The Linksys MR8300 is based on QCA4019 and QCA9888
and provides three, independent radios.
NAND provides two, alternate kernel/firmware images
with fail-over provided by the OEM U-Boot.
Hardware Highlights:
SoC: IPQ4019 at 717 MHz (4 CPUs)
RAM: 512MB RAM
SoC: Qualcomm IPQ4019 at 717 MHz (4 CPUs)
RAM: 512M DDR3
FLASH: 256 MB NAND (Winbond W29N02GV, 8-bit parallel)
ETH: Qualcomm QCA8075 (4x GigE LAN, 1x GigE Internet Ethernet Jacks)
BTN: Reset and WPS
USB: USB3.0, single port on rear with LED
SERIAL: Serial pads internal (unpopulated)
LED: Four status lights on top + USB LED
WIFI1: 2x2:2 QCA4019 2.4 GHz radio on ch. 1-14
WIFI2: 2x2:2 QCA4019 5 GHz radio on ch. 36-64
WIFI3: 2x2:2 QCA9888 5 GHz radio on ch. 100-165
Support is based on the already supported EA8300.
Key differences:
EA8300 has 256MB RAM where MR8300 has 512MB RAM.
MR8300 has a revised top panel LED setup.
Installation:
"Factory" images may be installed directly through the OEM GUI using
URL: https://ip-of-router/fwupdate.html (Typically 192.168.1.1)
Signed-off-by: Hans Geiblinger <cybrnook2002@yahoo.com>
[copied Hardware-highlights from EA8300. Fixed alphabetical order.
fixed commit subject, removed bogus unit-address of keys,
fixed author (used Signed-off-By to From:) ]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
Luma Home WRTQ-329ACN, also known as Luma WiFi System, is a dual-band
wireless access point.
Specification
SoC: Qualcomm Atheros IPQ4018
RAM: 256 MB DDR3
Flash: 2 MB SPI NOR
128 MB SPI NAND
WIFI: 2.4 GHz 2T2R integrated
5 GHz 2T2R integrated
Ethernet: 2x 10/100/1000 Mbps QCA8075
USB: 1x 2.0
Bluetooth: 1x 4.0 CSR8510 A10, connected to USB bus
LEDS: 16x multicolor LEDs ring, controlled by MSP430G2403 MCU
Buttons: 1x GPIO controlled
EEPROM: 16 Kbit, compatible with AT24C16
UART: row of 4 holes marked on PCB as J19, starting count from the side
of J19 marking on PCB
1. GND, 2. RX, 3. TX, 4. 3.3V
baud: 115200, parity: none, flow control: none
The device supports OTA or USB flash drive updates, unfotunately they
are signed. Until the signing key is known, the UART access is mandatory
for installation. The difficult part is disassembling the casing, there
are a lot of latches holding it together.
Teardown
Prepare three thin, but sturdy, prying tools. Place the device with back
of it facing upwards. Start with the wall having a small notch. Insert
first tool, until You'll feel resistance and keep it there. Repeat the
procedure for neighbouring walls. With applying a pressure, one edge of
the back cover should pop up. Now carefully slide one of the tools to
free the rest of the latches.
There's no need to solder pins to the UART holes, You can use hook clips,
but wiring them outside the casing, will ease debuging and recovery if
problems occur.
Installation
1. Prepare TFTP server with OpenWrt initramfs image.
2. Connect to UART port (don't connect the voltage pin).
3. Connect to LAN port.
4. Power on the device, carefully observe the console output and when
asked quickly enter the failsafe mode.
5. Invoke 'mount_root'.
6. After the overlayfs is mounted run:
fw_setenv bootdelay 3
This will allow to access U-Boot shell.
7. Reboot the device and when prompted to stop autoboot, hit any key.
8. Adjust "ipaddr" and "serverip" addresses in U-Boot environment, use
'setenv' to do that, then run following commands:
tftpboot 0x84000000 <openwrt_initramfs_image_name>
bootm 0x84000000
and wait till OpenWrt boots.
9. In OpenWrt command line run following commands:
fw_setenv openwrt "setenv mtdids nand1=spi_nand; setenv mtdparts mtdparts=spi_nand:-(ubi); ubi part ubi; ubi read 0x84000000 kernel; bootm 0x84000000"
fw_setenv bootcmd "run openwrt"
10. Transfer OpenWrt sysupgrade image to /tmp directory and flash it
with:
ubirmvol /dev/ubi0 -N ubi_rootfs
sysupgrade -v -n /tmp/<openwrt_sysupgrade_image_name>
11. After flashing, the access point will reboot to OpenWrt, then it's
ready for configuration.
Reverting to OEM firmware
1. Execute installation guide steps: 1, 2, 3, 7, 8.
2. In OpenWrt command line run following commands:
ubirmvol /dev/ubi0 -N rootfs_data
ubirmvol /dev/ubi0 -N rootfs
ubirmvol /dev/ubi0 -N kernel
ubirename /dev/ubi0 kernel1 kernel ubi_rootfs1 ubi_rootfs
ubimkvol /dev/ubi0 -S 34 -N kernel1
ubimkvol /dev/ubi0 -S 320 -N ubi_rootfs1
ubimkvol /dev/ubi0 -S 264 -N rootfs_data
fw_setenv bootcmd bootipq
3. Reboot.
Known issues
The LEDs ring doesn't have any dedicated driver or application to control
it, the only available option atm is to manipulate it with 'i2cset'
command. The default action after applying power to device is spinning
blue light. This light will stay active at all time. To disable it
install 'i2c-tools' with opkg and run:
i2cset -y 2 0x48 3 1 0 0 i
The light will stay off until next cold boot.
Additional information
After completing 5. step from installation guide, one can disable asking
for root password on OEM firmware by running:
sed -e 's/root❌/root::/' -i /etc/passwd
This is useful for investigating the OEM firmware. One can look
at the communication between the stock firmware and the vendor's
cloud servers or as a way of making a backup of both flash chips.
The root password seems to be constant across all sold devices.
This is output of 'led_ctl' from OEM firmware to illustrate
possibilities of LEDs ring:
Usage: led_ctl [status | upgrade | force_upgrade | version]
led_ctl solid COLOR <brightness>
led_ctl single COLOR INDEX <brightness 0 - 15>
led_ctl spinning COLOR <period 1 - 16 (lower = faster)>
led_ctl fill COLOR <period 1 - 16 (lower = faster)>
( default is 5 )
led_ctl flashing COLOR <on dur 1 - 128> <off dur 1 - 128>
(default is 34) ( default is 34 )
led_ctl pulsing COLOR
COLOR: red, green, blue, yellow, purple, cyan, white
Signed-off-by: Tomasz Maciej Nowak <tomek_n@o2.pl>
[squash "ipq-wifi: add BDFs for Luma Home WRTQ-329ACN" into commit,
changed ubi volumes for easier integration, slightly reworded
commit message, changed ubi volume layout to use standard names all
around]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
amd64-microcode (3.20191218.1)
* New microcode update packages from AMD upstream:
+ Removed Microcode updates (known to cause issues):
sig 0x00830f10, patch id 0x08301025, 2019-07-11
* README: update for new release
amd64-microcode (3.20191021.1)
* New microcode update packages from AMD upstream:
+ New Microcodes:
sig 0x00830f10, patch id 0x08301025, 2019-07-11
+ Updated Microcodes:
sig 0x00800f12, patch id 0x08001250, 2019-04-16
sig 0x00800f82, patch id 0x0800820d, 2019-04-16
amd64-microcode (3.20181128.1)
* New microcode update packages from AMD upstream:
+ New Microcodes:
sig 0x00800f82, patch id 0x0800820b, 2018-06-20
Signed-off-by: Tan Zien <nabsdh9@gmail.com>
flashing the unit
* first update to latest edcore FW as per the PDF instructions
* boot the initramfs
- tftpboot 0x88000000 openwrt-ipq40xx-generic-edgecore_oap100-initramfs-fit-uImage.itb; bootm
* inside the initramfs call the following commiands
- ubiattach -p /dev/mtd0
- ubirmvol /dev/ubi0 -n0
- ubirmvol /dev/ubi0 -n1
- ubirmvol /dev/ubi0 -n2
* scp the sysupgrade image to the board and call
- sysupgrade -n openwrt-ipq40xx-generic-edgecore_oap100-squashfs-nand-sysupgrade.bin
Signed-off-by: John Crispin <john@phrozen.org>
This patch adds support for the Edgecore ECW5211 indoor AP.
Specification:
- SoC: Qualcomm Atheros IPQ4018 ARMv7-A 4x Cortex A-7
- RAM: 256MB DDR3
- NOR Flash: 16MB SPI NOR
- NAND Flash: 128MB MX35LFxGE4AB SPI-NAND
- Ethernet: 2 x 1G via Q8075 PHY connected to ethernet adapter via PSGMII (802.3af POE IN on eth0)
- USB: 1 x USB 3.0 SuperSpeed
- WLAN: Built-in IPQ4018 (2x2 802.11bng, 2x2 802.11 acn)
- CC2540 BLE connected to USB 2.0 port
- Atmel AT97SC3205T I2C TPM
Signed-off-by: Robert Marko <robert.marko@sartura.hr>
This patch adds support for the Edgecore ECW5410 indoor AP.
Specification:
- SoC: Qualcomm Atheros IPQ8068 ARMv7 2x Cortex A-15
- RAM: 256MB(225 usable) DDR3
- NOR Flash: 16MB SPI NOR
- NAND Flash: 128MB S34MS01G2 Parallel NAND
- Ethernet: 2 x 1G via 2x AR8033 PHY-s connected directly to GMAC2 and GMAC3 via SGMII (802.3af POE IN on eth0)
- USB: 1 x USB 3.0 SuperSpeed
- WLAN: 2x QCA9994 AC Wawe 2 (1x 2GHz bgn, 1x 5GHz acn)
- CC2540 BLE
- UART console on RJ45 next to ethernet ports exposed.
Its Cisco pin compatible, 115200 8n1 baud.
Installation instructions:
Through stock firmware or initramfs.
1.Connect to console
2. Login with root account, if password is unknown then interrupt the boot with f and reset it in failsafe.
3. Transfer factory image
4. Flash the image with ubiformat /dev/mtd1 -y -f <your factory image path>
This will replace the rootfs2 with OpenWrt, if you are currently running from rootfs2 then simply change /dev/mtd1 to /dev/mtd0
Note
Initramfs:
1. Connect to console
2. Transfer the image from TFTP server with tftpboot,
or by using DHCP advertised image with dhcp command.
3. bootm
4. Run ubiformat /dev/mtd1
You need to interrupt the bootloader after rebooting and run:
run altbootcmd
This will switch your active rootfs partition to one you wrote to and boot from it.
So if rootfs1 is active, then it will change it to rootfs2.
This will format the rootfs2 partition, if your active partition is 2 then simply change /dev/mtd1 with /dev/mtd0
If you dont format the partition you will be writing too, then sysupgrade will find existing UBI rootfs and kernel volumes and update those.
This will result in wrong ordering and OpenWrt will panic on boot.
5. Transfer sysupgrade image
6. Flash with sysupgrade -n.
Note that sysupgrade will write the image to rootfs partition that is not currently in use.
Signed-off-by: Robert Marko <robert.marko@sartura.hr>
This enables the ipq-wifi package to be used on IPQ806x target.
Its needed for boards using a different BDF than one shipped in the upstream board-2.bin.
Currently needed for Edgecore ECW5410.
Signed-off-by: Robert Marko <robert.marko@sartura.hr>
Instead of using http and https for source downloads from
downloads.openwrt.org, always use https for it's better security.
Signed-off-by: Paul Spooren <mail@aparcar.org>
This target has been mostly replaced by ath79 and won't be included
in the upcoming release anymore. Finally put it to rest.
This also removes all references in packages, tools, etc. as well as
the uboot-ar71xx and vsc73x5-ucode packages.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
For example, Turris MOX SDIO card is using Marvell (NXP) 88W8997 chip.
Technical specs of 88W8997:
- 28nm
- 802.11 ac wave-2
It should support simultaneous dual-band 2.4 GHz and 5 GHz,
but it requires to support multiSSID for one Wi-Fi card [1], which is
not supported in OpenWrt, yet and if we tried to run two instances of
hostapd, it didn't work well, so it's 2.4 GHz or 5 GHz.
- 2x2 MU-MIMO
- Bluetooth 5.1 with LE support
- Unfortunately, there can be connected only 8 clients at the same time
(limited by FW, however, there exists "enterprise" chip, its equal chip,
it is just different that it uses different FW)
Symlink is necessary as mwifiex_sdio tries to load sd8997_uapsta.bin
[ 13.651182] mwifiex_sdio mmc0:0001:1: Direct firmware load for mrvl/sd8997_uapsta.bin failed with error -2
[ 13.661065] mwifiex_sdio mmc0:0001:1: Falling back to user helper
[ 13.684880] firmware mrvl!sd8997_uapsta.bin: firmware_loading_store: map pages failed
[ 13.695910] mwifiex_sdio mmc0:0001:1: Failed to get firmware mrvl/sd8997_uapsta.bin
[ 13.703774] mwifiex_sdio mmc0:0001:1: info: _mwifiex_fw_dpc: unregister device
Pali Rohár sent two patches [2] [3] into kernel to fix default firmware name for SD8997, so
the symlink will not be required in the future versions of kernel, which
was accepted and right now, according to my details it was backported to 5.8, 5.7 and 5.4
[1] https://bugs.openwrt.org/index.php?do=details&task_id=3243
[2] https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=00eb0cb36fad5
[3] https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=2e1fcac52a9ea
Signed-off-by: Josef Schlehofer <pepe.schlehofer@gmail.com>
Not a large change from last time, but should fix at least one rare wave-2
crash. The htt-mgt-community builds are trimmed for supporting lots of
stations (typically 150+ stations per radio).
