Commit Graph

877 Commits

Author SHA1 Message Date
Jan Alexander
6738b5e2ac uboot-envtools: add support for Aruba AP-303 and AP-365
Both devices use u-boot env variables to boot OpenWrt from its flash
partition. Using u-boot envtools, it is possible to change the bootcmd
back to the stock firmware partition directly from OpenWrt without
attaching a serial cable or even physically accessing the device.

Signed-off-by: Jan Alexander <jan@nalx.net>
2021-01-14 01:04:02 +01:00
Jan Alexander
4e46beb313 ipq806x: add support for Ubiquiti UniFi AC HD
Hardware
--------

SoC:   Qualcomm IPQ8064
RAM:   512MB DDR3
Flash: 256MB NAND (Micron MT29F2G08ABBEAH4)
       32MB SPI-NOR (Macronix MX25U25635F)
WLAN:  Qualcomm Atheros QCA9994 4T4R b/g/n
       Qualcomm Atheros QCA9994 4T4R a/n/ac
ETH:   eth0 - SECONDARY (Atheros AR8033)
       eth1 - MAIN (Atheros AR8033)
USB:   USB-C
LED:   Dome (white / blue)
BTN:   Reset

Installation
------------

Copy the OpenWrt sysupgrade image to the /tmp directory of the device
using scp. Default IP address is 192.168.1.20 and default username and
password are "ubnt".

SSH to the device and write the bootselect flag to ensure it is booting
from the mtd partition the OpenWrt image will be written to. Verify the
output device below matches mtd partition "bootselect" using /proc/mtd.

> dd if=/dev/zero bs=1 count=1 seek=7 conv=notrunc of=/dev/mtd11

Write the OpenWrt sysupgrade image to the mtd partition labeled
"kernel0". Also verify the used partition device using /proc/mtd.

> dd if=/tmp/sysupgrade.bin of=/dev/mtdblock12

Reboot the device.

Back to stock
-------------

Use the TFTP recovery procedure with the Ubiquiti firmware image to
restore the vendor firmware.

Signed-off-by: Jan Alexander <jan@nalx.net>
2021-01-14 01:03:54 +01:00
David Bauer
3c20768bb9 uboot-rockchip: update NanoPi R2S patches
Update the NanoPi R2S to the latest version submitted
upstream.

Signed-off-by: David Bauer <mail@david-bauer.net>
2021-01-14 01:03:48 +01:00
Marty Jones
d567a24200 uboot-rockchip: update to v2021.01
Update the U-Boot to version v2021.01.

Run-tested: FriendlyARM NanoPi R2S
            Radxa Rock Pi 4
            Pine64 RockPro64

Signed-off-by: Marty Jones <mj8263788@gmail.com>
[format commit message]
Signed-off-by: David Bauer <mail@david-bauer.net>
2021-01-14 01:03:41 +01:00
Sven Eckelmann
80713657b2 ath79: Add support for OpenMesh OM5P
Device specifications:
======================

* Qualcomm/Atheros AR9344 rev 2
* 560/450/225 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 2T2R 5 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
  - eth0
    + builtin switch port 1
    + used as LAN interface
  - eth1
    + 18-24V passive POE (mode B)
    + used as WAN interface
* 12-24V 1A DC
* internal antennas

WAN/LAN LEDs appear to be wrong in ar71xx and have been swapped here.

Flashing instructions:
======================

Various methods can be used to install the actual image on the flash.
Two easy ones are:

ap51-flash
----------

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.

initramfs from TFTP
-------------------

The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):

   setenv serverip 192.168.1.21
   setenv ipaddr 192.168.1.1
   tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr

The actual sysupgrade image can then be transferred (on the LAN port) to the
device via

  scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/

On the device, the sysupgrade must then be started using

  sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin

Signed-off-by: Sven Eckelmann <sven@narfation.org>
[add LED swap comment]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-12-30 23:32:07 +01:00
Sven Eckelmann
ff9e48e75c ath79: Add support for OpenMesh OM2P v2
Device specifications:
======================

* Qualcomm/Atheros AR9330 rev 1
* 400/400/200 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 1T1R 2.4 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
  - eth0
    + builtin switch port 1
    + used as LAN interface
  - eth1
    + 18-24V passive POE (mode B)
    + used as WAN interface
* 12-24V 1A DC
* external antenna

Flashing instructions:
======================

Various methods can be used to install the actual image on the flash.
Two easy ones are:

ap51-flash
----------

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.

initramfs from TFTP
-------------------

The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):

   setenv serverip 192.168.1.21
   setenv ipaddr 192.168.1.1
   tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr

The actual sysupgrade image can then be transferred (on the LAN port) to
the device via

  scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/

On the device, the sysupgrade must then be started using

  sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin

Signed-off-by: Sven Eckelmann <sven@narfation.org>
2020-12-30 23:32:07 +01:00
Sven Eckelmann
eb3a5ddba0 ath79: Add support for OpenMesh OM2P-LC
Device specifications:
======================

* Qualcomm/Atheros AR9330 rev 1
* 400/400/200 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 1T1R 2.4 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
  - eth0
    + builtin switch port 1
    + used as LAN interface
  - eth1
    + 18-24V passive POE (mode B)
    + used as WAN interface
* 12-24V 1A DC
* internal antennas

Flashing instructions:
======================

Various methods can be used to install the actual image on the flash.
Two easy ones are:

ap51-flash
----------

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.

initramfs from TFTP
-------------------

The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):

   setenv serverip 192.168.1.21
   setenv ipaddr 192.168.1.1
   tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr

The actual sysupgrade image can then be transferred (on the LAN port) to
the device via

  scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/

On the device, the sysupgrade must then be started using

  sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin

Signed-off-by: Sven Eckelmann <sven@narfation.org>
2020-12-30 23:32:07 +01:00
Sven Eckelmann
75900a25ed ath79: add support for OpenMesh OM2P-HS v3
Device specifications:
======================

* Qualcomm/Atheros AR9341 rev 1
* 535/400/200 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 2T2R 2.4 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
  - eth0
    + 802.3af POE
    + builtin switch port 1
    + used as LAN interface
  - eth1
    + 18-24V passive POE (mode B)
    + used as WAN interface
* 12-24V 1A DC
* internal antennas

Flashing instructions:
======================

Various methods can be used to install the actual image on the flash.
Two easy ones are:

ap51-flash
----------

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.

initramfs from TFTP
-------------------

The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):

   setenv serverip 192.168.1.21
   setenv ipaddr 192.168.1.1
   tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr

The actual sysupgrade image can then be transferred (on the LAN port) to
the device via

  scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/

On the device, the sysupgrade must then be started using

  sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin

Signed-off-by: Sven Eckelmann <sven@narfation.org>
2020-12-29 00:03:26 +01:00
Sven Eckelmann
f096accce2 ath79: add support for OpenMesh OM2P-HS v2
Device specifications:
======================

* Qualcomm/Atheros AR9341 rev 1
* 535/400/200 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 2T2R 2.4 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
  - eth0
    + 802.3af POE
    + builtin switch port 1
    + used as LAN interface
  - eth1
    + 18-24V passive POE (mode B)
    + used as WAN interface
* 12-24V 1A DC
* internal antennas

Flashing instructions:
======================

Various methods can be used to install the actual image on the flash.
Two easy ones are:

ap51-flash
----------

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.

initramfs from TFTP
-------------------

The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):

   setenv serverip 192.168.1.21
   setenv ipaddr 192.168.1.1
   tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr

The actual sysupgrade image can then be transferred (on the LAN port) to
the device via

  scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/

On the device, the sysupgrade must then be started using

  sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin

Signed-off-by: Sven Eckelmann <sven@narfation.org>
2020-12-29 00:03:26 +01:00
Sven Eckelmann
a462412977 ath79: add support for OpenMesh OM2P-HS v1
Device specifications:
======================

* Qualcomm/Atheros AR9341 rev 1
* 535/400/200 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 2T2R 2.4 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
  - eth0
    + 802.3af POE
    + builtin switch port 1
    + used as LAN interface
  - eth1
    + 18-24V passive POE (mode B)
    + used as WAN interface
* 12-24V 1A DC
* internal antennas

Flashing instructions:
======================

Various methods can be used to install the actual image on the flash.
Two easy ones are:

ap51-flash
----------

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.

initramfs from TFTP
-------------------

The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):

   setenv serverip 192.168.1.21
   setenv ipaddr 192.168.1.1
   tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr

The actual sysupgrade image can then be transferred (on the LAN port) to
the device via

  scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/

On the device, the sysupgrade must then be started using

  sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin

Signed-off-by: Sven Eckelmann <sven@narfation.org>
[drop redundant status from eth1]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-12-29 00:03:26 +01:00
Sven Eckelmann
5b37b52e69 ath79: Add support for OpenMesh OM2P-HS v4
Device specifications:
======================

* Qualcomm/Atheros QCA9533 v2
* 650/600/217 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 2T2R 2.4 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
  - eth0
    + 24V passive POE (mode B)
    + used as WAN interface
  - eth1
    + 802.3af POE
    + builtin switch port 1
    + used as LAN interface
* 12-24V 1A DC
* internal antennas

Flashing instructions:
======================

Various methods can be used to install the actual image on the flash.
Two easy ones are:

ap51-flash
----------

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.

initramfs from TFTP
-------------------

The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):

   setenv serverip 192.168.1.21
   setenv ipaddr 192.168.1.1
   tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr

The actual sysupgrade image can then be transferred (on the LAN port) to
the device via

  scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/

On the device, the sysupgrade must then be started using

  sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin

Signed-off-by: Sven Eckelmann <sven@narfation.org>
2020-12-28 19:37:24 +01:00
Sven Eckelmann
dd1d95cb03 ath79: Add support for OpenMesh OM2P v4
Device specifications:
======================

* Qualcomm/Atheros QCA9533 v2
* 650/600/217 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 1T1R 2.4 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
  - eth0
    + Label: Ethernet 1
    + 24V passive POE (mode B)
  - eth1
    + Label: Ethernet 2
    + 802.3af POE
    + builtin switch port 1
* 12-24V 1A DC
* external antenna

Flashing instructions:
======================

Various methods can be used to install the actual image on the flash.
Two easy ones are:

ap51-flash
----------

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.

initramfs from TFTP
-------------------

The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):

   setenv serverip 192.168.1.21
   setenv ipaddr 192.168.1.1
   tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr

The actual sysupgrade image can then be transferred (on the LAN port) to
the device via

  scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/

On the device, the sysupgrade must then be started using

  sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin

Signed-off-by: Sven Eckelmann <sven@narfation.org>
[wrap two very long lines, fix typo in comment]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-12-28 19:37:24 +01:00
Dongming Han
b9389186b0 ipq40xx: add support for GL.iNet GL-AP1300
Specifications:
SOC:        Qualcomm IPQ4018 (DAKOTA) ARM Quad-Core
RAM:        256 MiB
FLASH1:     4 MiB NOR
FLASH2:     128 MiB NAND
ETH:        Qualcomm QCA8075
WLAN1:      Qualcomm Atheros QCA4018 2.4GHz 802.11b/g/n 2x2
WLAN2:      Qualcomm Atheros QCA4018 5GHz 802.11n/ac W2 2x2
INPUT:      Reset
LED:        Power, Internet
UART1:      On board pin header near to LED (3.3V, TX, RX, GND), 3.3V without pin - 115200 8N1
OTHER:      On board with BLE module - by cp210x USB serial chip
            On board hareware watchdog with GPIO0 high to turn on, and GPIO4 for watchdog feed

Install via uboot tftp or uboot web failsafe.

By uboot tftp:
(IPQ40xx) # tftpboot 0x84000000 openwrt-ipq40xx-generic-glinet_gl-ap1300-squashfs-nand-factory.ubi
(IPQ40xx) # run lf

By uboot web failsafe:
Push the reset button for 10 seconds util the power led flash faster,
then use broswer to access http://192.168.1.1

Afterwards upgrade can use sysupgrade image.

Signed-off-by: Dongming Han <handongming@gl-inet.com>
2020-12-25 10:38:13 +01:00
Michael Pratt
33d26a9a40 ath79: add support for Senao Engenius EAP350 v1
FCC ID: U2M-EAP350

Engenius EAP350 is a wireless access point with 1 gigabit PoE ethernet port,
2.4 GHz wireless, external ethernet switch, and 2 internal antennas.

Specification:

  - AR7242 SOC
  - AR9283 WLAN			(2.4 GHz, 2x2, PCIe on-board)
  - AR8035-A switch		(GbE with 802.3af PoE)
  - 40 MHz reference clock
  - 8 MB FLASH			MX25L6406E
  - 32 MB RAM			EM6AA160TSA-5G
  - UART at J2			(populated)
  - 3 LEDs, 1 button		(power, eth, 2.4 GHz) (reset)
  - 2 internal antennas

MAC addresses:

  MAC address is labeled as "MAC"
  Only 1 address on label and in flash
  The OEM software reports these MACs for the ifconfig

  eth0	MAC	*:0c	art 0x0
  phy0	---	*:0d	---

Installation:

  2 ways to flash factory.bin from OEM:

  - if you get Failsafe Mode from failed flash:
      only use it to flash Original firmware from Engenius
      or risk kernel loop or halt which requires serial cable

  Method 1: Firmware upgrade page:

    OEM webpage at 192.168.10.1
    username and password "admin"
    Navigate to "Upgrade Firmware" page from left pane
    Click Browse and select the factory.bin image
    Upload and verify checksum
    Click Continue to confirm and wait 3 minutes

  Method 2: Serial to load Failsafe webpage:

    After connecting to serial console and rebooting...
    Interrupt uboot with any key pressed rapidly
    execute `run failsafe_boot` OR `bootm 0x9f670000`
    wait a minute
    connect to ethernet and navigate to
    "192.168.1.1/index.htm"
    Select the factory.bin image and upload
    wait about 3 minutes

Return to OEM:

  If you have a serial cable, see Serial Failsafe instructions
  otherwise, uboot-env can be used to make uboot load the failsafe image

  *DISCLAIMER*
  The Failsafe image is unique to Engenius boards.
  If the failsafe image is missing or damaged this will not work
  DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt

  ssh into openwrt and run
  `fw_setenv rootfs_checksum 0`
  reboot, wait 3 minutes
  connect to ethernet and navigate to 192.168.1.1/index.htm
  select OEM firmware image from Engenius and click upgrade

Format of OEM firmware image:

  The OEM software of EAP350 is a heavily modified version
  of Openwrt Kamikaze. One of the many modifications
  is to the sysupgrade program. Image verification is performed
  simply by the successful ungzip and untar of the supplied file
  and name check and header verification of the resulting contents.
  To form a factory.bin that is accepted by OEM Openwrt build,
  the kernel and rootfs must have specific names...

    openwrt-senao-eap350-uImage-lzma.bin
    openwrt-senao-eap350-root.squashfs

  and begin with the respective headers (uImage, squashfs).
  Then the files must be tarballed and gzipped.
  The resulting binary is actually a tar.gz file in disguise.
  This can be verified by using binwalk on the OEM firmware images,
  ungzipping then untaring.

  The OEM upgrade script is at /etc/fwupgrade.sh

  Later models in the EAP series likely have a different platform
  and the upgrade and image verification process differs.

  OKLI kernel loader is required because the OEM software
  expects the kernel to be no greater than 1024k
  and the factory.bin upgrade procedure would
  overwrite part of the kernel when writing rootfs.

Note on PLL-data cells:

  The default PLL register values will not work
  because of the external AR8035-A switch between
  the SOC and the ethernet PHY chips.

  For AR724x series, the PLL register for GMAC0
  can be seen in the DTSI as 0x2c.
  Therefore the PLL register can be read from uboot
  for each link speed after attempting tftpboot
  or another network action using that link speed
  with `md 0x1805002c 1`.

  uboot did not have a good value for 1 GBps
  so it was taken from other similar DTS file.

Tested from master, all link speeds functional

Signed-off-by: Michael Pratt <mcpratt@pm.me>
2020-12-25 10:38:13 +01:00
Michael Pratt
6c98edaae2 ath79: add support for Senao Engenius EAP600
FCC ID: A8J-EAP600

Engenius EAP600 is a wireless access point with 1 gigabit ethernet port,
dual-band wireless, external ethernet switch, 4 internal antennas
and 802.3af PoE.

