When adding support in abbbecaa73 ("ath79: add support for
Comfast E314N-v2"), IMAGE_SIZE has not been added to device
definition.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
We completely overlooked whitespace errors when reviewing
796ad2f7ef ("ath79: add support for D-Link DIR-842 C3").
Fix them and and also fix Makefile indent for C1/C2.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This is a dual band 11a/11n router with 1x wan and 4x gig lan ports.
There are two versions of this router which can be identified through
the factory web interface, v1 has 128mb ram and a uboot size of 128k,
v2 has 256mb ram and a uboot size of 256k, the remaining hardware and
PCB markings are the same.
Short specification:
SoC: Qualcomm Atheros QCA9558 - 720 MHz
Switch: Atheros AR8327
Second radio : Qualcomm Atheros QCA9880 802.11ac
4 LAN/1 WAN 1000Mps Ethernet
256 MB of RAM (DDR2)
16 MB of FLASH
3x2.4 GHz, 3x5GHz antennas
Steps to install :
Option A : Use vendor UI
Option B (if A is not working) :
(a) Download 'backup' from vendor UI and rename it backup.tar.gz
(b) Open the archive, and update the root password in /etc/shadow by
'$1$9wX3HGfB$X5Sb3kqzzBLdKRUR2kfFd0'
(c) 'Restore' from the archive using the vendor UI. Root password is now
'aaa'
(d) Scp the firwmware to the device:
$ scp <openwrt-sysupgrade>.bin root@192.168.1.1:/
(d) ssh to the device and flash the firmware:
$ cd /
$ mtd -e firmware -r write <openwrt-sysupgrade>.bin firmware
Signed-off-by: Gareth Parker <gareth41@orcon.net.nz>
Signed-off-by: Ding Tengfei <dtf@comfast.cn>
Signed-off-by: Joan Moreau <jom@grosjo.net>
[reformatted commit message]
Signed-off-by: David Bauer <mail@david-bauer.net>
Taken code from https://patchwork.ozlabs.org/patch/884850/ that was never
pushed by the author, and adapted to ath79.
The Comfast E314N-V2 is a 2.4 GHz 2x2 radio with a built-in directional
antenna and a second Ethernet port - very similar to the Ubiquiti
NanoStation M2. The Ethernet port features a pass-through PoE capability,
enabled or disabled with a slide switch.
Specifications :
- System-On-Chip: Qualcomm/Atheros QCA9531
- CPU/Speed: 650 MHz
- Flash size: 8 MiB
- RAM: 64 MiB
- 2 Ethernet 1Gbp
- 1 reset button
- 1 switch to choose PoE from LAN or Wan. 48Vdc
- Wifi 2.4 Ghz (b/g/n)
- UART inside the box (3.3V, pins marked on the PCB)
Firmware can be flashed on these units by the following method:
1.) Apply power to the unit
2.) Immediately AFTER applying power, hold down the reset button
3.) The WAN, LAN, and wireless lights will flash - wait three seconds
(three flashes) and then release the button.
4.) After a second, the lights will flutter quickly and the unit will be
visible at 192.168.1.1. A web page will be available to enable quick
and simple uploading and flashing of firmware.
During the boot process, these units also look for a tftp server at
192.168.1.10. If one is present, the firmware can be uploaded as a file
called firmware-auto.bin
Signed-off-by: Joan Moreau <jom@grosjo.net>
[wrapped commit message - fix commit title capitalization]
Signed-off-by: David Bauer <mail@david-bauer.net>
In the commit 623716dd43 ("comgt-ncm: Fix NCM protocol")
the dependencies to vendor NCM drivers were removed, because:
> comgt-ncm should not depend on the USB-serial-related kernel modules,
> as the cdc-wdm control device works without them. There is also no need
> to depend on kmod-huawei-cdc-ncm, since other manufacturers (like
> Ericsson and Samsung) which use other kernel modules should also be
> supported.
From a user-perspective this does not make sense, as installing comgt-ncm
(or luci-proto-ncm) should install all needed dependencies for using such
a device.
Furthermore depending on kmod-huawei-cdc-ncm does not mean that Ericsson
and Samsung devices can't be supported. By the way it seems that Ericsson
and Samsung devices never used NCM, but act as serial modems.
Thus this commit adds the dependencies again.
