// SPDX-License-Identifier: GPL-2.0-only /* Realtek RTL838X Ethernet MDIO interface driver * * Copyright (C) 2020 B. Koblitz */ #include #include #include #include #include #include #include #include "rtl83xx-phy.h" extern struct rtl83xx_soc_info soc_info; extern struct mutex smi_lock; static const struct firmware rtl838x_8380_fw; static const struct firmware rtl838x_8214fc_fw; static const struct firmware rtl838x_8218b_fw; static int read_phy(u32 port, u32 page, u32 reg, u32 *val) { if (soc_info.family == RTL8390_FAMILY_ID) return rtl839x_read_phy(port, page, reg, val); else return rtl838x_read_phy(port, page, reg, val); } static int write_phy(u32 port, u32 page, u32 reg, u32 val) { if (soc_info.family == RTL8390_FAMILY_ID) return rtl839x_write_phy(port, page, reg, val); else return rtl838x_write_phy(port, page, reg, val); } static void int_phy_on_off(int mac, bool on) { u32 val; read_phy(mac, 0, 0, &val); if (on) write_phy(mac, 0, 0, val & ~(1 << 11)); else write_phy(mac, 0, 0, val | (1 << 11)); } static void rtl8214fc_on_off(int mac, bool on) { u32 val; /* fiber ports */ write_phy(mac, 4095, 30, 3); read_phy(mac, 0, 16, &val); if (on) write_phy(mac, 0, 16, val & ~(1 << 11)); else write_phy(mac, 0, 16, val | (1 << 11)); /* copper ports */ write_phy(mac, 4095, 30, 1); read_phy(mac, 0, 16, &val); if (on) write_phy(mac, 0xa40, 16, val & ~(1 << 11)); else write_phy(mac, 0xa40, 16, val | (1 << 11)); } static void phy_reset(int mac) { u32 val; read_phy(mac, 0, 0, &val); write_phy(mac, 0, 0, val | (0x1 << 15)); } /* Read the link and speed status of the 2 internal SGMII/1000Base-X * ports of the RTL838x SoCs */ static int rtl8380_read_status(struct phy_device *phydev) { int err; err = genphy_read_status(phydev); if (phydev->link) { phydev->speed = SPEED_1000; phydev->duplex = DUPLEX_FULL; } return err; } /* Read the link and speed status of the 2 internal SGMII/1000Base-X * ports of the RTL8393 SoC */ static int rtl8393_read_status(struct phy_device *phydev) { int offset = 0; int err; int phy_addr = phydev->mdio.addr; u32 v; err = genphy_read_status(phydev); if (phy_addr == 49) offset = 0x100; if (phydev->link) { phydev->speed = SPEED_100; /* Read SPD_RD_00 (bit 13) and SPD_RD_01 (bit 6) out of the internal * PHY registers */ v = sw_r32(RTL839X_SDS12_13_XSG0 + offset + 0x80); if (!(v & (1 << 13)) && (v & (1 << 6))) phydev->speed = SPEED_1000; phydev->duplex = DUPLEX_FULL; } return err; } static struct fw_header *rtl838x_request_fw(struct phy_device *phydev, const struct firmware *fw, const char *name) { struct device *dev = &phydev->mdio.dev; int err; struct fw_header *h; uint32_t checksum, my_checksum; err = request_firmware(&fw, name, dev); if (err < 0) goto out; if (fw->size < sizeof(struct fw_header)) { pr_err("Firmware size too small.\n"); err = -EINVAL; goto out; } h = (struct fw_header *) fw->data; pr_info("Firmware loaded. Size %d, magic: %08x\n", fw->size, h->magic); if (h->magic != 0x83808380) { pr_err("Wrong firmware file: MAGIC mismatch.\n"); goto out; } checksum = h->checksum; h->checksum = 0; my_checksum = ~crc32(0xFFFFFFFFU, fw->data, fw->size); if (checksum != my_checksum) { pr_err("Firmware checksum mismatch.\n"); err = -EINVAL; goto out; } h->checksum = checksum; return h; out: dev_err(dev, "Unable to load firmware %s (%d)\n", name, err); return NULL; } static int rtl8390_configure_generic(struct phy_device *phydev) { u32 val, phy_id; int mac = phydev->mdio.addr; read_phy(mac, 0, 2, &val); phy_id = val << 16; read_phy(mac, 0, 3, &val); phy_id |= val; pr_debug("Phy on MAC %d: %x\n", mac, phy_id); /* Read internal PHY ID */ write_phy(mac, 31, 27, 0x0002); read_phy(mac, 31, 28, &val); /* Internal RTL8218B, version 2 */ phydev_info(phydev, "Detected unknown %x\n", val); return 0; } static int rtl8380_configure_int_rtl8218b(struct phy_device *phydev) { u32 val, phy_id; int i, p, ipd_flag; int mac = phydev->mdio.addr; struct fw_header *h; u32 *rtl838x_6275B_intPhy_perport; u32 *rtl8218b_6276B_hwEsd_perport; read_phy(mac, 0, 2, &val); phy_id = val << 16; read_phy(mac, 0, 3, &val); phy_id |= val; pr_debug("Phy on MAC %d: %x\n", mac, phy_id); /* Read internal PHY ID */ write_phy(mac, 31, 27, 0x0002); read_phy(mac, 31, 28, &val); if (val != 0x6275) { phydev_err(phydev, "Expected internal RTL8218B, found PHY-ID %x\n", val); return -1; } /* Internal RTL8218B, version 2 */ phydev_info(phydev, "Detected internal RTL8218B\n"); h = rtl838x_request_fw(phydev, &rtl838x_8380_fw, FIRMWARE_838X_8380_1); if (!h) return -1; if (h->phy != 0x83800000) { phydev_err(phydev, "Wrong firmware file: PHY mismatch.\n"); return -1; } rtl838x_6275B_intPhy_perport = (void *)h + sizeof(struct fw_header) + h->parts[8].start; rtl8218b_6276B_hwEsd_perport = (void *)h + sizeof(struct fw_header) + h->parts[9].start; if (sw_r32(RTL838X_DMY_REG31) == 0x1) ipd_flag = 1; read_phy(mac, 0, 0, &val); if (val & (1 << 11)) int_phy_on_off(mac, true); else phy_reset(mac); msleep(100); /* Ready PHY for patch */ for (p = 0; p < 8; p++) { write_phy(mac + p, 0xfff, 0x1f, 0x0b82); write_phy(mac + p, 0xfff, 0x10, 0x0010); } msleep(500); for (p = 0; p < 8; p++) { for (i = 0; i < 100 ; i++) { read_phy(mac + p, 0x0b80, 0x10, &val); if (val & 0x40) break; } if (i >= 100) { phydev_err(phydev, "ERROR: Port %d not ready for patch.\n", mac + p); return -1; } } for (p = 0; p < 8; p++) { i = 0; while (rtl838x_6275B_intPhy_perport[i * 2]) { write_phy(mac + p, 0xfff, rtl838x_6275B_intPhy_perport[i * 2], rtl838x_6275B_intPhy_perport[i * 2 + 1]); i++; } i = 0; while (rtl8218b_6276B_hwEsd_perport[i * 2]) { write_phy(mac + p, 0xfff, rtl8218b_6276B_hwEsd_perport[i * 2], rtl8218b_6276B_hwEsd_perport[i * 2 + 1]); i++; } } return 0; } static int rtl8380_configure_ext_rtl8218b(struct phy_device *phydev) { u32 val, ipd, phy_id; int i, l; int mac = phydev->mdio.addr; struct fw_header *h; u32 *rtl8380_rtl8218b_perchip; u32 *rtl8218B_6276B_rtl8380_perport; u32 *rtl8380_rtl8218b_perport; if (soc_info.family == RTL8380_FAMILY_ID && mac != 0 && mac != 16) { phydev_err(phydev, "External RTL8218B must have PHY-IDs 0 or 16!\n"); return -1; } read_phy(mac, 0, 2, &val); phy_id = val << 16; read_phy(mac, 0, 3, &val); phy_id |= val; pr_info("Phy on MAC %d: %x\n", mac, phy_id); /* Read internal PHY ID */ write_phy(mac, 31, 27, 0x0002); read_phy(mac, 31, 28, &val); if (val != 0x6276) { phydev_err(phydev, "Expected external RTL8218B, found PHY-ID %x\n", val); return -1; } phydev_info(phydev, "Detected external RTL8218B\n"); h = rtl838x_request_fw(phydev, &rtl838x_8218b_fw, FIRMWARE_838X_8218b_1); if (!h) return -1; if (h->phy != 0x8218b000) { phydev_err(phydev, "Wrong firmware file: PHY mismatch.\n"); return -1; } rtl8380_rtl8218b_perchip = (void *)h + sizeof(struct fw_header) + h->parts[0].start; rtl8218B_6276B_rtl8380_perport = (void *)h + sizeof(struct fw_header) + h->parts[1].start; rtl8380_rtl8218b_perport = (void *)h + sizeof(struct fw_header) + h->parts[2].start; read_phy(mac, 0, 0, &val); if (val & (1 << 11)) int_phy_on_off(mac, true); else phy_reset(mac); msleep(100); /* Get Chip revision */ write_phy(mac, 0xfff, 0x1f, 0x0); write_phy(mac, 0xfff, 0x1b, 0x4); read_phy(mac, 0xfff, 0x1c, &val); i = 0; while (rtl8380_rtl8218b_perchip[i * 3] && rtl8380_rtl8218b_perchip[i * 3 + 1]) { write_phy(mac + rtl8380_rtl8218b_perchip[i * 3], 0xfff, rtl8380_rtl8218b_perchip[i * 3 + 1], rtl8380_rtl8218b_perchip[i * 3 + 2]); i++; } /* Enable PHY */ for (i = 0; i < 8; i++) { write_phy(mac + i, 0xfff, 0x1f, 0x0000); write_phy(mac + i, 0xfff, 0x00, 0x1140); } mdelay(100); /* Request patch */ for (i = 0; i < 8; i++) { write_phy(mac + i, 0xfff, 0x1f, 0x0b82); write_phy(mac + i, 0xfff, 0x10, 0x0010); } mdelay(300); /* Verify patch readiness */ for (i = 0; i < 8; i++) { for (l = 0; l < 100; l++) { read_phy(mac + i, 0xb80, 0x10, &val); if (val & 0x40) break; } if (l >= 100) { phydev_err(phydev, "Could not patch PHY\n"); return -1; } } /* Use Broadcast ID