Tested on Netgear R7800.
Signed-off-by: Michael Yartys <michael.yartys@gmail.com>
Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
OpenWrt lately has harmonized device (definition) names to the
pattern vendor_model to improve overall consistency, also with
other values like the DTS compatible.
This patch applies that scheme to the layerscape target.
Since this (intentionally) creates a bigger overlap between DTS names,
compatible, and device definition name, it also moves DEVICE_DTS and
SUPPORTED_DEVICES definitions to the Device/Default blocks.
Apart from that, it also modifies several packages to use consistent
naming in order to keep the $(1) file references working.
While at it, remove one layer of complexity for the setup in
tfa-layerscape package.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Quoting part of original message from eefb5f741015 commit in
linux-firmware repository:
This adds the "minifw" version of the EIP197 firmware, which the inside-
secure driver will use as a fallback if the original full-featured
firmware cannot be found. This allows for using the inside-secure driver
and hardware without access to "official" firmware only available under
NDA.
Signed-off-by: Tomasz Maciej Nowak <tomek_n@o2.pl>
Buffalo WTR-M2133HP is a Tri-Band router based on IPQ4019.
Specification
-------------
- SoC: Qualcomm IPQ4019
- RAM: 512MiB
- Flash Memory: NAND 128MiB (MXIC MX30LF1G18AC)
- Wi-Fi: Qualcomm IPQ4019 (2.4GHz, 1ch - 13ch)
- Wi-Fi: Qualcomm IPQ4019 (5GHz, 36ch - 64ch)
- Wi-Fi: Qualcomm QCA9984 (2T2R, 5GHz, 100ch - 140ch)
- Ethernet: 4x 10/100/1000 Mbps (1x WAN, 3x LAN)
- LED: 4x white LED, 4x orange LED, 1x blue LED
- USB: 1x USB 3.0 port
- Input: 2x tactile switch, 2x slide switch (2x SP3T)
- Serial console: 115200bps, pinheader JP5 on PCB
- Power: DC 12V 2A
Flash instruction
-----------------
1. Set up a TFTP server (IP address: 192.168.11.10)
2. Rename "initramfs-fit-uImage.itb" to "WTR-M2133HP-initramfs.uImage"
and put it into the TFTP server directory.
3. Connect the TFTP server and WTR-M2133HP.
4. Hold down the AOSS button, then power on the router.
5. After booting OpenWrt initramfs image, connect to the router by SSH.
6. Transfer "squashfs-nand-factory.ubi" to the router.
7. Execute the following commands.
# ubidetach -p /dev/mtd15
# ubiformat /dev/mtd15 -f /tmp/openwrt-ipq40xx-generic-buffalo_wtr-m2133hp-squashfs-nand-factory.ubi
# fw_setenv bootcmd bootipq
8. Perform reboot.
Recover to stock firmware
-------------------------
1. Execute the following command.
# fw_setenv bootcmd bootbf
2. Reboot and wait several minutes.
Signed-off-by: Yanase Yuki <dev@zpc.sakura.ne.jp>
Specifications:
SOC: Qualcomm IPQ4029 (DAKOTA) ARM Quad-Core
RAM: 512 MiB
FLASH1: 16 MiB NOR - SPI0
FLASH2: 8 GiB eMMC
ETH: Qualcomm QCA8075
WLAN1: Qualcomm Atheros QCA4029 2.4GHz 802.11b/g/n 2x2
WLAN2: Qualcomm Atheros QCA4029 5GHz 802.11n/ac W2 2x2
INPUT: Reset, WPS
LED: Power, Mesh, WLAN
UART1: On board pin header near to LED (3.3V, TX, RX, GND), 3.3V without pin - 115200 8N1
UART2: On board with BLE module
SPI1: On board socket for Zigbee module
Install via tftp
- NB: need to flash transition image firstly
Firstly install transition image:
(IPQ40xx) # tftpboot 0x84000000 s1300-factory-to-openwrt.img
(IPQ40xx) # sf probe && imgaddr=0x84000000 && source :script
Secondly install openwrt sysupgrade bin:
(IPQ40xx) # run lf
Revert to factory image:
(IPQ40xx) # tftpboot 0x84000000 s1300-openwrt-to-factory.img
(IPQ40xx) # sf probe && imgaddr=0x84000000 && source :script
The kernel and rootfs of factory firmware are on eMMC, and openwrt
firmware is on NOR flash. The transition image includes U-boot
and partition table, which decides where to load kernel and rootfs.
After you firstly install openwrt image, you can switch between
factory and openwrt firmware by flashing transition image.
Signed-off-by: Dongming Han <handongming@gl-inet.com>
SOC: IPQ4018 / QCA Dakota
CPU: Quad-Core ARMv7 Processor rev 5 (v7l) Cortex-A7
DRAM: 256 MiB
NOR: 32 MiB
ETH: Qualcomm Atheros QCA8072 (2 ports)
USB: 1 x 2.0 (Host controller in the SoC)
WLAN1: Qualcomm Atheros QCA4018 2.4GHz 802.11bgn 2:2x2
WLAN2: Qualcomm Atheros QCA4018 5GHz 802.11a/n/ac 2:2x2
INPUT: RESET Button
LEDS: White, Blue, Red, Orange
Flash instruction:
From EnGenius firmware to OpenWrt firmware:
In Firmware Upgrade page, upgrade your openwrt-ipq40xx-generic-engenius_emr3500-squashfs-factory.bin directly.
From OpenWrt firmware to EnGenius firmware:
1. Setup a TFTP server on your computer and configure static IP to 192.168.99.8
Put the EnGenius firmware in the TFTP server directory on your computer.
2. Power up EMR3500. Press 4 and then press any key to enter u-boot.
3. Download EnGenius firmware
(IPQ40xx) # tftpboot 0x84000000 openwrt-ipq40xx-emr3500-nor-fw-s.img
4. Flash the firmware
(IPQ40xx) # imgaddr=0x84000000 && source 0x84000000:script
5. Reboot
(IPQ40xx) # reset
Signed-off-by: Yen-Ting-Shen <frank.shen@senao.com>
[squashed update patch, updated to 5.4, dropped BOARD_NAME,
migrated to SOC]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
We do not have to define package for each board, and
consider variant's installing.
It is easier to maintain ls-dpl with only one package
installing all 4 files as intermediate files.
Signed-off-by: Yangbo Lu <yangbo.lu@nxp.com>
We do not have to define package for each board, and
consider variant's installing.
It is easier to maintain ls-mc with only one package
installing all two images as intermediate files.
Signed-off-by: Yangbo Lu <yangbo.lu@nxp.com>
We do not have to define package for each board, and
consider variant's installing.
It is easier to maintain fman-ucode with only one package
installing all two binaries as intermediate files.
Signed-off-by: Yangbo Lu <yangbo.lu@nxp.com>
Update ls-rcw to latest LSDK-20.04.
Update patch 0001 with a new one.
Drop patch 0002 since it had been integrated.
Signed-off-by: Yangbo Lu <yangbo.lu@nxp.com>
We do not have to define package for each board, and
consider variant's building/installing.
It is easier to maintain ls-rcw with only one package
installing all boards RCW binaries as intermediate
files, each of which is just about hundreds of bytes.
Signed-off-by: Yangbo Lu <yangbo.lu@nxp.com>
For wave-2, there is now a new variant: htt-mgt-community (vs the old
full-htt-mgt-community).
The non-full one (hence forth 'diet') compiles out a lot of firmware features
that ath10k does not use. This saves a lot of resources and lets one
configure more stations/vdevs/etc using fwcfg.
Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
Another release is overdue for quite some time, so I'm backporting three
fixes from upstream which I plan to backport into 19.07 as well.
Ref: FS#2880
Signed-off-by: Petr Štetiar <ynezz@true.cz>
Cell C RTL30VW is a LTE router with tho gigabit ethernets and integrated
QMI mPCIE modem.
This is stripped version of ASKEY RTL0030VW.
Hardware:
Specification:
-CPU: IPQ4019
-RAM: 256MB
-Flash: NAND 128MB + NOR 16MB
-WiFi: Integrated bgn/ac
-LTE: mPCIe card (Modem chipset MDM9230)
-LAN: 2 Gigabit Ports
-USB: 2x USB2.0
-Serial console: RJ-45 115200 8n1
-Unsupported VoIP
Known issues:
None so far.
Instruction install:
There are two methods: Factory web-gui and serial + tftp.
Web-gui:
1. Apply factory image via stock web-gui.
Serial + initramfs:
1. Rename OpenWrt initramfs image to "image"
2. Connect serial console (115200,8n1)
3. Set IP to different than 192.168.1.11, but 24 bit mask, eg. 192.168.1.4.
4. U-Boot commands:
sf probe && sf read 0x80000000 0x180000 0x10000
setenv serverip 192.168.1.4
set fdt_high 0x85000000
tftpboot 0x84000000 image
bootm 0x84000000
5. Install sysupgrade image via "sysupgrade -n"
Back to stock:
All is needed is swap 0x4c byte in mtd8 from 0 to 1 or 1 to 0,
do firstboot and factory reset with OFW:
1. read mtd8:
dd if=/dev/mtd8 of=/tmp/mtd8
2. go to tmp:
cd /tmp/
3. write first part of partition:
dd if=mtd8 of=mtd8.new bs=1 count=76
4. check which layout uses bootloader:
cat /proc/mtd
5a. If first are kernel_1 and rootfs_1 write 0:
echo -n -e '\x00' >> mtd8.new
5b. If first are kernel and rootfs write 1:
echo -n -e '\x01' >> mtd8.new
6. fill with rest of data:
dd if=mtd8 bs=1 skip=77 >> mtd8.new
7. CHECK IF mtd8.new HAVE CHANGED ONLY ONE BYTE! e.g with:
hexdump mtd8.new
8. write new mtd8 to flash:
mtd write mtd8.new /dev/mtd8
9. do firstboot
10.reboot
11. Do back to factory defaults in OFW GUI.
Based on work: Cezary Jackiewicz <cezary@eko.one.pl>
Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com>
MobiPromo CM520-79F is an AC1300 dual band router based on IPQ4019
Specification:
SoC/Wireless: QCA IPQ4019
RAM: 512MiB
Flash: 128MiB SLC NAND
Ethernet PHY: QCA8075
Ethernet ports: 1x WAN, 2x LAN
LEDs: 7 LEDs
2 (USB, CAN) are GPIO
other 5 (2.4G, 5G, LAN1, LAN2, WAN) are connected to a shift register
Button: Reset
Flash instruction:
Disassemble the router, connect UART pins like this:
GND TX RX
[x x . . x .]
[. . . . . .]
(QCA8075 and IPQ4019 below)
Baud-rate: 115200
Set up TFTP server: IP 192.168.1.188/24
Power on the router and interrupt the booting with UART console
env backup (in case you want to go back to stock and need it there):
printenv
(Copy the output to somewhere save)
Set bootenv:
setenv set_ubi 'set mtdids nand0=nand0; set mtdparts mtdparts=nand0:0x7480000@0xb80000(fs); ubi part fs'
setenv bootkernel 'ubi read 0x84000000 kernel; bootm 0x84000000#config@1'
setenv cm520_boot 'run set_ubi; run bootkernel'
setenv bootcmd 'run cm520_boot'
setenv bootargs
saveenv
Boot initramfs from TFTP:
tftpboot openwrt-ipq40xx-generic-mobipromo_cm520-79f-initramfs-fit-zImage.itb
bootm
After initramfs image is booted, backup rootfs partition in case of reverting to stock image
cat /dev/mtd12 > /tmp/mtd12.bin
Then fetch it via SCP
Upload nand-factory.ubi to /tmp via SCP, then run
mtd erase rootfs
mtd write /tmp/*nand-factory.ubi rootfs
reboot
To revert to stock image, restore default bootenv in uboot UART console
setenv bootcmd 'bootipq'
printenv
use the saved dump you did back when you installed OpenWrt to verify that
there are no other differences from back in the day.
saveenv
upload the backed up mtd12.bin and run
tftpboot mtd12.bin
nand erase 0xb80000 0x7480000
nand write 0x84000000 0xb80000 0x7480000
The BOOTCONFIG may have been configured to boot from alternate partition (rootfs_1) instead
In case of this, set it back to rootfs:
cd /tmp
cat /dev/mtd7 > mtd7.bin
echo -ne '\x0b' | dd of=mtd7.bin conv=notrunc bs=1 count=1 seek=4
for i in 28 48 68 108; do
dd if=/dev/zero of=mtd7.bin conv=notrunc bs=1 count=1 seek=$i
done
mtd write mtd7.bin BOOTCONFIG
mtd write mtd7.bin BOOTCONFIG1
Signed-off-by: DENG Qingfang <dengqf6@mail2.sysu.edu.cn>
[renamed volume to ubi to support autoboot,
as per David Lam's test in PR#2432]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
Release notes for 017:
Wave-1:
* March 19, 2020: Fix problem where power-save was not enabled when going off-channel to scan.
The problem was a boolean logic inversion in the chmgr code, a regression I introduced
a long time ago.
* March 19, 2020: When scanning only on current working channel, do not bother with disable/enable
powersave. This should make an on-channel scan less obtrusive than it was previously.
* March 23, 2020: Fix channel-mgr use-after-free problem that caused crashes in some cases. The crash
was exacerbated by recent power-save changes.
* March 23, 2020: Fix station-mode power-save related crash: backported the fix from 10.2 QCA firmware.
* March 23, 2020: Attempt to better clean up power-save objects and state, especially in station mode.