Specification:

  - AR9344 SOC			(5 GHz, 2x2, WMAC)
  - AR9382 WLAN			(2.4 GHz, 2x2, PCIe on-board)
  - AR8035-A switch		(GbE with 802.3af PoE)
  - 40 MHz reference clock
  - 16 MB FLASH			MX25L12845EMI-10G
  - 2x 64 MB RAM		NT5TU32M16DG
  - UART at H1			(populated)
  - 5 LEDs, 1 button		(power, eth, 2.4 GHz, 5 GHz, wps) (reset)
  - 4 internal antennas

MAC addresses:

  MAC addresses are labeled MAC1 and MAC2
  The MAC address in flash is not on the label
  The OEM software reports these MACs for the ifconfig

  eth0	MAC 1	*:5e	---
  phy1	MAC 2	*:5f	---	(2.4 GHz)
  phy0	-----	*:60	art 0x0	(5 GHz)

Installation:

  2 ways to flash factory.bin from OEM:

  - if you get Failsafe Mode from failed flash:
      only use it to flash Original firmware from Engenius
      or risk kernel loop or halt which requires serial cable

  Method 1: Firmware upgrade page:

    OEM webpage at 192.168.1.1
    username and password "admin"
    Navigate to "Upgrade Firmware" page from left pane
    Click Browse and select the factory.bin image
    Upload and verify checksum
    Click Continue to confirm and wait 3 minutes

  Method 2: Serial to load Failsafe webpage:

    After connecting to serial console and rebooting...
    Interrupt uboot with any key pressed rapidly
    execute `run failsafe_boot` OR `bootm 0x9fdf0000`
    wait a minute
    connect to ethernet and navigate to
    "192.168.1.1/index.htm"
    Select the factory.bin image and upload
    wait about 3 minutes

Return to OEM:

  If you have a serial cable, see Serial Failsafe instructions
  otherwise, uboot-env can be used to make uboot load the failsafe image

  *DISCLAIMER*
  The Failsafe image is unique to Engenius boards.
  If the failsafe image is missing or damaged this will not work
  DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt

  ssh into openwrt and run
  `fw_setenv rootfs_checksum 0`
  reboot, wait 3 minutes
  connect to ethernet and navigate to 192.168.1.1/index.htm
  select OEM firmware image from Engenius and click upgrade

Format of OEM firmware image:

  The OEM software of EAP600 is a heavily modified version
  of Openwrt Kamikaze. One of the many modifications
  is to the sysupgrade program. Image verification is performed
  simply by the successful ungzip and untar of the supplied file
  and name check and header verification of the resulting contents.
  To form a factory.bin that is accepted by OEM Openwrt build,
  the kernel and rootfs must have specific names...

    openwrt-senao-eap600-uImage-lzma.bin
    openwrt-senao-eap600-root.squashfs

  and begin with the respective headers (uImage, squashfs).
  Then the files must be tarballed and gzipped.
  The resulting binary is actually a tar.gz file in disguise.
  This can be verified by using binwalk on the OEM firmware images,
  ungzipping then untaring.

  The OEM upgrade script is at /etc/fwupgrade.sh

  Later models in the EAP series likely have a different platform
  and the upgrade and image verification process differs.

  OKLI kernel loader is required because the OEM software
  expects the kernel to be no greater than 1536k
  and the factory.bin upgrade procedure would
  overwrite part of the kernel when writing rootfs.

Note on PLL-data cells:

  The default PLL register values will not work
  because of the external AR8035-A switch between
  the SOC and the ethernet PHY chips.

  For AR934x series, the PLL register for GMAC0
  can be seen in the DTSI as 0x2c.
  Therefore the PLL register can be read from uboot
  for each link speed after attempting tftpboot
  or another network action using that link speed
  with `md 0x1805002c 1`.

  Unfortunately uboot did not have the best values
  so they were taken from other similar DTS files.

Tested from master, all link speeds functional

Signed-off-by: Michael Pratt <mcpratt@pm.me>
2020-12-25 10:38:13 +01:00
Michael Pratt
4a55ef639d ath79: add support for Senao Engenius ECB600
FCC ID: A8J-ECB600

Engenius ECB600 is a wireless access point with 1 gigabit PoE ethernet port,
dual-band wireless, external ethernet switch, and 4 external antennas.

Specification:

  - AR9344 SOC			(5 GHz, 2x2, WMAC)
  - AR9382 WLAN			(2.4 GHz, 2x2, PCIe on-board)
  - AR8035-A switch		(GbE with 802.3af PoE)
  - 40 MHz reference clock
  - 16 MB FLASH			MX25L12845EMI-10G
  - 2x 64 MB RAM		NT5TU32M16DG
  - UART at H1			(populated)
  - 4 LEDs, 1 button		(power, eth, 2.4 GHz, 5 GHz) (reset)
  - 4 external antennas

MAC addresses:

  MAC addresses are labeled MAC1 and MAC2
  The MAC address in flash is not on the label
  The OEM software reports these MACs for the ifconfig

  phy1	MAC 1	*:52	---	(2.4 GHz)
  phy0	MAC 2	*:53	---	(5 GHz)
  eth0	-----	*:54	art 0x0

Installation:

  2 ways to flash factory.bin from OEM:

  - if you get Failsafe Mode from failed flash:
      only use it to flash Original firmware from Engenius
      or risk kernel loop or halt which requires serial cable

  Method 1: Firmware upgrade page:

    OEM webpage at 192.168.1.1
    username and password "admin"
    Navigate to "Upgrade Firmware" page from left pane
    Click Browse and select the factory.bin image
    Upload and verify checksum
    Click Continue to confirm and wait 3 minutes

  Method 2: Serial to load Failsafe webpage:

    After connecting to serial console and rebooting...
    Interrupt uboot with any key pressed rapidly
    execute `run failsafe_boot` OR `bootm 0x9fdf0000`
    wait a minute
    connect to ethernet and navigate to
    "192.168.1.1/index.htm"
    Select the factory.bin image and upload
    wait about 3 minutes

Return to OEM:

  If you have a serial cable, see Serial Failsafe instructions
  otherwise, uboot-env can be used to make uboot load the failsafe image

  *DISCLAIMER*
  The Failsafe image is unique to Engenius boards.
  If the failsafe image is missing or damaged this will not work
  DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt

  ssh into openwrt and run
  `fw_setenv rootfs_checksum 0`
  reboot, wait 3 minutes
  connect to ethernet and navigate to 192.168.1.1/index.htm
  select OEM firmware image from Engenius and click upgrade

Format of OEM firmware image:

  The OEM software of ECB600 is a heavily modified version
  of Openwrt Kamikaze. One of the many modifications
  is to the sysupgrade program. Image verification is performed
  simply by the successful ungzip and untar of the supplied file
  and name check and header verification of the resulting contents.
  To form a factory.bin that is accepted by OEM Openwrt build,
  the kernel and rootfs must have specific names...

    openwrt-senao-ecb600-uImage-lzma.bin
    openwrt-senao-ecb600-root.squashfs

  and begin with the respective headers (uImage, squashfs).
  Then the files must be tarballed and gzipped.
  The resulting binary is actually a tar.gz file in disguise.
  This can be verified by using binwalk on the OEM firmware images,
  ungzipping then untaring.

  The OEM upgrade script is at /etc/fwupgrade.sh

  Later models in the ECB series likely have a different platform
  and the upgrade and image verification process differs.

  OKLI kernel loader is required because the OEM software
  expects the kernel to be no greater than 1536k
  and the factory.bin upgrade procedure would
  overwrite part of the kernel when writing rootfs.

Note on PLL-data cells:

  The default PLL register values will not work
  because of the external AR8035-A switch between
  the SOC and the ethernet PHY chips.

  For AR934x series, the PLL register for GMAC0
  can be seen in the DTSI as 0x2c.
  Therefore the PLL register can be read from uboot
  for each link speed after attempting tftpboot
  or another network action using that link speed
  with `md 0x1805002c 1`.

  Unfortunately uboot did not have the best values
  so they were taken from other similar DTS files.

Tested from master, all link speeds functional

Signed-off-by: Michael Pratt <mcpratt@pm.me>
2020-12-25 10:38:13 +01:00
Stefan Schake
d3c8881194 ipq40xx: add support for devolo Magic 2 WiFi next
SOC:     IPQ4018 / QCA Dakota
CPU:     Quad-Core ARMv7 Processor rev 5 (v71) Cortex-A7
DRAM:    256 MiB
NOR:     32 MiB
ETH:     Qualcomm Atheros QCA8075 (2 ports)
PLC:     MaxLinear G.hn 88LX5152
WLAN1:   Qualcomm Atheros QCA4018 2.4GHz 802.11bgn 2:2x2
WLAN2:   Qualcomm Atheros QCA4018 5GHz 802.11a/n/ac 2:2x2
INPUT:   RESET, WiFi, PLC Button
LEDS:    red/white home, white WiFi

To modify a retail device to run OpenWRT firmware:
1) Setup a TFTP server on IP address 192.168.0.100 and copy the OpenWRT
   initramfs (initramfs-fit-uImage.itb) to the TFTP root as 'uploadfile'.
2) Power on the device while pressing the recessed reset button next to
   the Ethernet ports. This causes the bootloader to retrieve and start
   the initramfs.
3) Once the initramfs is booted, the device will come up with IP
   192.168.1.1. You can then connect through SSH (allow some time for
   the first connection).
4) On the device shell, run 'fw_printenv' to show the U-boot environment.
   Backup this information since it contains device unique factory data.
5) Change the boot command to support booting OpenWRT:
   # fw_setenv bootcmd 'sf probe && sf read 0x84000000 0x180000 0x400000 && bootm'
6) Change directory to /tmp, download the sysupgrade (e.g. through wget)
   and install it with sysupgrade. The device will reboot into OpenWRT.

