So far, board.d files were having execute bit set and contained a
shebang. However, they are just sourced in board_detect, with an
apparantly unnecessary check for execute permission beforehand.
Replace this check by one for existance and make the board.d files
"normal" files, as would be expected in /etc anyway.
Note:
This removes an apparantly unused '#!/bin/sh /etc/rc.common' in
target/linux/bcm47xx/base-files/etc/board.d/01_network
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This adds several stylistic and functional improvements of the recently
added Edgecore ECW5211, especially:
* Drop the local BDFs as those are already in the upstream under different names
* Add SPDX tag to DTS
* Add label MAC address
* Move LED trigger to DTS
* Remove unnecessary status="okay"
* Disable unused SS USB phy as the USB port only supports USB 2.0
* Make uboot-env partition writable
* Remove qcom,poll_required_dynamic property as the driver does not use it
* Tidy up the device recipe
Fixes: 4488b260a0 ("ipq40xx: add Edgecore ECW5211 support")
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
Acked-by: Robert Marko <robert.marko@sartura.hr>
Like in the previous patches for ath79 and ramips, this will remove
the "devicename" from LED labels in ipq40xx.
The devicename is removed in DTS files and 01_leds, and a migration
script is added. While at it, also harmonize capitalization of
wlan2G/wlan5G vs. wlan2g/wlan5g.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
flashing the unit
* first update to latest edcore FW as per the PDF instructions
* boot the initramfs
- tftpboot 0x88000000 openwrt-ipq40xx-generic-edgecore_oap100-initramfs-fit-uImage.itb; bootm
* inside the initramfs call the following commiands
- ubiattach -p /dev/mtd0
- ubirmvol /dev/ubi0 -n0
- ubirmvol /dev/ubi0 -n1
- ubirmvol /dev/ubi0 -n2
* scp the sysupgrade image to the board and call
- sysupgrade -n openwrt-ipq40xx-generic-edgecore_oap100-squashfs-nand-sysupgrade.bin
Signed-off-by: John Crispin <john@phrozen.org>
This patch adds support for the Edgecore ECW5211 indoor AP.
Specification:
- SoC: Qualcomm Atheros IPQ4018 ARMv7-A 4x Cortex A-7
- RAM: 256MB DDR3
- NOR Flash: 16MB SPI NOR
- NAND Flash: 128MB MX35LFxGE4AB SPI-NAND
- Ethernet: 2 x 1G via Q8075 PHY connected to ethernet adapter via PSGMII (802.3af POE IN on eth0)
- USB: 1 x USB 3.0 SuperSpeed
- WLAN: Built-in IPQ4018 (2x2 802.11bng, 2x2 802.11 acn)
- CC2540 BLE connected to USB 2.0 port
- Atmel AT97SC3205T I2C TPM
Signed-off-by: Robert Marko <robert.marko@sartura.hr>
MobiPromo CM520-79F is an AC1300 dual band router based on IPQ4019
Specification:
SoC/Wireless: QCA IPQ4019
RAM: 512MiB
Flash: 128MiB SLC NAND
Ethernet PHY: QCA8075
Ethernet ports: 1x WAN, 2x LAN
LEDs: 7 LEDs
2 (USB, CAN) are GPIO
other 5 (2.4G, 5G, LAN1, LAN2, WAN) are connected to a shift register
Button: Reset
Flash instruction:
Disassemble the router, connect UART pins like this:
GND TX RX
[x x . . x .]
[. . . . . .]
(QCA8075 and IPQ4019 below)
Baud-rate: 115200
Set up TFTP server: IP 192.168.1.188/24
Power on the router and interrupt the booting with UART console
env backup (in case you want to go back to stock and need it there):
printenv
(Copy the output to somewhere save)
Set bootenv:
setenv set_ubi 'set mtdids nand0=nand0; set mtdparts mtdparts=nand0:0x7480000@0xb80000(fs); ubi part fs'
setenv bootkernel 'ubi read 0x84000000 kernel; bootm 0x84000000#config@1'
setenv cm520_boot 'run set_ubi; run bootkernel'
setenv bootcmd 'run cm520_boot'
setenv bootargs
saveenv
Boot initramfs from TFTP:
tftpboot openwrt-ipq40xx-generic-mobipromo_cm520-79f-initramfs-fit-zImage.itb
bootm
After initramfs image is booted, backup rootfs partition in case of reverting to stock image
cat /dev/mtd12 > /tmp/mtd12.bin
Then fetch it via SCP
Upload nand-factory.ubi to /tmp via SCP, then run
mtd erase rootfs
mtd write /tmp/*nand-factory.ubi rootfs
reboot
To revert to stock image, restore default bootenv in uboot UART console
setenv bootcmd 'bootipq'
printenv
use the saved dump you did back when you installed OpenWrt to verify that
there are no other differences from back in the day.
