/* * Copyright (c) 2016, The Linux Foundation. All rights reserved. * * Permission to use, copy, modify, and/or distribute this software for * any purpose with or without fee is hereby granted, provided that the * above copyright notice and this permission notice appear in all copies. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT * OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ar40xx.h" static struct ar40xx_priv *ar40xx_priv; #define MIB_DESC(_s , _o, _n) \ { \ .size = (_s), \ .offset = (_o), \ .name = (_n), \ } static const struct ar40xx_mib_desc ar40xx_mibs[] = { MIB_DESC(1, AR40XX_STATS_RXBROAD, "RxBroad"), MIB_DESC(1, AR40XX_STATS_RXPAUSE, "RxPause"), MIB_DESC(1, AR40XX_STATS_RXMULTI, "RxMulti"), MIB_DESC(1, AR40XX_STATS_RXFCSERR, "RxFcsErr"), MIB_DESC(1, AR40XX_STATS_RXALIGNERR, "RxAlignErr"), MIB_DESC(1, AR40XX_STATS_RXRUNT, "RxRunt"), MIB_DESC(1, AR40XX_STATS_RXFRAGMENT, "RxFragment"), MIB_DESC(1, AR40XX_STATS_RX64BYTE, "Rx64Byte"), MIB_DESC(1, AR40XX_STATS_RX128BYTE, "Rx128Byte"), MIB_DESC(1, AR40XX_STATS_RX256BYTE, "Rx256Byte"), MIB_DESC(1, AR40XX_STATS_RX512BYTE, "Rx512Byte"), MIB_DESC(1, AR40XX_STATS_RX1024BYTE, "Rx1024Byte"), MIB_DESC(1, AR40XX_STATS_RX1518BYTE, "Rx1518Byte"), MIB_DESC(1, AR40XX_STATS_RXMAXBYTE, "RxMaxByte"), MIB_DESC(1, AR40XX_STATS_RXTOOLONG, "RxTooLong"), MIB_DESC(2, AR40XX_STATS_RXGOODBYTE, "RxGoodByte"), MIB_DESC(2, AR40XX_STATS_RXBADBYTE, "RxBadByte"), MIB_DESC(1, AR40XX_STATS_RXOVERFLOW, "RxOverFlow"), MIB_DESC(1, AR40XX_STATS_FILTERED, "Filtered"), MIB_DESC(1, AR40XX_STATS_TXBROAD, "TxBroad"), MIB_DESC(1, AR40XX_STATS_TXPAUSE, "TxPause"), MIB_DESC(1, AR40XX_STATS_TXMULTI, "TxMulti"), MIB_DESC(1, AR40XX_STATS_TXUNDERRUN, "TxUnderRun"), MIB_DESC(1, AR40XX_STATS_TX64BYTE, "Tx64Byte"), MIB_DESC(1, AR40XX_STATS_TX128BYTE, "Tx128Byte"), MIB_DESC(1, AR40XX_STATS_TX256BYTE, "Tx256Byte"), MIB_DESC(1, AR40XX_STATS_TX512BYTE, "Tx512Byte"), MIB_DESC(1, AR40XX_STATS_TX1024BYTE, "Tx1024Byte"), MIB_DESC(1, AR40XX_STATS_TX1518BYTE, "Tx1518Byte"), MIB_DESC(1, AR40XX_STATS_TXMAXBYTE, "TxMaxByte"), MIB_DESC(1, AR40XX_STATS_TXOVERSIZE, "TxOverSize"), MIB_DESC(2, AR40XX_STATS_TXBYTE, "TxByte"), MIB_DESC(1, AR40XX_STATS_TXCOLLISION, "TxCollision"), MIB_DESC(1, AR40XX_STATS_TXABORTCOL, "TxAbortCol"), MIB_DESC(1, AR40XX_STATS_TXMULTICOL, "TxMultiCol"), MIB_DESC(1, AR40XX_STATS_TXSINGLECOL, "TxSingleCol"), MIB_DESC(1, AR40XX_STATS_TXEXCDEFER, "TxExcDefer"), MIB_DESC(1, AR40XX_STATS_TXDEFER, "TxDefer"), MIB_DESC(1, AR40XX_STATS_TXLATECOL, "TxLateCol"), }; static u32 ar40xx_read(struct ar40xx_priv *priv, int reg) { return readl(priv->hw_addr + reg); } static u32 ar40xx_psgmii_read(struct ar40xx_priv *priv, int reg) { return readl(priv->psgmii_hw_addr + reg); } static void ar40xx_write(struct ar40xx_priv *priv, int reg, u32 val) { writel(val, priv->hw_addr + reg); } static u32 ar40xx_rmw(struct ar40xx_priv *priv, int reg, u32 mask, u32 val) { u32 ret; ret = ar40xx_read(priv, reg); ret &= ~mask; ret |= val; ar40xx_write(priv, reg, ret); return ret; } static void ar40xx_psgmii_write(struct ar40xx_priv *priv, int reg, u32 val) { writel(val, priv->psgmii_hw_addr + reg); } static void ar40xx_phy_dbg_write(struct ar40xx_priv *priv, int phy_addr, u16 dbg_addr, u16 dbg_data) { struct mii_bus *bus = priv->mii_bus; mutex_lock(&bus->mdio_lock); bus->write(bus, phy_addr, AR40XX_MII_ATH_DBG_ADDR, dbg_addr); bus->write(bus, phy_addr, AR40XX_MII_ATH_DBG_DATA, dbg_data); mutex_unlock(&bus->mdio_lock); } static void ar40xx_phy_dbg_read(struct ar40xx_priv *priv, int phy_addr, u16 dbg_addr, u16 *dbg_data) { struct mii_bus *bus = priv->mii_bus; mutex_lock(&bus->mdio_lock); bus->write(bus, phy_addr, AR40XX_MII_ATH_DBG_ADDR, dbg_addr); *dbg_data = bus->read(bus, phy_addr, AR40XX_MII_ATH_DBG_DATA); mutex_unlock(&bus->mdio_lock); } static void ar40xx_phy_mmd_write(struct ar40xx_priv *priv, u32 phy_id, u16 mmd_num, u16 reg_id, u16 reg_val) { struct mii_bus *bus = priv->mii_bus; mutex_lock(&bus->mdio_lock); bus->write(bus, phy_id, AR40XX_MII_ATH_MMD_ADDR, mmd_num); bus->write(bus, phy_id, AR40XX_MII_ATH_MMD_DATA, reg_id); bus->write(bus, phy_id, AR40XX_MII_ATH_MMD_ADDR, 0x4000 | mmd_num); bus->write(bus, phy_id, AR40XX_MII_ATH_MMD_DATA, reg_val); mutex_unlock(&bus->mdio_lock); } static u16 ar40xx_phy_mmd_read(struct ar40xx_priv *priv, u32 phy_id, u16 mmd_num, u16 reg_id) { u16 value; struct mii_bus *bus = priv->mii_bus; mutex_lock(&bus->mdio_lock); bus->write(bus, phy_id, AR40XX_MII_ATH_MMD_ADDR, mmd_num); bus->write(bus, phy_id, AR40XX_MII_ATH_MMD_DATA, reg_id); bus->write(bus, phy_id, AR40XX_MII_ATH_MMD_ADDR, 0x4000 | mmd_num); value = bus->read(bus, phy_id, AR40XX_MII_ATH_MMD_DATA); mutex_unlock(&bus->mdio_lock); return value; } /* Start of swconfig support */ static void ar40xx_phy_poll_reset(struct ar40xx_priv *priv) { u32 i, in_reset, retries = 500; struct mii_bus *bus = priv->mii_bus; /* Assume RESET was recently issued to some or all of the phys */ in_reset = GENMASK(AR40XX_NUM_PHYS - 1, 0); while (retries--) { /* 1ms should be plenty of time. * 802.3 spec allows for a max wait time of 500ms */ usleep_range(1000, 2000); for (i = 0; i < AR40XX_NUM_PHYS; i++) { int val; /* skip devices which have completed reset */ if (!