method for patching */ write_phy(mac, 0xfff, 0x1f, 0x0000); write_phy(mac, 0xfff, 0x1d, 0x0008); write_phy(mac, 0xfff, 0x1f, 0x0266); write_phy(mac, 0xfff, 0x16, 0xff00 + mac); write_phy(mac, 0xfff, 0x1f, 0x0000); write_phy(mac, 0xfff, 0x1d, 0x0000); mdelay(1); write_phy(mac, 0xfff, 30, 8); write_phy(mac, 0x26e, 17, 0xb); write_phy(mac, 0x26e, 16, 0x2); mdelay(1); read_phy(mac, 0x26e, 19, &ipd); write_phy(mac, 0, 30, 0); ipd = (ipd >> 4) & 0xf; i = 0; while (rtl8218B_6276B_rtl8380_perport[i * 2]) { write_phy(mac, 0xfff, rtl8218B_6276B_rtl8380_perport[i * 2], rtl8218B_6276B_rtl8380_perport[i * 2 + 1]); i++; } /*Disable broadcast ID*/ write_phy(mac, 0xfff, 0x1f, 0x0000); write_phy(mac, 0xfff, 0x1d, 0x0008); write_phy(mac, 0xfff, 0x1f, 0x0266); write_phy(mac, 0xfff, 0x16, 0x00 + mac); write_phy(mac, 0xfff, 0x1f, 0x0000); write_phy(mac, 0xfff, 0x1d, 0x0000); mdelay(1); return 0; } static int rtl8218b_ext_match_phy_device(struct phy_device *phydev) { int addr = phydev->mdio.addr; /* Both the RTL8214FC and the external RTL8218B have the same * PHY ID. On the RTL838x, the RTL8218B can only be attached_dev * at PHY IDs 0-7, while the RTL8214FC must be attached via * the pair of SGMII/1000Base-X with higher PHY-IDs */ if (soc_info.family == RTL8380_FAMILY_ID) return phydev->phy_id == PHY_ID_RTL8218B_E && addr < 8; else return phydev->phy_id == PHY_ID_RTL8218B_E; } /* * Read an mmd register of the PHY */ static int rtl83xx_read_mmd_phy(u32 port, u32 addr, u32 reg, u32 *val) { u32 v; mutex_lock(&smi_lock); if (rtl838x_smi_wait_op(10000)) goto timeout; sw_w32(1 << port, RTL838X_SMI_ACCESS_PHY_CTRL_0); mdelay(10); sw_w32_mask(0xffff0000, port << 16, RTL838X_SMI_ACCESS_PHY_CTRL_2); v = addr << 16 | reg; sw_w32(v, RTL838X_SMI_ACCESS_PHY_CTRL_3); /* mmd-access | read | cmd-start */ v = 1 << 1 | 0 << 2 | 1; sw_w32(v, RTL838X_SMI_ACCESS_PHY_CTRL_1); if (rtl838x_smi_wait_op(10000)) goto timeout; *val = sw_r32(RTL838X_SMI_ACCESS_PHY_CTRL_2) & 0xffff; mutex_unlock(&smi_lock); return 0; timeout: mutex_unlock(&smi_lock); return -ETIMEDOUT; } /* * Write to an mmd register of the PHY */ static int rtl838x_write_mmd_phy(u32 port, u32 addr, u32 reg, u32 val) { u32 v; pr_debug("MMD write: port %d, dev %d, reg %d, val %x\n", port, addr, reg, val); val &= 0xffff; mutex_lock(&smi_lock); if (rtl838x_smi_wait_op(10000)) goto timeout; sw_w32(1 << port, RTL838X_SMI_ACCESS_PHY_CTRL_0); mdelay(10); sw_w32_mask(0xffff0000, val << 16, RTL838X_SMI_ACCESS_PHY_CTRL_2); sw_w32_mask(0x1f << 16, addr << 16, RTL838X_SMI_ACCESS_PHY_CTRL_3); sw_w32_mask(0xffff, reg, RTL838X_SMI_ACCESS_PHY_CTRL_3); /* mmd-access | write | cmd-start */ v = 1 << 1 | 1 << 2 | 1; sw_w32(v, RTL838X_SMI_ACCESS_PHY_CTRL_1); if (rtl838x_smi_wait_op(10000)) goto timeout; mutex_unlock(&smi_lock); return 0; timeout: mutex_unlock(&smi_lock); return -ETIMEDOUT; } static int rtl8218b_read_mmd(struct phy_device *phydev, int devnum, u16 regnum) { int ret; u32 val; int addr = phydev->mdio.addr; ret = rtl83xx_read_mmd_phy(addr, devnum, regnum, &val); if (ret) return ret; return val; } static int rtl8218b_write_mmd(struct phy_device *phydev, int devnum, u16 regnum, u16 val) { int addr = phydev->mdio.addr; return rtl838x_write_mmd_phy(addr, devnum, regnum, val); } static void rtl8380_rtl8214fc_media_set(int mac, bool set_fibre) { int base = mac - (mac % 4); static int reg[] = {16, 19, 20, 21}; int val, media, power; pr_info("%s: port %d, set_fibre: %d\n", __func__, mac, set_fibre); write_phy(base, 0xfff, 29, 8); read_phy(base, 0x266, reg[mac % 4], &val); media = (val >> 10) & 0x3; pr_info("Current media %x\n", media); if (media & 0x2) { pr_info("Powering off COPPER\n"); write_phy(base, 0xfff, 29, 1); /* Ensure power is off */ read_phy(base, 0xa40, 16, &power); if (!(power & (1 << 11))) write_phy(base, 0xa40, 16, power | (1 << 11)); } else { pr_info("Powering off FIBRE"); write_phy(base, 0xfff, 29, 3); /* Ensure power is off */ read_phy(base, 0xa40, 16, &power); if (!