saveenv
upload the backed up mtd12.bin and run
tftpboot mtd12.bin
nand erase 0xb80000 0x7480000
nand write 0x84000000 0xb80000 0x7480000
The BOOTCONFIG may have been configured to boot from alternate partition (rootfs_1) instead
In case of this, set it back to rootfs:
cd /tmp
cat /dev/mtd7 > mtd7.bin
echo -ne '\x0b' | dd of=mtd7.bin conv=notrunc bs=1 count=1 seek=4
for i in 28 48 68 108; do
dd if=/dev/zero of=mtd7.bin conv=notrunc bs=1 count=1 seek=$i
done
mtd write mtd7.bin BOOTCONFIG
mtd write mtd7.bin BOOTCONFIG1
Signed-off-by: DENG Qingfang <dengqf6@mail2.sysu.edu.cn>
[renamed volume to ubi to support autoboot,
as per David Lam's test in PR#2432]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
SOC: IPQ4019 / QCA Dakota
CPU: Quad-Core ARMv7 Processor rev 5 (v7l) Cortex-A7
DRAM: 256 MiB
FLASH: NOR 4 MiB + NAND 128 MiB
ETH: Qualcomm Atheros QCA8072
WLAN1: Qualcomm Atheros QCA4019 2.4GHz 802.11bgn 2:2x2
WLAN2: Qualcomm Atheros QCA4019 5GHz 802.11a/n/ac 2:2x2
WLAN2: Qualcomm Atheros QCA9888 5GHz 802.11a/n/ac 2:2x2
INPUT: WPS Button
LEDS: Power, LAN1, LAN2, WLAN 2.4GHz, WLAN 5GHz-1, WLAN 5GHz-2, OPMODE
1. Load Ramdisk via U-Boot
To set up the flash memory environment, do the following:
a. As a preliminary step, ensure that the board console port is connected to the PC using these RS232 parameters:
* 115200bps
* 8N1
b. Confirm that the PC is connected to the board using one of the Ethernet ports.
c. Set a static ip 192.168.99.8 for Ethernet that connects to board.
d. The PC must have a TFTP server launched and listening on the interface to which the board is connected.
e. At this stage power up the board and, after a few seconds, press 4 and then any key during the countdown.
U-BOOT> set serverip 192.168.99.9 && tftpboot 0x84000000 192.168.99.8:openwrt.itb && bootm
Signed-off-by: Steven Lin <steven.lin@senao.com>
[copied 4.19 dts to 5.4]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
This patch does the following:
- move WiFi LED setup to DTS
- fix LAN/WAN MAC addresses and add label MAC address
- wan5G -> wlan5G, power -> led_power
- increase flash SPI frequency to 30MHz
MAC addresses are stored in Factory partition at:
0x1006: WiFi 2.4GHz, WAN (label_mac)
0x5006: WiFi 5GHz, LAN (label_mac +4)
By improving flash speed,
`time dd if=/dev/mtdblock8 of=/dev/null bs=2k`
is reduced from 7m 10.26s to 5m 9.52s.
Using higher frequencies did not improve speed further.
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
Hardware
--------
CPU: Qualcomm IPQ4018
RAM: 256M
FLASH: 32M SPI NOR W25Q256
ETH: QCA8075
WiFi2: IPQ4018 2T2R 2SS b/g/n
WiFi5: IPQ4018 2T2R 2SS n/ac
LED: - Power amber
- LAN1(PoE) green
- LAN2 green
- Wi-Fi 2.4GHz green
- Wi-Fi 5GHz green
BTN: - WPS
UART: 115200n8 3.3V J1
VCC(1) - GND(2) - TX(3) - RX(4)
Added basic support to get the device up and running for a sysupgrade
image only.
There is currently no way back to factory firmware, so this is a one-way
street to OpenWRT.