Signed-off-by: Vincent Wiemann <vincent.wiemann@ironai.com>
[fixed title capitalization, formatted commit message,
renamed Sony-Ericsson to Ericsson]
Signed-off-by: David Bauer <mail@david-bauer.net>
HiWiFi HC5761A is an "MT7628AN variant" of HC5761
Specifications:
- MediaTek MT7628AN 580MHz
- 128 MB DDR2 RAM
- 16 MB SPI Flash
- 2.4G MT7628AN 802.11bgn 2T2R 300Mbps
- 5G MT7610EN 802.11ac 433Mbps
- 3x 10/100 Mbps Ethernet
Flash instruction:
1. Get SSH access to the router
2. SSH to router with `ssh -p 1022 root@192.168.199.1`, The SSH password is the same as the webconfig one
3. Upload OpenWrt sysupgrade firmware into the router's `/tmp` folder with SCP
4. Run `mtd write /tmp/<filename> firmware`
5. reboot
Known bug:
- SD slot does not work (See PR 1500)
Signed-off-by: DENG Qingfang <dengqf6@mail2.sysu.edu.cn>
HC5661A:
- Fix pinctrl
- Fix image size (15808k)
- Use switch trigger for WAN LED
Both:
- Use tpt LED trigger for wireless
- Explicitly disable USB nodes
Signed-off-by: DENG Qingfang <dengqf6@mail2.sysu.edu.cn>
HiWiFi has several MT7628AN routers which have similar specs
Add HC5X61A.dtsi to include them, like HC5X61.dtsi (for MT7620A)
Signed-off-by: DENG Qingfang <dengqf6@mail2.sysu.edu.cn>
Specifications:
- SoC: AR9341
- RAM: 64M
- Flash: 16M
- Ethernet: 1 * FE port
- WiFi: ar934x-wmac
- Sound: WM8918 DAC
1 * 3.5mm headphone jack
2 * RCA connectors for speakers
1 * SPDIF out
- USB: 1 * USB2.0 port
Flash instruction:
Upload generated factory image via vendor's web interface.
Notes:
A. Audio stuff:
1. Since AR934x, all pins for peripheral blocks can be mapped to
any available GPIOs. We currently don't have a PCM/I2S driver
for AR934x so pinmux for i2s and SPDIF are bound to i2c gpio
node. This should be moved into I2S node when a PCM/I2S driver
is available.
2. The i2c-gpio node is for WM8918. DT binding for it can't be added
currently due to a missing clock from I2S PLL.
B. Factory image:
Image contains a image header and a tar.gz archive.
1. Header: A 288 byte header that has nothing to do with appended
tarball. Format:
0x0-0x7 and 0x18-0x1F: magic values
0x20: Model number string
0xFC: Action string. It's either "update" or "backup"
0x11C: A 1 byte checksum. It's XOR result of 0x8-0x11B
Firmware doesn't care about the rest of the header as long as
checksum result is correct.
The same header is used for backup and update routines so the
magic values and model number can be obtained by generating a
backup bin and grab values from it.
2. Tarball: It contains two files named uImage and rootfs, which
will be flashed into corresponding mtd partition.
Writing a special utility that can only output a fixed binary
blob is overkill so factory image header is placed under
image/bin instead.
C. LED
The wifi led has "Wi-Fi" marked on the case but vendor's firmware
used it as system status indicator. I did the same in this device
support patch.
D. Firmware
Factory u-boot is built without 'savenv' support so it's impossible
to change kernel offset. A 2MB kernel partition won't be enough in
the future. OKLI loader is used here to migrate this problem:
1. add OKLI image magic support into uImage parser.
2. build an OKLI loader, compress it with lzma and add a normal
uImage header.
3. flash the loader to where the original kernel supposed to be.
4. create a uImage firmware using OKLI loader.
5. flash the created firmware to where rootfs supposed to be.
By doing so, u-boot will start OKLI loader, which will then load
the actual kernel at 0x20000.
The kernel partition is 2MB, which is too much for our loader.
To save this space, "mtd-concat" is used here:
1. create a 64K (1 erase block) partition for OKLI loader and
create another partition with the left space.
2. concatenate rootfs and this partition into a virtual flash.
3. use the virtual flash for firmware partition.
Currently OKLI loader is flashed with factory image only.
sysupgrade won't replace it. Since it only has one function
and it works for several years, its unlikely to have some bugs
that requires a replacement.
Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
This adds support for uImage used by OpenWrt kernel loader.