Notice that there is currently no support for booting the G.hn chip.
This requires userland software we lack the rights to share right now.

Signed-off-by: Stefan Schake <stefan.schake@devolo.de>
2020-12-22 20:55:40 +01:00
Kip Porterfield
6ffe8a473e kirkwood: add support for Seagate BlackArmor NAS220
The Seagate BlackArmor NAS220 is a consumer NAS
with two internal drive bays. The stock OS runs
RAID 1 over the disks via mdadm.

Device specification:
- SoC: Marvell 88F6192 800 MHz
- RAM: 128 MB
- Flash: 32 MB
- 2 x internal SATA II drives
- Ethernet: 10/100/1000 Mbps (single port, no switch)
- WLAN: None
- LED: Power, Status, Sata Activity
- Key: Power, Reset
- Serial: 10 pin header, (115200,8,N,1), 3.3V TTL
	9|x  -   x|10
	7|x  -   x|8
	5|x  - GND|6
	3|x  -  RX|4
	1|TX -   x|2
	front of case
- USB ports: 2 x USB 2.0

Flash instruction:

NOTE: this process uses a serial connection. It will upgrade the
bootloader and reset the bootloader environment variables

TFTP server setup
- Setup PC with TFTP server set the PC IP to 10.4.50.5 as TFTP server
- Copy these files to TFTP server location
    - u-boot.kwb
    - seagate_blackarmor-nas220-initramfs-uImage
    - seagate_blackarmor-nas220-squashfs-sysupgrade.bin
    - seagate_blackarmor-nas220-squashfs-factory.bin

Seagate NAS setup
- Connect LAN cable between PC and seagate device
- Connect to serial to seagate device

Install u-boot
- Boot seagate device and stop in bootloader by pressing any key
- run 'printenv' from u-boot and save the values
- tftpboot 0x2000000 u-boot.kwb
- nand erase.part uboot
- nand write 0x2000000 0x0 ${filesize}
- reset

Update MAC address in u-boot env
- Stop in u-boot by pressing any key
- Get your MAC address from your saved printenv. Is also on chassis
- setenv ethaddr <your MAC>
- saveenv

Option 1 (recommended) - Install OpenWrt via initramfs and sysupgrade
- tftpboot 0x2000000 seagate_blackarmor-nas220-initramfs-uImage
- bootm 0x2000000
- *OpenWrt should be running now, however it is not written to flash yet*
- From the running instance of OpenWrt use Luci's "flash image" feature
    from the web site or use sysupgrade from the console to write
    seagate_blackarmor-nas220-squashfs-sysupgrade.bin to flash

Option 2 - Install OpenWrt by flashing factory image from u-boot
- nand erase.part ubi
- tftpboot 0x2000000 seagate_blackarmor-nas220-squashfs-factory.bin
- nand write 0x2000000 ubi ${filesize}
- reset

Signed-off-by: Kip Porterfield <kip.porterfield@gmail.com>
2020-12-22 19:11:50 +01:00
Michael Pratt
fe2f53f21c ath79: add support for Senao Engenius EnStationAC v1
FCC ID: A8J-ENSTAC

Engenius EnStationAC v1 is an outdoor wireless access point/bridge with
2 gigabit ethernet ports on 2 external ethernet switches,
5 GHz only wireless, internal antenna plates, and proprietery PoE.

Specification:

  - QCA9557 SOC
  - QCA9882 WLAN		(PCI card, 5 GHz, 2x2, 26dBm)
  - AR8035-A switch		(RGMII GbE with PoE+ IN)
  - AR8031 switch		(SGMII GbE with PoE OUT)
  - 40 MHz reference clock
  - 16 MB FLASH			MX25L12845EMI-10G
  - 2x 64 MB RAM		NT5TU32M16FG
  - UART at J10			(unpopulated)
  - internal antenna plates	(19 dbi, directional)
  - 7 LEDs, 1 button		(power, eth, wlan, RSSI) (reset)

MAC addresses:

  MAC addresses are labeled as ETH and 5GHz
  Vendor MAC addresses in flash are duplicate

  eth0	ETH	*:d3	art 0x0/0x6
  eth1	----	*:d4	---
  phy0	5GHz	*:d5	---

Installation:

  2 ways to flash factory.bin from OEM:

  - if you get Failsafe Mode from failed flash:
      only use it to flash Original firmware from Engenius
      or risk kernel loop or halt which requires serial cable

  Method 1: Firmware upgrade page:

    OEM webpage at 192.168.1.1
    username and password "admin"
    Navigate to "Firmware" page from left pane
    Click Browse and select the factory.bin image
    Upload and verify checksum
    Click Continue to confirm and wait 3 minutes

  Method 2: Serial to load Failsafe webpage:

    After connecting to serial console and rebooting...
    Interrupt uboot with any key pressed rapidly
    execute `run failsafe_boot` OR `bootm 0x9fd70000`
    wait a minute
    connect to ethernet and navigate to
    "192.168.1.1/index.htm"
    Select the factory.bin image and upload
    wait about 3 minutes

Return to OEM:

  If you have a serial cable, see Serial Failsafe instructions
  otherwise, uboot-env can be used to make uboot load the failsafe image

  *DISCLAIMER*
  The Failsafe image is unique to Engenius boards.
  If the failsafe image is missing or damaged this will not work
  DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt

  ssh into openwrt and run
  `fw_setenv rootfs_checksum 0`
  reboot, wait 3 minutes
  connect to ethernet and navigate to 192.168.1.1/index.htm
  select OEM firmware image from Engenius and click upgrade

TFTP recovery:

  rename initramfs to 'vmlinux-art-ramdisk'
  make available on TFTP server at 192.168.1.101
  power board
  hold or press reset button repeatedly

  NOTE: for some Engenius boards TFTP is not reliable
  try setting MTU to 600 and try many times

Format of OEM firmware image:

  The OEM software of EnStationAC is a heavily modified version
  of Openwrt Altitude Adjustment 12.09. One of the many modifications
  is to the sysupgrade program. Image verification is performed
  simply by the successful ungzip and untar of the supplied file
  and name check and header verification of the resulting contents.
  To form a factory.bin that is accepted by OEM Openwrt build,
  the kernel and rootfs must have specific names...

    openwrt-ar71xx-enstationac-uImage-lzma.bin
    openwrt-ar71xx-enstationac-root.squashfs

  and begin with the respective headers (uImage, squashfs).
  Then the files must be tarballed and gzipped.
  The resulting binary is actually a tar.gz file in disguise.
  This can be verified by using binwalk on the OEM firmware images,
  ungzipping then untaring.

  Newer EnGenius software requires more checks but their script
  includes a way to skip them, otherwise the tar must include
  a text file with the version and md5sums in a deprecated format.

  The OEM upgrade script is at /etc/fwupgrade.sh.

  OKLI kernel loader is required because the OEM software
  expects the kernel to be no greater than 1536k
  and the factory.bin upgrade procedure would otherwise
  overwrite part of the kernel when writing rootfs.

Note on PLL-data cells:

  The default PLL register values will not work
  because of the external AR8033 switch between
  the SOC and the ethernet PHY chips.

  For QCA955x series, the PLL registers for eth0 and eth1
  can be see in the DTSI as 0x28 and 0x48 respectively.
  Therefore the PLL registers can be read from uboot
  for each link speed after attempting tftpboot
  or another network action using that link speed
  with `md 0x18050028 1` and `md 0x18050048 1`.

  For eth0 at 1000 speed, the value returned was
  ae000000 but that didn't work, so following
  the logical pattern from the rest of the values,
  the guessed value of a3000000 works better.

  later discovered that delay can be placed on the PHY end only
  with phy-mode as 'rgmii-id' and set register to 0x82...