Install from factory condition is convoluted, and may brick your device:
1) Enable SSH and disable the CLI on the factory device from the web user
interface (Management->Advanced)
2) Reboot the device
3) Override the default, limited SSH shell:
a) Get into the ssh shell:
ssh admin@192.168.1.1 /bin/sh --login
b) Change the dropbear script to disable the limited shell. At the
empty command prompt type:
sed -i '/login_ssh/s/^/#/g’ dropbear
/etc/init.d/dropbear restart
exit
4) ssh in to a (now-) normal OpenWRT SSH session
5) Flash your built image
a) scp openwrt-ipq40xx-engenius_ens620ext-squashfs-sysupgrade.bin
admin@192.168.1.1:/tmp/
b) ssh admin@192.168.1.1
c) sysupgrade -n
/tmp/openwrt-ipq40xx-engenius_ens620ext-squashfs-sysupgrade.bin
6) After flash completes (it may say "Upgrade failed" followed by
"Upgrade completed") and device reboots, log in to newly flashed
system. Note you will now need to ssh as root rather than admin.
Signed-off-by: Steve Glennon <s.glennon@cablelabs.com>
[whitespace fixes, reordered partitions, removed rng node from 4.14,
fixed 901-arm-boot-add-dts-files.patch]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
Hardware
--------
CPU: Qualcomm IPQ4019
RAM: 256M
FLASH: 128M NAND
ETH: QCA8075
VDSL: Intel/Lantiq VRX518 PCIe attached
currently not supported
DECT: Dialog SC14448
currently not supported
WiFi2: IPQ4019 2T2R 2SS b/g/n
WiFi5: IPQ4019 2T2R 2SS n/ac
LED: - Power/DSL green
- WLAN green
- FON/DECT green
- Connect/WPS green
- Info green
- Info red
BTN: - WLAN
- FON
- WPS/Connect
UART: 115200n8 3.3V (located under the Dialog chip)
VCC - RX - TX - GND (Square is VCC)
Installation
------------
1. Grab the uboot for the Device from the 'u-boot-fritz7530'
subdirectory. Place it in the same directory as the 'eva_ramboot.py'
script. It is located in the 'scripts/flashing' subdirectory of the
OpenWRT tree.
2. Assign yourself the IP address 192.168.178.10/24. Connect your
Computer to one of the boxes LAN ports.
3. Connect Power to the Box. As soon as the LAN port of your computer
shows link, load the U-Boot to the box using following command.
> ./eva_ramboot.py --offset 0x85000000 192.168.178.1 uboot-fritz7530.bin
4. The U-Boot will now start. Now assign yourself the IP address
192.168.1.70/24. Copy the OpenWRT initramfs (!) image to a TFTP
server root directory and rename it to 'FRITZ7530.bin'.
5. The Box will now boot OpenWRT from RAM. This can take up to two
minutes.
6. Copy the U-Boot and the OpenWRT sysupgrade (!) image to the Box using
scp. SSH into the Box and first write the Bootloader to both previous
kernel partitions.
> mtd write /path/to/uboot-fritz7530.bin uboot0
> mtd write /path/to/uboot-fritz7530.bin uboot1
7. Remove the AVM filesystem partitions to make room for our kernel +
rootfs + overlayfs.
> ubirmvol /dev/ubi0 --name=avm_filesys_0
> ubirmvol /dev/ubi0 --name=avm_filesys_1
8. Flash OpenWRT peristently using sysupgrade.
> sysupgrade -n /path/to/openwrt-sysupgrade.bin
Signed-off-by: David Bauer <mail@david-bauer.net>
[removed pcie-dts range node, refreshed on top of AP120-AC/E2600AC]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
Qxwlan E2600AC C1 based on IPQ4019
Specifications:
SOC: Qualcomm IPQ4019
DRAM: 256 MiB
FLASH: 32 MiB Winbond W25Q256
ETH: Qualcomm QCA8075
WLAN: 5G + 5G/2.4G
* 2T2R 2.4/5 GHz
- QCA4019 hw1.0 (SoC)
* 2T2R 5 GHz
- QCA4019 hw1.0 (SoC)
INPUT: Reset buutton
LED: 1x Power ,6 driven by gpio
SERIAL: UART (J5)
UUSB: USB3.0
POWER: 1x DC jack for main power input (9-24 V)
SLOT: Pcie (J25), sim card (J11), SD card (J51)
Flash instruction (using U-Boot CLI and tftp server):
- Configure PC with static IP 192.168.1.10 and tftp server.