The parser searches for uImage header at flash eraseblock boundary
and it might attempt to split any firmware with loader, therefore
this entry doesn't have MTD_PARSER_TYPE_FIRMWARE so that this parser
is only used when explicitly defined in dts.
Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
Hardware spec of DIR-842 C3:
SoC: QCA9563
DRAM: 128MB DDR2
Flash: 16MB SPI-NOR
Switch: QCA8337N
WiFi 5.8GHz: QCA9888
WiFi 2.4Ghz: QCA9563
USB: circuit onboard, but components are not soldered
Flash instructions:
1. Upgrade the factory.bin through the factory web interface or
the u-boot failsafe interface.
The firmware will boot up correctly for the first time.
Do not power off the device after OpenWrt has booted.
Otherwise the u-boot will enter failsafe mode as the checksum
of the firmware has been changed.
2. Upgrade the sysupgrade.bin in OpenWrt.
After upgrading completes the u-boot won't complain about the
firmware checksum and it's OK to use now.
3. If you powered off the device before upgrading the sysupgrade.bin,
just upgrade the factory.bin through the u-boot failsafe interface
and then goto step 2.
Signed-off-by: Perry Melange <isprotejesvalkata@gmail.com>
According to detective grep, with this patch all devices should
be labelled "TP-Link" consistently.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This seems to be identical to CPE210 v1 despite having removable
antennas.
Specifications:
* SoC: Qualcomm Atheros AR9344 (560 MHz)
* RAM: 64MB
* Storage: 8 MB
* Wireless: 2.4GHz N based built into SoC 2x2
* Ethernet: 2x 100/10 Mbps, integrated into SoC, 24V POE IN
Installation:
Flash factory image through stock firmware WEB UI
or through TFTP:
To get to TFTP recovery just hold reset button while powering on for
around 4-5 seconds and release.
Rename factory image to recovery.bin
Stock TFTP server IP:192.168.0.100
Stock device TFTP address:192.168.0.254
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
TP-Link CPE510-v1 is an outdoor wireless CPE for 5 GHz with
two Ethernet ports based on Atheros AR9334
Specifications:
- 560/450/225 MHz (CPU/DDR/AHB)
- 2x 10/100 Mbps Ethernet, 1x PoE-in, 1x PoE-out
- 64 MB of DDR2 RAM
- 8 MB of SPI-NOR Flash
- 2T2R 5 GHz
- 13 dBi built-in antenna
- Power, LAN0, LAN1 green LEDs
- 4x green RSSI LEDs
Flash factory image through stock firmware WEB UI
or through TFTP:
To get to TFTP recovery just hold reset button while powering on for
around 4-5 seconds and release.
Rename factory image to recovery.bin
Stock TFTP server IP:192.168.0.100
Stock device TFTP address:192.168.0.254
Based on the work of Paul Wassi <p.wassi@gmx.at>
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Specifications:
* SoC: Qualcomm Atheros AR9344 (560 MHz)
* RAM: 64MB
* Storage: 8 MB
* Wireless: 2.4GHz N based built into SoC 2x2
* Ethernet: 2x 100/10 Mbps, integrated into SoC, 24V POE IN
Installation:
Flash factory image through stock firmware WEB UI
or through TFTP:
To get to TFTP recovery just hold reset button while powering on for
around 4-5 seconds and release.
Rename factory image to recovery.bin
Stock TFTP server IP:192.168.0.100
Stock device TFTP address:192.168.0.254
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The loader-okli is shared by several TP-Link CPExxx devices, so
give it its own definition to prevent too much code duplication.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This puts some common code into a new shared DTSI. Common nodes
are chosen so that the new DTSI can be used for CPE210 v1, too.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This is a preparation for ath79 support of the CPE210/CPE510 v1.
Kernel size is chosen equal to the latest update for CPE610 v1.
This also updates the partition size in ar71xx target, so code
remains consistent if someone looks up the device. Since CPE210,
CPE510, WBS210 and WBS510 (all v1) share the same partition
layout definition, and are on deprecated target anyway, this
changes them all at once.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Since usign miscalculates SHA-512 digests for input sizes of exactly
64 + N * 128 + 110 or 64 + N * 128 + 111 bytes, we need to apply some
white space padding to avoid triggering the hashing edge case.
While usign itself has been fixed already, there is still many firmwares
in the wild which use broken usign versions to verify current package
indexes so we'll need to carry this workaround in the forseeable future.