Tested from master, all link speeds functional

Signed-off-by: Michael Pratt <mcpratt@pm.me>
[fixed SoB to match From:]
Signed-off-by: Petr Štetiar <ynezz@true.cz>
2020-12-22 19:11:50 +01:00
Marek Lindner
4871fd2616 ipq40xx: add support for Plasma Cloud PA2200
Device specifications:

* QCA IPQ4019
* 256 MB of RAM
* 32 MB of SPI NOR flash (w25q256)
  - 2x 15 MB available; but one of the 15 MB regions is the recovery image
* 2T2R 2.4 GHz
  - QCA4019 hw1.0 (SoC)
  - requires special BDF in QCA4019/hw1.0/board-2.bin with
    bus=ahb,bmi-chip-id=0,bmi-board-id=20,variant=PlasmaCloud-PA2200
* 2T2R 5 GHz (channel 36-64)
  - QCA9888 hw2.0 (PCI)
  - requires special BDF in QCA9888/hw2.0/board-2.bin
    bus=pci,bmi-chip-id=0,bmi-board-id=16,variant=PlasmaCloud-PA2200
* 2T2R 5 GHz (channel 100-165)
  - QCA4019 hw1.0 (SoC)
  - requires special BDF in QCA4019/hw1.0/board-2.bin with
    bus=ahb,bmi-chip-id=0,bmi-board-id=21,variant=PlasmaCloud-PA2200
* GPIO-LEDs for 2.4GHz, 5GHz-SoC and 5GHz-PCIE
* GPIO-LEDs for power (orange) and status (blue)
* 1x GPIO-button (reset)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x gigabit ethernet
  - phy@mdio3:
    + Label: Ethernet 1
    + gmac0 (ethaddr) in original firmware
    + used as LAN interface
  - phy@mdio4:
    + Label: Ethernet 2
    + gmac1 (eth1addr) in original firmware
    + 802.3at POE+
    + used as WAN interface
* 12V 2A DC

Flashing instructions:

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the factory image to the u-boot when the device boots up.

Signed-off-by: Marek Lindner <marek.lindner@kaiwoo.ai>
[sven@narfation.org: prepare commit message, rebase, use all LEDs, switch
to dualboot_datachk upgrade script, use eth1 as designated WAN interface]
Signed-off-by: Sven Eckelmann <sven@narfation.org>
2020-12-22 19:11:50 +01:00
Marek Lindner
ea5bb6bbfe ipq40xx: add support for Plasma Cloud PA1200
Device specifications:

* QCA IPQ4018
* 256 MB of RAM
* 32 MB of SPI NOR flash (w25q256)
  - 2x 15 MB available; but one of the 15 MB regions is the recovery image
* 2T2R 2.4 GHz
  - QCA4019 hw1.0 (SoC)
  - requires special BDF in QCA4019/hw1.0/board-2.bin with
    bus=ahb,bmi-chip-id=0,bmi-board-id=16,variant=PlasmaCloud-PA1200
* 2T2R 5 GHz
  - QCA4019 hw1.0 (SoC)
  - requires special BDF in QCA4019/hw1.0/board-2.bin with
    bus=ahb,bmi-chip-id=0,bmi-board-id=17,variant=PlasmaCloud-PA1200
* 3x GPIO-LEDs for status (cyan, purple, yellow)
* 1x GPIO-button (reset)
* 1x USB (xHCI)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x gigabit ethernet
  - phy@mdio4:
    + Label: Ethernet 1
    + gmac0 (ethaddr) in original firmware
    + used as LAN interface
  - phy@mdio3:
    + Label: Ethernet 2
    + gmac1 (eth1addr) in original firmware
    + 802.3af/at POE(+)
    + used as WAN interface
* 12V/24V 1A DC

Flashing instructions:

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the factory image to the u-boot when the device boots up.

Signed-off-by: Marek Lindner <marek.lindner@kaiwoo.ai>
[sven@narfation.org: prepare commit message, rebase, use all LEDs, switch
to dualboot_datachk upgrade script, use eth1 as designated WAN interface]
Signed-off-by: Sven Eckelmann <sven@narfation.org>
2020-12-22 19:11:50 +01:00
Sven Eckelmann
17e5920490 ath79: Add support for Plasma Cloud PA300E
Device specifications:

* Qualcomm/Atheros QCA9533 v2
* 650/600/217 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash (mx25l12805d)
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 2T2R 2.4 GHz Wi-Fi
* multi-color LED (controlled via red/green/blue GPIOs)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
  - eth0
    + Label: Ethernet 1
    + 24V passive POE (mode B)
    + used as WAN interface
  - eth1
    + Label: Ethernet 2
    + 802.3af POE
    + builtin switch port 2
    + used as LAN interface
* 12-24V 1A DC
* external antennas

Flashing instructions:

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the factory image to the u-boot when the device boots up.

Signed-off-by: Sven Eckelmann <sven@narfation.org>
2020-12-22 19:11:50 +01:00
Sven Eckelmann
5fc28ef479 ath79: Add support for Plasma Cloud PA300
Device specifications:

* Qualcomm/Atheros QCA9533 v2
* 650/600/217 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash (mx25l12805d)
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 2T2R 2.4 GHz Wi-Fi
* multi-color LED (controlled via red/green/blue GPIOs)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
  - eth0
    + Label: Ethernet 1
    + 24V passive POE (mode B)
    + used as WAN interface
  - eth1
    + Label: Ethernet 2
    + 802.3af POE
    + builtin switch port 2
    + used as LAN interface
* 12-24V 1A DC
* internal antennas

Flashing instructions:

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the factory image to the u-boot when the device boots up.

Signed-off-by: Sven Eckelmann <sven@narfation.org>
2020-12-22 19:11:50 +01:00
Michael Pratt
7073ebf0f9 ath79: add support for Senao Engenius ECB350 v1
FCC ID: A8J-ECB350

Engenius ECB350 v1 is an indoor wireless access point with a gigabit ethernet port,
2.4 GHz wireless, external antennas, and PoE.

**Specification:**

  - AR7242 SOC
  - AR9283 WLAN			2.4 GHz (2x2), PCIe on-board
  - AR8035-A switch		RGMII, GbE with 802.3af PoE
  - 40 MHz reference clock
  - 8 MB FLASH			25L6406EM2I-12G
  - 32 MB RAM
  - UART at J2			(populated)
  - 2 external antennas
  - 3 LEDs, 1 button		(power, lan, wlan) (reset)

**MAC addresses:**

  MACs are labeled as WLAN and WAN
  vendor MAC addresses in flash are duplicate

  phy0	WLAN	*:b8	---
  eth0	WAN	*:b9	art 0x0/0x6

**Installation:**

  - if you get Failsafe Mode from failed flash:
      only use it to flash Original firmware from Engenius
      or risk kernel loop or halt which requires serial cable

  Method 1: Firmware upgrade page:

  OEM webpage at 192.168.1.1
  username and password "admin"
  Navigate to "Firmware" page from left pane
  Click Browse and select the factory.bin image
  Upload and verify checksum
  Click Continue to confirm and wait 3 minutes

  Method 2: Serial to load Failsafe webpage:

  After connecting to serial console and rebooting...
  Interrupt uboot with any key pressed rapidly
  execute `run failsafe_boot` OR `bootm 0x9f670000`
  wait a minute
  connect to ethernet and navigate to
  "192.168.1.1/index.htm"
  Select the factory.bin image and upload
  wait about 3 minutes

**Return to OEM:**

  If you have a serial cable, see Serial Failsafe instructions
  otherwise, uboot-env can be used to make uboot load the failsafe image

  *DISCLAIMER*
  The Failsafe image is unique to Engenius boards.
  If the failsafe image is missing or damaged this will not work
  DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt

  ssh into openwrt and run
  `fw_setenv rootfs_checksum 0`
  reboot, wait 3 minutes
  connect to ethernet and navigate to 192.168.1.1/index.htm
  select OEM firmware image from Engenius and click upgrade

**TFTP recovery** (unstable / not reliable):

  rename initramfs to 'vmlinux-art-ramdisk'
  make available on TFTP server at 192.168.1.101
  power board while holding or pressing reset button repeatedly

  NOTE: for some Engenius boards TFTP is not reliable
  try setting MTU to 600 and try many times

**Format of OEM firmware image:**

  The OEM software of ECB350 v1 is a heavily modified version
  of Openwrt Kamikaze. One of the many modifications
  is to the sysupgrade program. Image verification is performed
  by the successful ungzip and untar of the supplied file
  and name check and header verification of the resulting contents.
  To form a factory.bin that is accepted by OEM Openwrt build,
  the kernel and rootfs must have specific names
  and begin with the respective headers (uImage, squashfs).
  Then the files must be tarballed and gzipped.
  The resulting binary is actually a tar.gz file in disguise.
  This can be verified by using binwalk on the OEM firmware images,
  ungzipping then untaring.