- Rename "sysupgrade" filename to "firmware.bin" and place it in tftp
server directory.
- Connect PC with one of RJ45 ports, power up the board and press
"enter" key to access U-Boot CLI.
- Use the following command to update the device to OpenWrt: "run lfw".
Flash instruction (using U-Boot web-based recovery):
- Configure PC with static IP 192.168.1.xxx(2-254)/24.
- Connect PC with one of RJ45 ports, press the reset button, power up
the board and keep button pressed for around 6-7 seconds, until LEDs
start flashing.
- Open your browser and enter 192.168.1.1, select "sysupgrade" image
and click the upgrade button.
Qxwlan E2600AC C2 based on IPQ4019
Specifications:
SOC: Qualcomm IPQ4019
DRAM: 256 MiB
NOR: 16 MiB Winbond W25Q128
NAND: 128MiB Micron MT29F1G08ABAEAWP
ETH: Qualcomm QCA8075
WLAN: 5G + 5G/2.4G
* 2T2R 2.4/5 GHz
- QCA4019 hw1.0 (SoC)
* 2T2R 5 GHz
- QCA4019 hw1.0 (SoC)
INPUT: Reset buutton
LED: 1x Power, 6 driven by gpio
SERIAL: UART (J5)
USB: USB3.0
POWER: 1x DC jack for main power input (9-24 V)
SLOT: Pcie (J25), sim card (J11), SD card (J51)
Flash instruction (using U-Boot CLI and tftp server):
- Configure PC with static IP 192.168.1.10 and tftp server.
- Rename "ubi" filename to "ubi-firmware.bin" and place it in tftp
server directory.
- Connect PC with one of RJ45 ports, power up the board and press
"enter" key to access U-Boot CLI.
- Use the following command to update the device to OpenWrt: "run lfw".
Flash instruction (using U-Boot web-based recovery):
- Configure PC with static IP 192.168.1.xxx(2-254)/24.
- Connect PC with one of RJ45 ports, press the reset button, power up
the board and keep button pressed for around 6-7 seconds, until LEDs
start flashing.
- Open your browser and enter 192.168.1.1, select "ubi" image
and click the upgrade button.
Signed-off-by: 张鹏 <sd20@qxwlan.com>
[ added rng node. whitespace fixes, ported 02_network,
ipq-wifi Makefile, misc dts fixes, trivial message changes ]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
ALFA Network AP120C-AC is a dual-band ceiling AP, based on Qualcomm
IPQ4018 + QCA8075 platform.
Specification:
- Qualcomm IPQ4018 (717 MHz)
- 256 MB of RAM (DDR3)
- 16 MB (SPI NOR) + 128 MB (SPI NAND) of flash
- 2x Gbps Ethernet, with 802.3af PoE support in one port
- 2T2R 2.4/5 GHz (IPQ4018), with ext. FEMs (QFE1952, QFE1922)
- 3x U.FL connectors
- 1x 1.8 dBi (Bluetooth) and 2x 3/5 dBi dual-band (Wi-Fi) antennas
- Atmel/Microchip AT97SC3205T TPM module (I2C bus)
- TI CC2540 Bluetooth LE module (USB 2.0 bus)
- 4x LED (all driven by GPIO)
- 1x button (reset)
- 1x USB 2.0 (optional, not installed in indoor version)
- DC jack for main power input (12 V)
- UART header available on PCB (2.0 mm pitch)
Flash instruction:
1. This board uses dual-image feature (128 MB NAND is divided into two
64 MB partitions: 'rootfs1' and 'rootfs2').
2. Before update, make sure your device is running firmware no older
than v1.1 (previous versions have incompatible U-Boot).
3. Use 'factory' image in vendor GUI or for sysupgrade tool, without
preserving settings.
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
This removes the misplaced UCI-network configuration for the MR33. The
LAN port is set in 01_leds while it is already correctly defined in
02_network.
This was most likely an oversight as no network configuration belongs
into 01_leds.
Signed-off-by: David Bauer <mail@david-bauer.net>
Thanks to the ledtrig-usb.c the USB LED trigger can be
setup in the device-tree definition for the Asus RT-AC58U
and ZyXEL NBG6617.