(in_reset & BIT(i))) continue; val = mdiobus_read(bus, i, MII_BMCR); if (val < 0) continue; /* mark when phy is no longer in reset state */ if (!(val & BMCR_RESET)) in_reset &= ~BIT(i); } if (!in_reset) return; } dev_warn(&bus->dev, "Failed to reset all phys! (in_reset: 0x%x)\n", in_reset); } static void ar40xx_phy_init(struct ar40xx_priv *priv) { int i; struct mii_bus *bus; u16 val; bus = priv->mii_bus; for (i = 0; i < AR40XX_NUM_PORTS - 1; i++) { ar40xx_phy_dbg_read(priv, i, AR40XX_PHY_DEBUG_0, &val); val &= ~AR40XX_PHY_MANU_CTRL_EN; ar40xx_phy_dbg_write(priv, i, AR40XX_PHY_DEBUG_0, val); mdiobus_write(bus, i, MII_ADVERTISE, ADVERTISE_ALL | ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM); mdiobus_write(bus, i, MII_CTRL1000, ADVERTISE_1000FULL); mdiobus_write(bus, i, MII_BMCR, BMCR_RESET | BMCR_ANENABLE); } ar40xx_phy_poll_reset(priv); } static void ar40xx_port_phy_linkdown(struct ar40xx_priv *priv) { struct mii_bus *bus; int i; u16 val; bus = priv->mii_bus; for (i = 0; i < AR40XX_NUM_PORTS - 1; i++) { mdiobus_write(bus, i, MII_CTRL1000, 0); mdiobus_write(bus, i, MII_ADVERTISE, 0); mdiobus_write(bus, i, MII_BMCR, BMCR_RESET | BMCR_ANENABLE); ar40xx_phy_dbg_read(priv, i, AR40XX_PHY_DEBUG_0, &val); val |= AR40XX_PHY_MANU_CTRL_EN; ar40xx_phy_dbg_write(priv, i, AR40XX_PHY_DEBUG_0, val); /* disable transmit */ ar40xx_phy_dbg_read(priv, i, AR40XX_PHY_DEBUG_2, &val); val &= 0xf00f; ar40xx_phy_dbg_write(priv, i, AR40XX_PHY_DEBUG_2, val); } } static void ar40xx_set_mirror_regs(struct ar40xx_priv *priv) { int port; /* reset all mirror registers */ ar40xx_rmw(priv, AR40XX_REG_FWD_CTRL0, AR40XX_FWD_CTRL0_MIRROR_PORT, (0xF << AR40XX_FWD_CTRL0_MIRROR_PORT_S)); for (port = 0; port < AR40XX_NUM_PORTS; port++) { ar40xx_rmw(priv, AR40XX_REG_PORT_LOOKUP(port), AR40XX_PORT_LOOKUP_ING_MIRROR_EN, 0); ar40xx_rmw(priv, AR40XX_REG_PORT_HOL_CTRL1(port), AR40XX_PORT_HOL_CTRL1_EG_MIRROR_EN, 0); } /* now enable mirroring if necessary */ if (priv->source_port >= AR40XX_NUM_PORTS || priv->monitor_port >= AR40XX_NUM_PORTS || priv->source_port == priv->monitor_port) { return; } ar40xx_rmw(priv, AR40XX_REG_FWD_CTRL0, AR40XX_FWD_CTRL0_MIRROR_PORT, (priv->monitor_port << AR40XX_FWD_CTRL0_MIRROR_PORT_S)); if (priv->mirror_rx) ar40xx_rmw(priv, AR40XX_REG_PORT_LOOKUP(priv->source_port), 0, AR40XX_PORT_LOOKUP_ING_MIRROR_EN); if (priv->mirror_tx) ar40xx_rmw(priv, AR40XX_REG_PORT_HOL_CTRL1(priv->source_port), 0, AR40XX_PORT_HOL_CTRL1_EG_MIRROR_EN); } static int ar40xx_sw_get_ports(struct switch_dev *dev, struct switch_val *val) { struct ar40xx_priv *priv = swdev_to_ar40xx(dev); u8 ports = priv->vlan_table[val->port_vlan]; int i; val->len = 0; for (i = 0; i < dev->ports; i++) { struct switch_port *p; if (!(ports & BIT(i))) continue; p = &val->value.ports[val->len++]; p->id = i; if ((priv->vlan_tagged & BIT(i)) || (priv->pvid[i] != val->port_vlan)) p->flags = BIT(SWITCH_PORT_FLAG_TAGGED); else p->flags = 0; } return 0; } static int ar40xx_sw_set_ports(struct switch_dev *dev, struct switch_val *val) { struct ar40xx_priv *priv = swdev_to_ar40xx(dev); u8 *vt = &priv->vlan_table[val->port_vlan]; int i; *vt = 0; for (i = 0; i < val->len; i++) { struct switch_port *p = &val->value.ports[i]; if (p->flags & BIT(SWITCH_PORT_FLAG_TAGGED)) { if (val->port_vlan == priv->pvid[p->id]) priv->vlan_tagged |= BIT(p->id); } else { priv->vlan_tagged &= ~BIT(p->id); priv->pvid[p->id] = val->port_vlan; } *vt |= BIT(p->id); } return 0; } static int ar40xx_reg_wait(struct ar40xx_priv *priv, u32 reg, u32 mask, u32 val, unsigned timeout) { int i; for (i = 0; i < timeout; i++) { u32 t; t = ar40xx_read(priv, reg); if ((t & mask) == val) return 0; usleep_range(1000, 2000); } return -ETIMEDOUT; } static int ar40xx_mib_op(struct ar40xx_priv *priv, u32 op) { int ret; lockdep_assert_held(&priv->mib_lock); /* Capture the hardware statistics for all ports */ ar40xx_rmw(priv, AR40XX_REG_MIB_FUNC, AR40XX_MIB_FUNC, (op << AR40XX_MIB_FUNC_S)); /* Wait for the capturing to complete. */ ret = ar40xx_reg_wait(priv, AR40XX_REG_MIB_FUNC, AR40XX_MIB_BUSY, 0, 10); return ret; } static void ar40xx_mib_fetch_port_stat(struct ar40xx_priv *priv, int port, bool flush) { unsigned int base; u64 *mib_stats; int i; u32 num_mibs = ARRAY_SIZE(ar40xx_mibs); WARN_ON(port >= priv->dev.ports); lockdep_assert_held(&priv->mib_lock); base = AR40XX_REG_PORT_STATS_START + AR40XX_REG_PORT_STATS_LEN * port; mib_stats = &priv->mib_stats[port * num_mibs]; if (flush) { u32 len; len = num_mibs * sizeof(*mib_stats); memset(mib_stats, 0, len); return; } for (i = 0; i < num_mibs; i++) { const struct ar40xx_mib_desc *mib; u64 t; mib = &ar40xx_mibs[i]; t = ar40xx_read(priv, base + mib->offset); if (mib->size == 2) { u64 hi; hi = ar40xx_read(priv, base + mib->offset + 4); t |= hi << 32; } mib_stats[i] += t; } } static int ar40xx_mib_capture(struct ar40xx_priv *priv) { return ar40xx_mib_op(priv, AR40XX_MIB_FUNC_CAPTURE); } static int ar40xx_mib_flush(struct ar40xx_priv *priv) { return ar40xx_mib_op(priv, AR40XX_MIB_FUNC_FLUSH); } static int ar40xx_sw_set_reset_mibs(struct switch_dev *dev, const struct switch_attr *attr, struct switch_val *val) { struct ar40xx_priv *priv = swdev_to_ar40xx(dev); unsigned int len; int ret; u32 num_mibs = ARRAY_SIZE(ar40xx_mibs); mutex_lock(&priv->mib_lock); len = priv->dev.ports * num_mibs * sizeof(*priv->mib_stats); memset(priv->mib_stats, 0, len); ret = ar40xx_mib_flush(priv); mutex_unlock(&priv->mib_lock); return ret; } static int ar40xx_sw_set_vlan(struct switch_dev *dev, const struct switch_attr *attr, struct switch_val *val) { struct ar40xx_priv *priv = swdev_to_ar40xx(dev); priv->vlan = !!val->value.i; return 0; } static int ar40xx_sw_get_vlan(struct switch_dev *dev, const struct switch_attr *attr, struct switch_val *val) { struct ar40xx_priv *priv = swdev_to_ar40xx(dev); val->value.i = priv->vlan; return 0; } static int ar40xx_sw_set_mirror_rx_enable(struct switch_dev *dev, const struct switch_attr *attr, struct switch_val *val) { struct ar40xx_priv *priv = swdev_to_ar40xx(dev); mutex_lock(&priv->reg_mutex); priv->mirror_rx = !!val->value.i; ar40xx_set_mirror_regs(priv); mutex_unlock(&priv->reg_mutex); return 0; } static int ar40xx_sw_get_mirror_rx_enable(struct switch_dev *dev, const struct switch_attr *attr, struct switch_val *val) { struct ar40xx_priv *priv = swdev_to_ar40xx(dev); mutex_lock(&priv->reg_mutex); val->value.i = priv->mirror_rx; mutex_unlock(&priv->reg_mutex); return 0; } static int ar40xx_sw_set_mirror_tx_enable(struct switch_dev *dev, const struct switch_attr *attr, struct switch_val *val) { struct ar40xx_priv *priv = swdev_to_ar40xx(dev); mutex_lock(&priv->reg_mutex); priv->mirror_tx = !!val->value.i; ar40xx_set_mirror_regs(priv); mutex_unlock(&priv->reg_mutex); return 0; } static int ar40xx_sw_get_mirror_tx_enable(struct switch_dev *dev, const struct switch_attr *attr, struct switch_val *val) { struct ar40xx_priv *priv = swdev_to_ar40xx(dev); mutex_lock(&priv->reg_mutex); val->value.i = priv->mirror_tx; mutex_unlock(&priv->reg_mutex); return 0; } static int ar40xx_sw_set_mirror_monitor_port(struct switch_dev *dev, const struct switch_attr *attr, struct switch_val *val) { struct ar40xx_priv *priv = swdev_to_ar40xx(dev); mutex_lock(&priv->reg_mutex); priv->monitor_port = val->value.i; ar40xx_set_mirror_regs(priv); mutex_unlock(&priv->reg_mutex); return 0; } static int ar40xx_sw_get_mirror_monitor_port(struct switch_dev *dev, const struct switch_attr *attr, struct switch_val *val) { struct ar40xx_priv *priv = swdev_to_ar40xx(dev); mutex_lock(&priv->reg_mutex); val->value.i = priv->monitor_port; mutex_unlock(&priv->reg_mutex); return 0; } static int ar40xx_sw_set_mirror_source_port(struct switch_dev *dev, const struct switch_attr *attr, struct switch_val *val) { struct ar40xx_priv *priv = swdev_to_ar40xx(dev); mutex_lock(&priv->reg_mutex); priv->source_port = val->value.i; ar40xx_set_mirror_regs(priv); mutex_unlock(&priv->reg_mutex); return 0; } static int ar40xx_sw_get_mirror_source_port(struct switch_dev *dev, const struct switch_attr *attr, struct switch_val *val) { struct ar40xx_priv *priv = swdev_to_ar40xx(dev); mutex_lock(&priv->reg_mutex); val->value.i = priv->source_port; mutex_unlock(&priv->reg_mutex); return 0; } static int ar40xx_sw_set_linkdown(struct switch_dev *dev, const struct switch_attr *attr, struct switch_val *val) { struct ar40xx_priv *priv = swdev_to_ar40xx(dev); if (val->value.i == 1) ar40xx_port_phy_linkdown(priv); else ar40xx_phy_init(priv); return 0; } static int ar40xx_sw_set_port_reset_mib(struct switch_dev *dev, const struct switch_attr *attr, struct switch_val *val) { struct ar40xx_priv *priv = swdev_to_ar40xx(dev); int port; int ret; port = val->port_vlan; if (port >= dev->ports) return -EINVAL; mutex_lock(&priv->mib_lock); ret = ar40xx_mib_capture(priv); if (ret) goto unlock; ar40xx_mib_fetch_port_stat(priv, port, true); unlock: mutex_unlock(&priv->mib_lock); return ret; } static int ar40xx_sw_get_port_mib(struct switch_dev *dev, const struct switch_attr *attr, struct switch_val *val) { struct ar40xx_priv *priv = swdev_to_ar40xx(dev); u64 *mib_stats; int port; int ret; char *buf = priv->buf; int i, len = 0; u32 num_mibs = ARRAY_SIZE(ar40xx_mibs); port = val->port_vlan; if (port >= dev->ports) return -EINVAL; mutex_lock(&priv->mib_lock); ret = ar40xx_mib_capture(priv); if (ret) goto unlock; ar40xx_mib_fetch_port_stat(priv, port, false); len += snprintf(buf + len, sizeof(priv->buf) - len, "Port %d MIB counters\n", port); mib_stats = &priv->mib_stats[port * num_mibs]; for (i = 0; i < num_mibs; i++) len += snprintf(buf + len, sizeof(priv->buf) - len, "%-12s: %llu\n", ar40xx_mibs[i].name, mib_stats[i]); val->value.s = buf; val->len = len; unlock: mutex_unlock(&priv->mib_lock); return ret; } static int ar40xx_sw_set_vid(struct switch_dev *dev, const struct switch_attr *attr, struct switch_val *val) { struct ar40xx_priv *priv = swdev_to_ar40xx(dev); priv->vlan_id[val->port_vlan] = val->value.i; return 0; } static int ar40xx_sw_get_vid(struct switch_dev *dev, const struct switch_attr *attr, struct switch_val *val) { struct ar40xx_priv *priv = swdev_to_ar40xx(dev); val->value.i = priv->vlan_id[val->port_vlan]; return 0; } static int ar40xx_sw_get_pvid(struct switch_dev *dev, int port, int *vlan) { struct ar40xx_priv *priv = swdev_to_ar40xx(dev); *vlan = priv->pvid[port]; return 0; } static int ar40xx_sw_set_pvid(struct switch_dev *dev, int port, int vlan) { struct ar40xx_priv *priv = swdev_to_ar40xx(dev); /* make sure no invalid PVIDs get set */ if (vlan >= dev->vlans) return -EINVAL; priv->pvid[port] = vlan; return 0; } static void ar40xx_read_port_link(struct ar40xx_priv *priv, int port, struct switch_port_link *link) { u32 status; u32 speed; memset(link, 0, sizeof(*link)); status = ar40xx_read(priv, AR40XX_REG_PORT_STATUS(port)); link->aneg = !!