// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (c) 2020 Sartura Ltd. * * Author: Robert Marko * * Qualcomm QCA8072 and QCA8075 PHY driver */ #include #include #include #include #include #if LINUX_VERSION_CODE >= KERNEL_VERSION(5,8,0) #include #endif #include #include #include #define PHY_ID_QCA8072 0x004dd0b2 #define PHY_ID_QCA8075 0x004dd0b1 #define PHY_ID_QCA807X_PSGMII 0x06820805 /* Downshift */ #define QCA807X_SMARTSPEED_EN BIT(5) #define QCA807X_SMARTSPEED_RETRY_LIMIT_MASK GENMASK(4, 2) #define QCA807X_SMARTSPEED_RETRY_LIMIT_DEFAULT 5 #define QCA807X_SMARTSPEED_RETRY_LIMIT_MIN 2 #define QCA807X_SMARTSPEED_RETRY_LIMIT_MAX 9 /* Cable diagnostic test (CDT) */ #define QCA807X_CDT 0x16 #define QCA807X_CDT_ENABLE BIT(15) #define QCA807X_CDT_ENABLE_INTER_PAIR_SHORT BIT(13) #define QCA807X_CDT_STATUS BIT(11) #define QCA807X_CDT_MMD3_STATUS 0x8064 #define QCA807X_CDT_MDI0_STATUS_MASK GENMASK(15, 12) #define QCA807X_CDT_MDI1_STATUS_MASK GENMASK(11, 8) #define QCA807X_CDT_MDI2_STATUS_MASK GENMASK(7, 4) #define QCA807X_CDT_MDI3_STATUS_MASK GENMASK(3, 0) #define QCA807X_CDT_RESULTS_INVALID 0x0 #define QCA807X_CDT_RESULTS_OK 0x1 #define QCA807X_CDT_RESULTS_OPEN 0x2 #define QCA807X_CDT_RESULTS_SAME_SHORT 0x3 #define QCA807X_CDT_RESULTS_CROSS_SHORT_WITH_MDI1_SAME_OK 0x4 #define QCA807X_CDT_RESULTS_CROSS_SHORT_WITH_MDI2_SAME_OK 0x8 #define QCA807X_CDT_RESULTS_CROSS_SHORT_WITH_MDI3_SAME_OK 0xc #define QCA807X_CDT_RESULTS_CROSS_SHORT_WITH_MDI1_SAME_OPEN 0x6 #define QCA807X_CDT_RESULTS_CROSS_SHORT_WITH_MDI2_SAME_OPEN 0xa #define QCA807X_CDT_RESULTS_CROSS_SHORT_WITH_MDI3_SAME_OPEN 0xe #define QCA807X_CDT_RESULTS_CROSS_SHORT_WITH_MDI1_SAME_SHORT 0x7 #define QCA807X_CDT_RESULTS_CROSS_SHORT_WITH_MDI2_SAME_SHORT 0xb #define QCA807X_CDT_RESULTS_CROSS_SHORT_WITH_MDI3_SAME_SHORT 0xf #define QCA807X_CDT_RESULTS_BUSY 0x9 #define QCA807X_CDT_MMD3_MDI0_LENGTH 0x8065 #define QCA807X_CDT_MMD3_MDI1_LENGTH 0x8066 #define QCA807X_CDT_MMD3_MDI2_LENGTH 0x8067 #define QCA807X_CDT_MMD3_MDI3_LENGTH 0x8068 #define QCA807X_CDT_SAME_SHORT_LENGTH_MASK GENMASK(15, 8) #define QCA807X_CDT_CROSS_SHORT_LENGTH_MASK GENMASK(7, 0) #define QCA807X_CHIP_CONFIGURATION 0x1f #define QCA807X_BT_BX_REG_SEL BIT(15) #define QCA807X_BT_BX_REG_SEL_FIBER 0 #define QCA807X_BT_BX_REG_SEL_COPPER 1 #define QCA807X_CHIP_CONFIGURATION_MODE_CFG_MASK GENMASK(3, 0) #define QCA807X_CHIP_CONFIGURATION_MODE_QSGMII_SGMII 4 #define QCA807X_CHIP_CONFIGURATION_MODE_PSGMII_FIBER 3 #define QCA807X_CHIP_CONFIGURATION_MODE_PSGMII_ALL_COPPER 0 #define QCA807X_MEDIA_SELECT_STATUS 0x1a #define QCA807X_MEDIA_DETECTED_COPPER BIT(5) #define QCA807X_MEDIA_DETECTED_1000_BASE_X BIT(4) #define QCA807X_MEDIA_DETECTED_100_BASE_FX BIT(3) #define QCA807X_MMD7_FIBER_MODE_AUTO_DETECTION 0x807e #define QCA807X_MMD7_FIBER_MODE_AUTO_DETECTION_EN BIT(0) #define QCA807X_MMD7_1000BASE_T_POWER_SAVE_PER_CABLE_LENGTH 0x801a #define QCA807X_CONTROL_DAC_MASK GENMASK(2, 0) #define QCA807X_MMD7_LED_100N_1 