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
SOC: IPQ4018 / QCA Dakota
CPU: Quad-Core ARMv7 Processor rev 5 (v7l) Cortex-A7
DRAM: 256 MiB
NOR: 32 MiB
ETH: Qualcomm Atheros QCA8072
WLAN1: Qualcomm Atheros QCA4018 2.4GHz 802.11bgn 2:2x2
WLAN2: Qualcomm Atheros QCA4018 5GHz 802.11a/n/ac 2:2x2
INPUT: RESET Button
LEDS: Power, LAN, MESH, WLAN 2.4GHz, WLAN 5GHz
1. Load Ramdisk via U-Boot
To set up the flash memory environment, do the following:
a. As a preliminary step, ensure that the board console port is connected to the PC using these RS232 parameters:
* 115200bps
* 8N1
b. Confirm that the PC is connected to the board using one of the Ethernet ports. Set a static ip 192.168.99.8 for Ethernet that connects to board. The PC must have a TFTP server launched and listening on the interface to which the board is connected. At this stage power up the board and, after a few seconds, press 4 and then any key during the countdown.
U-BOOT> set serverip 192.168.99.8 && set ipaddr 192.168.99.9 && tftpboot 0x84000000 openwrt.itb && bootm
2. Load image via GUI
a. Upgrade EAP1300 to FW v3.5.3.2
In the GUI, System Manager > Firmware > Firmware Upgrade, to do upgrade.
b. Transfer to OpenWrt from EnGenius.
In Firmware Upgrade page, to upgrade yours openwrt-ipq40xx-engenius_eap1300-squashfs-sysupgrade.bin.
3. Revert to EnGenius EAP1300
To flash openwrt-ipq40xx-engenius_eap1300-squashfs-factory.bin by using sysupgrade command and "DO NOT" keep configuration.
$ sysupgrade –n openwrt-ipq40xx-engenius_eap1300-squashfs-factory.bin
Signed-off-by: Steven Lin <steven.lin@senao.com>
The NBG6617's LEDs are wrongly identified in the 01_leds boardinit
script (board instead of boardname), resulting in referencing
non-existent LEDs in UCI.
Signed-off-by: David Bauer <mail@david-bauer.net>
This patch adds support for ZyXEL NBG6617
Hardware highlights:
SOC: IPQ4018 / QCA Dakota
CPU: Quad-Core ARMv7 Processor rev 5 (v7l) Cortex-A7
DRAM: 256 MiB DDR3L-1600/1866 Nanya NT5CC128M16IP-DI @ 537 MHz
NOR: 32 MiB Macronix MX25L25635F
ETH: Qualcomm Atheros QCA8075 Gigabit Switch (4 x LAN, 1 x WAN)
USB: 1 x 3.0 (via Synopsys DesignWare DWC3 controller in the SoC)
WLAN1: Qualcomm Atheros QCA4018 2.4GHz 802.11bgn 2:2x2
WLAN2: Qualcomm Atheros QCA4018 5GHz 802.11a/n/ac 2:2x2
INPUT: RESET Button, WIFI/Rfkill Togglebutton, WPS Button
LEDS: Power, WAN, LAN 1-4, WLAN 2.4GHz, WLAN 5GHz, USB, WPS
Serial:
WARNING: The serial port needs a TTL/RS-232 3.3v level converter!
The Serial setting is 115200-8-N-1. The 1x4 .1" header comes
pre-soldered. Pinout:
1. 3v3 (Label printed on the PCB), 2. RX, 3. GND, 4. TX
first install / debricking / restore stock:
0. Have a PC running a tftp-server @ 192.168.1.99/24
1. connect the PC to any LAN-Ports
2. put the openwrt...-factory.bin (or V1.00(ABCT.X).bin for stock) file
into the tftp-server root directory and rename it to just "ras.bin".
3. power-cycle the router and hold down the the WPS button (for 30sek)
4. Wait (for a long time - the serial console provides some progress
reports. The u-boot says it best: "Please be patient".
5. Once the power LED starts to flashes slowly and the USB + WPS LEDs
flashes fast at the same time. You have to reboot the device and
it should then come right up.
Installation via Web-UI:
0. Connect a PC to the powered-on router. It will assign your PC a
IP-address via DHCP
1. Access the Web-UI at 192.168.1.1 (Default Passwort: 1234)
2. Go to the "Expert Mode"
3. Under "Maintenance", select "Firmware-Upgrade"
4. Upload the OpenWRT factory image
5. Wait for the Device to finish.
It will reboot into OpenWRT without any additional actions needed.