(status & AR40XX_PORT_AUTO_LINK_EN); if (link->aneg || (port != AR40XX_PORT_CPU)) link->link = !!(status & AR40XX_PORT_STATUS_LINK_UP); else link->link = true; if (!link->link) return; link->duplex = !!(status & AR40XX_PORT_DUPLEX); link->tx_flow = !!(status & AR40XX_PORT_STATUS_TXFLOW); link->rx_flow = !!(status & AR40XX_PORT_STATUS_RXFLOW); speed = (status & AR40XX_PORT_SPEED) >> AR40XX_PORT_STATUS_SPEED_S; switch (speed) { case AR40XX_PORT_SPEED_10M: link->speed = SWITCH_PORT_SPEED_10; break; case AR40XX_PORT_SPEED_100M: link->speed = SWITCH_PORT_SPEED_100; break; case AR40XX_PORT_SPEED_1000M: link->speed = SWITCH_PORT_SPEED_1000; break; default: link->speed = SWITCH_PORT_SPEED_UNKNOWN; break; } } static int ar40xx_sw_get_port_link(struct switch_dev *dev, int port, struct switch_port_link *link) { struct ar40xx_priv *priv = swdev_to_ar40xx(dev); ar40xx_read_port_link(priv, port, link); return 0; } static const struct switch_attr ar40xx_sw_attr_globals[] = { { .type = SWITCH_TYPE_INT, .name = "enable_vlan", .description = "Enable VLAN mode", .set = ar40xx_sw_set_vlan, .get = ar40xx_sw_get_vlan, .max = 1 }, { .type = SWITCH_TYPE_NOVAL, .name = "reset_mibs", .description = "Reset all MIB counters", .set = ar40xx_sw_set_reset_mibs, }, { .type = SWITCH_TYPE_INT, .name = "enable_mirror_rx", .description = "Enable mirroring of RX packets", .set = ar40xx_sw_set_mirror_rx_enable, .get = ar40xx_sw_get_mirror_rx_enable, .max = 1 }, { .type = SWITCH_TYPE_INT, .name = "enable_mirror_tx", .description = "Enable mirroring of TX packets", .set = ar40xx_sw_set_mirror_tx_enable, .get = ar40xx_sw_get_mirror_tx_enable, .max = 1 }, { .type = SWITCH_TYPE_INT, .name = "mirror_monitor_port", .description = "Mirror monitor port", .set = ar40xx_sw_set_mirror_monitor_port, .get = ar40xx_sw_get_mirror_monitor_port, .max = AR40XX_NUM_PORTS - 1 }, { .type = SWITCH_TYPE_INT, .name = "mirror_source_port", .description = "Mirror source port", .set = ar40xx_sw_set_mirror_source_port, .get = ar40xx_sw_get_mirror_source_port, .max = AR40XX_NUM_PORTS - 1 }, { .type = SWITCH_TYPE_INT, .name = "linkdown", .description = "Link down all the PHYs", .set = ar40xx_sw_set_linkdown, .max = 1 }, }; static const struct switch_attr ar40xx_sw_attr_port[] = { { .type = SWITCH_TYPE_NOVAL, .name = "reset_mib", .description = "Reset single port MIB counters", .set = ar40xx_sw_set_port_reset_mib, }, { .type = SWITCH_TYPE_STRING, .name = "mib", .description = "Get port's MIB counters", .set = NULL, .get = ar40xx_sw_get_port_mib, }, }; const struct switch_attr ar40xx_sw_attr_vlan[] = { { .type = SWITCH_TYPE_INT, .name = "vid", .description = "VLAN ID (0-4094)", .set = ar40xx_sw_set_vid, .get = ar40xx_sw_get_vid, .max = 4094, }, }; /* End of swconfig support */ static int ar40xx_wait_bit(struct ar40xx_priv *priv, int reg, u32 mask, u32 val) { int timeout = 20; u32 t; while (1) { t = ar40xx_read(priv, reg); if ((t & mask) == val) return 0; if (timeout-- <= 0) break; usleep_range(10, 20); } pr_err("ar40xx: timeout for reg %08x: %08x & %08x != %08x\n", (unsigned int)reg, t, mask, val); return -ETIMEDOUT; } static int ar40xx_atu_flush(struct ar40xx_priv *priv) { int ret; ret = ar40xx_wait_bit(priv, AR40XX_REG_ATU_FUNC, AR40XX_ATU_FUNC_BUSY, 0); if (!ret) ar40xx_write(priv, AR40XX_REG_ATU_FUNC, AR40XX_ATU_FUNC_OP_FLUSH | AR40XX_ATU_FUNC_BUSY); return ret; } static void ar40xx_ess_reset(struct ar40xx_priv *priv) { reset_control_assert(priv->ess_rst); mdelay(10); reset_control_deassert(priv->ess_rst); /* Waiting for all inner tables init done. * It cost 5~10ms. */ mdelay(10); pr_info("ESS reset ok!\n"); } /* Start of psgmii self test */ static void ar40xx_malibu_psgmii_ess_reset(struct ar40xx_priv *priv) { u32 n; struct mii_bus *bus = priv->mii_bus; /* reset phy psgmii */ /* fix phy psgmii RX 20bit */ mdiobus_write(bus, 5, 0x0, 0x005b); /* reset phy psgmii */ mdiobus_write(bus, 5, 0x0, 0x001b); /* release reset phy psgmii */ mdiobus_write(bus, 5, 0x0, 0x005b); for (n = 0; n < AR40XX_PSGMII_CALB_NUM; n++) { u16 status; status = ar40xx_phy_mmd_read(priv, 5, 1, 0x28); if (status & BIT(0)) break; /* Polling interval to check PSGMII PLL in malibu is ready * the worst time is 8.67ms * for 25MHz reference clock * [512+(128+2048)*49]*80ns+100us */ mdelay(2); } /*check malibu psgmii calibration done end..*/ /*freeze phy psgmii RX CDR*/ mdiobus_write(bus, 5, 0x1a, 0x2230); ar40xx_ess_reset(priv); /*check psgmii calibration done start*/ for (n = 0; n < AR40XX_PSGMII_CALB_NUM; n++) { u32 status; status = ar40xx_psgmii_read(priv, 0xa0); if (status & BIT(0)) break; /* Polling interval to check PSGMII PLL in ESS is ready */ mdelay(2); } /* check dakota psgmii calibration done end..