Release notes for 016:
Wave-1 changes, some debugging code for a crash someone reported, plus:
* February 28, 2020: Fix custom-tx path when sending in 0x0 for rate-code. Have tries == 0 mean
one try but NO-ACK (similar to how wave-2 does it).
wave-2:
* Fixed some long-ago regressions related to powersave and/or multicast. Maybe fix some
additional multicast and/or tx-scheduling bugs.
Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
Acked-by: Petr Štetiar <ynezz@true.cz>
Re-add support for NXP FRDM-LS1012A, which mimics the flash layout of the
rest boards supported by LSDK.
0x000000000000-0x000000100000 : "bl2"
0x000000100000-0x000000500000 : "fip"
0x000000500000-0x000000600000 : "u-boot-env"
0x000000600000-0x000000a00000 : "reserved-1"
0x000000a00000-0x000000d00000 : "pfe"
0x000000d00000-0x000000f00000 : "reserved-2"
0x000000f00000-0x000001000000 : "dtb"
0x000001000000-0x000002000000 : "kernel"
0x000002000000-0x000004000000 : "ubifs"
Specification
SoC: LS1012A single core 800MHz
RAM: 512 MB DDR3
Flash: 64 MB QSPI NOR
Ethernet: 2x 10/100/1000 Mbps
Connectors: µUSB 3.0 OTG
µUSB 2.0 (debugging & power input)
2x 3.5mm jack for microphone & headphone (SGTL5000)
Arduino Shield expansion with I2C, SPI, UART, and GPIO
JTAG
LEDS: 3x (non-configurable)
Buttons: 1x (reset, non-configurable)
Be advised that erasing or writing 64MB flash takes some time to finish.
Do not reset the board until all operations end with success, otherwise
You'll need external tools to re-program the flash chip.
Installation
Follow the QSPI programing procedure for LS1012AFRWY board in
target/linux/layerscape/README, point 3.3.
Don't forget about updating U-Boot environment with MAC addresses of
ethernet interfaces, variable 'ethaddr' for eth0 and 'eth1addr' for eth1.
As the LSDK images do not support sysupgrade, nor do changes in this
commit, it's planed in upcoming submissions.
Signed-off-by: Tomasz Maciej Nowak <tomek_n@o2.pl>
This patch adds support for the 8devices Habanero development board.
Specs are:
CPU: QCA IPQ4019
RAM: DDR3L 512MB
Storage: 32MB SPI-NOR and optional Parallel SLC NAND(Some boards ship with it and some without)
WLAN1: 2.4 GHz built into IPQ4019 (802.11n) 2x2
WLAN2: 5 GHz built into IPO4019 (802.11ac Wawe-2) 2x2
Ethernet: 5x Gbit LAN (QCA 8075)
USB: 1x USB 2.0 and 1x USB 3.0 (Both built into IPQ4019)
MicroSD slot (Uses SD controller built into IPQ4019)
SDIO3.0/EMMC slot (Uses the same SD controller)
Mini PCI-E Gen 2.0 slot (Built into IPQ4019)
5x LEDs (4 GPIO controllable)
2x Pushbutton (1 is connected to GPIO, other to SoC reset)
LCD ZIF socket (Uses the LCD controller built into IPQ4019 which has no driver support)
1x UART 115200 rate on J18
2x breakout development headers
12V DC Jack for power
DIP switch for bootstrap configuration
Installation instructions:
Since boards ship with vendors fork of OpenWrt sysupgrade can be used.
Signed-off-by: Robert Marko <robimarko@gmail.com>
SOC: IPQ4019 / QCA Dakota
CPU: Quad-Core ARMv7 Processor rev 5 (v7l) Cortex-A7
DRAM: 256 MiB
FLASH: NOR 4 MiB + NAND 128 MiB
ETH: Qualcomm Atheros QCA8072
WLAN1: Qualcomm Atheros QCA4019 2.4GHz 802.11bgn 2:2x2
WLAN2: Qualcomm Atheros QCA4019 5GHz 802.11a/n/ac 2:2x2
WLAN2: Qualcomm Atheros QCA9888 5GHz 802.11a/n/ac 2:2x2
INPUT: WPS Button
LEDS: Power, LAN1, LAN2, WLAN 2.4GHz, WLAN 5GHz-1, WLAN 5GHz-2, OPMODE
1. Load Ramdisk via U-Boot
To set up the flash memory environment, do the following:
a. As a preliminary step, ensure that the board console port is connected to the PC using these RS232 parameters:
* 115200bps
* 8N1
b. Confirm that the PC is connected to the board using one of the Ethernet ports.
c. Set a static ip 192.168.99.8 for Ethernet that connects to board.
d. The PC must have a TFTP server launched and listening on the interface to which the board is connected.
e. At this stage power up the board and, after a few seconds, press 4 and then any key during the countdown.
U-BOOT> set serverip 192.168.99.9 && tftpboot 0x84000000 192.168.99.8:openwrt.itb && bootm
Signed-off-by: Steven Lin <steven.lin@senao.com>
[copied 4.19 dts to 5.4]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
This change makes the names of Broadcom targets consistent by using
the common notation based on SoC/CPU ID (which is used internally
anyway), bcmXXXX instead of brcmXXXX.
This is even used for target TITLE in make menuconfig already,
only the short target name used brcm so far.
Despite, since subtargets range from bcm2708 to bcm2711, it seems
appropriate to use bcm27xx instead of bcm2708 (again, as already done
for BOARDNAME).
This also renames the packages brcm2708-userland and brcm2708-gpu-fw.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Acked-by: Álvaro Fernández Rojas <noltari@gmail.com>
This supports better per-chain noise floor reporting, which in turn allows for
better RSSI reporting in the driver.
Wave-2 fixes a long-standing rate-ctrl problem when connected to xbox (and probably other devices).
Wave-2 has fix for crash likely related to rekeying.
Wave-1 has some debugging code added where a user reported a crash.
Tested-by: Stefan Lippers-Hollmann <s.l-h@gmx.de> [ipq806x+qca9984,ipq4019+qca9986]
Signed-off-by: Michael Yartys <michael.yartys@protonmail.com>
This patch converts the Qxwlan E2600AC image away from
the deprecated .bin file and to the new .qca4019 method.
As a result, we no longer need to carry around the
legacy support for handling .bin files.
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
SOC: IPQ4018 / QCA Dakota
CPU: Quad-Core ARMv7 Processor rev 5 (v7l) Cortex-A7
DRAM: 256 MiB
NOR: 32 MiB
ETH: Qualcomm Atheros QCA8072 (1 port)
WLAN1: Qualcomm Atheros QCA4018 2.4GHz 802.11bgn 2:2x2
WLAN2: Qualcomm Atheros QCA4018 5GHz 802.11a/n/ac 2:2x2
INPUT: RESET Button
LEDS: White, Blue, Red, Orange
Flash instruction:
From EnGenius firmware to OpenWrt firmware:
In Firmware Upgrade page, upgrade your openwrt-ipq40xx-generic-engenius_emd1-squashfs-factory.bin directly.
From OpenWrt firmware to EnGenius firmware:
1. Setup a TFTP server on your computer and configure static IP to 192.168.99.8
Put the EnGenius firmware in the TFTP server directory on your computer.
2. Power up EMD1. Press 4 and then press any key to enter u-boot.
3. Download EnGenius firmware
(IPQ40xx) # tftpboot 0x84000000 openwrt-ipq40xx-emd1-nor-fw-s.img
4. Flash the firmware
(IPQ40xx) # imgaddr=0x84000000 && source 0x84000000:script
5. Reboot
(IPQ40xx) # reset
Signed-off-by: Yen-Ting-Shen <frank.shen@senao.com>
[removed BOARD_NAME]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
Specifications
==============
- SOC: IPQ4018
- RAM: DDR3 256MB
- Flash: SPI NOR 16MB
- WiFi:
- 2.4GHz: IPQ4018, 2x2, front end SKY85303-11
- 5GHz: IPQ4018, 2x2, front end SKY85717-21
- Ethernet: 1x 10/100/1000Mbps, POE 802.3af
- PHY: QCA8072
- UART: GND, blocked, 3.3V, RX, TX / 115200 8N1
- LED: 1x red / green
- Button: 1x reset / factory default
- U-Boot bootloader with tftp and "emergency web server" accessible
using serial port.
Installation
============
Flash factory image from D-Link web UI. Constraints in the D-Link web UI
makes the factory image unnecessarily large. Flash again using
sysupgrade from inside OpenWrt to reclaim some flash space.
Return to stock D-Link firmware
===============================
Partition layout is preserved, and it is possible to return to the stock
firmware simply by downloading it from D-Link and writing it to the
firmware partition.
# mtd -r write dap2610-firmware.bin firmware
Quirks
======
To be flashable from the D-Link http server, the firmware must be larger
then 6MB, and the size in the firmware header must match the actual file
size. Also, the boot loader verifies the checksum of the firmware before
each boot, thus the jffs2 must be after the checksum covered part. This
is solved in the factory image by having the rootfs at the very end of
the image (without pad-rootfs).
The sysupgrade image which does not have to be flashable from the D-Link
web UI may be smaller, and the checksum in the firmware header only
covers the kernel part of the image.
Signed-off-by: Fredrik Olofsson <fredrik.olofsson@anyfinetworks.com>
[added WRGG Variables to DEVICE_VARS, squashed spi pinconf/mux,
added emd1's gmac0 config,fix dtc warnings]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
Hardware:
SOC: Qualcomm IPQ4018
RAM: 128 MB Nanya NT5CC64M16GP-DI
FLASH: 16 MB Macronix MX25L12805D
ETH: Qualcomm QCA8075 (4 Gigabit ports, 3xLAN, 1xWAN)
WLAN: Qualcomm IPQ4018 (2.4 & 5 Ghz)
BUTTON: Shared WPS/Reset button
LED: RGB Status/Power LED
SERIAL: Header J8 (UART, Left side of board). Numbered from
top to bottom:
(1) GND, (2) TX, (3) RX, (4) VCC (White triangle
next to it).
3.3v, 115200, 8N1
Tested/Working:
* Ethernet
* WiFi (2.4 and 5GHz)
* Status LED
* Reset Button (See note below)
Implementation notes:
* The shared WPS/Reset button is implemented as a Reset button
* I could not find a original firmware image to reverse engineer, meaning
currently it's not possible to flash OpenWrt through the Web GUI.
Installation (Through Serial console & TFTP):
1. Set your PC to fixed IP 192.168.1.12, Netmask 255.255.255.0, and connect to
one of the LAN ports
2. Rename the initramfs image to 'C0A8010B.img' and enable a TFTP server on
your pc, to serve the image
2. Connect to the router through serial (See connection properties above)
3. Hit a key during startup, to pause startup
4. type `setenv serverip 192.168.1.12`, to set the tftp server address
5. type `tftpboot`, to load the image from the laptop through tftp
6. type `bootm` to run the loaded image from memory
6. (If you want to return to stock firmware later, create an full MTD backup,
e.g. using instructions here https://openwrt.org/docs/guide-user/installation/generic.backup#create_full_mtd_backup)
7. Transfer the 'sysupgrade' OpenWrt firmware image from PC to router, e.g.:
`scp xxx-squashfs-sysupgrade.bin root@192.168.1.1:/tmp/upgrade.bin`
8. Run sysupgrade to permanently install OpenWrt to flash: `sysupgrade -n /tmp/upgrade.bin`
Revert to stock:
To revert to stock, you need the MTD backup from step 6 above:
1. Unpack the MTD backup archive
2. Transfer the 'firmware' partition image to the router (e.g. mtd8_firmware.backup)
3. On the router, do `mtd write mtd8_firmware.backup firmware`
Signed-off-by: Tom Brouwer <tombrouwer@outlook.com>
[removed BOARD_NAME, OpenWRT->OpenWrt, changed LED device name to board name]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
This target is still on kernel 4.9, and it looks like there is no
active maintainer for this target anymore.
Remove the code and all the packages which are only used by this target.
To add this target to OpenWrt again port it to a recent and supported
kernel version.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The release notes since last time for wave-1:
* No changes to wave-1, but I make a version .014 copy anyway to keep
the makefile in sync.
The release notes since last time for wave-2:
* December 16, 2019: Wave-2 has a fix to make setting txpower work
better. Before setting the power was ignored at
least some of the time (it also appeared to work
mostly, so I guess it was being correctly set in
other ways).
Signed-off-by: Stefan Lippers-Hollmann <s.l-h@gmx.de>
This package contains nvram files for brcmfmac, a mac80211 driver for FullMAC
Cypress devices.
Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
The release notes since last time for wave-1:
* November 29, 2019: Fix IBSS merge issue, related to TSF id leakage bug in firmware code.
Thanks for Ahmed Zaki @ Mage-Networks for helping to diagnose and test.
The release notes since last time for wave-2:
* December 6, 2019: Fix 160Mhz problem caused by logic that did not take into account the fact that
160Mhz has only 1/2 of the NSS of lower bandwidths in the rate table.
Signed-off-by: Koen Vandeputte <koen.vandeputte@ncentric.com>
This backports a patch to build it work with python2 in addition to
python3.
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Acked-by: Petr Štetiar <ynezz@true.cz>
The release notes since last time for wave-1:
* October 5, 2019: Fix too-short msg caused by invalid use of PayloadLen in receive path.
This appears to resolve the issue of getting (and ignoring) too-short commands
when we detect loss of CE interrupts and go into polling mode.
* October 12, 2019: Fix regression in IBSS mode that caused SWBA overrun issues. Related to
regression added during the ct-station logic, specifically TSF allocation.
Thanks for Ahmed Zaki @ Mage-Networks for helping to diagnose and test.