To open the ZyXEL NBG6617:
0. remove the four rubber feet glued on the backside
1. remove the four philips screws and pry open the top cover
(by applying force between the plastic top housing from the
backside/lan-port side)
Access the real u-boot shell:
ZyXEL uses a proprietary loader/shell on top of u-boot: "ZyXEL zloader v2.02"
When the device is starting up, the user can enter the the loader shell
by simply pressing a key within the 3 seconds once the following string
appears on the serial console:
| Hit any key to stop autoboot: 3
The user is then dropped to a locked shell.
|NBG6617> HELP
|ATEN x[,y] set BootExtension Debug Flag (y=password)
|ATSE x show the seed of password generator
|ATSH dump manufacturer related data in ROM
|ATRT [x,y,z,u] RAM read/write test (x=level, y=start addr, z=end addr, u=iterations)
|ATGO boot up whole system
|ATUR x upgrade RAS image (filename)
|NBG6617>
In order to escape/unlock a password challenge has to be passed.
Note: the value is dynamic! you have to calculate your own!
First use ATSE $MODELNAME (MODELNAME is the hostname in u-boot env)
to get the challange value/seed.
|NBG6617> ATSE NBG6617
|012345678901
This seed/value can be converted to the password with the help of this
bash script (Thanks to http://www.adslayuda.com/Zyxel650-9.html authors):
- tool.sh -
ror32() {
echo $(( ($1 >> $2) | (($1 << (32 - $2) & (2**32-1)) ) ))
}
v="0x$1"
a="0x${v:2:6}"
b=$(( $a + 0x10F0A563))
c=$(( 0x${v:12:14} & 7 ))
p=$(( $(ror32 $b $c) ^ $a ))
printf "ATEN 1,%X\n" $p
- end of tool.sh -
|# bash ./tool.sh 012345678901
|
|ATEN 1,879C711
copy and paste the result into the shell to unlock zloader.
|NBG6617> ATEN 1,0046B0017430
If the entered code was correct the shell will change to
use the ATGU command to enter the real u-boot shell.
|NBG6617> ATGU
|NBG6617#
Co-authored-by: David Bauer <mail@david-bauer.net>
Signed-off-by: Christian Lamparter <chunkeey@googlemail.com>
Signed-off-by: David Bauer <mail@david-bauer.net>
Specifications:
SOC: Qualcomm IPQ4018 (DAKOTA) ARM Quad-Core
RAM: 128 MB Nanya NT5CC64M16GP-DI
FLASH: 16 MiB Macronix MX25L12845EMI-12G
ETH: Qualcomm QCA8072
WLAN1: Qualcomm Atheros QCA4018 2.4GHz 802.11b/g/n 2x2
WLAN2: Qualcomm Atheros QCA4018 5GHz 802.11n/ac W2 2x2
INPUT: WPS, Mode-toggle-switch
LED: Power, WLAN 2.4GHz, WLAN 5GHz, LAN, WPS
(LAN not controllable by software)
(WLAN each green / red)
SERIAL: Header next to eth-phy.
VCC, TX, GND, RX (Square hole is VCC)
The Serial setting is 115200-8-N-1.
Tested and working:
- Ethernet (Correct MAC-address)
- 2.4 GHz WiFi (Correct MAC-address)
- 5 GHz WiFi (Correct MAC-address)
- Factory installation from tftp
- OpenWRT sysupgrade
- LEDs
- WPS Button
Not Working:
- Mode-toggle-switch
Install via TFTP:
Connect to the devices serial. Hit Enter-Key in bootloader to stop
autobooting. Command `tftpboot` will pull an initramfs image named
`C0A86302.img` from a tftp server at `192.168.99.08/24`.
After successfull transfer, boot the image with `bootm`.
To persistently write the firmware, flash an openwrt sysupgrade image
from inside the initramfs, for example transfer
via `scp <sysupgrade> root@192.168.1.1:/tmp` and flash on the device
with `sysupgrade -n /tmp/<sysupgrade>`.
append-cmdline patch taken from chunkeeys work on the NBG6617.