(power & (1 << 11))) write_phy(base, 0xa40, 16, power | (1 << 11)); } if (set_fibre) { val |= 1 << 10; val &= ~(1 << 11); } else { val |= 1 << 10; val |= 1 << 11; } write_phy(base, 0xfff, 29, 8); write_phy(base, 0x266, reg[mac % 4], val); write_phy(base, 0xfff, 29, 0); if (set_fibre) { pr_info("Powering on FIBRE"); write_phy(base, 0xfff, 29, 3); /* Ensure power is off */ read_phy(base, 0xa40, 16, &power); if (power & (1 << 11)) write_phy(base, 0xa40, 16, power & ~(1 << 11)); } else { pr_info("Powering on COPPER\n"); write_phy(base, 0xfff, 29, 1); /* Ensure power is off */ read_phy(base, 0xa40, 16, &power); if (power & (1 << 11)) write_phy(base, 0xa40, 16, power & ~(1 << 11)); } write_phy(base, 0xfff, 29, 0); } static bool rtl8380_rtl8214fc_media_is_fibre(int mac) { int base = mac - (mac % 4); static int reg[] = {16, 19, 20, 21}; u32 val; write_phy(base, 0xfff, 29, 8); read_phy(base, 0x266, reg[mac % 4], &val); write_phy(base, 0xfff, 29, 0); if (val & (1 << 11)) return false; return true; } static int rtl8214fc_set_port(struct phy_device *phydev, int port) { bool is_fibre = (port == PORT_FIBRE ? true : false); int addr = phydev->mdio.addr; pr_debug("%s port %d to %d\n", __func__, addr, port); rtl8380_rtl8214fc_media_set(addr, is_fibre); return 0; } static int rtl8214fc_get_port(struct phy_device *phydev) { int addr = phydev->mdio.addr; pr_debug("%s: port %d\n", __func__, addr); if (rtl8380_rtl8214fc_media_is_fibre(addr)) return PORT_FIBRE; return PORT_MII; } static void rtl8218b_eee_set_u_boot(int port, bool enable) { u32 val; bool an_enabled; /* Set GPHY page to copper */ write_phy(port, 0, 30, 0x0001); read_phy(port, 0, 0, &val); an_enabled = val & (1 << 12); if (enable) { /* 100/1000M EEE Capability */ write_phy(port, 0, 13, 0x0007); write_phy(port, 0, 14, 0x003C); write_phy(port, 0, 13, 0x4007); write_phy(port, 0, 14, 0x0006); read_phy(port, 0x0A43, 25, &val); val |= 1 << 4; write_phy(port, 0x0A43, 25, val); } else { /* 100/1000M EEE Capability */ write_phy(port, 0, 13, 0x0007); write_phy(port, 0, 14, 0x003C); write_phy(port, 0, 13, 0x0007); write_phy(port, 0, 14, 0x0000); read_phy(port, 0x0A43, 25, &val); val &= ~(1 << 4); write_phy(port, 0x0A43, 25, val); } /* Restart AN if enabled */ if (an_enabled) { read_phy(port, 0, 0, &val); val |= (1 << 12) | (1 << 9); write_phy(port, 0, 0, val); } /* GPHY page back to auto*/ write_phy(port, 0xa42, 29, 0); } // TODO: unused static void rtl8380_rtl8218b_eee_set(int port, bool enable) { u32 val; bool an_enabled; pr_debug("In %s %d, enable %d\n", __func__, port, enable); /* Set GPHY page to copper */ write_phy(port, 0xa42, 29, 0x0001); read_phy(port, 0, 0, &val); an_enabled = val & (1 << 12); /* MAC based EEE */ read_phy(port, 0xa43, 25, &val); val &= ~(1 << 5); write_phy(port, 0xa43, 25, val); /* 100M / 1000M EEE */ if (enable) rtl838x_write_mmd_phy(port, 7, 60, 0x6); else rtl838x_write_mmd_phy(port, 7, 60, 0); /* 500M EEE ability */ read_phy(port, 0xa42, 20, &val); if (enable) val |= 1 << 7; else val &= ~(1 << 7); write_phy(port, 0xa42, 20, val); /* Restart AN if enabled */ if (an_enabled) { read_phy(port, 0, 0, &val); val |= (1 << 12) | (1 << 9); write_phy(port, 0, 0, val); } /* GPHY page back to auto*/ write_phy(port, 0xa42, 29, 0); } static int rtl8218b_get_eee(struct phy_device *phydev, struct ethtool_eee *e) { u32 val; int addr = phydev->mdio.addr; pr_debug("In %s, port %d\n", __func__, addr); /* Set GPHY page to copper */ write_phy(addr, 0xa42, 29, 0x0001); rtl83xx_read_mmd_phy(addr, 7, 60, &val); if (e->eee_enabled && (!!(val & (1 << 7)))) e->eee_enabled = !!