* October 15, 2019: Only send beacon tx completion events if we can detect CT driver is being
used (based on CT_STATS_OK flag being set). This should help CT firmware work
better on stock driver.
The release notes since last time for wave-2:
* October 15, 2019: Only send beacon tx completion events if we can detect CT driver is being
used (based on ATH10k_USE_TXCOMPL_TXRATE2 | ATH10k_USE_TXCOMPL_TXRATE1 flags being set).
This should help CT firmware work better on stock driver.
* October 31, 2019: Compile out peer-ratecode-list-event. ath10k driver ignores the event.
* November 1, 2019: Fix rate-ctrl related crash when nss and other things were changed while
station stays associated. See bug: https://github.com/greearb/ath10k-ct/issues/96
Signed-off-by: Koen Vandeputte <koen.vandeputte@ncentric.com>
This fixes frequent crashes observed on a UniFi AC Mesh using OpenWrt
master and 19.07. 18.06 seems not affected from our testing.
Signed-off-by: David Bauer <mail@david-bauer.net>
This commit changes the source of the Wave 1 ath10k-firmware
from linux-firmware to Kall Valos ath10k-firmware repository.
This is necessary as the firmware selected in linux-firmware produces
frequent crashes in some circumstances.
This patch can be removed as soon as linux-firmware carries
10.2.4-1.0-00047 firmware.
Signed-off-by: David Bauer <mail@david-bauer.net>
This commit adds packages for the Realtek RTl8822BE/RTL8822CE firmware
to be used with the rtw88 driver.
Signed-off-by: David Bauer <mail@david-bauer.net>
This enables a feature flag in the wave-2 firmware wmi-services indicating it can send
software-encrypted raw frames. This should in turn allow the AP-VLAN feature to work.
Signed-off-by: Robert Marko <robimarko@gmail.com>
This should fix a problem with 1560 MTU, 160Mhz on DFS channels,
some other small issues on < 5.2 kernels, and for 5.2 driver,
it pulls in some upstream stable fixes.
wave-1 firmware changes since last update:
* June 24, 2019: Try allocating low-priority WMI msgs if high-prio are not available.
* June 24, 2019: Init rate-ctrl to start at lowest rate instead of in the middle. Hoping
this helps DHCP when station connects from a long distance.
wave-2:
* June 24, 2019 Start rate-ctrl at minimal values to help DHCP work better for far-away peers.
* July 24, 2019 Fix old regression that made /a (and probably /b/g) perform poorly, at least on
diet-compiled images.
* Aug 8, 2019 Improve a/b/g rate-ctrl by damping the PER swings caused by the all-or-nothing logic
of transmitting non-block-ack frames one at a time.
Signed-off-by: Koen Vandeputte <koen.vandeputte@ncentric.com>
iwlwifi from the new backports also supports more recent FW versions,
update to the most recent versions for already supported devices.
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
The BDFs for the:
ALFA Network AP120C-AC
ASUS Lyra
AVM FRITZ!Box 7530
AVM FRITZ!Repeater 3000
EnGenius EAP1300
EnGenius ENS620EXT
Netgear Orbi Pro SRK60
boards were upstreamed to the ath10k-firmware repository
and linux-firmware.git.
Furthermore the BDFs for the:
OpenMesh A42 specific BDFs
OpenMesh A62 specific BDFs
Linksys EA6350v3
have been updated.
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
wireless-regdb fails to build if there is python2 installed from package
feeds, as staging_dir/hostpkg/bin/python is python2 and
staging_dir/hostpkg/bin takes precedence over staging_dir/host/bin
(proper place with python -> python3 symlink) which leads to the build
failure of wireless-regdb, so this patch makes it explicit which python
should be used.
Reported-by: Hauke Mehrtens <hauke@hauke-m.de>
Tested-by: Kevin Darbyshire-Bryant <ldir@darbyshire-bryant.me.uk>
Tested-by: Russell Senior <russell@personaltelco.net>
Tested-by: Lucian Cristian <lucian.cristian@gmail.com>
Signed-off-by: Petr Štetiar <ynezz@true.cz>
Fixes build issues on a python3 host (issues with the print statement
formatting in the current build).
Includes 100-regdb-write-firmware-file-format-version-code-20.patch and
other fixes.
Closes bugs.openwrt.org/index.php?do=details&task_id=1605.
Uses the tarball as requested.
Signed-off-by: Zachary Riedlshah <git@zacharyrs.me>
Python 2.7 will not be maintained past 2020. Let's convert
to python3 for rcw. Also drop byte swapping since TF-A had
been already used which handled byte swapping instead.
Signed-off-by: Yangbo Lu <yangbo.lu@nxp.com>
This patch updates the board-2.bin for the default
IPQ4019, QCA9984 and QCA9888 ath10k-firmware-xyz-ct
and -ct-htt firmwares.
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
bnx2x driver support for the x86 architecture. Includes module and
firmware for Broadcom QLogic 5771x/578xx 10/20-Gigabit ethernet
adapters.
Signed-off-by: Petko Bordjukov <bordjukov@gmail.com>
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
[added +kmod-lib-zlib-inflate as well]
wave-1:
2019-05-09: Tweak rate-ctrl: Ramp PER up faster, down slower. This
helps throughput in rate-vs-range test, especially with
nss1.
2019-05-20: Disable adaptive-CCA. I am not sure it helps, and it may
make it slower to detect noise that should tell the system
to stop transmitting. If someone has means to test this
properly, I'd be happy to work with them.
wave-2:
2019-05-15: Fix problem where rate-ctrl sometimes used rix of 0x0.
2019-05-15: Allow raw-tx of encrypted frame. Requires a patch to the
driver to use raw mode when skb has WEP flag enabled AND
skb is flagged to not be encrypted. Lightly tested.
2019-05-16: Fix tx-hang that happened when rate-ctrl chose an OFDM rate
for 20Mhz and sent that as AMPDU. To fix, limit to (V)HT
rates if peer is (V)HT. It seems that MCS0 (V)HT20 should
have as good of a chance of being detected as CCK or OFDM.
2019-06-06: Disable TX-BFEE, TX-BFER for IBSS connections. I suspect
this is part of the tx-hang issue seen with IBSS between
two 9984 radios.
2019-06-12: Fix rx-rate reporting in 'fw_stats' logic. This was at
least partly due to regressions I had added earlier when
working on some multi-vdev enhancements.
2019-6-12: Fix case where extd peer-stats were not always populated.
The stats gathering code did not handle error conditions
well.
Signed-off-by: Kevin Darbyshire-Bryant <ldir@darbyshire-bryant.me.uk>
This patch is to convert to use TF-A for firmware.
- Use un-swapped rcw since swapping will be done in TF-A.
- Use u-boot with TF-A defconfig.
- Rework memory map for TF-A introduction.
Signed-off-by: Biwen Li <biwen.li@nxp.com>
Signed-off-by: Yangbo Lu <yangbo.lu@nxp.com>
The Linksys EA8300 is based on QCA4019 and QCA9888 and provides three,
independent radios. NAND provides two, alternate kernel/firmware
images with fail-over provided by the OEM U-Boot.
Installation:
"Factory" images may be installed directly through the OEM GUI.
Hardware Highlights:
* IPQ4019 at 717 MHz (4 CPUs)
* 256 MB NAND (Winbond W29N02GV, 8-bit parallel)
* 256 MB RAM
* Three, fully-functional radios; `iw phy` reports (FCC/US, -CT):
* 2.4 GHz radio at 30 dBm
* 5 GHz radio on ch. 36-64 at 23 dBm
* 5 GHz radio on ch. 100-144 at 23 dBm (DFS), 149-165 at 30 dBm
#{ managed } <= 16, #{ AP, mesh point } <= 16, #{ IBSS } <= 1
* All two-stream, MCS 0-9
* 4x GigE LAN, 1x GigE Internet Ethernet jacks with port lights
* USB3, single port on rear with LED
* WPS and reset buttons
* Four status lights on top
* Serial pads internal (unpopulated)
"Linksys Dallas WiFi AP router based on Qualcomm AP DK07.1-c1"
Implementation Notes:
The OEM flash layout is preserved at this time with 3 MB kernel and
~69 MB UBIFS for each firmware version. The sysdiag (1 MB) and
syscfg (56 MB) partitions are untouched, available as read-only.
Serial Connectivity:
Serial connectivity is *not* required to flash.
Serial may be accessed by opening the device and connecting
a 3.3-V adapter using 115200, 8n1. U-Boot access is good,
including the ability to load images over TFTP and
either run or flash them.
Looking at the top of the board, from the front of the unit,
J3 can be found on the right edge of the board, near the rear
|
J3 |
|-| |
|O| | (3.3V seen, open-circuit)
|O| | TXD
|O| | RXD
|O| |
|O| | GND
|-| |
|
Unimplemented:
* serial1 "ttyQHS0" (serial0 works as console)
* Bluetooth; Qualcomm CSR8811 (potentially conected to serial1)
Other Notes:
https://wikidevi.com/wiki/Linksys_EA8300 states
FCC docs also cover the Linksys EA8250. According to the
RF Test Report BT BR+EDR, "All models are identical except
for the EA8300 supports 256QAM and the EA8250 disable 256QAM."
Signed-off-by: Jeff Kletsky <git-commits@allycomm.com>
This package provides board-specific reference ("cal") data
on an interim basis until included in the upstream distros
While originally conceived for IPQ4019-based boards, similar needs
are appearing with three-radio devices. For some of these devices,
both a board-2.bin file needs to be supplied both for the IPQ4019
as well as for the other radio on the board.
This patch allows new or multiple overrides to be specified by:
* Adding board name to ALLWIFIBOARDS
* Placing file(s) in this directory named as
board-<devicename>.<qca4019|qca9888|qca9984>
* Adding
$(eval $(call generate-ipq-wifi-package,<device>,<display name>))
(along with suitable package selection for the board)
At this time, QCA4019, QCA9888, and QCA9984 are supported.
Extension to other chips should be straightforward.
The existing files, board-*.bin, are "grandfathered" as QCA4019.
The package name has been retained for compatability reasons.
At this time it DEPENDS:=@TARGET_ipq40xx, limiting its visibility.
Build-tested-on: asus_map-ac2200, alfa-network_ap120c-ac,
avm_fritzbox-7530, avm_fritzrepeater-3000, engenius_eap1300,
engenius_ens620ext, linksys_ea6350v3, qxwlan-e2600ac-c1/-c2
Signed-off-by: Jeff Kletsky <git-commits@allycomm.com>
Update linux-firmware to 20190416, which includes updated firmwares e.g. for ath10k
Also switch to official tarball source.
The following firmware files we use are updated in this change:
ath10k/QCA6174/hw3.0/board-2.bin
ath10k/QCA9888/hw2.0/firmware-5.bin
ath10k/QCA988X/hw2.0/firmware-5.bin
ath10k/QCA9984/hw1.0/firmware-5.bin
mrvl/sd8887_uapsta.bin
mrvl/pcie8897_uapsta.bin
iwlwifi-8000C-36.ucode
iwlwifi-8265-36.ucode
Signed-off-by: Deng Qingfang <dengqf6@mail2.sysu.edu.cn>
Release notes since last time:
Release notes for wave-1:
2019-04-02: Support some get/set API for eeprom rate power tables.
Mostly backported from 10.2
2019-04-02: Support adaptive-CCA, backported from 10.2
2019-04-02: Support adding eeprom configAddr pairs via the
set-special API. These configAddrs can be used to change
the default register settings for up to 12 registers.
2019-05-03: Fix tx-power settings for 2x2, 3x3 rates.
Original logic I put in back in 2016 set 2x2 and 3x3 lower
than the needed to be when using most NICs (very high
powered NICs would not have been affected I think, not sure
any of those exist though.)
This improves throughput for 2x2 and 3x3 devices,
especially when the signal is weaker.
Release notes for wave-2:
2019-04-08: When setting keys, if high bit of high value of
key_rsc_counter is set to 0x1, then the lower 48 bits will
be used as the PN value. By default, PN is set to 1 each
time the key is set.
2019-04-08: Pack PN into un-used 'excretries' aka
'num_pkt_loss_excess_retry' high 16 bits.
This lets us report peer PN, but *only* if driver has
previously set a PN when setting key (or set-special cmd is
used to enable PN reporting).
This is done so that we know the driver is recent
enough to deal with the PN stat reporting.
2019-04-16: Support specifying tx rate on a per-beacon packet.
See ath10k_wmi_op_gen_beacon_dma and
ath10k_convert_hw_rate_to_rate_info for API details.
Driver needs additional work to actually enable this
feature currently.
2019-04-30: Compile out tx-prefetch caching logic.
It is full of tricky bugs that cause tx hangs.
I fixed at least one, but more remain and I have wasted too
much time on this already.
2019-05-08: Start rate-ctrl at mcs-3 instead of mcs-5.
This significantly helps DHCP happen quickly, probably
because the initial rate being too high would take a while
to ramp down, especially since there are few packets sent
by the time DHCP needs to start.
This bug was triggered by me decreasing retries of 0x1e
(upstream default) to 0x4. But, I think it is better to
start with lower initial MCS instead of always having a
very high retry count.
Tested on 8devices Jalapeno dev board(IPQ4019)
Signed-off-by: Robert Marko <robimarko@gmail.com>
Signed-off-by: Christian Lamparter <chunkeey@gmail.com> [neatify]
Release notes since last time:
Release notes for wave-1 / 10.1:
2019-03-28: Fix sometimes using bad TID for management frames
in htt-mgt mode. (Backported from wave2, looks
like bug would be the same though.)
Release notes for wave-2 / 10.4:
2019-03-28: Fix off-channel scanning while associated in
proxy-station mode.
2019-03-29: Fix sometimes sending mgt frames on wrong tid when
using htt-mgt. This bug has been around since I first
enabled htt-mgt mode.