Ref: https://forum.openwrt.org/t/signature-check-failed/41945
Ref: https://git.openwrt.org/5a52b379902471cef495687547c7b568142f66d2
Signed-off-by: Jo-Philipp Wich <jo@mein.io>
Introduce a new option CONFIG_SIGNATURE_CHECK which defaults to the value
of CONFIG_SIGNED_PACKAGES and thus is enabled by default.
This option is needed to support building target opkg with enabled
signature verification while having the signed package lists disabled.
Our buildbots currently disable package signing globally in the
buildroot and SDK to avoid the need to ship private signing keys to
the build workers and to prevent the triggering of random key generation
on the worker nodes since package signing happens off-line on the master
nodes.
As unintended side-effect, updated opkg packages will get built with
disabled signature verification, hence the need for a new override option.
Signed-off-by: Jo-Philipp Wich <jo@mein.io>
This update fixes usign signature verification on files with certain
file sizes triggering a bug in the shipped SHA-512 implementation.
5a52b37 sha512: fix bad hardcoded constant in sha512_final()
3e6648b README: replace unicode character
716c3f2 README: add reference to OpenBSD signify
86d3668 README: provide reference for ed25519 algorithm
939ec35 usign: main.c: describe necessary arguments for -G
Ref: https://forum.openwrt.org/t/signature-check-failed/41945
Signed-off-by: Jo-Philipp Wich <jo@mein.io>
This parser's matching function appears to be too generic as it matches
e.g. Buffalo WZR-HP-G300NH. That results in incorrect parts parsing.
Luckily this parser is needed by Fon FON2601 only which uses DT-based
ramips target. It means we can depend on mtd subsystem matching of
"fonfxc,uimage" string.
That said triggering this parser based on the "firmware" (or whatever
MTD_SPLIT_FIRMWARE_NAME is) partiiton name is not needed. It can be
dropped which will automatically fix the Buffalo WZR-HP-G300NH case.
Fixes: a1c6a316d2 ("ramips: add support for Fon FON2601")
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
This reverts commit e92a14709d.
mtdsplit_uimage_parse_fonfxc() gets called in two situations:
1) It was /requested/ from DT using "fonfxc,uimage" compatible string
2) It was called by parsing code after finding "firmware"
(MTD_SPLIT_FIRMWARE_NAME) due to the parser's type
Code added in the /fix/ commit basically just disabled the second case.
If that's the real goal it could be achieved by simply dropping type
MTD_PARSER_TYPE_FIRMWARE. It may however require another solution as
it's possible that some non-DT target actually needs fonfxc uImage
parsing.
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
Fix build breakage as upstream has removed implicit include of
sys/sysmacros.h from sys/types.h:
remove implicit include of sys/sysmacros.h from sys/types.h
this reverts commit f552c792c7ce5a560f214e1104d93ee5b0833967, which
exposed the sysmacros.h macros (device major/minor calculations) for
BSD and GNU profiles to mimic an unintentional glibc behavior some
code depended on. glibc has deprecated and since removed them as the
resolution to bug #19239, so it makes no sense for us to keep this
behavior. affected code should all have been fixed by now, and if it's
not yet fixed it needs to be for use with modern glibc anyway.
Ref: https://git.musl-libc.org/cgit/musl/commit/include/sys/types.h?id=a31a30a0076c284133c0f4dfa32b8b37883ac930
Signed-off-by: Petr Štetiar <ynezz@true.cz>
Starting with version 1.1.15, musl supports powerpc64.
There are no known users of powerpc64 yet.
This is effectively a revert of 0de93311e1
Signed-off-by: Rosen Penev <rosenp@gmail.com>
These legacy bindings were removed long time ago from dts, so there's no
need to keep support for them.
Spotted-by: Hauke Mehrtens <hauke@hauke-m.de>
Signed-off-by: Tomasz Maciej Nowak <tomek_n@o2.pl>
GCC needs the kernel headers to compile.
Some GCC file includes asm/unistd.h which is provided by the kernel headers.
Normally the kernel headers build is very fast and ready before the gcc uses
it, but if it clones the kernel from a slow git repository it takes longer
and then it could be that the gcc already wants to use the kernel headers
before they are available. This patch fixes this problem by adding the
missing dependency.
Signed-off-by: Hauke Mehrtens <hauke.mehrtens@intel.com>
This commit fixes regression on Linksys WRT1900 (Mamba) where this device
doesn't have USB 3.0 controller integrated in SoC, instead it has Etron
EJ168 connected to PCIe lane. Previously enabled in kernel 4.4 and 4.9,
was lost in transition to 4.14.