0x8074 #define QCA807X_MMD7_LED_100N_2 0x8075 #define QCA807X_MMD7_LED_1000N_1 0x8076 #define QCA807X_MMD7_LED_1000N_2 0x8077 #define QCA807X_LED_TXACT_BLK_EN_2 BIT(10) #define QCA807X_LED_RXACT_BLK_EN_2 BIT(9) #define QCA807X_LED_GT_ON_EN_2 BIT(6) #define QCA807X_LED_HT_ON_EN_2 BIT(5) #define QCA807X_LED_BT_ON_EN_2 BIT(4) #define QCA807X_GPIO_FORCE_EN BIT(15) #define QCA807X_GPIO_FORCE_MODE_MASK GENMASK(14, 13) #define QCA807X_INTR_ENABLE 0x12 #define QCA807X_INTR_STATUS 0x13 #define QCA807X_INTR_ENABLE_AUTONEG_ERR BIT(15) #define QCA807X_INTR_ENABLE_SPEED_CHANGED BIT(14) #define QCA807X_INTR_ENABLE_DUPLEX_CHANGED BIT(13) #define QCA807X_INTR_ENABLE_LINK_FAIL BIT(11) #define QCA807X_INTR_ENABLE_LINK_SUCCESS BIT(10) #define QCA807X_FUNCTION_CONTROL 0x10 #define QCA807X_FC_MDI_CROSSOVER_MODE_MASK GENMASK(6, 5) #define QCA807X_FC_MDI_CROSSOVER_AUTO 3 #define QCA807X_FC_MDI_CROSSOVER_MANUAL_MDIX 1 #define QCA807X_FC_MDI_CROSSOVER_MANUAL_MDI 0 #define QCA807X_PHY_SPECIFIC_STATUS 0x11 #define QCA807X_SS_SPEED_AND_DUPLEX_RESOLVED BIT(11) #define QCA807X_SS_SPEED_MASK GENMASK(15, 14) #define QCA807X_SS_SPEED_1000 2 #define QCA807X_SS_SPEED_100 1 #define QCA807X_SS_SPEED_10 0 #define QCA807X_SS_DUPLEX BIT(13) #define QCA807X_SS_MDIX BIT(6) /* PSGMII PHY specific */ #define PSGMII_QSGMII_DRIVE_CONTROL_1 0xb #define PSGMII_QSGMII_TX_DRIVER_MASK GENMASK(7, 4) #define PSGMII_MODE_CTRL 0x6d #define PSGMII_MODE_CTRL_AZ_WORKAROUND_MASK BIT(0) #define PSGMII_MMD3_SERDES_CONTROL 0x805a struct qca807x_gpio_priv { struct phy_device *phy; }; static int qca807x_get_downshift(struct phy_device *phydev, u8 *data) { int val, cnt, enable; val = phy_read(phydev, MII_NWAYTEST); if (val < 0) return val; enable = FIELD_GET(QCA807X_SMARTSPEED_EN, val); cnt = FIELD_GET(QCA807X_SMARTSPEED_RETRY_LIMIT_MASK, val) + 2; *data = enable ? cnt : DOWNSHIFT_DEV_DISABLE; return 0; } static int qca807x_set_downshift(struct phy_device *phydev, u8 cnt) { int ret, val; if (cnt > QCA807X_SMARTSPEED_RETRY_LIMIT_MAX || (cnt < QCA807X_SMARTSPEED_RETRY_LIMIT_MIN && cnt != DOWNSHIFT_DEV_DISABLE)) return -EINVAL; if (!cnt) { ret = phy_clear_bits(phydev, MII_NWAYTEST, QCA807X_SMARTSPEED_EN); } else { val = QCA807X_SMARTSPEED_EN; val |= FIELD_PREP(QCA807X_SMARTSPEED_RETRY_LIMIT_MASK, cnt - 2); phy_modify(phydev, MII_NWAYTEST, QCA807X_SMARTSPEED_EN | QCA807X_SMARTSPEED_RETRY_LIMIT_MASK, val); } ret = genphy_soft_reset(phydev); return ret; } static int qca807x_get_tunable(struct phy_device *phydev, struct ethtool_tunable *tuna, void *data) { switch (tuna->id) { case ETHTOOL_PHY_DOWNSHIFT: return qca807x_get_downshift(phydev, data); default: return -EOPNOTSUPP; } } static int qca807x_set_tunable(struct phy_device *phydev, struct ethtool_tunable *tuna, const void *data) { switch (tuna->id) { case ETHTOOL_PHY_DOWNSHIFT: return qca807x_set_downshift(phydev, *(const u8 *)data); default: return -EOPNOTSUPP; } } #if LINUX_VERSION_CODE >= KERNEL_VERSION(5,8,0) static