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
Release notes since last time:
Release notes for wave-1:
- 2019-03-12: Add btcoex feature flag for 2.4Ghz only adapters,
backported from upstream 10.2 firmware.
- 2019-03-12: Support offloading decrypt of PMF blockack frames
to the host. This lets us do blockack with PMF and
rx-sw-crypt. Normal hwcrypt scenarios would not need this.
Release notes for wave-2:
- 2019-03-12: Fix crash when tearing down VI TID when pending frames
exist. Could reproduce this while doing rmmod when VI
traffic was flowing and PMF was enabled but broken.
Bad luck could rarely cause it to happen in more normal
config too.
- 2019-03-12: Support offloading decrypt of PMF blockack frames to
the host. This lets us do blockack with PMF and
rx-sw-crypt. Normal hwcrypt scenarios would not need this.
- 2019-03-12: Re-work problematic patch that attempted to fix transmit
on non-QOS tids. It appears buggy in several ways,
hopefully improved now. This was introduced last fall.
See github bug 78.
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
Hardware
--------
CPU: Qualcomm IPQ4018
RAM: 256M
FLASH: 32M SPI NOR W25Q256
ETH: QCA8075
WiFi2: IPQ4018 2T2R 2SS b/g/n
WiFi5: IPQ4018 2T2R 2SS n/ac
LED: - Power amber
- LAN1(PoE) green
- LAN2 green
- Wi-Fi 2.4GHz green
- Wi-Fi 5GHz green
BTN: - WPS
UART: 115200n8 3.3V J1
VCC(1) - GND(2) - TX(3) - RX(4)
Added basic support to get the device up and running for a sysupgrade
image only.
There is currently no way back to factory firmware, so this is a one-way
street to OpenWRT.
Install from factory condition is convoluted, and may brick your device:
1) Enable SSH and disable the CLI on the factory device from the web user
interface (Management->Advanced)
2) Reboot the device
3) Override the default, limited SSH shell:
a) Get into the ssh shell:
ssh admin@192.168.1.1 /bin/sh --login
b) Change the dropbear script to disable the limited shell. At the
empty command prompt type:
sed -i '/login_ssh/s/^/#/g’ dropbear
/etc/init.d/dropbear restart
exit
4) ssh in to a (now-) normal OpenWRT SSH session
5) Flash your built image
a) scp openwrt-ipq40xx-engenius_ens620ext-squashfs-sysupgrade.bin
admin@192.168.1.1:/tmp/
b) ssh admin@192.168.1.1
c) sysupgrade -n
/tmp/openwrt-ipq40xx-engenius_ens620ext-squashfs-sysupgrade.bin
6) After flash completes (it may say "Upgrade failed" followed by
"Upgrade completed") and device reboots, log in to newly flashed
system. Note you will now need to ssh as root rather than admin.
Signed-off-by: Steve Glennon <s.glennon@cablelabs.com>
[whitespace fixes, reordered partitions, removed rng node from 4.14,
fixed 901-arm-boot-add-dts-files.patch]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
Hardware
--------
CPU: Qualcomm IPQ4019
RAM: 256M (NANYA NT5CC128M16JR-EK)
FLASH: 128M NAND (Macronix MX30LF1G18AC-XKI)
ETH: Qualcomm QCA8072
WiFi2: IPQ4019 2T2R 2SS b/g/n
WiFi5: IPQ4019 2T2R 2SS n/ac
WiFi5: QCA9984 4T4R 4SS n/ac
LED: - Connect green/blue/red
- Power green
BTN: WPS/Connect
UART: 115200n8 3.3V
VCC - RX - TX - GND (Square is VCC)
Installation
------------
1. Grab the uboot for the Device from the 'u-boot-fritz3000'
subdirectory. Place it in the same directory as the 'eva_ramboot.py'
script. It is located in the 'scripts/flashing' subdirectory of the
OpenWRT tree.
2. Assign yourself the IP address 192.168.178.10/24. Connect your
Computer to one of the boxes LAN ports.
3. Connect Power to the Box. As soon as the LAN port of your computer
shows link, load the U-Boot to the box using following command.
> ./eva_ramboot.py --offset 0x85000000 192.168.178.1 uboot-fritz3000.bin
4. The U-Boot will now start. Now assign yourself the IP address
192.168.1.70/24. Copy the OpenWRT initramfs (!) image to a TFTP
server root directory and rename it to 'FRITZ3000.bin'.
5. The Box will now boot OpenWRT from RAM. This can take up to two
minutes.
6. Copy the U-Boot and the OpenWRT sysupgrade (!) image to the Box using
scp. SSH into the Box and first write the Bootloader to both previous
kernel partitions.
> mtd write /path/to/uboot-fritz3000.bin uboot0
> mtd write /path/to/uboot-fritz3000.bin uboot1
7. Remove the AVM filesystem partitions to make room for our kernel +
rootfs + overlayfs.
> ubirmvol /dev/ubi0 --name=avm_filesys_0
> ubirmvol /dev/ubi0 --name=avm_filesys_1
8. Flash OpenWRT peristently using sysupgrade.
> sysupgrade -n /path/to/openwrt-sysupgrade.bin
Signed-off-by: David Bauer <mail@david-bauer.net>
Add specific 'variant' for 'bus=ahb,bmi-chip-id=0,bmi-board-id=25' BDF.
Use the same value ('ALFA-Network-AP120C-AC') as sent upstream.
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
Release notes since last update:
wave-1 firmware:
* Feb 14, 2019: Remove logic that causes assert when swba logic is not
initialized. This was seen when trying to bring up 6 VAP
vdevs. A similar fix went into wave-2 firmware some time
ago.
* Feb 27, 2019: Support up to 32 vAP vdevs, fix stack corruption when
driver requests too many vAP.
* Feb 28, 2019: Support beacon-tx-wmi callback message. This lets driver
properly clean up beacon buffers so we don't crash
(somethings the entire OS/system) due to DMA errors.
wave-2 firmware:
* Feb 27. 2019: Support up to 32 AP vdevs. Previous to this, stack would
be corrupted if you went past 16 AP vdevs.
* Feb 28, 2019: Support beacon-tx-wmi callback message. This lets driver
properly clean up beacon buffers. In wave-1, this could
crash the entire OS, but I didn't see the same crashes
in wave-2, so maybe it is fixed in some other way. Add
the feature regardless as it seems proper.
Signed-off-by: Michael Yartys <michael.yartys@gmail.com>
Hardware
--------
CPU: Qualcomm IPQ4019
RAM: 256M
FLASH: 128M NAND
ETH: QCA8075
VDSL: Intel/Lantiq VRX518 PCIe attached
currently not supported
DECT: Dialog SC14448
currently not supported
WiFi2: IPQ4019 2T2R 2SS b/g/n
WiFi5: IPQ4019 2T2R 2SS n/ac
LED: - Power/DSL green
- WLAN green
- FON/DECT green
- Connect/WPS green
- Info green
- Info red
BTN: - WLAN
- FON
- WPS/Connect
UART: 115200n8 3.3V (located under the Dialog chip)
VCC - RX - TX - GND (Square is VCC)
Installation
------------
1. Grab the uboot for the Device from the 'u-boot-fritz7530'
subdirectory. Place it in the same directory as the 'eva_ramboot.py'
script. It is located in the 'scripts/flashing' subdirectory of the
OpenWRT tree.
2. Assign yourself the IP address 192.168.178.10/24. Connect your
Computer to one of the boxes LAN ports.
3. Connect Power to the Box. As soon as the LAN port of your computer
shows link, load the U-Boot to the box using following command.
> ./eva_ramboot.py --offset 0x85000000 192.168.178.1 uboot-fritz7530.bin
4. The U-Boot will now start. Now assign yourself the IP address
192.168.1.70/24. Copy the OpenWRT initramfs (!) image to a TFTP
server root directory and rename it to 'FRITZ7530.bin'.
5. The Box will now boot OpenWRT from RAM. This can take up to two
minutes.
6. Copy the U-Boot and the OpenWRT sysupgrade (!) image to the Box using
scp. SSH into the Box and first write the Bootloader to both previous
kernel partitions.
> mtd write /path/to/uboot-fritz7530.bin uboot0
> mtd write /path/to/uboot-fritz7530.bin uboot1
7. Remove the AVM filesystem partitions to make room for our kernel +
rootfs + overlayfs.
> ubirmvol /dev/ubi0 --name=avm_filesys_0
> ubirmvol /dev/ubi0 --name=avm_filesys_1
8. Flash OpenWRT peristently using sysupgrade.
> sysupgrade -n /path/to/openwrt-sysupgrade.bin
Signed-off-by: David Bauer <mail@david-bauer.net>
[removed pcie-dts range node, refreshed on top of AP120-AC/E2600AC]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
Qxwlan E2600AC C1 based on IPQ4019
Specifications:
SOC: Qualcomm IPQ4019
DRAM: 256 MiB
FLASH: 32 MiB Winbond W25Q256
ETH: Qualcomm QCA8075
WLAN: 5G + 5G/2.4G
* 2T2R 2.4/5 GHz
- QCA4019 hw1.0 (SoC)
* 2T2R 5 GHz
- QCA4019 hw1.0 (SoC)
INPUT: Reset buutton
LED: 1x Power ,6 driven by gpio
SERIAL: UART (J5)
UUSB: USB3.0
POWER: 1x DC jack for main power input (9-24 V)
SLOT: Pcie (J25), sim card (J11), SD card (J51)
Flash instruction (using U-Boot CLI and tftp server):
- Configure PC with static IP 192.168.1.10 and tftp server.
- Rename "sysupgrade" filename to "firmware.bin" and place it in tftp
server directory.
- Connect PC with one of RJ45 ports, power up the board and press
"enter" key to access U-Boot CLI.
- Use the following command to update the device to OpenWrt: "run lfw".
Flash instruction (using U-Boot web-based recovery):
- Configure PC with static IP 192.168.1.xxx(2-254)/24.
- Connect PC with one of RJ45 ports, press the reset button, power up
the board and keep button pressed for around 6-7 seconds, until LEDs
start flashing.
- Open your browser and enter 192.168.1.1, select "sysupgrade" image
and click the upgrade button.
Qxwlan E2600AC C2 based on IPQ4019
Specifications:
SOC: Qualcomm IPQ4019
DRAM: 256 MiB
NOR: 16 MiB Winbond W25Q128
NAND: 128MiB Micron MT29F1G08ABAEAWP
ETH: Qualcomm QCA8075
WLAN: 5G + 5G/2.4G
* 2T2R 2.4/5 GHz
- QCA4019 hw1.0 (SoC)
* 2T2R 5 GHz
- QCA4019 hw1.0 (SoC)
INPUT: Reset buutton
LED: 1x Power, 6 driven by gpio
SERIAL: UART (J5)
USB: USB3.0
POWER: 1x DC jack for main power input (9-24 V)
SLOT: Pcie (J25), sim card (J11), SD card (J51)
Flash instruction (using U-Boot CLI and tftp server):
- Configure PC with static IP 192.168.1.10 and tftp server.
- Rename "ubi" filename to "ubi-firmware.bin" and place it in tftp
server directory.
- Connect PC with one of RJ45 ports, power up the board and press
"enter" key to access U-Boot CLI.
- Use the following command to update the device to OpenWrt: "run lfw".
Flash instruction (using U-Boot web-based recovery):
- Configure PC with static IP 192.168.1.xxx(2-254)/24.
- Connect PC with one of RJ45 ports, press the reset button, power up
the board and keep button pressed for around 6-7 seconds, until LEDs
start flashing.
- Open your browser and enter 192.168.1.1, select "ubi" image
and click the upgrade button.
Signed-off-by: 张鹏 <sd20@qxwlan.com>
[ added rng node. whitespace fixes, ported 02_network,
ipq-wifi Makefile, misc dts fixes, trivial message changes ]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
This commit updates the file "board-linksys_ea6359v3".
Without this commit, the Linksys EA6350v3 will experience poor wireless
performance in both bands. With this patch, wireless performace will be
comparable to the performance of the stock firmware.
Signed-off-by: Oever González <notengobattery@gmail.com>
The board-files are specific to the target and device. Hence
they need to be set as nonshared. Otherwise they do not show
up on the package repository. This causes problems for
imagebuilder, if it needs to build a image for a specific
device that hasn't had the time to have get its boardfile
upstream.
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
SoC: Qualcomm IPQ4019 (Dakota) 717 MHz, 4 cores
RAM: 256 MiB (Nanya NT5CC128M16IP-DI)
FLASH: 128 MiB (Macronix NAND)
WiFi0: Qualcomm IPQ4019 b/g/n 2x2
WiFi1: Qualcomm IPQ4019 a/n/ac 2x2
WiFi2: Qualcomm Atheros QCA9886 a/n/ac
BT: Atheros AR3012
IN: WPS Button, Reset Button
OUT: RGB-LED via TI LP5523 9-channel Controller
UART: Front of Device - 115200 N-8
Pinout 3.3v - RX - TX - GND (Square is VCC)
Installation:
1. Transfer OpenWRT-initramfs image to the device via SSH to /tmp.
Login credentials are identical to the Web UI.
2. Login to the device via SSH.
3. Flash the initramfs image using
> mtd-write -d linux -i openwrt-image-file
4. Power-cycle the device and wait for OpenWRT to boot.
5. From there flash the OpenWRT-sysupgrade image.
Ethernet-Ports: Although labeled identically, the port next to
the power socket is the LAN port and the other one is WAN. This
is the same behavior as in the stock firmware.
