 32 bit keys, they should match.
+	 * The 24 bit key can only match within the first 16 byte block.
+	 */
+
+	if (memcmp(rstkey16, blkkey16, AES_BLOCK_PAD(16))) {
+		dev_err(ksdev, "blkkey_ex: 128-bit restored key mismatch\n");
+		rtnval = -EINVAL;
+	}
+
+	/* Only first AES block will match, remainder subject to padding */
+	if (memcmp(rstkey24, blkkey24, 16)) {
+		dev_err(ksdev, "blkkey_ex: 192-bit restored key mismatch\n");
+		rtnval = -EINVAL;
+	}
+
+	if (memcmp(rstkey32, blkkey32, AES_BLOCK_PAD(32))) {
+		dev_err(ksdev, "blkkey_ex: 256-bit restored key mismatch\n");
+		rtnval = -EINVAL;
+	}
+
+
+	/* Remove keys from keystore */
+dealloc:
+	sm_keystore_slot_dealloc(ksdev, unit, keyslot32);
+dealloc_slot24:
+	sm_keystore_slot_dealloc(ksdev, unit, keyslot24);
+dealloc_slot16:
+	sm_keystore_slot_dealloc(ksdev, unit, keyslot16);
+dealloc_slot8:
+	sm_keystore_slot_dealloc(ksdev, unit, keyslot8);
+
+	/* Free resources */
+freemem:
+	kfree(blob8);
+	kfree(blob16);
+	kfree(blob24);
+	kfree(blob32);
+
+	/* Disconnect from keystore and leave */
+	sm_release_keystore(ksdev, unit);
+
+	return rtnval;
+}
+EXPORT_SYMBOL(caam_sm_example_init);
+
+void caam_sm_example_shutdown(void)
+{
+	/* unused in present version */
+	struct device_node *dev_node;
+	struct platform_device *pdev;
+
+	/*
+	 * Do of_find_compatible_node() then of_find_device_by_node()
+	 * once a functional device tree is available
+	 */
+	dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0");
+	if (!dev_node) {
+		dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec4.0");
+		if (!dev_node)
+			return;
+	}
+
+	pdev = of_find_device_by_node(dev_node);
+	if (!pdev)
+		return;
+
+	of_node_get(dev_node);
+
+}
+
+static int __init caam_sm_test_init(void)
+{
+	struct device_node *dev_node;
+	struct platform_device *pdev;
+	int ret;
+
+	/*
+	 * Do of_find_compatible_node() then of_find_device_by_node()
+	 * once a functional device tree is available
+	 */
+	dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec-v4.0");
+	if (!dev_node) {
+		dev_node = of_find_compatible_node(NULL, NULL, "fsl,sec4.0");
+		if (!dev_node)
+			return -ENODEV;
+	}
+
+	pdev = of_find_device_by_node(dev_node);
+	if (!pdev)
+		return -ENODEV;
+
+	of_node_put(dev_node);
+
+	ret = caam_sm_example_init(pdev);
+	if (ret)
+		dev_err(&pdev->dev, "SM test failed: %d\n", ret);
+	else
+		dev_info(&pdev->dev, "SM test passed\n");
+
+	return ret;
+}
+
+
+/* Module-based initialization needs to wait for dev tree */
+#ifdef CONFIG_OF
+module_init(caam_sm_test_init);
+module_exit(caam_sm_example_shutdown);
+
+MODULE_LICENSE("Dual BSD/GPL");
+MODULE_DESCRIPTION("FSL CAAM Black Key Usage Example");
+MODULE_AUTHOR("Freescale Semiconductor - NMSG/MAD");
+#endif