bool qca807x_distance_valid(int result) { switch (result) { case QCA807X_CDT_RESULTS_OPEN: case QCA807X_CDT_RESULTS_SAME_SHORT: case QCA807X_CDT_RESULTS_CROSS_SHORT_WITH_MDI1_SAME_OK: case QCA807X_CDT_RESULTS_CROSS_SHORT_WITH_MDI2_SAME_OK: case QCA807X_CDT_RESULTS_CROSS_SHORT_WITH_MDI3_SAME_OK: case QCA807X_CDT_RESULTS_CROSS_SHORT_WITH_MDI1_SAME_OPEN: case QCA807X_CDT_RESULTS_CROSS_SHORT_WITH_MDI2_SAME_OPEN: case QCA807X_CDT_RESULTS_CROSS_SHORT_WITH_MDI3_SAME_OPEN: case QCA807X_CDT_RESULTS_CROSS_SHORT_WITH_MDI1_SAME_SHORT: case QCA807X_CDT_RESULTS_CROSS_SHORT_WITH_MDI2_SAME_SHORT: case QCA807X_CDT_RESULTS_CROSS_SHORT_WITH_MDI3_SAME_SHORT: return true; } return false; } static int qca807x_report_length(struct phy_device *phydev, int pair, int result) { int length; int ret; ret = phy_read_mmd(phydev, MDIO_MMD_PCS, QCA807X_CDT_MMD3_MDI0_LENGTH + pair); if (ret < 0) return ret; switch (result) { case ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT: length = (FIELD_GET(QCA807X_CDT_SAME_SHORT_LENGTH_MASK, ret) * 800) / 10; break; case ETHTOOL_A_CABLE_RESULT_CODE_OPEN: case ETHTOOL_A_CABLE_RESULT_CODE_CROSS_SHORT: length = (FIELD_GET(QCA807X_CDT_CROSS_SHORT_LENGTH_MASK, ret) * 800) / 10; break; } ethnl_cable_test_fault_length(phydev, pair, length); return 0; } static int qca807x_cable_test_report_trans(int result) { switch (result) { case QCA807X_CDT_RESULTS_OK: return ETHTOOL_A_CABLE_RESULT_CODE_OK; case QCA807X_CDT_RESULTS_OPEN: return ETHTOOL_A_CABLE_RESULT_CODE_OPEN; case QCA807X_CDT_RESULTS_SAME_SHORT: return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT; case QCA807X_CDT_RESULTS_CROSS_SHORT_WITH_MDI1_SAME_OK: case QCA807X_CDT_RESULTS_CROSS_SHORT_WITH_MDI2_SAME_OK: case QCA807X_CDT_RESULTS_CROSS_SHORT_WITH_MDI3_SAME_OK: case QCA807X_CDT_RESULTS_CROSS_SHORT_WITH_MDI1_SAME_OPEN: case QCA807X_CDT_RESULTS_CROSS_SHORT_WITH_MDI2_SAME_OPEN: case QCA807X_CDT_RESULTS_CROSS_SHORT_WITH_MDI3_SAME_OPEN: case QCA807X_CDT_RESULTS_CROSS_SHORT_WITH_MDI1_SAME_SHORT: case QCA807X_CDT_RESULTS_CROSS_SHORT_WITH_MDI2_SAME_SHORT: case QCA807X_CDT_RESULTS_CROSS_SHORT_WITH_MDI3_SAME_SHORT: return ETHTOOL_A_CABLE_RESULT_CODE_CROSS_SHORT; default: return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC; } } static int qca807x_cable_test_report(struct phy_device *phydev) { int pair0, pair1, pair2, pair3; int ret; ret = phy_read_mmd(phydev, MDIO_MMD_PCS, QCA807X_CDT_MMD3_STATUS); if (ret < 0) return ret; pair0 = FIELD_GET(QCA807X_CDT_MDI0_STATUS_MASK, ret); pair1 = FIELD_GET(QCA807X_CDT_MDI1_STATUS_MASK, ret); pair2 = FIELD_GET(QCA807X_CDT_MDI2_STATUS_MASK, ret); pair3 = FIELD_GET(QCA807X_CDT_MDI3_STATUS_MASK, ret); ethnl_cable_test_result(phydev, ETHTOOL_A_CABLE_PAIR_A, qca807x_cable_test_report_trans(pair0)); ethnl_cable_test_result(phydev, ETHTOOL_A_CABLE_PAIR_B, qca807x_cable_test_report_trans(pair1)); ethnl_cable_test_result(phydev, ETHTOOL_A_CABLE_PAIR_C, qca807x_cable_test_report_trans(pair2)); ethnl_cable_test_result(phydev, ETHTOOL_A_CABLE_PAIR_D, qca807x_cable_test_report_trans(pair3)); if (qca807x_distance_valid(pair0)) qca807x_report_length(phydev, 0, qca807x_cable_test_report_trans(pair0)); if (qca807x_distance_valid(pair1)) qca807x_report_length(phydev, 1, qca807x_cable_test_report_trans(pair1)); if (qca807x_distance_valid(pair2)) qca807x_report_length(phydev, 2, qca807x_cable_test_report_trans(pair2)); if (qca807x_distance_valid(pair3)) qca807x_report_length(phydev, 3, qca807x_cable_test_report_trans(pair3)); return 0; } static int qca807x_cable_test_get_status(struct phy_device *phydev, bool *finished) { int val; *finished = false; val = phy_read(phydev, QCA807X_CDT); if (!((val & QCA807X_CDT_ENABLE) && (val & QCA807X_CDT_STATUS))) { *finished = true; return qca807x_cable_test_report(phydev); } return 0; } static int qca807x_cable_test_start(struct phy_device *phydev) { int val, ret; val = phy_read(phydev, QCA807X_CDT); /* Enable inter-pair short check as well */ val &= ~QCA807X_CDT_ENABLE_INTER_PAIR_SHORT; val |= QCA807X_CDT_ENABLE; ret = phy_write(phydev, QCA807X_CDT, val); return ret; } #endif #ifdef CONFIG_GPIOLIB static int qca807x_gpio_get_direction(struct gpio_chip *gc, unsigned int offset) { #if LINUX_VERSION_CODE >= KERNEL_VERSION(5,5,0) return GPIO_LINE_DIRECTION_OUT; #else return GPIOF_DIR_OUT; #endif } static int qca807x_gpio_get_reg(unsigned int offset) { return QCA807X_MMD7_LED_100N_2 + (offset % 2) * 2; } static int qca807x_gpio_get(struct gpio_chip *gc, unsigned int offset) { struct qca807x_gpio_priv *priv = gpiochip_get_data(gc); int val; val = phy_read_mmd(priv->phy, MDIO_MMD_AN, qca807x_gpio_get_reg(offset)); return FIELD_GET(QCA807X_GPIO_FORCE_MODE_MASK, val); } static void qca807x_gpio_set(struct gpio_chip *gc, unsigned int offset, int value) { struct qca807x_gpio_priv *priv = gpiochip_get_data(gc); int val; val = phy_read_mmd(priv->phy, MDIO_MMD_AN, qca807x_gpio_get_reg(offset)); val &= ~QCA807X_GPIO_FORCE_MODE_MASK; val |= QCA807X_GPIO_FORCE_EN; val |= FIELD_PREP(QCA807X_GPIO_FORCE_MODE_MASK, value); phy_write_mmd(priv->phy, MDIO_MMD_AN, qca807x_gpio_get_reg(offset), val); } static int qca807x_gpio_dir_out(struct gpio_chip *gc, unsigned int offset, int value) { qca807x_gpio_set(gc, offset, value); return 0; } static int qca807x_gpio(struct phy_device *phydev) { struct device *dev = &phydev->mdio.dev; struct qca807x_gpio_priv *priv; struct gpio_chip *gc; priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->phy = phydev; gc = devm_kzalloc(dev, sizeof(*gc), GFP_KERNEL); if (!gc) return -ENOMEM; gc->label = dev_name(dev); gc->base = -1; gc->ngpio = 2; gc->parent = dev; gc->owner = THIS_MODULE; gc->can_sleep = true; gc->get_direction = qca807x_gpio_get_direction; gc->direction_output = qca807x_gpio_dir_out; gc->get = qca807x_gpio_get; gc->set = qca807x_gpio_set; return devm_gpiochip_add_data(dev, gc, priv); } #endif static int qca807x_read_copper_status(struct phy_device *phydev) { int ss, err, old_link = phydev->link; /* Update the link, but return if there was an error */ err = genphy_update_link(phydev); if (err) return err; /* why bother the PHY if nothing can have changed */ if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link) return 0; phydev->speed = SPEED_UNKNOWN; phydev->duplex = DUPLEX_UNKNOWN; phydev->pause = 0; phydev->asym_pause = 0; err = genphy_read_lpa(phydev); if (err < 0) return err; /* Read the QCA807x PHY-Specific Status register copper page, * which indicates the speed and duplex that the PHY is actually * using, irrespective of whether we are in autoneg mode or not. */ ss = phy_read(phydev, QCA807X_PHY_SPECIFIC_STATUS); if (ss < 0) return ss; if (ss & QCA807X_SS_SPEED_AND_DUPLEX_RESOLVED) { int sfc; sfc = phy_read(phydev, QCA807X_FUNCTION_CONTROL); if (sfc < 0) return sfc; switch (FIELD_GET(QCA807X_SS_SPEED_MASK, ss)) { case QCA807X_SS_SPEED_10: phydev->speed = SPEED_10; break; case QCA807X_SS_SPEED_100: phydev->speed = SPEED_100; break; case QCA807X_SS_SPEED_1000: phydev->speed = SPEED_1000; break; } if (ss & QCA807X_SS_DUPLEX) phydev->duplex = DUPLEX_FULL; else phydev->duplex = DUPLEX_HALF; if (ss & QCA807X_SS_MDIX) phydev->mdix = ETH_TP_MDI_X; else phydev->mdix = ETH_TP_MDI; switch (FIELD_GET(QCA807X_FC_MDI_CROSSOVER_MODE_MASK, sfc)) { case QCA807X_FC_MDI_CROSSOVER_MANUAL_MDI: phydev->mdix_ctrl = ETH_TP_MDI; break; case QCA807X_FC_MDI_CROSSOVER_MANUAL_MDIX: phydev->mdix_ctrl = ETH_TP_MDI_X; break; case QCA807X_FC_MDI_CROSSOVER_AUTO: phydev->mdix_ctrl = ETH_TP_MDI_AUTO; break; } } if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) phy_resolve_aneg_pause(phydev); return 0; } static int qca807x_read_fiber_status(struct phy_device *phydev) { int ss, err, lpa, old_link = phydev->link; /* Update the link, but return if there was an error */ err = genphy_update_link(phydev); if (err) return err; /* why bother the PHY if nothing can have changed */ if (phydev->autoneg == AUTONEG_ENABLE && old_link && phydev->link) return 0; phydev->speed = SPEED_UNKNOWN; phydev->duplex = DUPLEX_UNKNOWN; phydev->pause = 0; phydev->asym_pause = 0; if (phydev->autoneg == AUTONEG_ENABLE && phydev->autoneg_complete) { lpa = phy_read(phydev, MII_LPA); if (lpa < 0) return lpa; linkmode_mod_bit(ETHTOOL_LINK_MODE_Autoneg_BIT, phydev->lp_advertising, lpa & LPA_LPACK); linkmode_mod_bit(ETHTOOL_LINK_MODE_1000baseX_Full_BIT, phydev->lp_advertising, lpa & LPA_1000XFULL); linkmode_mod_bit(ETHTOOL_LINK_MODE_Pause_BIT, phydev->lp_advertising, lpa & LPA_1000XPAUSE); linkmode_mod_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, phydev->lp_advertising, lpa & LPA_1000XPAUSE_ASYM); phy_resolve_aneg_linkmode(phydev); } /* Read the QCA807x PHY-Specific Status register fiber page, * which indicates the speed and duplex that the PHY is actually * using, irrespective of whether we are in autoneg mode or not. */ ss = phy_read(phydev, QCA807X_PHY_SPECIFIC_STATUS); if (ss < 0) return