  The OEM upgrade script is at /etc/fwupgrade.sh.

  OKLI kernel loader is required because the OEM software
  expects the kernel size to be no greater than 1536k
  and otherwise the factory.bin upgrade procedure would
  overwrite part of the kernel when writing rootfs.
  The factory upgrade script follows the original mtd partitions.

**Note on PLL-data cells:**

  The default PLL register values will not work
  because of the AR8035 switch between
  the SOC and the ethernet port.

  For AR724x series, the PLL register for GMAC0
  can be seen in the DTSI as 0x2c.
  Therefore the PLL register can be read from u-boot
  for each link speed after attempting tftpboot
  or another network action using that link speed
  with `md 0x1805002c 1`

  However the registers that u-boot sets are not ideal and sometimes wrong...
  the at803x driver supports setting the RGMII clock/data delay on the PHY side.
  This way the pll-data register only needs to handle invert and phase.

  for this board no extra adjustements are needed on the MAC side
  all link speeds functional

Signed-off-by: Michael Pratt <mcpratt@pm.me>
2020-12-22 19:11:50 +01:00
Michael Pratt
f244143609 ath79: add support for Senao Engenius ECB1200
FCC ID: A8J-ECB1200

Engenius ECB1200 is an indoor wireless access point with a GbE port,
2.4 GHz and 5 GHz wireless, external antennas, and 802.3af PoE.

**Specification:**

  - QCA9557 SOC			MIPS, 2.4 GHz (2x2)
  - QCA9882 WLAN		PCIe card, 5 GHz (2x2)
  - AR8035-A switch		RGMII, GbE with 802.3af PoE, 25 MHz clock
  - 40 MHz reference clock
  - 16 MB FLASH			25L12845EMI-10G
  - 2x 64 MB RAM		1538ZFZ V59C1512164QEJ25
  - UART at JP1			(unpopulated, RX shorted to ground)
  - 4 external antennas
  - 4 LEDs, 1 button		(power, eth, wifi2g, wifi5g) (reset)

**MAC addresses:**

  MAC Addresses are labeled as ETH and 5GHZ
  U-boot environment has the vendor MAC addresses
  MAC addresses in ART do not match vendor

  eth0	ETH	*:5c	u-boot-env ethaddr
  phy0	5GHZ	*:5d	u-boot-env athaddr
  ----	----	????	art 0x0/0x6

**Installation:**

  Method 1: Firmware upgrade page:

  OEM webpage at 192.168.1.1
  username and password "admin"
  Navigate to "Firmware" page from left pane
  Click Browse and select the factory.bin image
  Upload and verify checksum
  Click Continue to confirm and wait 3 minutes

  Method 2: Serial to load Failsafe webpage:

  After connecting to serial console and rebooting...
  Interrupt uboot with any key pressed rapidly

  (see TFTP recovery)
  perform a sysupgrade

**Serial Access:**

  the RX line on the board for UART is shorted to ground by resistor R176
  therefore it must be removed to use the console
  but it is not necessary to remove to view boot log
  optionally, R175 can be replaced with a solder bridge short

  the resistors R175 and R176 are next to the UART pinout at JP1

**Return to OEM:**

  If you have a serial cable, see Serial Failsafe instructions

  Unlike most Engenius boards, this does not have a 'failsafe' image
  the only way to return to OEM is TFTP or serial access to u-boot

**TFTP recovery:**

  Unlike most Engenius boards, TFTP is reliable here

  rename initramfs-kernel.bin to 'ap.bin'
  make the file available on a TFTP server at 192.168.1.10
  power board while holding or pressing reset button repeatedly

  or with serial access:
  run `tftpboot` or `run factory_boot` with initramfs-kernel.bin
  then `bootm` with the load address

**Format of OEM firmware image:**

  The OEM software of ECB1200 is a heavily modified version
  of Openwrt Altitude Adjustment 12.09.

  This Engenius board, like ECB1750, uses a proprietary header
  with a unique Product ID. The header for factory.bin is
  generated by the mksenaofw program included in openwrt.

**Note on PLL-data cells:**

  The default PLL register values will not work
  because of the AR8035 switch between
  the SOC and the ethernet port.

  For QCA955x series, the PLL registers for eth0 and eth1
  can be see in the DTSI as 0x28 and 0x48 respectively.
  Therefore the PLL registers can be read from uboot
  for each link speed after attempting tftpboot
  or another network action using that link speed
  with `md 0x18050028 1` and `md 0x18050048 1`.

  However the registers that u-boot sets are not ideal and sometimes wrong...
  the at803x driver supports setting the RGMII clock/data delay on the PHY side.
  This way the pll-data register only needs to handle invert and phase.

  for this board clock invert is needed on the MAC side
  all link speeds functional

Signed-off-by: Michael Pratt <mcpratt@pm.me>
2020-12-22 19:11:50 +01:00
Michael Pratt
a459696eb1 ramips: add support for Senao Engenius ESR600H
FCC ID: A8J-ESR750H

Engenius ESR600H is an indoor wireless router with a gigabit switch,
2.4 GHz and 5 GHz wireless, internal and external antennas, and a USB port.

**Specification:**

  - RT3662F			MIPS SOC, 5 GHz WMAC (2x2)
  - RT5392L			PCI on-board, 2.4 GHz (2x2)
  - AR8327			RGMII, 7-port GbE, 25 MHz clock
  - 40 MHz reference clock
  - 8 MB FLASH			25L6406EM2I-12G
  - 64 MB RAM
  - UART at J12			(unpopulated)
  - 2 internal antennas		(5 GHz)
  - 2 external antennas		(2.4 GHz)
  - 9 LEDs, 1 button		(power, wps, wifi2g, wifi5g, 5 LAN/WAN)
  - USB 2 port			(GPIO controlled power)

**MAC addresses:**

  MAC Addresses are labeled as WAN and WLAN
  U-boot environment has the the vendor MAC address for ethernet
  MAC addresses in "factory" are part of wifi calibration data

  eth0.2	WAN	*:13:e7		u-boot-env wanaddr
  eth0.1	----	*:13:e8		u-boot-env wanaddr + 1
  phy0		WLAN	*:14:b8		factory 0x8004
  phy1		----	*:14:bc		factory 0x4

**Installation:**

  Method 1: Firmware upgrade page

  OEM webpage at 192.168.0.1
  username and password "admin"
  Navigate to Network Setting --> Tools --> Firmware
  Click Browse and select the factory.dlf image
  Click Continue to confirm and wait 6 minutes or more...

  Method 2: Serial console to load TFTP image:

  (see TFTP recovery)

**Return to OEM:**

  Unlike most Engenius boards, this does not have a 'failsafe' image
  the only way to return to OEM is serial access to uboot

  Unlike most Engenius boards, public images are not available...
  so the only way to return to OEM is to have a copy
  of the MTD partition "firmware" BEFORE flashing openwrt.

**TFTP recovery:**

  Unlike most Engenius boards, TFTP is reliable here
  however it requires serial console access
  (soldering pins to the UART pinouts)

  build your own image...
  with 'ramdisk' selected under 'Target Images'

  rename initramfs-kernel.bin to 'uImageESR-600H'
  make the file available on a TFTP server at 192.168.99.8
  interrupt boot by holding or pressing '4' in serial console
  as soon as board is powered on

  `tftpboot 0x81000000`
  `bootm 0x81000000`
  perform a sysupgrade

**Format of OEM firmware image:**

  This Engenius board uses the Senao proprietary header
  with a unique Product ID. The header for factory.bin is
  generated by the mksenaofw program included in openwrt.

  .dlf file extension is also required for OEM software to accept it

**Note on using OKLI:**

  the kernel is now too large for the bootloader to handle
  so OKLI is used via the `kernel-loader` image command
  recently in master several other ramips boards have the same problem

  'Kernel panic - not syncing: Failed to find ralink,rt3883-sysc node'

  see commit ad19751edc

Signed-off-by: Michael Pratt <mcpratt@pm.me>
2020-12-22 19:11:50 +01:00
Tomasz Maciej Nowak
fa77051037 uboot-tegra: bump to 2020.04
This fixes error when host GCC >= 10.

/usr/bin/ld: scripts/dtc/dtc-parser.tab.o:(.bss+0x10): multiple definition of `yylloc'; scripts/dtc/dtc-lexer.lex.o:(.bss+0x0): first defined here
collect2: error: ld returned 1 exit status

Signed-off-by: Tomasz Maciej Nowak <tmn505@gmail.com>
2020-12-22 18:59:10 +01:00
Luis Araneda
8b870418f1 uboot-zynq: fix dtc compilation on host gcc 10
gcc 10 defaults to -fno-common, which causes an error
when linking.

