# SPDX-License-Identifier: GPL-2.0-or-later include $(TOPDIR)/rules.mk include $(INCLUDE_DIR)/image.mk KERNEL_LOADADDR := 0x80010000 # RAM start + 64K LOADER_ENTRY := 0x80a00000 # RAM start + 10M, for relocate LZMA_TEXT_START := 0x82000000 # RAM start + 32M DEVICE_VARS += CFE_BOARD_ID CFE_EXTRAS DEVICE_VARS += CFE_PART_FLAGS CFE_PART_ID DEVICE_VARS += CFE_RAM_FILE DEVICE_VARS += CFE_RAM_JFFS2_NAME CFE_RAM_JFFS2_PAD DEVICE_VARS += CFE_WFI_CHIP_ID CFE_WFI_FLASH_TYPE DEVICE_VARS += CFE_WFI_FLAGS CFE_WFI_VERSION DEVICE_VARS += CHIP_ID DEVICE_LOADADDR DEVICE_VARS += FLASH_MB IMAGE_OFFSET DEVICE_VARS += SERCOMM_FSVER SERCOMM_HWVER SERCOMM_SWVER define Build/Compile rm -rf $(KDIR)/relocate $(CP) ../../generic/image/relocate $(KDIR) $(MAKE) -C $(KDIR)/relocate \ CACHELINE_SIZE=16 \ CROSS_COMPILE=$(TARGET_CROSS) \ KERNEL_ADDR=$(KERNEL_LOADADDR) \ LZMA_TEXT_START=$(LOADER_ENTRY) endef ### Kernel scripts ### define Build/loader-lzma @rm -rf $@.src $(MAKE) -C lzma-loader \ CHIP_ID=$(CHIP_ID) \ KERNEL_ADDR=$(KERNEL_LOADADDR) \ KDIR=$(KDIR) \ LOADER_ADDR=$(if $(DEVICE_LOADADDR),$(DEVICE_LOADADDR),$(LOADER_ENTRY)) \ LOADER_DATA="$@" \ LOADER_NAME="$(notdir $@)" \ LZMA_TEXT_START=$(LZMA_TEXT_START) \ PKG_BUILD_DIR="$@.src" \ TARGET_DIR="$(dir $@)" \ compile loader.$(1) @mv "$@.$(1)" "$@" @rm -rf $@.src endef define Build/lzma-cfe # CFE is a LZMA nazi! It took me hours to find out the parameters! # Also I think lzma has a bug cause it generates different output depending on # if you use stdin / stdout or not. Use files instead of stdio here, cause # otherwise CFE will complain and not boot the image. $(call Build/lzma-no-dict,-d22 -fb64 -a1) # Strip out the length, CFE doesn't like this dd if=$@ of=$@.new bs=5 count=1 dd if=$@ of=$@.new ibs=13 obs=5 skip=1 seek=1 conv=notrunc @mv $@.new $@ endef define Build/relocate-kernel # CFE only allows ~4 MiB for the uncompressed kernels, but uncompressed # kernel might get larger than that, so let CFE unpack and load at a # higher address and make the kernel relocate itself to the expected # location. ( \ dd if=$(KDIR)/relocate/loader.bin bs=32 conv=sync && \ perl -e '@s = stat("$@"); print pack("N", @s[7])' && \ cat $@ \ ) > $@.relocate @mv $@.relocate $@ endef ### Image scripts ### define rootfspad/jffs2-128k --align-rootfs endef define rootfspad/jffs2-64k --align-rootfs endef define rootfspad/squashfs endef define Image/FileSystemStrip $(firstword $(subst +,$(space),$(subst root.,,$(notdir $(1))))) endef define Build/cfe-bin $(STAGING_DIR_HOST)/bin/imagetag -i $(IMAGE_KERNEL) -f $(IMAGE_ROOTFS) \ --output $@ --boardid $(CFE_BOARD_ID) --chipid $(CHIP_ID) \ --entry $(LOADER_ENTRY) --load-addr $(LOADER_ENTRY) \ --info1 "$(call ModelNameLimit16,$(DEVICE_NAME))" \ --info2 "$(call Image/FileSystemStrip,$(IMAGE_ROOTFS))" \ $(call rootfspad/$(call Image/FileSystemStrip,$(IMAGE_ROOTFS))) \ $(CFE_EXTRAS) $(1) endef define Build/cfe-jffs2 $(STAGING_DIR_HOST)/bin/mkfs.jffs2 \ --big-endian \ --pad \ --no-cleanmarkers \ --eraseblock=$(patsubst %k,%KiB,$(BLOCKSIZE)) \ --root=$(1) \ --output=$@ \ --compression-mode=none $(call Build/pad-to,$(BLOCKSIZE)) endef define Build/cfe-jffs2-cferam mv $@ $@.kernel rm -rf $@-cferam mkdir -p $@-cferam # CFE ROM checks JFFS2 dirent version of cferam. # If version is not > 0 it will ignore the fs entry. # JFFS2 