Fixes: 4ccad92 ("mvebu: Add support for kernel 4.14")
Signed-off-by: Tomasz Maciej Nowak <tomek_n@o2.pl>
This is already enabled as kernel built-in feature in mvebu target and
none other target will use it.
Signed-off-by: Tomasz Maciej Nowak <tomek_n@o2.pl>
This changes the default PKG_BUILD_DIR to take BUILD_VARIANT into
account (if set), so that packages do not need to manually override
PKG_BUILD_DIR just to handle variants.
This also updates most base packages with variants to use the updated
default PKG_BUILD_DIR.
Signed-off-by: Jeffery To <jeffery.to@gmail.com>
WLAN0 and the unused LED are currently swapped. Fix this, so the LED
behavior matches the other OCEDo devices.
Signed-off-by: David Bauer <mail@david-bauer.net>
This adds support for several TP-Link devices based on TP9343
("a QCA9561 without PCIe and USB"):
- TL-WR940N v3
- TL-WR940N v4
- TL-WR941ND v6
The devices are only different concerning LEDs and MAC address
assignment.
All TL-WR940 are with non-detachable antennas (N), all
TL-WR941 devices are with detachable antennas (ND).
Specification:
- 750 MHz CPU
- 32 MB of RAM
- 4 MB of FLASH
- 2.4 GHz WiFi
- 4x 10/100 Mbps Ethernet
Flash instruction (WebUI):
Download *-factory.bin image and upload it via the firmwary upgrade
function of the stock firmware WebUI.
Flash instruction (TFTP):
1. Set PC to fixed ip address 192.168.0.66
2. Download *-factory.bin image and rename it to * (see below)
3. Start a tftp server with the image file in its root directory
4. Turn off the router
5. Press and hold Reset button
6. Turn on router with the reset button pressed and wait ~15 seconds
7. Release the reset button and after a short time
the firmware should be transferred from the tftp server
8. Wait ~30 second to complete recovery.
* TFTP image names:
940 v3: wr941ndv6_tp_recovery.bin
940 v4: wr940nv4_tp_recovery.bin
941 v6: wr941ndv6_tp_recovery.bin
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
379c096 Release version 5.2.
2bce6d9 ethtool: Add 100BaseT1 and 1000BaseT1 link modes
67ffbf5 ethtool: sync ethtool-copy.h with linux-next from 30/05/2019
687152b ethtool.spec: Use standard file location macros
Signed-off-by: Hans Dedecker <dedeckeh@gmail.com>
Hardware spec of DIR-842 C1:
SoC: QCA9563
DRAM: 128MB DDR2
Flash: 16MB SPI-NOR
Switch: QCA8337N
WiFi 5.8GHz: QCA9888
WiFi 2.4Ghz: QCA9563
USB: circuit onboard, but components are not soldered
Flash instructions:
1. Upgrade the factory.bin through the factory web interface or
the u-boot failsafe interface.
The firmware will boot up correctly for the first time.
Do not power off the device after OpenWrt has booted.
Otherwise the u-boot will enter failsafe mode as the checksum
of the firmware has been changed.
2. Upgrade the sysupgrade.bin in OpenWrt.
After upgrading completes the u-boot won't complain about the
firmware checksum and it's OK to use now.
3. If you powered off the device before upgrading the sysupgrade.bin,
just upgrade the factory.bin through the u-boot failsafe interface
and then goto step 2.
Signed-off-by: Jackson Lim <jackcolentern@gmail.com>
[fix whitespace issues]
Signed-off-by: David Bauer <mail@david-bauer.net>
This router has the same hardware as TP-LINK TL-WR841N/ND v11 (same
FCC ID, same TFTP image name...).
Flash instruction (WebUI):
Download *-factory.bin image and upload it via the firmwary upgrade
function of the stock firmware WebUI.
Flash instruction (TFTP):
1. Set PC to fixed ip address 192.168.0.66
2. Download *-factory.bin image and rename it to wr841nv11_tp_recovery.bin
(it's really v11, not v12)
3. Start a tftp server with the image file in its root directory
4. Turn off the router
5. Press and hold Reset button
6. Turn on router with the reset button pressed and wait ~15 seconds
7. Release the reset button and after a short time
the firmware should be transferred from the tftp server
8. Wait ~30 second to complete recovery.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>