ss; if (ss & QCA807X_SS_SPEED_AND_DUPLEX_RESOLVED) { switch (FIELD_GET(QCA807X_SS_SPEED_MASK, ss)) { case QCA807X_SS_SPEED_100: phydev->speed = SPEED_100; break; case QCA807X_SS_SPEED_1000: phydev->speed = SPEED_1000; break; } if (ss & QCA807X_SS_DUPLEX) phydev->duplex = DUPLEX_FULL; else phydev->duplex = DUPLEX_HALF; } return 0; } static int qca807x_read_status(struct phy_device *phydev) { if (linkmode_test_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, phydev->supported)) { switch (phydev->port) { case PORT_FIBRE: return qca807x_read_fiber_status(phydev); case PORT_TP: return qca807x_read_copper_status(phydev); default: return -EINVAL; } } else return qca807x_read_copper_status(phydev); } static int qca807x_config_intr(struct phy_device *phydev) { int ret, val; val = phy_read(phydev, QCA807X_INTR_ENABLE); if (phydev->interrupts == PHY_INTERRUPT_ENABLED) { /* Check for combo port as it has fewer interrupts */ if (phy_read(phydev, QCA807X_CHIP_CONFIGURATION)) { val |= QCA807X_INTR_ENABLE_SPEED_CHANGED; val |= QCA807X_INTR_ENABLE_LINK_FAIL; val |= QCA807X_INTR_ENABLE_LINK_SUCCESS; } else { val |= QCA807X_INTR_ENABLE_AUTONEG_ERR; val |= QCA807X_INTR_ENABLE_SPEED_CHANGED; val |= QCA807X_INTR_ENABLE_DUPLEX_CHANGED; val |= QCA807X_INTR_ENABLE_LINK_FAIL; val |= QCA807X_INTR_ENABLE_LINK_SUCCESS; } ret = phy_write(phydev, QCA807X_INTR_ENABLE, val); } else { ret = phy_write(phydev, QCA807X_INTR_ENABLE, 0); } return ret; } #if LINUX_VERSION_CODE < KERNEL_VERSION(5,12,0) static int qca807x_ack_intr(struct phy_device *phydev) { int ret; ret = phy_read(phydev, QCA807X_INTR_STATUS); return (ret < 0) ? ret : 0; } #else static irqreturn_t qca807x_handle_interrupt(struct phy_device *phydev) { int irq_status, int_enabled; irq_status = phy_read(phydev, QCA807X_INTR_STATUS); if (irq_status < 0) { phy_error(phydev); return IRQ_NONE; } /* Read the current enabled interrupts */ int_enabled = phy_read(phydev, QCA807X_INTR_ENABLE); if (int_enabled < 0) { phy_error(phydev); return IRQ_NONE; } /* See if this was one of our enabled interrupts */ if (!(irq_status & int_enabled)) return IRQ_NONE; phy_trigger_machine(phydev); return IRQ_HANDLED; } #endif static int qca807x_led_config(struct phy_device *phydev) { struct device_node *node = phydev->mdio.dev.of_node; bool led_config = false; int val; val = phy_read_mmd(phydev, MDIO_MMD_AN, QCA807X_MMD7_LED_1000N_1); if (val < 0) return val; if (of_property_read_bool(node, "qcom,single-led-1000")) { val |= QCA807X_LED_TXACT_BLK_EN_2; val |= QCA807X_LED_RXACT_BLK_EN_2; val |= QCA807X_LED_GT_ON_EN_2; led_config = true; } if (of_property_read_bool(node, "qcom,single-led-100")) { val |= QCA807X_LED_HT_ON_EN_2; led_config = true; } if (of_property_read_bool(node, "qcom,single-led-10")) { val |= QCA807X_LED_BT_ON_EN_2; led_config = true; } if (led_config) return phy_write_mmd(phydev, MDIO_MMD_AN, QCA807X_MMD7_LED_1000N_1, val); else return 0; } static int qca807x_sfp_insert(void *upstream, const