Signed-off-by: Marius Genheimer <mail@f0wl.cc>
[Dropped setup_mac 02_network in favour of 05_set_iface_mac_ipq40xx.sh,
reorderd 02_network entries, added board.bin WA for the QCA9886 from ath79,
minor dts touchup, added rng to 4.19 dts]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
Release notes since last time:
2019-02-08:
Fix rate-ctrl assert related to bad logic that tried to guess
that lower bandwidth probes were automatically successful if
higher was. The NSS mismatch that can happen here caused the
assert. Just comment out the offending code
(per comment from original QCA code). This is bug 69.
2019-02-10:
Fix bssid mis-alignment that broke 4-addr vlan mode (bug 67).
Original buggy commit was
commit 2bf89e70ecd1 ("dev-ds: Better packing of wal_vdev struct.")
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
* Jan 2, 2019
Rebase patches to make 9980 bisectable.
* Jan 2, 2019
Fix scheduling related assert when wal-peer is deleted with pending
tx buffers (bug 54, and others)
* Jan 7, 2019:
Fix specifying retransmits for AMPDU frames. It was previously ignored
since it is a 'software' retransmit instead of a hardware retransmit.
* Jan 9, 2019
Fix potential way to get zero rates selected (and then assert)
* Jan 18, 2019
pfsched has specific work-around to just return if we find invalid flags AND
if we are in an out-of-order situation. Maybe this is last of the pfsched
related issues (bug 54 and similar).
* Jan 24, 2019
The rcSibUpdate method can be called concurrently with IRQ tx-completion callback,
and that could potentially allow the tx-completion callback to see invalid state
and assert or otherwise mess up the rate-ctrl logic. So, disable IRQs in
rcSibUpdate to prevent this. Related to bug 58.
* Jan 28, 2019
Ensure that cached config is applied to ratectrl objects when fetched from
the cache. This should fix part of bug 58.
* Jan 28, 2019
Ensure that ratectrl objects from cachemgr are always initialized. This fixes
another part of bug 58.
* Jan 30, 2019
Better use of temporary rate-ctrl object. Make sure it is initialized, simplify
code path. This finishes up porting forward similar changes I made for wave-1
firmware long ago, and fixes another potential way to hit bug-58 issues.
* Jan 30, 2019
Cachemgr did not have a callback for when memory was logically freed. This means
that peers could keep stale references to rate-ctrl objects that were in process
of being DMA'd into to load a different peer's rate-ctrl state. This was causing
the bugcheck logic to fail early and often, and I suspect it might be a root cause
of bug 58 as well. The fix is to add a callback and set any 'deleted' memory references
to NULL so that we cannot access it accidentally. Thanks to excellent logs and patience
from the bug-58 reporter!
Signed-off-by: Koen Vandeputte <koen.vandeputte@ncentric.com>
This commit adds support for the Linksys EA6350v3 device in the ipq-wifi
target.
Without this patch, the Linksys EA6350v3 won't be hable to have fully
functional wireless interfaces. This is not permanent: the board data has
already been sent to ath10k _at_ lists _dot_ infradead _dot_ org
Signed-off-by: Ryan Pannell <ryan@osukl.com>
Signed-off-by: Oever González <notengobattery@gmail.com>
This now matches what was generated locally on my PC and the file on the
mirror server.
Fixes: 575d0240f9 ("ath10k-firmware: update board-2.bin for community firmwares")
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
SOC: IPQ4018 / QCA Dakota
CPU: Quad-Core ARMv7 Processor rev 5 (v7l) Cortex-A7
DRAM: 256 MiB
NOR: 32 MiB
ETH: Qualcomm Atheros QCA8072
WLAN1: Qualcomm Atheros QCA4018 2.4GHz 802.11bgn 2:2x2
WLAN2: Qualcomm Atheros QCA4018 5GHz 802.11a/n/ac 2:2x2
INPUT: RESET Button
LEDS: Power, LAN, MESH, WLAN 2.4GHz, WLAN 5GHz
1. Load Ramdisk via U-Boot
To set up the flash memory environment, do the following:
a. As a preliminary step, ensure that the board console port is connected to the PC using these RS232 parameters:
* 115200bps
* 8N1
b. Confirm that the PC is connected to the board using one of the Ethernet ports. Set a static ip 192.168.99.8 for Ethernet that connects to board. The PC must have a TFTP server launched and listening on the interface to which the board is connected. At this stage power up the board and, after a few seconds, press 4 and then any key during the countdown.
U-BOOT> set serverip 192.168.99.8 && set ipaddr 192.168.99.9 && tftpboot 0x84000000 openwrt.itb && bootm
2. Load image via GUI
a. Upgrade EAP1300 to FW v3.5.3.2
In the GUI, System Manager > Firmware > Firmware Upgrade, to do upgrade.
b. Transfer to OpenWrt from EnGenius.
In Firmware Upgrade page, to upgrade yours openwrt-ipq40xx-engenius_eap1300-squashfs-sysupgrade.bin.
3. Revert to EnGenius EAP1300
To flash openwrt-ipq40xx-engenius_eap1300-squashfs-factory.bin by using sysupgrade command and "DO NOT" keep configuration.
$ sysupgrade –n openwrt-ipq40xx-engenius_eap1300-squashfs-factory.bin
Signed-off-by: Steven Lin <steven.lin@senao.com>
It is not necessary to have iucode-tool present on target system to have
functional intel-microcode package. The build time dependency is kept.
Signed-off-by: Tomasz Maciej Nowak <tomek_n@o2.pl>
The BDFs for all boards were upstreamed to the ath10k-firmware
repository and linux-firmware.git.
We switched to the upstream board-2.bin, hence the files can be removed
here.
Keep the ipq-wifi package in case new boards are added. It might take
some time till board-2.bins send upstream are merged.
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
This patch updates the board-2.bin for the default
IPQ4019, QCA9984 and QCA9888 ath10k-firmware-xyz-ct
and -ct-htt firmwares.
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
Add the most recent supported firmware file for the Intel 9000 and
9260 wireless chips. The API version 41 is not yet supported by the driver.
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Kalles ath10k PR was finally merged so update linux-firmware to
include those changes.
This is needed since disabling ath10k-firmware a lot of custom BDF-s
in board-2.bin-s are not available in previously outdated linux-firmware
board-2.bin-s.
This also includes support for boards currently using ipq-wifi and other
WIP ones.
Runtime tested on 8devices Jalapeno.
Signed-off-by: Robert Marko <robimarko@gmail.com>
Building ls-dpl package requires the dtc tool. This patch
is to support using linux dtc tool for ls-dpl package.
This avoids compile issue when host system doesn't have
the dtc tool.
Signed-off-by: Yangbo Lu <yangbo.lu@nxp.com>
ls1012afrdm was no longer supported in NXP Layerscape SDK.
Instead a new board ls1012afrwy was introduced in LSDK.
This patch is to drop ls1012afrdm and add ls1012afrwy support.
Since only 2MB NOR flash could be used, we just put u-boot
and firmware on NOR flash, and put kernel/dtb/rootfs on SD
card.
The Layerscape FRWY-LS1012A board is an ultra-low-cost
development platform for LS1012A Series Communication
Processors built on Arm Cortex-A53. This tool refines the
FRDM-LS1012A with more features for a better hands-on experience
for IoT, edge computing, and various advanced embedded
applications. Features include easy access to processor I/O,
low-power operation, micro SD card storage, an M2 connector, a
small form factor, and expansion board options via mikroBUS Click
Module. The MicroBUS Module provides easy expansion via hundreds
of powerful modules supporting sensors, actuators, memories,
and displays.
Signed-off-by: Yangbo Lu <yangbo.lu@nxp.com>
NOR/QSPI Flash on Layerscape board only has limited 64MB memory size.
Since some boards (ls1043ardb/ls1046ardb/ls1088ardb/ls1021atwr)
could support SD card boot, we added SD boot support for them to put
all things on SD card to meet large memory requirement.
Signed-off-by: Yangbo Lu <yangbo.lu@nxp.com>
The NXP TWR-LS1021A module is a development system based
on the QorIQ LS1021A processor.
- This feature-rich, high-performance processor module can
be used standalone or as part of an assembled Tower System
development platform.
- Incorporating dual Arm Cortex-A7 cores running up to 1 GHz,
the TWR-LS1021A delivers an outstanding level of performance.
- The TWR-LS1021A offers HDMI, SATA3 and USB3 connectors as
well as a complete Linux software developer's package.
- The module provides a comprehensive level of security that
includes support for secure boot, Trust Architecture and
tamper detection in both standby and active power modes,
safeguarding the device from manufacture to deployment.
Signed-off-by: Yangbo Lu <yangbo.lu@nxp.com>
This patch is to update ls-ppa to LSDK-18.06 release
and to rework ls-ppa makefile to make it more readable.
Signed-off-by: Yangbo Lu <yangbo.lu@nxp.com>
The rcw source code had been migrated to codeaurora
for LSDK-18.06 release and the future release. The
source code had also involved ls1012ardb/ls1012afrdm/
ls1088ardb/ls2088ardb rcw, so we updated ls-rcw to
LSDK-18.06, reworked the makefile and dropped ls-rcw-bin
package in this patch. Also reworked ls-rcw patch to
adapt to the latest source code.
Signed-off-by: Yangbo Lu <yangbo.lu@nxp.com>
The dpl-examples source code had been migrated to
codeaurora for LSDK-18.06 release and the future
release. This patch is to update this package to
LSDK-18.06.
Signed-off-by: Yangbo Lu <yangbo.lu@nxp.com>
Actually there was no change for fman-ucode in LSDK-18.06
just tagged with LSDK-18.06. This patch is to rework the
fman-ucode makefile to make it more readable, and to use
lsdk-1806 as the PKG_VERSION.
Signed-off-by: Yangbo Lu <yangbo.lu@nxp.com>
With AVM Fritz!Box 4040 and OpenWrt 18.06 RC1 there are many kernel warnings
kern.warn kernel: [87771.917049] ath10k_ahb a000000.wifi: Invalid VHT mcs 15 peer stats
and there are disconnections when the connected clients are many, at the moment I tried with 16 clients on 2.4 GHz and 8 on 5 GHZ.
Firmware 10.4-3.5.3-00057 fixes these warnings and the problem of disconnections of some clients.
Signed-off-by: Massimo Tum <masnia@tiscali.it>
* New microcode update packages from AMD upstream:
+ New Microcodes:
sig 0x00800f12, patch id 0x08001227, 2018-02-09
+ Updated Microcodes:
sig 0x00600f12, patch id 0x0600063e, 2018-02-07
sig 0x00600f20, patch id 0x06000852, 2018-02-06
* Adds Spectre v2 (CVE-2017-5715) microcode-based mitigation support,
plus other unspecified fixes/updates.
Signed-off-by: Zoltan HERPAI <wigyori@uid0.hu>
This patch adds support for ZyXEL NBG6617
Hardware highlights:
SOC: IPQ4018 / QCA Dakota
CPU: Quad-Core ARMv7 Processor rev 5 (v7l) Cortex-A7
DRAM: 256 MiB DDR3L-1600/1866 Nanya NT5CC128M16IP-DI @ 537 MHz
NOR: 32 MiB Macronix MX25L25635F
ETH: Qualcomm Atheros QCA8075 Gigabit Switch (4 x LAN, 1 x WAN)
USB: 1 x 3.0 (via Synopsys DesignWare DWC3 controller in the SoC)
WLAN1: Qualcomm Atheros QCA4018 2.4GHz 802.11bgn 2:2x2
WLAN2: Qualcomm Atheros QCA4018 5GHz 802.11a/n/ac 2:2x2
INPUT: RESET Button, WIFI/Rfkill Togglebutton, WPS Button
LEDS: Power, WAN, LAN 1-4, WLAN 2.4GHz, WLAN 5GHz, USB, WPS
Serial:
WARNING: The serial port needs a TTL/RS-232 3.3v level converter!
The Serial setting is 115200-8-N-1. The 1x4 .1" header comes
pre-soldered. Pinout:
1. 3v3 (Label printed on the PCB), 2. RX, 3. GND, 4. TX
first install / debricking / restore stock:
0. Have a PC running a tftp-server @ 192.168.1.99/24
1. connect the PC to any LAN-Ports
2. put the openwrt...-factory.bin (or V1.00(ABCT.X).bin for stock) file
into the tftp-server root directory and rename it to just "ras.bin".
3. power-cycle the router and hold down the the WPS button (for 30sek)
4. Wait (for a long time - the serial console provides some progress
reports. The u-boot says it best: "Please be patient".
5. Once the power LED starts to flashes slowly and the USB + WPS LEDs
flashes fast at the same time. You have to reboot the device and
it should then come right up.
Installation via Web-UI:
0. Connect a PC to the powered-on router. It will assign your PC a
IP-address via DHCP
1. Access the Web-UI at 192.168.1.1 (Default Passwort: 1234)
2. Go to the "Expert Mode"
3. Under "Maintenance", select "Firmware-Upgrade"
4. Upload the OpenWRT factory image
5. Wait for the Device to finish.
It will reboot into OpenWRT without any additional actions needed.
To open the ZyXEL NBG6617:
0. remove the four rubber feet glued on the backside
1. remove the four philips screws and pry open the top cover
(by applying force between the plastic top housing from the
backside/lan-port side)
Access the real u-boot shell:
ZyXEL uses a proprietary loader/shell on top of u-boot: "ZyXEL zloader v2.02"
When the device is starting up, the user can enter the the loader shell
by simply pressing a key within the 3 seconds once the following string
appears on the serial console:
| Hit any key to stop autoboot: 3
The user is then dropped to a locked shell.
|NBG6617> HELP
|ATEN x[,y] set BootExtension Debug Flag (y=password)
|ATSE x show the seed of password generator
|ATSH dump manufacturer related data in ROM
|ATRT [x,y,z,u] RAM read/write test (x=level, y=start addr, z=end addr, u=iterations)
|ATGO boot up whole system
|ATUR x upgrade RAS image (filename)
|NBG6617>
In order to escape/unlock a password challenge has to be passed.