*/ /* relesae phy psgmii RX CDR */ mdiobus_write(bus, 5, 0x1a, 0x3230); /* release phy psgmii RX 20bit */ mdiobus_write(bus, 5, 0x0, 0x005f); } static void ar40xx_psgmii_single_phy_testing(struct ar40xx_priv *priv, int phy) { int j; u32 tx_ok, tx_error; u32 rx_ok, rx_error; u32 tx_ok_high16; u32 rx_ok_high16; u32 tx_all_ok, rx_all_ok; struct mii_bus *bus = priv->mii_bus; mdiobus_write(bus, phy, 0x0, 0x9000); mdiobus_write(bus, phy, 0x0, 0x4140); for (j = 0; j < AR40XX_PSGMII_CALB_NUM; j++) { u16 status; status = mdiobus_read(bus, phy, 0x11); if (status & AR40XX_PHY_SPEC_STATUS_LINK) break; /* the polling interval to check if the PHY link up or not * maxwait_timer: 750 ms +/-10 ms * minwait_timer : 1 us +/- 0.1us * time resides in minwait_timer ~ maxwait_timer * see IEEE 802.3 section 40.4.5.2 */ mdelay(8); } /* enable check */ ar40xx_phy_mmd_write(priv, phy, 7, 0x8029, 0x0000); ar40xx_phy_mmd_write(priv, phy, 7, 0x8029, 0x0003); /* start traffic */ ar40xx_phy_mmd_write(priv, phy, 7, 0x8020, 0xa000); /* wait for all traffic end * 4096(pkt num)*1524(size)*8ns(125MHz)=49.9ms */ mdelay(50); /* check counter */ tx_ok = ar40xx_phy_mmd_read(priv, phy, 7, 0x802e); tx_ok_high16 = ar40xx_phy_mmd_read(priv, phy, 7, 0x802d); tx_error = ar40xx_phy_mmd_read(priv, phy, 7, 0x802f); rx_ok = ar40xx_phy_mmd_read(priv, phy, 7, 0x802b); rx_ok_high16 = ar40xx_phy_mmd_read(priv, phy, 7, 0x802a); rx_error = ar40xx_phy_mmd_read(priv, phy, 7, 0x802c); tx_all_ok = tx_ok + (tx_ok_high16 << 16); rx_all_ok = rx_ok + (rx_ok_high16 << 16); if (tx_all_ok == 0x1000 && tx_error == 0) { /* success */ priv->phy_t_status &= (~BIT(phy)); } else { pr_info("PHY %d single test PSGMII issue happen!\n", phy); priv->phy_t_status |= BIT(phy); } mdiobus_write(bus, phy, 0x0, 0x1840); } static void ar40xx_psgmii_all_phy_testing(struct ar40xx_priv *priv) { int phy, j; struct mii_bus *bus = priv->mii_bus; mdiobus_write(bus, 0x1f, 0x0, 0x9000); mdiobus_write(bus, 0x1f, 0x0, 0x4140); for (j = 0; j < AR40XX_PSGMII_CALB_NUM; j++) { for (phy = 0; phy < AR40XX_NUM_PORTS - 1; phy++) { u16 status; status = mdiobus_read(bus, phy, 0x11); if (!(status & BIT(10))) break; } if (phy >= (AR40XX_NUM_PORTS - 1)) break; /* The polling interva to check if the PHY link up or not */ mdelay(8); } /* enable check */ ar40xx_phy_mmd_write(priv, 0x1f, 7, 0x8029, 0x0000); ar40xx_phy_mmd_write(priv, 0x1f, 7, 0x8029, 0x0003); /* start traffic */ ar40xx_phy_mmd_write(priv, 0x1f, 7, 0x8020, 0xa000); /* wait for all traffic end * 4096(pkt num)*1524(size)*8ns(125MHz)=49.9ms */ mdelay(50); for (phy = 0; phy < AR40XX_NUM_PORTS - 1; phy++) { u32 tx_ok, tx_error; u32 rx_ok, rx_error; u32 tx_ok_high16; u32 rx_ok_high16; u32 tx_all_ok, rx_all_ok; /* check counter */ tx_ok = ar40xx_phy_mmd_read(priv, phy, 7, 0x802e); tx_ok_high16 = ar40xx_phy_mmd_read(priv, phy, 7, 0x802d); tx_error = ar40xx_phy_mmd_read(priv, phy, 7, 0x802f); rx_ok = ar40xx_phy_mmd_read(priv, phy, 7, 0x802b); rx_ok_high16 = ar40xx_phy_mmd_read(priv, phy, 7, 0x802a); rx_error = ar40xx_phy_mmd_read(priv, phy, 7, 0x802c); tx_all_ok = tx_ok + (tx_ok_high16<<16); rx_all_ok = rx_ok + (rx_ok_high16<<16); if (tx_all_ok == 0x1000 && tx_error == 0) { /* success */ priv->phy_t_status &= ~BIT(phy + 8); } else { pr_info("PHY%d test see issue!\n", phy); priv->phy_t_status |= BIT(phy + 8); } } pr_debug("PHY all test 0x%x \r\n", priv->phy_t_status); } void ar40xx_psgmii_self_test(struct ar40xx_priv *priv) { u32 i, phy; struct mii_bus *bus = priv->mii_bus; ar40xx_malibu_psgmii_ess_reset(priv); /* switch to access MII reg for copper */ mdiobus_write(bus, 4, 0x1f, 0x8500); for (phy = 0; phy < AR40XX_NUM_PORTS - 1; phy++) { /*enable phy mdio broadcast write*/ ar40xx_phy_mmd_write(priv, phy, 7, 0x8028, 0x801f); } /* force no link by power down */ mdiobus_write(bus, 0x1f, 0x0, 0x1840); /*packet number*/ ar40xx_phy_mmd_write(priv, 0x1f, 7, 0x8021, 0x1000); ar40xx_phy_mmd_write(priv, 0x1f, 7, 0x8062, 0x05e0); /*fix mdi status */ mdiobus_write(bus, 0x1f, 0x10, 0x6800); for (i = 0; i < AR40XX_PSGMII_CALB_NUM; i++) { priv->phy_t_status = 0; for (phy = 0; phy < AR40XX_NUM_PORTS - 1; phy++) { ar40xx_rmw(priv, AR40XX_REG_PORT_LOOKUP(phy + 1), AR40XX_PORT_LOOKUP_LOOPBACK, AR40XX_PORT_LOOKUP_LOOPBACK); } for (phy = 0; phy < AR40XX_NUM_PORTS - 1; phy++) ar40xx_psgmii_single_phy_testing(priv, phy); ar40xx_psgmii_all_phy_testing(priv); if (priv->phy_t_status) ar40xx_malibu_psgmii_ess_reset(priv); else break; } if (i >= AR40XX_PSGMII_CALB_NUM) pr_info("PSGMII cannot recover\n"); else pr_debug("PSGMII recovered after %d times reset\n", i); /* configuration recover */ /* packet number */ ar40xx_phy_mmd_write(priv, 0x1f, 7, 0x8021, 0x0); /* disable check */ ar40xx_phy_mmd_write(priv, 0x1f, 7, 0x8029, 0x0); /* disable traffic */ ar40xx_phy_mmd_write(priv, 0x1f, 7, 0x8020, 0x0); } void ar40xx_psgmii_self_test_clean(struct ar40xx_priv *priv) { int phy; struct mii_bus *bus = priv->mii_bus; /* disable phy internal loopback */ mdiobus_write(bus, 0x1f, 0x10, 0x6860); mdiobus_write(bus, 0x1f, 0x0, 0x9040); for (phy = 0; phy < AR40XX_NUM_PORTS - 1; phy++) { /* disable mac loop back */ ar40xx_rmw(priv, AR40XX_REG_PORT_LOOKUP(phy + 1), AR40XX_PORT_LOOKUP_LOOPBACK, 0); /* disable phy mdio broadcast write */ ar40xx_phy_mmd_write(priv, phy, 7, 0x8028, 0x001f); } /* clear fdb entry */ ar40xx_atu_flush(priv); } /* End of psgmii self test */ static void ar40xx_mac_mode_init(struct ar40xx_priv *priv, u32 mode) { if (mode == PORT_WRAPPER_PSGMII) { ar40xx_psgmii_write(priv, AR40XX_PSGMII_MODE_CONTROL, 0x2200); ar40xx_psgmii_write(priv, AR40XX_PSGMIIPHY_TX_CONTROL, 0x8380); } } static