(val & (1 << 7)); else e->eee_enabled = 0; /* GPHY page to auto */ write_phy(addr, 0xa42, 29, 0x0000); return 0; } // TODO: unused static void rtl8380_rtl8218b_green_set(int mac, bool enable) { u32 val; /* Set GPHY page to copper */ write_phy(mac, 0xa42, 29, 0x0001); write_phy(mac, 0, 27, 0x8011); read_phy(mac, 0, 28, &val); if (enable) { val |= 1 << 9; write_phy(mac, 0, 27, 0x8011); write_phy(mac, 0, 28, val); } else { val &= ~(1 << 9); write_phy(mac, 0, 27, 0x8011); write_phy(mac, 0, 28, val); } /* GPHY page to auto */ write_phy(mac, 0xa42, 29, 0x0000); } // TODO: unused static int rtl8380_rtl8214fc_get_green(struct phy_device *phydev, struct ethtool_eee *e) { u32 val; int addr = phydev->mdio.addr; pr_debug("In %s %d\n", __func__, addr); /* Set GPHY page to copper */ write_phy(addr, 0xa42, 29, 0x0001); write_phy(addr, 0, 27, 0x8011); read_phy(addr, 0, 28, &val); if (e->eee_enabled && (!!(val & (1 << 9)))) e->eee_enabled = !!(val & (1 << 9)); else e->eee_enabled = 0; /* GPHY page to auto */ write_phy(addr, 0xa42, 29, 0x0000); return 0; } static int rtl8214fc_set_eee(struct phy_device *phydev, struct ethtool_eee *e) { u32 pollMask; int addr = phydev->mdio.addr; pr_debug("In %s port %d, enabled %d\n", __func__, addr, e->eee_enabled); if (rtl8380_rtl8214fc_media_is_fibre(addr)) { netdev_err(phydev->attached_dev, "Port %d configured for FIBRE", addr); return -ENOTSUPP; } pollMask = sw_r32(RTL838X_SMI_POLL_CTRL); sw_w32(0, RTL838X_SMI_POLL_CTRL); rtl8218b_eee_set_u_boot(addr, (bool) e->eee_enabled); sw_w32(pollMask, RTL838X_SMI_POLL_CTRL); return 0; } static int rtl8214fc_get_eee(struct phy_device *phydev, struct ethtool_eee *e) { int addr = phydev->mdio.addr; pr_debug("In %s port %d, enabled %d\n", __func__, addr, e->eee_enabled); if (rtl8380_rtl8214fc_media_is_fibre(addr)) { netdev_err(phydev->attached_dev, "Port %d configured for FIBRE", addr); return -ENOTSUPP; } return rtl8218b_get_eee(phydev, e); } static int rtl8218b_set_eee(struct phy_device *phydev, struct ethtool_eee *e) { u32 pollMask; int addr = phydev->mdio.addr; pr_debug("In %s, port %d, enabled %d\n", __func__, addr, e->eee_enabled); pollMask = sw_r32(RTL838X_SMI_POLL_CTRL); sw_w32(0, RTL838X_SMI_POLL_CTRL); rtl8218b_eee_set_u_boot(addr, (bool) e->eee_enabled); sw_w32(pollMask, RTL838X_SMI_POLL_CTRL); return 0; } static int rtl8214c_match_phy_device(struct phy_device *phydev) { return phydev->phy_id == PHY_ID_RTL8214C; } static int rtl8380_configure_rtl8214c(struct phy_device *phydev) { u32 phy_id, val; int mac = phydev->mdio.addr; read_phy(mac, 0, 2, &val); phy_id = val << 16; read_phy(mac, 0, 3, &val); phy_id |= val; pr_debug("Phy on MAC %d: %x\n", mac, phy_id); phydev_info(phydev, "Detected external RTL8214C\n"); /* GPHY auto conf */ write_phy(mac, 0xa42, 29, 0); return 0; } static int rtl8380_configure_rtl8214fc(struct phy_device *phydev) { u32 phy_id, val, page = 0; int i, l; int mac = phydev->mdio.addr; struct fw_header *h; u32 *rtl8380_rtl8214fc_perchip; u32 *rtl8380_rtl8214fc_perport; read_phy(mac, 0, 2, &val); phy_id = val << 16; read_phy(mac, 0, 3, &val); phy_id |= val; pr_debug("Phy on MAC %d: %x\n", mac, phy_id); /* Read internal PHY id */ write_phy(mac, 0, 30, 0x0001); write_phy(mac, 0, 31, 0x0a42); write_phy(mac, 31, 27, 0x0002); read_phy(mac, 31, 28, &val); if (val != 0x6276) { phydev_err(phydev, "Expected external RTL8214FC, found PHY-ID %x\n", val); return -1; } phydev_info(phydev, "Detected external RTL8214FC\n"); h = rtl838x_request_fw(phydev, &rtl838x_8214fc_fw, FIRMWARE_838X_8214FC_1); if (!h) return -1; if (h->phy != 0x8214fc00) { phydev_err(phydev, "Wrong firmware file: PHY mismatch.\n"); return -1; } rtl8380_rtl8214fc_perchip = (void *)h + sizeof(struct fw_header) + h->parts[0].start; rtl8380_rtl8214fc_perport = (void *)h + sizeof(struct fw_header) + h->parts[1].start; /* detect phy version */ write_phy(mac, 0xfff, 27, 0x0004); read_phy(mac, 0xfff, 28, &val); read_phy(mac, 0, 16, &val); if (val & (1 << 11)) rtl8214fc_on_off(mac, true); else phy_reset(mac); msleep(100); write_phy(mac, 0, 30, 0x0001); i = 0; while (rtl8380_rtl8214fc_perchip[i * 3] && rtl8380_rtl8214fc_perchip[i * 3 + 1]) { if (rtl8380_rtl8214fc_perchip[i * 3 + 1] == 0x1f) page = rtl8380_rtl8214fc_perchip[i * 3 + 2]; if (rtl8380_rtl8214fc_perchip[i * 3 + 1] == 0x13 && page == 0x260) { read_phy(mac + rtl8380_rtl8214fc_perchip[i * 3], 0x260, 13, &val); val = (val & 0x1f00) | (rtl8380_rtl8214fc_perchip[i * 3 + 2] & 0xe0ff); write_phy(mac + rtl8380_rtl8214fc_perchip[i * 3], 0xfff, rtl8380_rtl8214fc_perchip[i * 3 + 1], val); } else { write_phy(mac + rtl8380_rtl8214fc_perchip[i * 3], 0xfff, rtl8380_rtl8214fc_perchip[i * 3 + 1], rtl8380_rtl8214fc_perchip[i * 3 + 2]); } i++; } /* Force copper medium */ for (i = 0; i < 4; i++) { write_phy(mac + i, 0xfff, 0x1f, 0x0000); write_phy(mac + i, 0xfff, 0x1e, 0x0001); } /* Enable PHY */ for (i = 0; i < 4; i++) { write_phy(mac + i, 0xfff, 0x1f, 0x0000); write_phy(mac + i, 0xfff, 0x00, 0x1140); } mdelay(100); /* Disable Autosensing */ for (i = 0; i < 4; i++) { for (l = 0; l < 100; l++) { read_phy(mac + i, 0x0a42, 0x10, &val); if ((val & 0x7) >= 3) break; } if (l >= 100) { phydev_err(phydev, "Could not disable autosensing\n"); return -1; } } /* Request patch */ for (i = 0; i < 4; i++) { write_phy(mac + i, 0xfff, 0x1f, 0x0b82); write_phy(mac + i, 0xfff, 0x10, 0x0010); } mdelay(300); /* Verify patch readiness */ for (i = 0; i < 4; i++) { for (l = 0; l < 100; l++) { read_phy(mac + i, 0xb80, 0x10, &val); if (val & 0x40) break; } if (l >= 100) { phydev_err(phydev, "Could not patch PHY\n"); return -1; } } /* Use Broadcast ID method for patching */ write_phy(mac, 0xfff, 0x1f, 0x0000); write_phy(mac, 0xfff, 0x1d, 0x0008); write_phy(mac, 0xfff, 0x1f, 0x0266); write_phy(mac, 0xfff, 0x16, 0xff00 + mac); write_phy(mac, 0xfff, 0x1f, 0x0000); write_phy(mac, 0xfff, 0x1d, 0x0000); mdelay(1); i = 0; while (rtl8380_rtl8214fc_perport[i * 2]) { write_phy(mac, 0xfff, rtl8380_rtl8214fc_perport[i * 2], rtl8380_rtl8214fc_perport[i * 2 + 1]); i++; } /*Disable broadcast ID*/ write_phy(mac, 0xfff, 0x1f, 0x0000); write_phy(mac, 0xfff, 0x1d, 0x0008); write_phy(mac, 0xfff, 0x1f, 0x0266); write_phy(mac, 0xfff, 0x16, 0x00 + mac); write_phy(mac, 0xfff, 0x1f, 0x0000); write_phy(mac, 0xfff, 0x1d, 0x0000); mdelay(1); /* Auto medium selection */ for (i = 0; i < 4; i++) { write_phy(mac + i, 0xfff, 0x1f, 0x0000); write_phy(mac + i, 0xfff, 0x1e, 0x0000); } return 0; } static int rtl8214fc_match_phy_device(struct phy_device *phydev) { int addr = phydev->mdio.addr; return phydev->phy_id == PHY_ID_RTL8214FC && addr >= 24; } static int rtl8380_configure_serdes(struct phy_device *phydev) { u32 v; u32 sds_conf_value; int i; struct fw_header *h; u32 *rtl8380_sds_take_reset; u32 *rtl8380_sds_common; u32 *rtl8380_sds01_qsgmii_6275b; u32 *rtl8380_sds23_qsgmii_6275b; u32 *rtl8380_sds4_fiber_6275b; u32 *rtl8380_sds5_fiber_6275b; u32 *rtl8380_sds_reset; u32 *rtl8380_sds_release_reset; phydev_info(phydev, "Detected internal RTL8380 SERDES\n"); h = rtl838x_request_fw(phydev, &rtl838x_8218b_fw, FIRMWARE_838X_8380_1); if (!h) return -1; if (h->magic != 0x83808380) { phydev_err(phydev, "Wrong firmware file: magic number mismatch.\n"); return -1; } rtl8380_sds_take_reset = (void *)h + sizeof(struct fw_header) + h->parts[0].start; rtl8380_sds_common = (void *)h + sizeof(struct fw_header) + h->parts[1].start; rtl8380_sds01_qsgmii_6275b = (void *)h + sizeof(struct fw_header) + h->parts[2].start; rtl8380_sds23_qsgmii_6275b = (void *)h + sizeof(struct fw_header) + h->parts[3].start; rtl8380_sds4_fiber_6275b = (void *)h + sizeof(struct fw_header) + h->parts[4].start; rtl8380_sds5_fiber_6275b = (void *)h + sizeof(struct fw_header) + h->parts[5].start; rtl8380_sds_reset = (void *)h + sizeof(struct fw_header) + h->parts[6].start; rtl8380_sds_release_reset = (void *)h + sizeof(struct fw_header) + h->parts[7].start; /* Back up serdes power off value */ sds_conf_value = sw_r32(RTL838X_SDS_CFG_REG); pr_info("SDS power down value: %x\n", sds_conf_value); /* take serdes into reset */ i = 0; while (rtl8380_sds_take_reset[2 * i]) { sw_w32(rtl8380_sds_take_reset[2 * i + 1], rtl8380_sds_take_reset[2 * i]); i++; udelay(1000); } /* apply common serdes patch */ i = 0; while (rtl8380_sds_common[2 * i]) { sw_w32(rtl8380_sds_common[2 * i + 1], rtl8380_sds_common[2 * i]); i++; udelay(1000); } /* internal R/W enable */ sw_w32(3, RTL838X_INT_RW_CTRL); /* SerDes ports 4 and 5 are FIBRE ports */ sw_w32_mask(0x7 | 0x38, 1 | (1 << 3), RTL838X_INT_MODE_CTRL); /* SerDes module settings, SerDes 0-3 are QSGMII */ v = 0x6 << 25 | 0x6 << 20 | 0x6 << 15 | 0x6 << 10; /* SerDes 4 and 5 are 1000BX FIBRE */ v |= 0x4 << 5 | 0x4; sw_w32(v, RTL838X_SDS_MODE_SEL); pr_info("PLL control register: %x\n", sw_r32(RTL838X_PLL_CML_CTRL)); sw_w32_mask(0xfffffff0, 0xaaaaaaaf & 0xf, RTL838X_PLL_CML_CTRL); i = 0; while (rtl8380_sds01_qsgmii_6275b[2 * i]) { sw_w32(rtl8380_sds01_qsgmii_6275b[2 * i + 1], rtl8380_sds01_qsgmii_6275b[2 * i]); i++; } i = 0; while (rtl8380_sds23_qsgmii_6275b[2 * i]) { sw_w32(rtl8380_sds23_qsgmii_6275b[2 * i + 1], rtl8380_sds23_qsgmii_6275b[2 * i]); i++; } i = 0; while (rtl8380_sds4_fiber_6275b[2 * i]) { sw_w32(rtl8380_sds4_fiber_6275b[2 * i + 1], rtl8380_sds4_fiber_6275b[2 * i]); i++; } i = 0; while (rtl8380_sds5_fiber_6275b[2 * i]) { sw_w32(rtl8380_sds5_fiber_6275b[2 * i + 1], rtl8380_sds5_fiber_6275b[2 * i]); i++; } i = 0; while (rtl8380_sds_reset[2 * i]) { sw_w32(rtl8380_sds_reset[2 * i + 1], rtl8380_sds_reset[2 * i]); i++; } i = 0; while (rtl8380_sds_release_reset[2 * i]) { sw_w32(rtl8380_sds_release_reset[2 * i + 1], rtl8380_sds_release_reset[2 * i]); i++; } pr_info("SDS power down value now: %x\n", sw_r32(RTL838X_SDS_CFG_REG)); sw_w32(sds_conf_value, RTL838X_SDS_CFG_REG); pr_info("Configuration of SERDES done\n"); return 0; } static int rtl8390_configure_serdes(struct phy_device *phydev) { phydev_info(phydev, "Detected internal RTL8390 SERDES\n"); /* In autoneg state, force link, set SR4_CFG_EN_LINK_FIB1G */ sw_w32_mask(0, 1 << 18, RTL839X_SDS12_13_XSG0 + 0x0a); /* Disable EEE: Clear FRE16_EEE_RSG_FIB1G, FRE16_EEE_STD_FIB1G, * FRE16_C1_PWRSAV_EN_FIB1G, FRE16_C2_PWRSAV_EN_FIB1G * and FRE16_EEE_QUIET_FIB1G */ sw_w32_mask(0x1f << 10, 0, RTL839X_SDS12_13_XSG0 + 0xe0); return 0; } static int rtl8214fc_phy_probe(struct phy_device *phydev) { struct device *dev = &phydev->mdio.dev; struct rtl838x_phy_priv *priv; int addr = phydev->mdio.addr; /* 839x has internal SerDes */ if (soc_info.id == 0x8393) return -ENODEV; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->name = "RTL8214FC"; /* All base addresses of the PHYs start at multiples of 8 */ if (!(addr % 8)) { /* Configuration must be done whil patching still possible */ return rtl8380_configure_rtl8214fc(phydev); } return 0; } static int rtl8214c_phy_probe(struct phy_device *phydev) { struct device *dev = &phydev->mdio.dev; struct rtl838x_phy_priv *priv; int addr = phydev->mdio.addr; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->name = "RTL8214C"; /* All base addresses of the PHYs start at multiples of 8 */ if (!(addr % 8)) { /* Configuration must be done whil patching still possible */ return rtl8380_configure_rtl8214c(phydev); } return 0; } static int rtl8218b_ext_phy_probe(struct phy_device *phydev) { struct device *dev = &phydev->mdio.dev; struct rtl838x_phy_priv *priv; int addr = phydev->mdio.addr; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->name = "RTL8218B (external)"; /* All base addresses of the PHYs start at multiples of 8 */ if (!(addr % 8) && soc_info.family == RTL8380_FAMILY_ID) { /* Configuration must be done while patching still possible */ return rtl8380_configure_ext_rtl8218b(phydev); } return 0; } static int rtl8218b_int_phy_probe(struct phy_device *phydev) { struct device *dev = &phydev->mdio.dev; struct rtl838x_phy_priv *priv; int addr = phydev->mdio.addr; if (soc_info.family != RTL8380_FAMILY_ID) return -ENODEV; if (addr >= 24) return -ENODEV; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->name = "RTL8218B (internal)"; /* All base addresses of the PHYs start at multiples of 8 */ if (!