Note: the value is dynamic! you have to calculate your own!
First use ATSE $MODELNAME (MODELNAME is the hostname in u-boot env)
to get the challange value/seed.
|NBG6617> ATSE NBG6617
|012345678901
This seed/value can be converted to the password with the help of this
bash script (Thanks to http://www.adslayuda.com/Zyxel650-9.html authors):
- tool.sh -
ror32() {
echo $(( ($1 >> $2) | (($1 << (32 - $2) & (2**32-1)) ) ))
}
v="0x$1"
a="0x${v:2:6}"
b=$(( $a + 0x10F0A563))
c=$(( 0x${v:12:14} & 7 ))
p=$(( $(ror32 $b $c) ^ $a ))
printf "ATEN 1,%X\n" $p
- end of tool.sh -
|# bash ./tool.sh 012345678901
|
|ATEN 1,879C711
copy and paste the result into the shell to unlock zloader.
|NBG6617> ATEN 1,0046B0017430
If the entered code was correct the shell will change to
use the ATGU command to enter the real u-boot shell.
|NBG6617> ATGU
|NBG6617#
Co-authored-by: David Bauer <mail@david-bauer.net>
Signed-off-by: Christian Lamparter <chunkeey@googlemail.com>
Signed-off-by: David Bauer <mail@david-bauer.net>
Specifications:
SOC: Qualcomm IPQ4018 (DAKOTA) ARM Quad-Core
RAM: 128 MB Nanya NT5CC64M16GP-DI
FLASH: 16 MiB Macronix MX25L12845EMI-12G
ETH: Qualcomm QCA8072
WLAN1: Qualcomm Atheros QCA4018 2.4GHz 802.11b/g/n 2x2
WLAN2: Qualcomm Atheros QCA4018 5GHz 802.11n/ac W2 2x2
INPUT: WPS, Mode-toggle-switch
LED: Power, WLAN 2.4GHz, WLAN 5GHz, LAN, WPS
(LAN not controllable by software)
(WLAN each green / red)
SERIAL: Header next to eth-phy.
VCC, TX, GND, RX (Square hole is VCC)
The Serial setting is 115200-8-N-1.
Tested and working:
- Ethernet (Correct MAC-address)
- 2.4 GHz WiFi (Correct MAC-address)
- 5 GHz WiFi (Correct MAC-address)
- Factory installation from tftp
- OpenWRT sysupgrade
- LEDs
- WPS Button
Not Working:
- Mode-toggle-switch
Install via TFTP:
Connect to the devices serial. Hit Enter-Key in bootloader to stop
autobooting. Command `tftpboot` will pull an initramfs image named
`C0A86302.img` from a tftp server at `192.168.99.08/24`.
After successfull transfer, boot the image with `bootm`.
To persistently write the firmware, flash an openwrt sysupgrade image
from inside the initramfs, for example transfer
via `scp <sysupgrade> root@192.168.1.1:/tmp` and flash on the device
with `sysupgrade -n /tmp/<sysupgrade>`.
append-cmdline patch taken from chunkeeys work on the NBG6617.
Signed-off-by: Magnus Frühling <skorpy@frankfurt.ccc.de>
Co-authored-by: David Bauer <mail@david-bauer.net>
Co-authored-by: Christian Lamparter <chunkeey@googlemail.com>
Ship EEPROM blobs for specific supported board only and don't have them
lurking around in our source tree but rather download them from
@github/RPi-Distro/firmware-nonfree upstream.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Currently when installing the firmware, a bunch of files and directories
that the ath10k driver does not look for are created.
The package now installs firmware for both hw 2.1 and 3.0 devices.
2.1 is abandonware but may be useful to keep.
3.0 firmware was tested on a Killer 1535 to be relatively stable with
802.11w disabled. 802.11w causes multiple firmware crashes but that's true
of other ath10k firmwares as well.
Signed-off-by: Rosen Penev <rosenp@gmail.com>
This now matches what was generated locally on my PC and the file on the
mirror server.
Fixes: 349fe46103 ("ath10k-firmware: Update QCA988X firmware to the latest version")
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Add needed firmware for newer QCA Rome Bluetooth family.
This enables use of bluetooth with ath3k driver on QCA9377/9378 devices.
Signed-off-by: Robert Marko <robimarko@gmail.com>
This patch updates the QCA988X firmware to the latest revision
firmware-5.bin_10.2.4-1.0-00037
found in the ath10k-firmware and linux-firmware repositories.
Tested on TP-Link Archer C7 v2 (ar71xx).
Signed-off-by: Timo Sigurdsson <public_timo.s@silentcreek.de>
The BDFs for all boards were upstreamed to the ath10k-firmware
repository and are now part of ath10k-firmware 2018-04-19.
We switched to the upstream board-2.bin, hence the files can be removed
here.
Keep the ipq-wifi package in case new boards are added. It might take
some time till board-2.bins send upstream are merged.
Signed-off-by: Sven Eckelmann <sven.eckelmann@openmesh.com>
RedPine RS9113 wireless module requires rsi91x driver to be built
and linux-firmware/rsi/rs9113_wlan_qspi.rps to be installed.
Also we add patch for successful compilation of rsi91x driver.
Signed-off-by: Evgeniy Didin <Evgeniy.Didin@synopsys.com>
Cc: Alexey Brodkin <abrodkin@synopsys.com>
Cc: Hauke Mehrtens <hauke@hauke-m.de>
Cc: John Crispin <john@phrozen.org>
This firmware has only small changes from the last commit, but
it does have an important fix for at least some PTK rekey logic.
The old firmware would have issues if the driver managed to set
a clear key while encryption was 'enabled'. This new firmware for
both wave-1 and wave-2 should not be susceptible to this type of
bug any more.
And remove mesh-bcast IE flag from wave-2, still need more work before
we can enable that flag in ath10k-ct firmware it seems.
Signed-off-by: Ben Greear <greearb@candelatech.com>
Don't select the firmware with the board file, it prevents an easy use
of the -ct ath10k firmware. Select the firmware within the default
packages instead.
Remove the per device selection of the firmware now that it the
firmware is selected by default.
Signed-off-by: Mathias Kresin <dev@kresin.me>
Specifications:
SOC: Qualcomm IPQ4018 (DAKOTA) ARM Quad-Core
RAM: 256 MB Winbond W632GU6KB12J
FLASH: 16 MiB Macronix MX25L12805D
ETH: Qualcomm QCA8072
WLAN1: Qualcomm Atheros QCA4018 2.4GHz 802.11b/g/n/ac 2x2
WLAN2: Qualcomm Atheros QCA4018 5GHz 802.11n/ac
1x1 (EX6100)
2x2 (EX6150)
INPUT: Power, WPS, reset button
AP / Range-extender toggle
LED: Power, Router, Extender (dual), WPS, Left-/Right-arrow
SERIAL: Header next to QCA8072 chip.
VCC, TX, RX, GND (Square hole is VCC)
WARNING: The serial port needs a TTL/RS-232 v3.3 level converter!
The Serial setting is 115200-8-N-1.
Tested and working:
- Ethernet
- 2.4 GHz WiFi (Correct MAC-address)
- 5 GHz WiFi (Correct MAC-address)
- Factory installation from WebIF
- Factory installation from tftp
- OpenWRT sysupgrade (Preserving and non-preserving)
- LEDs
- Buttons
Not Working:
- AP/Extender toggle-switch
Untested:
- Support on EX6100v2. They share the same GPL-Code and vendor-images.
The 6100v2 seems to lack one 5GHz stream and differs in the 5GHz
board-blob. I only own a EX6150v2, therefore i am only able to verify
functionality on this device.
Install via Web-Interface:
Upload the factory image to the device to the Netgear Web-Interface.
The device might asks you to confirm the update a second time due to
detecting the OpenWRT firmware as older. The device will automatically
reboot after the image is written to flash.
Install via TFTP:
Connect to the devices serial. Hit Enter-Key in bootloader to stop
autobooting. Command "fw_recovery" will start a tftp server, waiting for
a DNI image to be pushed.
Assign your computer the IP-address 192.168.1.10/24. Push image with
tftp -4 -v -m binary 192.168.1.1 -c put <OPENWRT_FACTORY>
Device will erase factory-partition first, then writes the pushed image
to flash and reboots.
Parts of this commit are based on Thomas Hebb's work on the
openwrt-devel mailinglist.
See https://lists.openwrt.org/pipermail/openwrt-devel/2018-January/043418.html
Signed-off-by: David Bauer <mail@david-bauer.net>
Wave-1 firmware has a fix for 'addba' not finding the peer. Thanks to Hauke
for finding and reporting this.
Wave-2 firmware has a fix for leaking a peer multicast key when a monitor device
is created.
And I re-ordered the '4019' firmware images in the Makefile to match the order
of the others. No functional change for that reorder.
Signed-off-by: Ben Greear <greearb@candelatech.com>
Tested-by: Rosen Penev <rosenp@gmail.com>
The HTT-MGT variants transport management frames over the
normal HTT tx path, just like data frames. This saves
limitted WMI buffers which can become depleted if lots of
management frames become stuck in TX queues due to peer
that went away.
In addition, at least for the wave-1 firmware, htt-mgt is
required in order for 802.11r (fast roaming) authentication
to function properly.
The htt-mgt firmware requires the use of the ath10k-ct
driver. Normal non-htt-mgt ath10k-ct firmware should work
with stock drivers.
Signed-off-by: Ben Greear <greearb@candelatech.com>
This updates to latest ath10k-ct firmware. Hopefully we are
at the end of the development cycle for this firmware release,
so these should be stable.
wave-1 changes since last release:
Release 20
* Allow flushing peer when deleting. Hopefully this will allow the
peer delete command to happen in a reasonable amount of time even
if the RF environment is busy (or peer has died).
To enable this, set the high flag in the mac-addr second word in the
ath10k driver near end of the ath10k_wmi_op_gen_peer_delete method:
cmd->peer_macaddr.word1 |= __cpu_to_le32(0x80000000);
* Attempt to fix crash seen in resmgr-ocs, appearantly due to list corruption.
Use a temporary list instead of trying to rely on for-each-safe.
* Add flag to tx-descriptor to allow driver to request no-ack on data
frames. This is bit 15 on the flag1 field (previously un-used).
* Add option to support specifying the tx-rate-code and retry count on
a per-packet basis. Only a single series is supported at this time.
Useful mainly for radiotap monitor-tx type testing at this point.
* Fix crash on startup when chip is at -40 deg C and calibration fails. Instead
of asserting, just keep retrying calibration, which appears to start working
after a few minutes (when the chip warms up).
* Allow reporting per-chain rssi for management frames. We pack the values into
empty space in the mgt-frame wmi header. This will only be enabled if the driver
requests it, since otherwise the driver is assumed to not understand the new API.
ath10k-ct drivers that support this feature will automatically enable it.
* A customer reports a case that appears to be the hardware not properly detecting
end of AMPDU, so frames were being mis-delivered to the wrong peer. Attempt to
work around this, and in doing so, clean up a bunch of void* abuse in the block-ack
reordering code (could not ever confirm there was a problem in this area).
* Re-work the rx-mem logic to be less complicated and to use less memory.
* Attempt to fix crash that appearanty happens because the driver can sometimes
delete a vdev in 'up' state.
* Attempt to fix hung scan state machine issues.
* Fix crash in tx path due to un-initialized memory.
wave-2 changes since last release:
Release 10
* Fix an assert related to tx scheduling. This hopefully fixes
what appears to be a regression that I added some time back.
* Enable CSI reporting for 9984, and maybe 9888/9886. Only in
non-trimmed builds.
* Other stability improvements, including regression fixes from
some tricky bugs introduced in earlier releases.
* Allow compiling for IPQ4019 chipset.
* Firmware will now send txbf frames to the host (driver) if the
TXBF (0xF00000001) set-special feature is enabled, or when the radio
is in monitor mode. But, if the frame is consumed by the txbf_cv
logic, then the pkt cannot be delivered to the host in this manner. Instead,
a WMI event will be sent and host can find the txbf_cv data in shared
memory. See ath10k_wmi_event_txbf_cv_mesg() in ath10k-ct driver.
* Support rx-all-mgt option. When enabled, the firmware will deliver all
management frames that it can to the host. No RX filters are changed
when this option is enabled.
* Fix at least some problems with sending tx-beamforming frames to SU-MIMO
peers. Looks like this was a regression in my code.
* Fix a crash in rate-ctrl due to nss mismatch. This was something I introduced
while trying to fix other bugs in rate-ctrl some time back.
* Attempt to fix a sw-peer-key object leak in IBSS mode. The peer key code
is very complex, and shares some pointers as union members. I think I fixed
at least some of the issues, but would not be surprised if more exist.
* Improve ath10k user guide to document CT firmware features:
https://www.candelatech.com/ath10k-ug.php
* Add ct-special option to configure the txbf sounding time. See ath10k-ug.php
* Fix and allow the driver to tell the firmware to send sounding frames. See ath10k-ug.php
In further testing, this seems to fail much of the time, and I am not sure why.
Disabling this in diet (trimmed) builds.
* Fix crashes related to deleting peers while they are in power-save mode. Reported
by LEDE user on r7800 with 9984 NIC.
* Make rate-ctrl txbf probe work better. If enabled, the rate-ctrl logic will periodically
send out probes at an NSS that can to txbf. Previously, txbf probes would not reliably happen
if both AP and peer had the same nss (ie, 2x2 talking to 2x2). To enable this feature, you
need to enable the fwtest-cmdid number 20.