struct sfp_eeprom_id *id) { struct phy_device *phydev = upstream; __ETHTOOL_DECLARE_LINK_MODE_MASK(support) = { 0, }; phy_interface_t iface; int ret; sfp_parse_support(phydev->sfp_bus, id, support); iface = sfp_select_interface(phydev->sfp_bus, support); dev_info(&phydev->mdio.dev, "%s SFP module inserted\n", phy_modes(iface)); switch (iface) { case PHY_INTERFACE_MODE_1000BASEX: case PHY_INTERFACE_MODE_100BASEX: /* Set PHY mode to PSGMII combo (1/4 copper + combo ports) mode */ ret = phy_modify(phydev, QCA807X_CHIP_CONFIGURATION, QCA807X_CHIP_CONFIGURATION_MODE_CFG_MASK, QCA807X_CHIP_CONFIGURATION_MODE_PSGMII_FIBER); /* Enable fiber mode autodection (1000Base-X or 100Base-FX) */ ret = phy_set_bits_mmd(phydev, MDIO_MMD_AN, QCA807X_MMD7_FIBER_MODE_AUTO_DETECTION, QCA807X_MMD7_FIBER_MODE_AUTO_DETECTION_EN); /* Select fiber page */ ret = phy_clear_bits(phydev, QCA807X_CHIP_CONFIGURATION, QCA807X_BT_BX_REG_SEL); phydev->port = PORT_FIBRE; break; default: dev_err(&phydev->mdio.dev, "Incompatible SFP module inserted\n"); return -EINVAL; } return ret; } static void qca807x_sfp_remove(void *upstream) { struct phy_device *phydev = upstream; /* Select copper page */ phy_set_bits(phydev, QCA807X_CHIP_CONFIGURATION, QCA807X_BT_BX_REG_SEL); phydev->port = PORT_TP; } static const struct sfp_upstream_ops qca807x_sfp_ops = { .attach = phy_sfp_attach, .detach = phy_sfp_detach, .module_insert = qca807x_sfp_insert, .module_remove = qca807x_sfp_remove, }; static int qca807x_config(struct phy_device *phydev) { struct device_node *node = phydev->mdio.dev.of_node; int control_dac, ret = 0; u32 of_control_dac; /* Check for Combo port */ if (phy_read(phydev, QCA807X_CHIP_CONFIGURATION)) { int psgmii_serdes; /* Prevent PSGMII going into hibernation via PSGMII self test */ psgmii_serdes = phy_read_mmd(phydev, MDIO_MMD_PCS, PSGMII_MMD3_SERDES_CONTROL); psgmii_serdes &= ~BIT(1); ret = phy_write_mmd(phydev, MDIO_MMD_PCS, PSGMII_MMD3_SERDES_CONTROL, psgmii_serdes); } if (!of_property_read_u32(node, "qcom,control-dac", &of_control_dac)) { control_dac = phy_read_mmd(phydev, MDIO_MMD_AN, QCA807X_MMD7_1000BASE_T_POWER_SAVE_PER_CABLE_LENGTH); control_dac &= ~QCA807X_CONTROL_DAC_MASK; control_dac |= FIELD_PREP(QCA807X_CONTROL_DAC_MASK, of_control_dac); ret = phy_write_mmd(phydev, MDIO_MMD_AN, QCA807X_MMD7_1000BASE_T_POWER_SAVE_PER_CABLE_LENGTH, control_dac); } /* Optionally configure LED-s */ if (IS_ENABLED(CONFIG_GPIOLIB)) { /* Check whether PHY-s pins are used as GPIO-s */ if (!of_property_read_bool(node, "gpio-controller")) ret = qca807x_led_config(phydev); } else { ret = qca807x_led_config(phydev); } return ret; } static int qca807x_probe(struct phy_device *phydev) { struct device_node *node = phydev->mdio.dev.of_node; int ret = 0; if (IS_ENABLED(CONFIG_GPIOLIB)) { /* Do not register a GPIO controller unless flagged for it */ if (of_property_read_bool(node, "gpio-controller")) ret = qca807x_gpio(phydev); } /* Attach SFP bus on