Back-port the following Linux kernel commit to fix it:
e33a814e772c (scripts/dtc: Remove redundant YYLOC global declaration)

Tested on an Arch Linux host with gcc 10.1.0

Signed-off-by: Luis Araneda <luaraneda@gmail.com>
2020-12-13 16:12:45 +01:00
Adrian Schmutzler
af07c6de9c uboot-envtools: ramips: use full names for Xiaomi Mi Routers
This updates uboot-envtools with the updated names from ramips
target.

Fixes: 6d4382711a ("ramips: use full names for Xiaomi Mi Router devices")

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-12-08 23:45:10 +01:00
Hauke Mehrtens
d346beb08c build: Extract trusted-firmware-a.mk
The include/trusted-firmware-a.mk file is based on the
include/u-boot.mk file and should be used to build a Trusted Firmware-A
(TFA) which was previously named Arm trusted firmware.

This is useful for targets where the TFA is board specific like for
Marvell SoCs and probably also NXP Layerscape SoCs.

This also makes use of this abstraction in the
arm-trusted-firmware-mvebu package to build board specific ATF binaries.

The ATF binaries will be automatically activated and build when the
board is selected in the normal build or all boards are selected. This
should also activate the build when build bot creates images.

Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
2020-12-02 23:46:01 +01:00
John Crispin
f3926d233d uboot-envtools: add support for the realtek target
On most boards the MAC is located inside the u-boot-env.

Signed-off-by: John Crispin <john@phrozen.org>
2020-12-02 07:51:00 +01:00
Ataberk Özen
4287f73989 ramips: add support for Xiaomi Mi Router 4C
This commit adds support for Xiaomi's Mi Router 4C device.

Specifications:

- CPU: MediaTek MT7628AN (580MHz)
- Flash: 16MB
- RAM: 64MB DDR2
- 2.4 GHz: IEEE 802.11b/g/n with Integrated LNA and PA
- Antennas: 4x external single band antennas
- WAN: 1x 10/100M
- LAN: 2x 10/100M
- LEDs: 2x yellow/blue. Programmable (labelled as power on case)
                      - Non-programmable (shows WAN activity)
- Button: Reset

How to install:

1- Use OpenWRTInvasion to gain telnet and ftp access.
2- Push openwrt firmware to /tmp/ using ftp.
3- Connect to router using telnet. (IP: 192.168.31.1 -
   Username: root - No password)
4- Use command "mtd -r write /tmp/firmware.bin OS1" to flash into
   the router..
5- It takes around 2 minutes. After that router will restart itself
   to OpenWrt.

Signed-off-by: Ataberk Özen <ataberkozen123@gmail.com>
[wrap commit message, bump PKG_RELEASE for uboot-envtools, remove
dts-v1 from DTS, fix LED labels]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-11-25 19:34:13 +01:00
Michael Pratt
b31aaa0580 ath79: add support for Senao Engenius EAP300 v2
FCC ID: A8J-EAP300A

Engenius EAP300 v2 is an indoor wireless access point with a
100/10-BaseT ethernet port, 2.4 GHz wireless, internal antennas,
and 802.3af PoE.

**Specification:**

  - AR9341
  - 40 MHz reference clock
  - 16 MB FLASH			MX25L12845EMI-10G
  - 64 MB RAM
  - UART at J1			(populated)
  - Ethernet port with POE
  - internal antennas
  - 3 LEDs, 1 button		(power, eth, wlan) (reset)

**MAC addresses:**

  phy0  *:d3   art 0x1002 (label)
  eth0  *:d4   art 0x0/0x6

**Installation:**

  - if you get Failsafe Mode from failed flash:
      only use it to flash Original firmware from Engenius
      or risk kernel loop or halt which requires serial cable

  Method 1: Firmware upgrade page:

  OEM webpage at 192.168.1.1
  username and password "admin"
  Navigate to "Firmware" page from left pane
  Click Browse and select the factory.bin image
  Upload and verify checksum
  Click Continue to confirm and wait 3 minutes

  Method 2: Serial to load Failsafe webpage:

  After connecting to serial console and rebooting...
  Interrupt uboot with any key pressed rapidly
  execute `run failsafe_boot` OR `bootm 0x9fdf0000`
  wait a minute
  connect to ethernet and navigate to
  "192.168.1.1/index.htm"
  Select the factory.bin image and upload
  wait about 3 minutes

**Return to OEM:**

  If you have a serial cable, see Serial Failsafe instructions

  *DISCLAIMER*
  The Failsafe image is unique to Engenius boards.
  If the failsafe image is missing or damaged this will not work
  DO NOT downgrade to ar71xx this way, can cause kernel loop or halt

  The easiest way to return to the OEM software is the Failsafe image
  If you dont have a serial cable, you can ssh into openwrt and run

  `mtd -r erase fakeroot`

  Wait 3 minutes
  connect to ethernet and navigate to 192.168.1.1/index.htm
  select OEM firmware image from Engenius and click upgrade

**TFTP recovery** (unstable / not reliable):

  rename initramfs to 'vmlinux-art-ramdisk'
  make available on TFTP server at 192.168.1.101
  power board while holding or pressing reset button repeatedly

  NOTE: for some Engenius boards TFTP is not reliable
  try setting MTU to 600 and try many times

**Format of OEM firmware image:**

  The OEM software of EAP300 v2 is a heavily modified version
  of Openwrt Kamikaze. One of the many modifications
  is to the sysupgrade program. Image verification is performed
  simply by the successful ungzip and untar of the supplied file
  and name check and header verification of the resulting contents.
  To form a factory.bin that is accepted by OEM Openwrt build,
  the kernel and rootfs must have specific names
  and begin with the respective headers (uImage, squashfs).
  Then the files must be tarballed and gzipped.
  The resulting binary is actually a tar.gz file in disguise.
  This can be verified by using binwalk on the OEM firmware images,
  ungzipping then untaring.

  The OEM upgrade script is at /etc/fwupgrade.sh.

  OKLI kernel loader is required because the OEM software
  expects the kernel size to be no greater than 1536k
  and otherwise the factory.bin upgrade procedure would
  overwrite part of the kernel when writing rootfs.

Signed-off-by: Michael Pratt <mcpratt@pm.me>
[clarify MAC address section, bump PKG_RELEASE for uboot-envtools]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-11-25 13:23:06 +01:00
Tomasz Maciej Nowak
bc64b9c32e treewide: update email address of Tomasz Maciej Nowak
Replace my o2.pl email address.

I'm still available at the old address.

Signed-off-by: Tomasz Maciej Nowak <tomek_n@o2.pl>
[rephrase commit title/message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-11-24 15:39:07 +01:00
Vladimir Vid
c0af4a0ca2 mvebu: add initial support for Globalscale ESPRESSObin-Ultra
This patch adds support for Globalscale ESPRESSObin-Ultra. Device uses
the same Armada-3720 SoC with extended hardware support.

- SoC: Armada-3720
- RAM: 1 GB DDR4
- Flash: 4MB SPI NOR (mx25u3235f) + 8 GB eMMC
- Ethernet: Topaz 6341 88e6341 (4x GB LAN + 1x WAN with 30W PoE)
- WiFI: 2x2 802.11ac Wi-Fi marvell (88w8997 PCIe+USB)
- 1x USB 2.0 port
- 1x USB 3.0 port
- 1x microSD slot
- 1x mini-PCIe slot (USB [with nano-sim slot])
- 1x mini-USB debug UART
- 1x RTC Clock and battery
- 1x reset button
- 1x power button
- 4x LED (RGBY)
- Optional 1x M.2 2280 slot

** Installation **

Copy dtb from build_dir to bin/ and run tftpserver there:
$ cp ./build_dir/target-aarch64_cortex-a53_musl/linux-mvebu_cortexa53/
linux-5.4.65/arch/arm64/boot/dts/marvell/armada-3720-espressobin-ultra.dtb
bin/targets/mvebu/cortexa53/
$ in.tftpd -L -s bin/targets/mvebu/cortexa53/

Connect to the device UART via microUSB port on the back side and power on the device.

Power on the device and hit any key to stop the autoboot.