* Report rx-timeout error counters. These were previously un-reported, though the
field existed in the wmi struct already.
* txbf: Ignore frames not destined for us. If NIC is in promisc mode, it
could acquire and process NDPA frames that were not destined for it. Check
the dest-MAC and ignore frames not for us (pass them up the stack for monitor
mode instead of save them in the peer's rate-ctrl logic.)
* Port ping-pong crash handling and othe related features to IPQ4019 target. It should
now act similar to 9984 in this regard.
* Fix a few asserts related to txbf and tx-seq logic.
* Add custom-stats support, for rx-reorder-stats. Similar to what I did for wave-1.
* Disable AMSDU for IBSS. This now matches what I did for peregrine. It seems to
work better this way, though I did not debug it in detail.
* Enable the set-special command to re-enable AMSDU for IBSS if user wants to experiment.
* Fix bug where dbglog did not disable IRQs, so if you made dbglog messages from the IRQ
handler, it could cause corruption that could crash the firmware and/or corrupt the log
message buffers.
* Don't assert if there are no buffer descriptors for RX of non-data frame.
* Retry any stuck block-ack sessions every 20 seconds instead of just disabling BA for
ever when we get too many failures.
* Fix SGI flag when reporting tx-rate info. The flag moved since wave-1 days, and
I did not notice that when I ported my changes forward to wave-2.
* Allow disabling special CCA handling for IBSS txqs. Earlier testing indicated this
might improve throughput in some testing on 9984 chips in IBSS mode, but subsequent
testing looks about the same without it. Since I do not really understand what this
setting exists for, leave it at upstream defaults. A new set-special API command (0x12)
can be used to enable this hack for testing. Setting 0x1 bit disables special CCA handling
for non-beacon IBSS txqs, setting 0x2 bit disables it for beacon queues as well.
* Add MCAST-BCAST feature flag. This tells driver we do not need a monitor interface
to do MESH.
* When calculating the rx-address filter (affects ACK & BLOCK-ACK, among other things),
to not add in monitor interfaces if other interfaces are up. There is no need for
a monitor device to ACK frames.
Signed-off-by: Ben Greear <greearb@candelatech.com>
Update DEPENDS and PROVIDES so that ath10k-ct firmware
and drivers can be used to replace stock firmware
and drivers. The -htt firmware variant, which requires
ath10k-ct driver now selects ath10k-ct driver when the
firmware is selected.
Signed-off-by: Ben Greear <greearb@candelatech.com>
This patch adds support for Cisco Meraki MR33
hardware highlights:
SOC: IPQ4029 Quad-Core ARMv7 Processor rev 5 (v7l) Cortex-A7
DRAM: 256 MiB DDR3L-1600 @ 627 MHz Micron MT41K128M16JT-125IT
NAND: 128 MiB SLC NAND Spansion S34ML01G200TFV00 (106 MiB usable)
ETH: Qualcomm Atheros AR8035 Gigabit PHY (1 x LAN/WAN) + PoE
WLAN1: QCA9887 (168c:0050) PCIe 1x1:1 802.11abgn ac Dualband VHT80
WLAN2: Qualcomm Atheros QCA4029 2.4GHz 802.11bgn 2:2x2
WLAN3: Qualcomm Atheros QCA4029 5GHz 802.11a/n/ac 2:2x2 VHT80
LEDS: 1 x Programmable RGB+White Status LED (driven by Ti LP5562 on i2c-1)
1 x Orange LED Fault Indicator (shared with LP5562)
2 x LAN Activity / Speed LEDs (On the RJ45 Port)
BUTTON: one Reset button
MISC: Bluetooth LE Ti cc2650 PG2.3 4x4mm - BL_CONFIG at 0x0001FFD8
AT24C64 8KiB EEPROM
Kensington Lock
Serial:
WARNING: The serial port needs a TTL/RS-232 3V3 level converter!
The Serial setting is 115200-8-N-1. The board has a populated
1x4 0.1" header with half-height/low profile pins.
The pinout is: VCC (little white arrow), RX, TX, GND.
Flashing needs a serial adaptor, as well as patched ubootwrite utility
(needs Little-Endian support). And a modified u-boot (enabled Ethernet).
Meraki's original u-boot source can be found in:
<https://github.com/riptidewave93/meraki-uboot/tree/mr33-20170427>
Add images to do an installation via bootloader:
0. open up the MR33 and connect the serial console.
1. start the 2nd stage bootloader transfer from client pc:
# ubootwrite.py --write=mr33-uboot.bin
(The ubootwrite tool will interrupt the boot-process and hence
it needs to listen for cues. If the connection is bad (due to
the low-profile pins), the tool can fail multiple times and in
weird ways. If you are not sure, just use a terminal program
and see what the device is doing there.
2. power on the MR33 (with ethernet + serial cables attached)
Warning: Make sure you do this in a private LAN that has
no connection to the internet.
- let it upload the u-boot this can take 250-300 seconds -
3. use a tftp client (in binary mode!) on your PC to upload the sysupgrade.bin
(the u-boot is listening on 192.168.1.1)
# tftp 192.168.1.1
binary
put openwrt-ipq40xx-meraki_mr33-squashfs-sysupgrade.bin
4. wait for it to reboot
5. connect to your MR33 via ssh on 192.168.1.1
For more detailed instructions, please take a look at the:
"Flashing Instructions for the MR33" PDF. This can be found
on the wiki: <https://openwrt.org/toh/meraki/mr33>
(A link to the mr33-uboot.bin + the modified ubootwrite is
also there)
Thanks to Jerome C. for sending an MR33 to Chris.
Signed-off-by: Chris Blake <chrisrblake93@gmail.com>
Signed-off-by: Mathias Kresin <dev@kresin.me>
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
This patch adds support for ASUS RT-AC58U/RT-ACRH13.
hardware highlights:
SOC: IPQ4018 / QCA Dakota
CPU: Quad-Core ARMv7 Processor rev 5 (v7l) Cortex-A7
DRAM: 128 MiB DDR3L-1066 @ 537 MHz (1074?) NT5CC64M16GP-DI
NOR: 2 MiB Macronix MX25L1606E (for boot, QSEE)
NAND: 128 MiB Winbond W25NO1GVZE1G (cal + kernel + root, UBI)
ETH: Qualcomm Atheros QCA8075 Gigabit Switch (4 x LAN, 1 x WAN)
USB: 1 x 3.0 (via Synopsys DesignWare DWC3 controller in the SoC)
WLAN1: Qualcomm Atheros QCA4018 2.4GHz 802.11bgn 2:2x2
WLAN2: Qualcomm Atheros QCA4018 5GHz 802.11a/n/ac 2:2x2
INPUT: one Reset and one WPS button
LEDS: Status, WAN, WIFI1/2, USB and LAN (one blue LED for each)
Serial:
WARNING: The serial port needs a TTL/RS-232 3V3 level converter!
The Serial setting is 115200-8-N-1. The board has an unpopulated
1x4 0.1" header. The pinout (VDD, RX, GND, TX) is printed on the
PCB right next to the connector.
U-Boot Note: The ethernet driver isn't always reliable and can sometime
time out... Don't worry, just retry.
Access via the serial console is required. As well as a working
TFTP-server setup and the initramfs image. (If not provided, it
has to be built from the OpenWrt source. Make sure to enable
LZMA as the compression for the INITRAMFS!)
To install the image permanently, you have to do the following
steps in the listed order.
1. Open up the router.
There are four phillips screws hiding behind the four plastic
feets on the underside.
2. Connect the serial cable (See notes above)
3. Connect your router via one of the four LAN-ports (yellow)
to a PC which can set the IP-Address and ssh and scp from.
If possible set your PC's IPv4 Address to 192.168.1.70
(As this is the IP-Address the Router's bootloader expects
for the tftp server)
4. power up the router and enter the u-boot
choose option 1 to upload the initramfs image. And follow
through the ipv4 setup.
Wait for your router's status LED to stop blinking rapidly and
glow just blue. (The LAN LED should also be glowing blue).
3. Connect to the OpenWrt running in RAM
The default IPv4-Address of your router will be 192.168.1.1.
1. Copy over the openwrt-sysupgrade.bin image to your router's
temporary directory
# scp openwrt-sysupgrade.bin root@192.168.1.1:/tmp
2. ssh from your PC into your router as root.
# ssh root@192.168.1.1
The default OpenWrt-Image won't ask for a password. Simply hit the Enter-Key.
Once connected...: run the following commands on your temporary installation
3. delete the "jffs2" ubi partition to make room for your new root partition
# ubirmvol /dev/ubi0 --name=jffs2
4. install OpenWrt on the NAND Flash.
# sysupgrade -v /tmp/openwrt-sysupgrade.bin
- This will will automatically reboot the router -
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
This patch updates ath10k-firmware to use the
firmware-5.bin_10.4-3.5.3-00053 firmware for the QCA9984.
The update fixes "ath10k_pci 0001:01:00.0: Invalid VHT mcs 15 peer
stats" spamming the kernel ring buffer at very high frequencies, but
introduces the new "ath10k_pci 0001:01:00.0: Unknown eventid: 36925".
This new warning doesn't appear to cause problems in practice and is
only emitted relatively rarely, not causing dmesg to overflow within
minutes.
Tested on the ZyXEL NBG6817; early feedback also suggests this firmware
to work well (with the same fixes and caveats) on the Netgear r7800 as
well.
Signed-off-by: Stefan Lippers-Hollmann <s.l-h@gmx.de>
Signed-off-by: Henryk Heisig <hyniu@o2.pl>
This patch updates ath10k-firmware to last commit and use the
firmware-5.bin_10.4-3.5.3-00053 firmware for the QCA9888.
Signed-off-by: Henryk Heisig <hyniu@o2.pl>
This patch adds support for GL.iNet GL-B1300
Specification:
- SOC: IPQ4028 / QCA Dakota
- RAM: 256 MiB
- FLASH: 32 MiB
- ETH: Qualcomm Atheros QCA8075 Gigabit Switch (2 x LAN, 1 x WAN)
- USB: 1 x 3.0 (via Synopsys DesignWare DWC3 controller in the SoC)
- WLAN1: Qualcomm Atheros QCA4028 2.4GHz 802.11bgn 2:2x2
- WLAN2: Qualcomm Atheros QCA4028 5GHz 802.11a/n/ac 2:2x2
- INPUT: one reset and one WPS button
- LEDS: 3 leds: Power, WIFI(only for 2.4G currently), and one reserved
- UART: 1 x UART on PCB (3.3V, TX, RX, GND) - 115200 8N1
Installation:
Method 1:
- use serial port to stop uboot
- uboot command: run lf
Method 2:
- push down reset button and power on
- wait until three leds constantly on then release
- upgrade by uboot web at http://192.168.1.1
Note:
- the sysupgrade image need to be renamed to lede-gl-b1300.bin in both method.
- the sysupgrade image can be automatically downloaded if tftp server at
192.168.1.2 have that file.
- the wifi led will be flashing when writing image.
Signed-off-by: Dongming Han <handongming@gl-inet.com>
Updated ppfe firmware to NXP LSDK1712 release. Used
ppfe firmware git tree on NXP github since it was
migrated here from qoriq-open-source github.
Signed-off-by: Yangbo Lu <yangbo.lu@nxp.com>
NXP LSDK1712 release used two rcw git trees. The
original rcw git tree was still source code but
dropping ls1012a/ls1088a/ls2088a boards in LSDK1712.
Instead another new rcw git tree was used to just
provided rcw binaries for these boards dropped. So
this patch is to update ls-rcw to LSDK1712 release
and add a new ls-rcw-bin package.
Signed-off-by: Yangbo Lu <yangbo.lu@nxp.com>
fman-ucode had been migrated from qoriq-open-source
github to NXP github. So the Makefile should be fixed
accordingly.
Signed-off-by: Yangbo Lu <yangbo.lu@nxp.com>
Updated MC firmware to NXP LSDK1712 release. Used
MC firmware git tree on NXP github since it was
migrated here from qoriq-open-source github.
Signed-off-by: Yangbo Lu <yangbo.lu@nxp.com>
The BDFs for OpenMesh A42 were upstreamed [1] to the ath10k-firmware
repository and are now part of ath10k-firmware 2018-01-26. The
ipq-wifi-openmesh_a42 package can now be dropped because OpenWrt already
ships the QCA4019 board-2.bin from this version.
[1] https://wireless.wiki.kernel.org/en/users/drivers/ath10k/boardfiles
Signed-off-by: Sven Eckelmann <sven.eckelmann@open-mesh.com>
* introduces the BDFs for the OpenMesh A42 in
/lib/firmware/ath10k/QCA4019/hw1.0/board-2.bin.
* adds new firmware firmware-6.bin_RM.4.4.1.c1-00037-QCARMSWP-1 for
QCA6174 hw3.0
Signed-off-by: Sven Eckelmann <sven.eckelmann@open-mesh.com>
Compiling the Intel microcode package results in a
microcode.bin and a microcode-64.bin. As we can
decide based on the subtarget which should be used,
we'll only split the required .bin file with
iucode-tool.
x64 will get the intel-microcode-64.bin
All other variants will get intel-microcode.bin
The microcodes will be updated from preinit via a common
script - that's the earliest place where we can do it.
Signed-off-by: Zoltan HERPAI <wigyori@uid0.hu>
Use the Debian repository for sourcing the ucode files.
Current (20171205) includes support for fam17h CPUs already.
The microcodes will be updated from preinit via a common
script - that's the earliest place where we can do it.
Signed-off-by: Zoltan HERPAI <wigyori@uid0.hu>
This patch renames the AVM FRITZ!Box 4040's board-2.bin
file and package to match the 'vendor_product' format.
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>