combo port*/ if (phy_read(phydev, QCA807X_CHIP_CONFIGURATION)) { ret = phy_sfp_probe(phydev, &qca807x_sfp_ops); linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, phydev->supported); linkmode_set_bit(ETHTOOL_LINK_MODE_FIBRE_BIT, phydev->advertising); } return ret; } static int qca807x_psgmii_config(struct phy_device *phydev) { struct device_node *node = phydev->mdio.dev.of_node; int tx_amp, ret = 0; u32 tx_driver_strength; /* Workaround to enable AZ transmitting ability */ ret = phy_clear_bits_mmd(phydev, MDIO_MMD_PMAPMD, PSGMII_MODE_CTRL, PSGMII_MODE_CTRL_AZ_WORKAROUND_MASK); /* PSGMII/QSGMII TX amp set to DT defined value instead of default 600mV */ if (!of_property_read_u32(node, "qcom,tx-driver-strength", &tx_driver_strength)) { tx_amp = phy_read(phydev, PSGMII_QSGMII_DRIVE_CONTROL_1); tx_amp &= ~PSGMII_QSGMII_TX_DRIVER_MASK; tx_amp |= FIELD_PREP(PSGMII_QSGMII_TX_DRIVER_MASK, tx_driver_strength); ret = phy_write(phydev, PSGMII_QSGMII_DRIVE_CONTROL_1, tx_amp); } return ret; } static struct phy_driver qca807x_drivers[] = { { PHY_ID_MATCH_EXACT(PHY_ID_QCA8072), .name = "Qualcomm QCA8072", #if LINUX_VERSION_CODE >= KERNEL_VERSION(5,8,0) .flags = PHY_POLL_CABLE_TEST, #endif /* PHY_GBIT_FEATURES */ .probe = qca807x_probe, .config_init = qca807x_config, .read_status = qca807x_read_status, .config_intr = qca807x_config_intr, #if LINUX_VERSION_CODE < KERNEL_VERSION(5,12,0) .ack_interrupt = qca807x_ack_intr, #else .handle_interrupt = qca807x_handle_interrupt, #endif .soft_reset = genphy_soft_reset, .get_tunable = qca807x_get_tunable, .set_tunable = qca807x_set_tunable, #if LINUX_VERSION_CODE >= KERNEL_VERSION(5,8,0) .cable_test_start = qca807x_cable_test_start, .cable_test_get_status = qca807x_cable_test_get_status, #endif }, { PHY_ID_MATCH_EXACT(PHY_ID_QCA8075), .name = "Qualcomm QCA8075", #if LINUX_VERSION_CODE >= KERNEL_VERSION(5,8,0) .flags = PHY_POLL_CABLE_TEST, #endif /* PHY_GBIT_FEATURES */ .probe = qca807x_probe, .config_init = qca807x_config, .read_status = qca807x_read_status, .config_intr = qca807x_config_intr, #if LINUX_VERSION_CODE < KERNEL_VERSION(5,12,0) .ack_interrupt = qca807x_ack_intr, #else .handle_interrupt = qca807x_handle_interrupt, #endif .soft_reset = genphy_soft_reset, .get_tunable = qca807x_get_tunable, .set_tunable = qca807x_set_tunable, #if LINUX_VERSION_CODE >= KERNEL_VERSION(5,8,0) .cable_test_start = qca807x_cable_test_start, .cable_test_get_status = qca807x_cable_test_get_status, #endif }, { PHY_ID_MATCH_EXACT(PHY_ID_QCA807X_PSGMII), .name = "Qualcomm QCA807x PSGMII", .probe = qca807x_psgmii_config, }, }; module_phy_driver(qca807x_drivers); static struct mdio_device_id __maybe_unused qca807x_tbl[] = { { PHY_ID_MATCH_EXACT(PHY_ID_QCA8072) }, { PHY_ID_MATCH_EXACT(PHY_ID_QCA8075) }, { PHY_ID_MATCH_MODEL(PHY_ID_QCA807X_PSGMII) }, { } }; MODULE_AUTHOR("Robert Marko"); MODULE_DESCRIPTION("Qualcomm QCA807x PHY driver"); MODULE_DEVICE_TABLE(mdio, qca807x_tbl); MODULE_LICENSE("GPL");