Signed-off-by: Magnus Frühling <skorpy@frankfurt.ccc.de>
Co-authored-by: David Bauer <mail@david-bauer.net>
Co-authored-by: Christian Lamparter <chunkeey@googlemail.com>
Specifications:
SOC: Qualcomm IPQ4018 (DAKOTA) ARM Quad-Core
RAM: 256 MB Winbond W632GU6KB12J
FLASH: 16 MiB Macronix MX25L12805D
ETH: Qualcomm QCA8072
WLAN1: Qualcomm Atheros QCA4018 2.4GHz 802.11b/g/n/ac 2x2
WLAN2: Qualcomm Atheros QCA4018 5GHz 802.11n/ac
1x1 (EX6100)
2x2 (EX6150)
INPUT: Power, WPS, reset button
AP / Range-extender toggle
LED: Power, Router, Extender (dual), WPS, Left-/Right-arrow
SERIAL: Header next to QCA8072 chip.
VCC, TX, RX, GND (Square hole is VCC)
WARNING: The serial port needs a TTL/RS-232 v3.3 level converter!
The Serial setting is 115200-8-N-1.
Tested and working:
- Ethernet
- 2.4 GHz WiFi (Correct MAC-address)
- 5 GHz WiFi (Correct MAC-address)
- Factory installation from WebIF
- Factory installation from tftp
- OpenWRT sysupgrade (Preserving and non-preserving)
- LEDs
- Buttons
Not Working:
- AP/Extender toggle-switch
Untested:
- Support on EX6100v2. They share the same GPL-Code and vendor-images.
The 6100v2 seems to lack one 5GHz stream and differs in the 5GHz
board-blob. I only own a EX6150v2, therefore i am only able to verify
functionality on this device.
Install via Web-Interface:
Upload the factory image to the device to the Netgear Web-Interface.
The device might asks you to confirm the update a second time due to
detecting the OpenWRT firmware as older. The device will automatically
reboot after the image is written to flash.
Install via TFTP:
Connect to the devices serial. Hit Enter-Key in bootloader to stop
autobooting. Command "fw_recovery" will start a tftp server, waiting for
a DNI image to be pushed.
Assign your computer the IP-address 192.168.1.10/24. Push image with
tftp -4 -v -m binary 192.168.1.1 -c put <OPENWRT_FACTORY>
Device will erase factory-partition first, then writes the pushed image
to flash and reboots.
Parts of this commit are based on Thomas Hebb's work on the
openwrt-devel mailinglist.
See https://lists.openwrt.org/pipermail/openwrt-devel/2018-January/043418.html
Signed-off-by: David Bauer <mail@david-bauer.net>
This patch adds support for Cisco Meraki MR33
hardware highlights:
SOC: IPQ4029 Quad-Core ARMv7 Processor rev 5 (v7l) Cortex-A7
DRAM: 256 MiB DDR3L-1600 @ 627 MHz Micron MT41K128M16JT-125IT
NAND: 128 MiB SLC NAND Spansion S34ML01G200TFV00 (106 MiB usable)
ETH: Qualcomm Atheros AR8035 Gigabit PHY (1 x LAN/WAN) + PoE
WLAN1: QCA9887 (168c:0050) PCIe 1x1:1 802.11abgn ac Dualband VHT80
WLAN2: Qualcomm Atheros QCA4029 2.4GHz 802.11bgn 2:2x2
WLAN3: Qualcomm Atheros QCA4029 5GHz 802.11a/n/ac 2:2x2 VHT80
LEDS: 1 x Programmable RGB+White Status LED (driven by Ti LP5562 on i2c-1)
1 x Orange LED Fault Indicator (shared with LP5562)
2 x LAN Activity / Speed LEDs (On the RJ45 Port)
BUTTON: one Reset button
MISC: Bluetooth LE Ti cc2650 PG2.3 4x4mm - BL_CONFIG at 0x0001FFD8
AT24C64 8KiB EEPROM
Kensington Lock
Serial:
WARNING: The serial port needs a TTL/RS-232 3V3 level converter!
The Serial setting is 115200-8-N-1. The board has a populated
1x4 0.1" header with half-height/low profile pins.
The pinout is: VCC (little white arrow), RX, TX, GND.
Flashing needs a serial adaptor, as well as patched ubootwrite utility
(needs Little-Endian support). And a modified u-boot (enabled Ethernet).
Meraki's original u-boot source can be found in:
<https://github.com/riptidewave93/meraki-uboot/tree/mr33-20170427>
Add images to do an installation via bootloader:
0. open up the MR33 and connect the serial console.