Set serverip (host IP) and ipaddr (any free IP address on the same subnet), e.g:
$ setenv serverip 192.168.1.10 # Host
$ setenv ipaddr 192.168.1.15 # Device

Ping server to confirm network is working:
$ ping $serverip
Using neta@30000 device
host 192.168.1.15 is alive

Tftpboot the firmware:
$ tftpboot $kernel_addr_r openwrt-mvebu-cortexa53-globalscale_espressobin-ultra-initramfs-kernel.bin
$ tftpboot $fdt_addr_r armada-3720-espressobin-ultra.dtb

Set the console and boot the image:
$ setenv bootargs $console
$ booti $kernel_addr_r - $fdt_addr_r

Once the initramfs is booted, transfer openwrt-mvebu-cortexa53-globalscale_espressobin-ultra-squashfs-sdcard.img.gz
to /tmp dir on the device.

Gunzip and dd the image:
$ gunzip /tmp/openwrt-mvebu-cortexa53-globalscale_espressobin-ultra-squashfs-sdcard.img.gz
$ dd if=/tmp/openwrt-mvebu-cortexa53-globalscale_espressobin-ultra-squashfs-sdcard.img of=/dev/mmcblk0 && sync

Reboot the device.

Signed-off-by: Vladimir Vid <vladimir.vid@sartura.hr>
2020-11-23 22:53:15 +01:00
Pawel Dembicki
65f8d7360c layerscape: make initramfs kernel fit packed
This will make developing process easier, because dtb will be included
into image.
Not need to enable initramfs image by default.

Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com>
2020-11-23 22:53:15 +01:00
Piotr Dymacz
1bce45fc0f uboot-envtools: ath79: add support for ALFA Network Pi-WiFi4
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
2020-11-18 23:49:34 +01:00
Roman Kuzmitskii
02e8182d87 sunxi: add support for Libre Computer ALL-H3-CC H5
Specification:

- CPU: Allwinner H5, Quad-core Cortex-A53 Up to 1GHz
- DDR3 RAM: 2GB
- Network:
    10/100M Ethernet x 1
- IR: x1 (Receive)
- USB (Host) Type-A x3
- USB (OTG) Type-A x1
- MicroSD Slot x 1
- eMMC Slot x1
- MicroUSB power input
- GPIO 40pin header
- UART 3pin header
- Leds:
    - librecomputer:blue:status
    - librecomputer:green:pwr
- Buttons:
    - uboot button (used to enter fel mode)
    - power button (can trigger power on)
- Power Supply via MicroUSB or GPIO 5V/2A

Installation:

- Write the image to SD Card with dd
- Boot from the SD Card

Signed-off-by: Roman Kuzmitskii <damex.pp@icloud.com>
[Fixed Signed-off-by]
Signed-off-by: Petr Štetiar <ynezz@true.cz>
2020-11-12 18:21:17 +01:00
Antonis Kanouras
cb8c94f516 uboot-envtools: support Xiaomi Mi Router 3G v2/4A Gigabit
Add support for the following devices:

- Xiaomi Mi Wi-Fi Router 3G v2
- Xiaomi Mi Router 4A Gigabit Edition

Signed-off-by: Antonis Kanouras <antonis@metadosis.eu>
[add explicit case for 4A, bump PKG_RELEASE,
improve commit title/message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-11-12 17:18:26 +01:00
John Crispin
229623e310 mediatek: update uboot to latest patchset provided by MTK
MTK sent us their latest version of the staging uboot. Lets merge the patches.

Signed-off-by: John Crispin <john@phrozen.org>
2020-11-04 20:32:52 +01:00
Biwen Li
3a47dc1df2 layerscape: update tfa to LSDK-20.04-update-290520
Update tfa to LSDK-20.04-update-290520.

Signed-off-by: Biwen Li <biwen.li@nxp.com>
Signed-off-by: Yangbo Lu <yangbo.lu@nxp.com>
[fix PKG_RELEASE bump]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-10-26 00:40:12 +01:00
Biwen Li
bd15d49838 layerscape: update u-boot to LSDK-20.04-update-290520
Update u-boot to LSDK-20.04-update-290520.

Signed-off-by: Biwen Li <biwen.li@nxp.com>
Signed-off-by: Yangbo Lu <yangbo.lu@nxp.com>
[fix PKG_RELEASE bump]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-10-26 00:40:12 +01:00
Pawel Dembicki
a254279a6c layerscape: Change to combined rootfs on sd images
At this moment layerscape images are ext4 only. It causes problem with
save changes durring sysupgrade and make "firstboot" and failsafe mode
useless.

This patch changes sd-card images to squashfs + f2fs combined images.
To make place, for saving config, kernel space ar now ext4 partition
with fit kernel.

This method of image generation is similar to rest of OpenWrt sd-card
targets.

Reviewed-by: Yangbo Lu <yangbo.lu@nxp.com>
Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com>
[reword README, reword DEVICE_COMPAT_MESSAGE, keep original indent]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-10-26 00:40:12 +01:00
Pawel Dembicki
3605eff881 layerscape: add dtb to sysupgrade
At this moment sysupgrade replaces only kernel and rootfs.

This patch add dtb part to sysupgrade images to avoid situation
when old dtb make system broken.

Is possible to sysupgrade older images for NOR devices:
1. Firmware partition in bootargs need to be updated to:
   "49m@0xf00000(firmware)". Env should be saved after changes.
2. After step one, "sysupgrade -F" will work.

Run tested: LS1046A-RDB

Reviewed-by: Yangbo Lu <yangbo.lu@nxp.com>
Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com>
[bump PKG_RELEASE for uboot-layerscape]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-10-26 00:40:12 +01:00
Hauke Mehrtens
7f5f738466 sunxi: Adapt U-Boot config to board rename
The board was renamed without changing the BUILD_DEVICES in the U-Boot
Makefile, this broken the build.

Fixes: 0830ae3a2f ("sunxi: Correct manufacturer name to Sinovoip")
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
2020-10-18 15:46:42 +02:00
Jayantajit Gogoi
e6d9f6fdff sunxi: add support for FriendlyARM NanoPi R1
Specification:

- CPU: Allwinner H3, Quad-core Cortex-A7 Up to 1.2GHz
- DDR3 RAM: 512MB/1GB
- Network:
    10/100/1000M Ethernet x 1,
    10/100M Ethernet x 1
- WiFi: 802.11b/g/n, with SMA antenna interface
- USB Host: Type-A x2
- MicroSD Slot x 1
- MicroUSB: for OTG and power input
- Debug Serial Port: 3Pin 2.54mm pitch pin-header
- LED:
    nanopi:red:status
    nanopi:green:wan
    nanopi:green:lan
- KEY:
    reset
- Power Supply: DC 5V/2A

Installation:

- Write the image to SD Card with dd
- Boot NanoPi from the SD Card

Signed-off-by: Jayantajit Gogoi <jayanta.gogoi525@gmail.com>
2020-10-18 15:46:42 +02:00
Arturas Moskvinas
679db02b10 sunxi: add support for FriendlyArm Zeropi
Specification

    CPU: Allwinner H3, Quad-core Cortex-A7 Up to 1.2GHz
    DDR3 RAM: 256MB/512MB
    Connectivity: 10/100/1000Mbps Ethernet
    USB Host: Type-A x 1
    MicroSD Slot x 1
    MicroUSB: for power input only
    Debug Serial Port: 4Pin, 2.54 mm pitch pin header
    Power Supply: DC 5V/2A
    PCB Dimension: 40 x 40 x 1.2mm

Installation:

    Burn the image file to an SD Card with dd or any image burning tool
    Boot ZeroPi from the SD Card

The following features are working and tested:

    Ethernet port 10/100/1000M Ethernet

Remarks: SBC is mostly compatible and boots with FriendlyARM NanoPI M1 plus DTS also (zeropi has no working hdmi)

Signed-off-by: Arturas Moskvinas <arturas.moskvinas@gmail.com>
2020-10-11 18:29:26 +02:00
Andre Heider
60c9a27cbc uboot-envtools: mvebu: fix config for mainline u-boot
Mainline u-boot dynamically passes the mtd partitions via devicetree:
$ cat /proc/mtd
dev:    size   erasesize  name
mtd0: 003f0000 00001000 "firmware"
mtd1: 00010000 00001000 "u-boot-env"

Add support for this setup.

Signed-off-by: Andre Heider <a.heider@gmail.com>
2020-10-11 16:53:20 +02:00
Andre Heider
b79d2356db arm-trusted-firmware-mvebu: fix topology for ESPRESSObin V3-V5 (1GB 1CS)
Signed-off-by: Andre Heider <a.heider@gmail.com>
2020-10-11 16:38:16 +02:00
Andre Heider
8870ad58b6 uboot-mvebu: don't install 64bit binaries
u-boot binaries are not useful for these boards, they need to be combined
with atf for a proper firmware.

Signed-off-by: Andre Heider <a.heider@gmail.com>
2020-10-11 16:38:16 +02:00