int ar40xx_cpuport_setup(struct ar40xx_priv *priv) { u32 t; t = AR40XX_PORT_STATUS_TXFLOW | AR40XX_PORT_STATUS_RXFLOW | AR40XX_PORT_TXHALF_FLOW | AR40XX_PORT_DUPLEX | AR40XX_PORT_SPEED_1000M; ar40xx_write(priv, AR40XX_REG_PORT_STATUS(0), t); usleep_range(10, 20); t |= AR40XX_PORT_TX_EN | AR40XX_PORT_RX_EN; ar40xx_write(priv, AR40XX_REG_PORT_STATUS(0), t); return 0; } static void ar40xx_init_port(struct ar40xx_priv *priv, int port) { u32 t; ar40xx_write(priv, AR40XX_REG_PORT_STATUS(port), 0); ar40xx_write(priv, AR40XX_REG_PORT_HEADER(port), 0); ar40xx_write(priv, AR40XX_REG_PORT_VLAN0(port), 0); t = AR40XX_PORT_VLAN1_OUT_MODE_UNTOUCH << AR40XX_PORT_VLAN1_OUT_MODE_S; ar40xx_write(priv, AR40XX_REG_PORT_VLAN1(port), t); t = AR40XX_PORT_LOOKUP_LEARN; t |= AR40XX_PORT_STATE_FORWARD << AR40XX_PORT_LOOKUP_STATE_S; ar40xx_write(priv, AR40XX_REG_PORT_LOOKUP(port), t); } void ar40xx_init_globals(struct ar40xx_priv *priv) { u32 t; /* enable CPU port and disable mirror port */ t = AR40XX_FWD_CTRL0_CPU_PORT_EN | AR40XX_FWD_CTRL0_MIRROR_PORT; ar40xx_write(priv, AR40XX_REG_FWD_CTRL0, t); /* forward multicast and broadcast frames to CPU */ t = (AR40XX_PORTS_ALL << AR40XX_FWD_CTRL1_UC_FLOOD_S) | (AR40XX_PORTS_ALL << AR40XX_FWD_CTRL1_MC_FLOOD_S) | (AR40XX_PORTS_ALL << AR40XX_FWD_CTRL1_BC_FLOOD_S); ar40xx_write(priv, AR40XX_REG_FWD_CTRL1, t); /* enable jumbo frames */ ar40xx_rmw(priv, AR40XX_REG_MAX_FRAME_SIZE, AR40XX_MAX_FRAME_SIZE_MTU, 9018 + 8 + 2); /* Enable MIB counters */ ar40xx_rmw(priv, AR40XX_REG_MODULE_EN, 0, AR40XX_MODULE_EN_MIB); /* Disable AZ */ ar40xx_write(priv, AR40XX_REG_EEE_CTRL, 0); /* set flowctrl thershold for cpu port */ t = (AR40XX_PORT0_FC_THRESH_ON_DFLT << 16) | AR40XX_PORT0_FC_THRESH_OFF_DFLT; ar40xx_write(priv, AR40XX_REG_PORT_FLOWCTRL_THRESH(0), t); } static int ar40xx_hw_init(struct ar40xx_priv *priv) { u32 i; ar40xx_ess_reset(priv); if (!priv->mii_bus) return -1; ar40xx_psgmii_self_test(priv); ar40xx_psgmii_self_test_clean(priv); ar40xx_mac_mode_init(priv, priv->mac_mode); for (i = 0; i < priv->dev.ports; i++) ar40xx_init_port(priv, i); ar40xx_init_globals(priv); return 0; } /* Start of qm error WAR */ static int ar40xx_force_1g_full(struct ar40xx_priv *priv, u32 port_id) { u32 reg; if (port_id < 0 || port_id > 6) return -1; reg = AR40XX_REG_PORT_STATUS(port_id); return ar40xx_rmw(priv, reg, AR40XX_PORT_SPEED, (AR40XX_PORT_SPEED_1000M | AR40XX_PORT_DUPLEX)); } static int ar40xx_get_qm_status(struct ar40xx_priv *priv, u32 port_id, u32 *qm_buffer_err) { u32 reg; u32 qm_val; if (port_id < 1 || port_id > 5) { *qm_buffer_err = 0; return -1; } if (port_id < 4) { reg = AR40XX_REG_QM_PORT0_3_QNUM; ar40xx_write(priv, AR40XX_REG_QM_DEBUG_ADDR, reg); qm_val = ar40xx_read(priv, AR40XX_REG_QM_DEBUG_VALUE); /* every 8 bits for each port */ *qm_buffer_err = (qm_val >> (port_id * 8)) & 0xFF; } else { reg = AR40XX_REG_QM_PORT4_6_QNUM; ar40xx_write(priv, AR40XX_REG_QM_DEBUG_ADDR, reg); qm_val = ar40xx_read(priv, AR40XX_REG_QM_DEBUG_VALUE); /* every 8 bits for each port */ *qm_buffer_err = (qm_val >> ((port_id-4) * 8)) & 0xFF; } return 0; } static void ar40xx_sw_mac_polling_task(struct ar40xx_priv *priv) { static int task_count; u32 i; u32 reg, value; u32 link, speed, duplex; u32 qm_buffer_err; u16 port_phy_status[AR40XX_NUM_PORTS]; static u32 qm_err_cnt[AR40XX_NUM_PORTS] = {0, 0, 0, 0, 0, 0}; static u32 link_cnt[AR40XX_NUM_PORTS] = {0, 0, 0, 0, 0, 0}; struct mii_bus *bus = NULL; if (!priv || !priv->mii_bus) return; bus = priv->mii_bus; ++task_count; for (i = 1; i < AR40XX_NUM_PORTS; ++i) { port_phy_status[i] = mdiobus_read(bus, i-1, AR40XX_PHY_SPEC_STATUS); speed = FIELD_GET(AR40XX_PHY_SPEC_STATUS_SPEED, port_phy_status[i]); link = FIELD_GET(AR40XX_PHY_SPEC_STATUS_LINK, port_phy_status[i]); duplex = FIELD_GET(AR40XX_PHY_SPEC_STATUS_DUPLEX, port_phy_status[i]); if (link != priv->ar40xx_port_old_link[i]) { ++link_cnt[i]; /* Up --> Down */ if ((priv->ar40xx_port_old_link[i] == AR40XX_PORT_LINK_UP) && (link == AR40XX_PORT_LINK_DOWN)) { /* LINK_EN disable(MAC force mode)*/ reg = AR40XX_REG_PORT_STATUS(i); ar40xx_rmw(priv, reg, AR40XX_PORT_AUTO_LINK_EN, 0); /* Check queue buffer */ qm_err_cnt[i] = 0; ar40xx_get_qm_status(priv, i, &qm_buffer_err); if (qm_buffer_err) { priv->ar40xx_port_qm_buf[i] = AR40XX_QM_NOT_EMPTY; } else { u16 phy_val = 0; priv->ar40xx_port_qm_buf[i] = AR40XX_QM_EMPTY; ar40xx_force_1g_full(priv, i); /* Ref:QCA8337 Datasheet,Clearing * MENU_CTRL_EN prevents phy to * stuck in 100BT mode when * bringing up the link */ ar40xx_phy_dbg_read(priv, i-1, AR40XX_PHY_DEBUG_0, &phy_val); phy_val &= (~AR40XX_PHY_MANU_CTRL_EN); ar40xx_phy_dbg_write(priv, i-1, AR40XX_PHY_DEBUG_0, phy_val); } priv->ar40xx_port_old_link[i] = link; } else if ((priv->ar40xx_port_old_link[i] == AR40XX_PORT_LINK_DOWN) && (link == AR40XX_PORT_LINK_UP)) { /* Down --> Up */ if (priv->port_link_up[i] < 1) { ++priv->port_link_up[i]; } else { /* Change port status */ reg = AR40XX_REG_PORT_STATUS(i); value = ar40xx_read(priv, reg); priv->port_link_up[i] = 0; value &= ~(AR40XX_PORT_DUPLEX | AR40XX_PORT_SPEED); value |= speed | (duplex ? BIT(6) : 0); ar40xx_write(priv, reg, value); /* clock switch need such time * to avoid glitch */ usleep_range(100, 200); value |= AR40XX_PORT_AUTO_LINK_EN; ar40xx_write(priv, reg, value); /* HW