(addr % 8)) { /* Configuration must be done while patching still possible */ return rtl8380_configure_int_rtl8218b(phydev); } return 0; } static int rtl838x_serdes_probe(struct phy_device *phydev) { struct device *dev = &phydev->mdio.dev; struct rtl838x_phy_priv *priv; int addr = phydev->mdio.addr; if (soc_info.family != RTL8380_FAMILY_ID) return -ENODEV; if (addr < 24) return -ENODEV; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->name = "RTL8380 Serdes"; /* On the RTL8380M, PHYs 24-27 connect to the internal SerDes */ if (soc_info.id == 0x8380) { if (addr == 24) return rtl8380_configure_serdes(phydev); return 0; } return -ENODEV; } static int rtl8393_serdes_probe(struct phy_device *phydev) { struct device *dev = &phydev->mdio.dev; struct rtl838x_phy_priv *priv; int addr = phydev->mdio.addr; pr_info("%s: id: %d\n", __func__, addr); if (soc_info.family != RTL8390_FAMILY_ID) return -ENODEV; if (addr < 24) return -ENODEV; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->name = "RTL8393 Serdes"; return rtl8390_configure_serdes(phydev); } static int rtl8390_serdes_probe(struct phy_device *phydev) { struct device *dev = &phydev->mdio.dev; struct rtl838x_phy_priv *priv; int addr = phydev->mdio.addr; if (soc_info.family != RTL8390_FAMILY_ID) return -ENODEV; if (addr < 24) return -ENODEV; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->name = "RTL8390 Serdes"; return rtl8390_configure_generic(phydev); } static struct phy_driver rtl83xx_phy_driver[] = { { PHY_ID_MATCH_MODEL(PHY_ID_RTL8214C), .name = "Realtek RTL8214C", .features = PHY_GBIT_FEATURES, .match_phy_device = rtl8214c_match_phy_device, .probe = rtl8214c_phy_probe, .suspend = genphy_suspend, .resume = genphy_resume, .set_loopback = genphy_loopback, }, { PHY_ID_MATCH_MODEL(PHY_ID_RTL8214FC), .name = "Realtek RTL8214FC", .features = PHY_GBIT_FIBRE_FEATURES, .match_phy_device = rtl8214fc_match_phy_device, .probe = rtl8214fc_phy_probe, .suspend = genphy_suspend, .resume = genphy_resume, .set_loopback = genphy_loopback, .read_mmd = rtl8218b_read_mmd, .write_mmd = rtl8218b_write_mmd, .set_port = rtl8214fc_set_port, .get_port = rtl8214fc_get_port, .set_eee = rtl8214fc_set_eee, .get_eee = rtl8214fc_get_eee, }, { PHY_ID_MATCH_MODEL(PHY_ID_RTL8218B_E), .name = "Realtek RTL8218B (external)", .features = PHY_GBIT_FEATURES, .match_phy_device = rtl8218b_ext_match_phy_device, .probe = rtl8218b_ext_phy_probe, .suspend = genphy_suspend, .resume = genphy_resume, .set_loopback = genphy_loopback, .read_mmd = rtl8218b_read_mmd, .write_mmd = rtl8218b_write_mmd, .set_eee = rtl8218b_set_eee, .get_eee = rtl8218b_get_eee, }, { PHY_ID_MATCH_MODEL(PHY_ID_RTL8218B_I), .name = "Realtek RTL8218B (internal)", .features = PHY_GBIT_FEATURES, .probe = rtl8218b_int_phy_probe, .suspend = genphy_suspend, .resume = genphy_resume, .set_loopback = genphy_loopback, .read_mmd = rtl8218b_read_mmd, .write_mmd = rtl8218b_write_mmd, .set_eee = rtl8218b_set_eee, .get_eee = rtl8218b_get_eee, }, { PHY_ID_MATCH_MODEL(PHY_ID_RTL8218B_I), .name = "Realtek RTL8380 SERDES", .features = PHY_GBIT_FIBRE_FEATURES, .probe = rtl838x_serdes_probe, .suspend = genphy_suspend, .resume = genphy_resume, .set_loopback = genphy_loopback, .read_mmd = rtl8218b_read_mmd, .write_mmd = rtl8218b_write_mmd, .read_status = rtl8380_read_status, }, { PHY_ID_MATCH_MODEL(PHY_ID_RTL8393_I), .name = "Realtek RTL8393 SERDES", .features = PHY_GBIT_FIBRE_FEATURES, .probe = rtl8393_serdes_probe, .suspend = genphy_suspend, .resume = genphy_resume, .set_loopback = genphy_loopback, .read_status = rtl8393_read_status, }, { PHY_ID_MATCH_MODEL(PHY_ID_RTL8390_GENERIC), .name = "Realtek RTL8390 Generic", .features = PHY_GBIT_FIBRE_FEATURES, .probe = rtl8390_serdes_probe, .suspend = genphy_suspend, .resume = genphy_resume, .set_loopback = genphy_loopback, } }; module_phy_driver(rtl83xx_phy_driver); static struct mdio_device_id __maybe_unused rtl83xx_tbl[] = { { PHY_ID_MATCH_MODEL(PHY_ID_RTL8214FC) }, { } }; MODULE_DEVICE_TABLE(mdio, rtl83xx_tbl); MODULE_AUTHOR("B. Koblitz"); MODULE_DESCRIPTION("RTL83xx PHY driver"); MODULE_LICENSE("GPL");