1. start the 2nd stage bootloader transfer from client pc:
# ubootwrite.py --write=mr33-uboot.bin
(The ubootwrite tool will interrupt the boot-process and hence
it needs to listen for cues. If the connection is bad (due to
the low-profile pins), the tool can fail multiple times and in
weird ways. If you are not sure, just use a terminal program
and see what the device is doing there.
2. power on the MR33 (with ethernet + serial cables attached)
Warning: Make sure you do this in a private LAN that has
no connection to the internet.
- let it upload the u-boot this can take 250-300 seconds -
3. use a tftp client (in binary mode!) on your PC to upload the sysupgrade.bin
(the u-boot is listening on 192.168.1.1)
# tftp 192.168.1.1
binary
put openwrt-ipq40xx-meraki_mr33-squashfs-sysupgrade.bin
4. wait for it to reboot
5. connect to your MR33 via ssh on 192.168.1.1
For more detailed instructions, please take a look at the:
"Flashing Instructions for the MR33" PDF. This can be found
on the wiki: <https://openwrt.org/toh/meraki/mr33>
(A link to the mr33-uboot.bin + the modified ubootwrite is
also there)
Thanks to Jerome C. for sending an MR33 to Chris.
Signed-off-by: Chris Blake <chrisrblake93@gmail.com>
Signed-off-by: Mathias Kresin <dev@kresin.me>
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
This patch adds support for ASUS RT-AC58U/RT-ACRH13.
hardware highlights:
SOC: IPQ4018 / QCA Dakota
CPU: Quad-Core ARMv7 Processor rev 5 (v7l) Cortex-A7
DRAM: 128 MiB DDR3L-1066 @ 537 MHz (1074?) NT5CC64M16GP-DI
NOR: 2 MiB Macronix MX25L1606E (for boot, QSEE)
NAND: 128 MiB Winbond W25NO1GVZE1G (cal + kernel + root, UBI)
ETH: Qualcomm Atheros QCA8075 Gigabit Switch (4 x LAN, 1 x WAN)
USB: 1 x 3.0 (via Synopsys DesignWare DWC3 controller in the SoC)
WLAN1: Qualcomm Atheros QCA4018 2.4GHz 802.11bgn 2:2x2
WLAN2: Qualcomm Atheros QCA4018 5GHz 802.11a/n/ac 2:2x2
INPUT: one Reset and one WPS button
LEDS: Status, WAN, WIFI1/2, USB and LAN (one blue LED for each)
Serial:
WARNING: The serial port needs a TTL/RS-232 3V3 level converter!
The Serial setting is 115200-8-N-1. The board has an unpopulated
1x4 0.1" header. The pinout (VDD, RX, GND, TX) is printed on the
PCB right next to the connector.
U-Boot Note: The ethernet driver isn't always reliable and can sometime
time out... Don't worry, just retry.
Access via the serial console is required. As well as a working
TFTP-server setup and the initramfs image. (If not provided, it
has to be built from the OpenWrt source. Make sure to enable
LZMA as the compression for the INITRAMFS!)
To install the image permanently, you have to do the following
steps in the listed order.
1. Open up the router.
There are four phillips screws hiding behind the four plastic
feets on the underside.
2. Connect the serial cable (See notes above)
3. Connect your router via one of the four LAN-ports (yellow)
to a PC which can set the IP-Address and ssh and scp from.
If possible set your PC's IPv4 Address to 192.168.1.70
(As this is the IP-Address the Router's bootloader expects
for the tftp server)
4. power up the router and enter the u-boot
choose option 1 to upload the initramfs image. And follow
through the ipv4 setup.
Wait for your router's status LED to stop blinking rapidly and
glow just blue. (The LAN LED should also be glowing blue).
3. Connect to the OpenWrt running in RAM
The default IPv4-Address of your router will be 192.168.1.1.
1. Copy over the openwrt-sysupgrade.bin image to your router's
temporary directory
# scp openwrt-sysupgrade.bin root@192.168.1.1:/tmp
2. ssh from your PC into your router as root.
# ssh root@192.168.1.1
The default OpenWrt-Image won't ask for a password. Simply hit the Enter-Key.
Once connected...: run the following commands on your temporary installation
3. delete the "jffs2" ubi partition to make room for your new root partition
# ubirmvol /dev/ubi0 --name=jffs2
4. install OpenWrt on the NAND Flash.
# sysupgrade -v /tmp/openwrt-sysupgrade.bin
- This will will automatically reboot the router -
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>