need such time to make sure link * stable before enable MAC */ usleep_range(100, 200); if (speed == AR40XX_PORT_SPEED_100M) { u16 phy_val = 0; /* Enable @100M, if down to 10M * clock will change smoothly */ ar40xx_phy_dbg_read(priv, i-1, 0, &phy_val); phy_val |= AR40XX_PHY_MANU_CTRL_EN; ar40xx_phy_dbg_write(priv, i-1, 0, phy_val); } priv->ar40xx_port_old_link[i] = link; } } } if (priv->ar40xx_port_qm_buf[i] == AR40XX_QM_NOT_EMPTY) { /* Check QM */ ar40xx_get_qm_status(priv, i, &qm_buffer_err); if (qm_buffer_err) { ++qm_err_cnt[i]; } else { priv->ar40xx_port_qm_buf[i] = AR40XX_QM_EMPTY; qm_err_cnt[i] = 0; ar40xx_force_1g_full(priv, i); } } } } static void ar40xx_qm_err_check_work_task(struct work_struct *work) { struct ar40xx_priv *priv = container_of(work, struct ar40xx_priv, qm_dwork.work); mutex_lock(&priv->qm_lock); ar40xx_sw_mac_polling_task(priv); mutex_unlock(&priv->qm_lock); schedule_delayed_work(&priv->qm_dwork, msecs_to_jiffies(AR40XX_QM_WORK_DELAY)); } static int ar40xx_qm_err_check_work_start(struct ar40xx_priv *priv) { mutex_init(&priv->qm_lock); INIT_DELAYED_WORK(&priv->qm_dwork, ar40xx_qm_err_check_work_task); schedule_delayed_work(&priv->qm_dwork, msecs_to_jiffies(AR40XX_QM_WORK_DELAY)); return 0; } /* End of qm error WAR */ static int ar40xx_vlan_init(struct ar40xx_priv *priv) { int port; unsigned long bmp; /* By default Enable VLAN */ priv->vlan = 1; priv->vlan_table[AR40XX_LAN_VLAN] = priv->cpu_bmp | priv->lan_bmp; priv->vlan_table[AR40XX_WAN_VLAN] = priv->cpu_bmp | priv->wan_bmp; priv->vlan_tagged = priv->cpu_bmp; bmp = priv->lan_bmp; for_each_set_bit(port, &bmp, AR40XX_NUM_PORTS) priv->pvid[port] = AR40XX_LAN_VLAN; bmp = priv->wan_bmp; for_each_set_bit(port, &bmp, AR40XX_NUM_PORTS) priv->pvid[port] = AR40XX_WAN_VLAN; return 0; } static void ar40xx_mib_work_func(struct work_struct *work) { struct ar40xx_priv *priv; int err; priv = container_of(work, struct ar40xx_priv, mib_work.work); mutex_lock(&priv->mib_lock); err = ar40xx_mib_capture(priv); if (err) goto next_port; ar40xx_mib_fetch_port_stat(priv, priv->mib_next_port, false); next_port: priv->mib_next_port++; if (priv->mib_next_port >= priv->dev.ports) priv->mib_next_port = 0; mutex_unlock(&priv->mib_lock); schedule_delayed_work(&priv->mib_work, msecs_to_jiffies(AR40XX_MIB_WORK_DELAY)); } static void ar40xx_setup_port(struct ar40xx_priv *priv, int port, u32 members) { u32 t; u32 egress, ingress; u32 pvid = priv->vlan_id[priv->pvid[port]]; if (priv->vlan) { egress = AR40XX_PORT_VLAN1_OUT_MODE_UNMOD; ingress = AR40XX_IN_SECURE; } else { egress = AR40XX_PORT_VLAN1_OUT_MODE_UNTOUCH; ingress = AR40XX_IN_PORT_ONLY; } t = pvid << AR40XX_PORT_VLAN0_DEF_SVID_S; t |= pvid << AR40XX_PORT_VLAN0_DEF_CVID_S; ar40xx_write(priv, AR40XX_REG_PORT_VLAN0(port), t); t = AR40XX_PORT_VLAN1_PORT_VLAN_PROP; t |= egress << AR40XX_PORT_VLAN1_OUT_MODE_S; ar40xx_write(priv, AR40XX_REG_PORT_VLAN1(port), t); t = members; t |= AR40XX_PORT_LOOKUP_LEARN; t |= ingress << AR40XX_PORT_LOOKUP_IN_MODE_S; t |= AR40XX_PORT_STATE_FORWARD << AR40XX_PORT_LOOKUP_STATE_S; ar40xx_write(priv, AR40XX_REG_PORT_LOOKUP(port), t); } static void ar40xx_vtu_op(struct ar40xx_priv *priv, u32 op, u32 val) { if (ar40xx_wait_bit(priv, AR40XX_REG_VTU_FUNC1, AR40XX_VTU_FUNC1_BUSY, 0)) return; if ((op & AR40XX_VTU_FUNC1_OP) == AR40XX_VTU_FUNC1_OP_LOAD) ar40xx_write(priv, AR40XX_REG_VTU_FUNC0, val); op |= AR40XX_VTU_FUNC1_BUSY; ar40xx_write(priv, AR40XX_REG_VTU_FUNC1, op); } static void ar40xx_vtu_load_vlan(struct ar40xx_priv *priv, u32 vid, u32 port_mask) { u32 op; u32 val; int i; op = AR40XX_VTU_FUNC1_OP_LOAD | (vid << AR40XX_VTU_FUNC1_VID_S); val = AR40XX_VTU_FUNC0_VALID | AR40XX_VTU_FUNC0_IVL; for (i = 0; i < AR40XX_NUM_PORTS; i++) { u32 mode; if ((port_mask & BIT(i)) == 0) mode = AR40XX_VTU_FUNC0_EG_MODE_NOT; else if (priv->vlan == 0) mode = AR40XX_VTU_FUNC0_EG_MODE_KEEP; else if ((priv->vlan_tagged & BIT(i)) || (priv->vlan_id[priv->pvid[i]] != vid)) mode = AR40XX_VTU_FUNC0_EG_MODE_TAG; else mode = AR40XX_VTU_FUNC0_EG_MODE_UNTAG; val |= mode << AR40XX_VTU_FUNC0_EG_MODE_S(i); } ar40xx_vtu_op(priv, op, val); } static void ar40xx_vtu_flush(struct ar40xx_priv *priv) { ar40xx_vtu_op(priv, AR40XX_VTU_FUNC1_OP_FLUSH, 0); } static int ar40xx_sw_hw_apply(struct switch_dev *dev) { struct ar40xx_priv *priv = swdev_to_ar40xx(dev); u8 portmask[AR40XX_NUM_PORTS]; int i, j; mutex_lock(&priv->reg_mutex); /* flush all vlan entries */ ar40xx_vtu_flush(priv); memset(portmask, 0, sizeof(portmask)); if (priv->vlan) { for (j = 0; j < AR40XX_MAX_VLANS; j++) { u8 vp = priv->vlan_table[j]; if (!vp) continue; for (i = 0; i < dev->ports; i++) { u8 mask = BIT(i); if (vp & mask) portmask[i] |= vp & ~mask; } ar40xx_vtu_load_vlan(priv, priv->vlan_id[j], priv->vlan_table[j]); } } else { /* 8021q vlan disabled */ for (i = 0; i < dev->ports; i++) { if (i == AR40XX_PORT_CPU) continue; portmask[i] = BIT(AR40XX_PORT_CPU); portmask[AR40XX_PORT_CPU] |= BIT(i); } } /* update the port destination mask registers and tag settings */ for (i = 0; i < dev->ports; i++) ar40xx_setup_port(priv, i, portmask[i]); ar40xx_set_mirror_regs(priv); mutex_unlock(&priv->reg_mutex); return 0; } static int ar40xx_sw_reset_switch(struct switch_dev *dev) { struct ar40xx_priv *priv = swdev_to_ar40xx(dev); int i, rv; mutex_lock(&priv->reg_mutex); memset(&priv->vlan, 0, sizeof(struct ar40xx_priv) - offsetof(struct ar40xx_priv, vlan)); for (i = 0; i < AR40XX_MAX_VLANS; i++) priv->vlan_id[i] = i; ar40xx_vlan_init(priv); priv->mirror_rx = false; priv->mirror_tx = false; priv->source_port = 0; priv->monitor_port = 0; mutex_unlock(&priv->reg_mutex); rv = ar40xx_sw_hw_apply(dev); return rv; } static int ar40xx_start(struct ar40xx_priv *priv) { int ret; ret = ar40xx_hw_init(priv); if (ret) return ret; ret = ar40xx_sw_reset_switch(&priv->dev); if (ret) return ret; /* at last, setup cpu port */ ret = ar40xx_cpuport_setup(priv); if (ret) return ret; schedule_delayed_work(&priv->mib_work, msecs_to_jiffies(AR40XX_MIB_WORK_DELAY)); ar40xx_qm_err_check_work_start(priv); return 0; } static const struct switch_dev_ops ar40xx_sw_ops = { .attr_global = { .attr = ar40xx_sw_attr_globals, .n_attr = ARRAY_SIZE(ar40xx_sw_attr_globals), }, .attr_port = { .attr = ar40xx_sw_attr_port, .n_attr = ARRAY_SIZE(ar40xx_sw_attr_port), }, .attr_vlan = { .attr = ar40xx_sw_attr_vlan, .n_attr = ARRAY_SIZE(ar40xx_sw_attr_vlan), }, .get_port_pvid = ar40xx_sw_get_pvid, .set_port_pvid = ar40xx_sw_set_pvid, .get_vlan_ports = ar40xx_sw_get_ports, .set_vlan_ports = ar40xx_sw_set_ports, .apply_config = ar40xx_sw_hw_apply, .reset_switch = ar40xx_sw_reset_switch, .get_port_link = ar40xx_sw_get_port_link, }; /* Platform driver probe function */ static int ar40xx_probe(struct platform_device *pdev) { struct device_node *switch_node; struct device_node *psgmii_node; struct device_node *mdio_node; const __be32 *mac_mode; struct clk *ess_clk; struct switch_dev *swdev; struct ar40xx_priv *priv; u32 len; u32 num_mibs; struct resource psgmii_base = {0}; struct resource switch_base = {0}; int ret; priv = devm_kzalloc(&pdev->dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; platform_set_drvdata(pdev, priv); ar40xx_priv = priv; switch_node = of_node_get(pdev->dev.of_node); if (of_address_to_resource(switch_node, 0, &switch_base) != 0) return -EIO; priv->hw_addr = devm_ioremap_resource(&pdev->dev, &switch_base); if (IS_ERR(priv->hw_addr)) { dev_err(&pdev->dev, "Failed to ioremap switch_base!\n"); return PTR_ERR(priv->hw_addr); } /*psgmii dts get*/ psgmii_node = of_find_node_by_name(NULL, "ess-psgmii"); if (!psgmii_node) { dev_err(&pdev->dev, "Failed to find ess-psgmii node!\n"); return -EINVAL; } if (of_address_to_resource(psgmii_node, 0, &psgmii_base) != 0) return -EIO; priv->psgmii_hw_addr = devm_ioremap_resource(&pdev->dev, &psgmii_base); if (IS_ERR(priv->psgmii_hw_addr)) { dev_err(&pdev->dev, "psgmii ioremap fail!\n"); return PTR_ERR(priv->psgmii_hw_addr); } mac_mode = of_get_property(switch_node, "switch_mac_mode", &len); if (!mac_mode) { dev_err(&pdev->dev, "Failed to read switch_mac_mode\n"); return -EINVAL; } priv->mac_mode = be32_to_cpup(mac_mode); ess_clk = of_clk_get_by_name(switch_node, "ess_clk"); if (ess_clk) clk_prepare_enable(ess_clk); priv->ess_rst = devm_reset_control_get(&pdev->dev, "ess_rst"); if (IS_ERR(priv->ess_rst)) { dev_err(&pdev->dev, "Failed to get ess_rst control!\n"); return PTR_ERR(priv->ess_rst); } if (of_property_read_u32(switch_node, "switch_cpu_bmp", &priv->cpu_bmp) || of_property_read_u32(switch_node, "switch_lan_bmp", &priv->lan_bmp) || of_property_read_u32(switch_node, "switch_wan_bmp", &priv->wan_bmp)) { dev_err(&pdev->dev, "Failed to read port properties\n"); return -EIO; } mutex_init(&priv->reg_mutex); mutex_init(&priv->mib_lock); INIT_DELAYED_WORK(&priv->mib_work, ar40xx_mib_work_func); /* register switch */ swdev = &priv->dev; mdio_node = of_find_compatible_node(NULL, NULL, "qcom,ipq4019-mdio"); if (!mdio_node) { dev_err(&pdev->dev, "Probe failed - Cannot find mdio node by phandle!\n"); ret = -ENODEV; goto err_missing_phy; } priv->mii_bus = of_mdio_find_bus(mdio_node); if (priv->mii_bus == NULL) { dev_err(&pdev->dev, "Probe failed - Missing PHYs!\n"); ret = -ENODEV; goto err_missing_phy; } swdev->alias = dev_name(&priv->mii_bus->dev); swdev->cpu_port = AR40XX_PORT_CPU; swdev->name = "QCA AR40xx"; swdev->vlans = AR40XX_MAX_VLANS; swdev->ports = AR40XX_NUM_PORTS; swdev->ops = &ar40xx_sw_ops; ret = register_switch(swdev, NULL); if (ret < 0) { dev_err(&pdev->dev, "Switch registration failed!\n"); return ret; } num_mibs = ARRAY_SIZE(ar40xx_mibs); len = priv->dev.ports * num_mibs * sizeof(*priv->mib_stats); priv->mib_stats = devm_kzalloc(&pdev->dev, len, GFP_KERNEL); if (!priv->mib_stats) { ret = -ENOMEM; goto err_unregister_switch; } ar40xx_start(priv); return 0; err_unregister_switch: unregister_switch(&priv->dev); err_missing_phy: platform_set_drvdata(pdev, NULL); return ret; } static int ar40xx_remove(struct platform_device *pdev) { struct ar40xx_priv *priv = platform_get_drvdata(pdev); cancel_delayed_work_sync(&priv->qm_dwork); cancel_delayed_work_sync(&priv->mib_work); unregister_switch(&priv->dev); return 0; } static const struct of_device_id ar40xx_of_mtable[] = { {.compatible = "qcom,ess-switch" }, {} }; struct platform_driver ar40xx_drv = { .probe = ar40xx_probe, .remove = ar40xx_remove, .driver = { .name = "ar40xx", .of_match_table = ar40xx_of_mtable, }, }; module_platform_driver(ar40xx_drv); MODULE_DESCRIPTION("IPQ40XX ESS driver"); MODULE_LICENSE("Dual BSD/GPL");