sets version 0 to the first fs entry and increments # it on the following ones, so let's create a dummy file that # will have version 0 and let cferam be the second (version 1). touch $@-cferam/1-openwrt # Add cferam as the last file in the JFFS2 partition cp $(KDIR)/bcm63xx-cfe/$(CFE_RAM_FILE) $@-cferam/$(CFE_RAM_JFFS2_NAME) # The JFFS2 partition creation should result in the following # layout: # 1) 1-openwrt (version 0, ino 2) # 2) cferam.000 (version 1, ino 3) $(call Build/cfe-jffs2,$@-cferam) # Some devices need padding between CFE RAM and kernel $(if $(CFE_RAM_JFFS2_PAD),$(call Build/pad-to,$(CFE_RAM_JFFS2_PAD))) # Add CFE partition tag $(if $(CFE_PART_ID),$(call Build/cfe-part-tag)) # Append kernel dd if=$@.kernel >> $@ rm -f $@.kernel endef define Build/cfe-jffs2-kernel rm -rf $@-kernel mkdir -p $@-kernel # CFE RAM checks JFFS2 dirent version of vmlinux. # If version is not > 0 it will ignore the fs entry. # JFFS2 sets version 0 to the first fs entry and increments # it on the following ones, so let's create a dummy file that # will have version 0 and let cferam be the second (version 1). touch $@-kernel/1-openwrt # vmlinux is located on a different JFFS2 partition, but CFE RAM # ignores it, so let's create another dummy file that will match # the JFFS2 ino of cferam entry on the first JFFS2 partition. # CFE RAM won't be able to find vmlinux if cferam has the same # ino as vmlinux. touch $@-kernel/2-openwrt # Add vmlinux as the last file in the JFFS2 partition $(TOPDIR)/scripts/cfe-bin-header.py \ --input-file $@ \ --output-file $@-kernel/vmlinux.lz \ --load-addr $(if $(DEVICE_LOADADDR),$(DEVICE_LOADADDR),$(LOADER_ENTRY)) \ --entry-addr $(if $(DEVICE_LOADADDR),$(DEVICE_LOADADDR),$(LOADER_ENTRY)) # The JFFS2 partition creation should result in the following # layout: # 1) 1-openwrt (version 0, ino 2) # 2) 2-openwrt (version 1, ino 3) # 3) vmlinux.lz (version 2, ino 4) $(call Build/cfe-jffs2,$@-kernel) endef define Build/cfe-part-tag mv $@ $@.part $(TOPDIR)/scripts/cfe-partition-tag.py \ --input-file $@.part \ --output-file $@ \ --flags $(CFE_PART_FLAGS) \ --id $(CFE_PART_ID) \ --name $(VERSION_CODE) \ --version $(DEVICE_NAME) $(call Build/pad-to,$(BLOCKSIZE)) dd if=$@.part >> $@ endef define Build/cfe-sercomm-crypto $(TOPDIR)/scripts/sercomm-crypto.py \ --input-file $@ \ --key-file $@.key \ --output-file $@.ser \ --version OpenWrt $(STAGING_DIR_HOST)/bin/openssl enc -md md5 -aes-256-cbc \ -in $@ -out $@.enc \ -K `cat $@.key` \ -iv 00000000000000000000000000000000 dd if=$@.enc >> $@.ser mv $@.ser $@ rm -f $@.enc $@.key endef define Build/cfe-sercomm-load $(TOPDIR)/scripts/sercomm-pid.py \ --hw-version $(SERCOMM_HWVER) \ --sw-version $(SERCOMM_SWVER) \ --extra-padding-size 0x10 \ --pid-file $@.pid $(TOPDIR)/scripts/sercomm-payload.py \ --input-file $@ \ --output-file $@.new \ --pid-file $@.pid mv $@.new $@ rm -f $@.pid endef define Build/cfe-sercomm-part $(TOPDIR)/scripts/sercomm-partition-tag.py \ --input-file $@ \ --output-file $@.kernel_rootfs \ --part-name kernel_rootfs \ --part-version OpenWrt \ --rootfs-version $(SERCOMM_FSVER) rm -rf $@-rootfs_lib mkdir -p $@-rootfs_lib echo $(SERCOMM_FSVER) > $@-rootfs_lib/lib_ver $(call Build/cfe-jffs2,$@-rootfs_lib) $(call Build/pad-to,$(BLOCKSIZE)) $(TOPDIR)/scripts/sercomm-partition-tag.py \ --input-file $@ \ --output-file $@.rootfs_lib \ --part-name rootfs_lib \ --part-version $(SERCOMM_FSVER) mv $@.kernel_rootfs $@ dd if=$@.rootfs_lib >> $@ endef define Build/cfe-wfi-tag $(TOPDIR)/scripts/cfe-wfi-tag.py \ --input-file $@ \ --output-file $@.new \ --version $(if $(1),$(1),$(CFE_WFI_VERSION)) \ --chip-id $(CFE_WFI_CHIP_ID) \ --flash-type $(CFE_WFI_FLASH_TYPE) \ $(if $(CFE_WFI_FLAGS),--flags $(CFE_WFI_FLAGS)) mv $@.new $@ endef ### Device scripts ### define Device/Default PROFILES = Default $$(DEVICE_NAME) KERNEL_DEPENDS = $$(wildcard ../dts/$$(DEVICE_DTS).dts) DEVICE_DTS_DIR := ../dts CHIP_ID := SOC = bcm$$(CHIP_ID) DEVICE_DTS = $$(SOC)-$(subst _,-,$(1)) DEVICE_LOADADDR := endef define Device/bcm63xx-cfe FILESYSTEMS := squashfs jffs2-64k jffs2-128k KERNEL := kernel-bin | append-dtb | relocate-kernel | lzma KERNEL_INITRAMFS := kernel-bin | append-dtb | lzma | loader-lzma elf KERNEL_INITRAMFS_SUFFIX := .elf IMAGES := cfe.bin sysupgrade.bin IMAGE/cfe.bin := \ cfe-bin $$$$(if $$$$(FLASH_MB),--pad $$$$(shell expr $$$$(FLASH_MB) / 2)) IMAGE/sysupgrade.bin := cfe-bin | append-metadata BLOCKSIZE := 0x10000 IMAGE_OFFSET := FLASH_MB := CFE_BOARD_ID := CFE_EXTRAS = --block-size $$(BLOCKSIZE) \ --image-offset $$(if $$(IMAGE_OFFSET),$$(IMAGE_OFFSET),$$(BLOCKSIZE)) endef # Legacy CFEs with specific LZMA parameters and no length define Device/bcm63xx-cfe-legacy $(Device/bcm63xx-cfe) KERNEL := kernel-bin | append-dtb | relocate-kernel | lzma-cfe endef # CFE expects a single JFFS2 partition with cferam and kernel. However, # it's possible to fool CFE into properly loading both cferam and kernel # from two different JFFS2 partitions by adding dummy files (see # cfe-jffs2-cferam and cfe-jffs2-kernel). # Separate JFFS2 partitions allow upgrading openwrt without reflashing cferam # JFFS2 partition, which is much safer in case anything goes wrong. define Device/bcm63xx-nand FILESYSTEMS := squashfs ubifs KERNEL := kernel-bin | append-dtb | relocate-kernel | lzma | cfe-jffs2-kernel KERNEL_INITRAMFS := kernel-bin | append-dtb | lzma | loader-lzma elf KERNEL_INITRAMFS_SUFFIX := .elf IMAGES := cfe.bin sysupgrade.bin IMAGE/cfe.bin := append-kernel | pad-to $$$$(KERNEL_SIZE) |\ cfe-jffs2-cferam | append-ubi | cfe-wfi-tag IMAGE/sysupgrade.bin := sysupgrade-tar | append-metadata KERNEL_SIZE := 5120k CFE_PART_FLAGS := CFE_PART_ID := CFE_RAM_FILE := CFE_RAM_JFFS2_NAME := CFE_RAM_JFFS2_PAD := CFE_WFI_VERSION := CFE_WFI_CHIP_ID = 0x$$(CHIP_ID) CFE_WFI_FLASH_TYPE := CFE_WFI_FLAGS := UBINIZE_OPTS := -E 5 DEVICE_PACKAGES += nand-utils endef define Device/bcm63xx_netgear $(Device/bcm63xx-cfe) DEVICE_VENDOR := NETGEAR IMAGES := factory.chk sysupgrade.bin IMAGE/factory.chk := cfe-bin | netgear-chk NETGEAR_BOARD_ID := NETGEAR_REGION := endef define Device/sercomm-nand $(Device/bcm63xx-nand) IMAGES := factory.img sysupgrade.bin IMAGE/factory.img := append-kernel | pad-to $$$$(KERNEL_SIZE) | append-ubi |\ cfe-sercomm-part | gzip | cfe-sercomm-load | cfe-sercomm-crypto SERCOMM_FSVER := SERCOMM_HWVER := SERCOMM_SWVER := endef ### Package helpers ### ATH9K_PACKAGES := kmod-ath9k kmod-owl-loader wpad-basic-mbedtls B43_PACKAGES := kmod-b43 wpad-basic-mbedtls USB1_PACKAGES := kmod-usb-ohci kmod-usb-ledtrig-usbport USB2_PACKAGES := $(USB1_PACKAGES) kmod-usb2 include $(SUBTARGET).mk $(eval $(call BuildImage))