Netgear WNR3500L is an already supported device, but out of the
box, the device has no switch configuration and there is no wan.
The correct configuration for this specific model is similar to
some other models. This simple commit adds the correct switch
and the out-of-the-box experience is improved.
Experimentally determined:
Port 0 => WAN
Port 1..4 => LAN
Port 5..7 => unused
Port 8 => CPU
Signed-off-by: Olli Asikainen <olli.asikainen@gmail.com>
Tested-by: Fabian Zaremba <fabian@youremail.eu>
[added port mapping to commit message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
(cherry picked from commit deb835849a)
The Mikrotik RBM33G has only 2 LAN ports.
Signed-off-by: Martin Schiller <ms@dev.tdt.de>
[moved node in 02_network to maintain alphabetic sorting; backport]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
(cherry picked from commit 3a55c7935d)
Physical port order watched from the backside of the C20i
(from left to right) is: Internet / 1 / 2 / 3 / 4
Physical Port Switch port
WAN 0
LAN 3 1
LAN 4 2
LAN 1 3
LAN 2 4
(not used) 5
CPU 6
Signed-off-by: Walter Sonius <walterav1984@gmail.com>
[commit message/title improvements; backport to 19.07]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
(cherry picked from commit a065cd29bf)
The Atheros AR8327 and AR8337 have (according to their datasheet) a
VLAN table with a maximum of 4096 entries.
Currently, there's a hard limit of 128 VLANs, which is the same as
for most other Atheros switches. Increase this limit only for the
AR83x7 series and modify some shared functions to allow them to work
with a variable max VLAN count.
Signed-off-by: David Bauer <mail@david-bauer.net>
(cherry picked from commit 3f79aaa297)
YunCore XD4200 ('XD4200_W6.0' marking on PCB) is Qualcomm/Atheros based
(QCA9563, QCA9886, QCA8334) dual-band, Wave-2 AC1200 ceiling AP with PoE
(802.3at) support. A782 model ('T750_V5.1' marking on PCB) is a smaller
version of the XD4200, with similar specification but lower TX power.
Specification:
- QCA9563 (775 MHz)
- 128 MB of RAM (DDR2)
- 16 MB of FLASH (SPI NOR)
- 2x 10/100/1000 Mbps Ethernet (QCA8334), with 802.3at PoE support (WAN)
- Wi-Fi 2.4 GHz:
- XD4200: 2T2R (QCA9563), with ext. PA (SKY65174-21) and LNA
- A782: 2T2R (QCA9563), with ext. FEM (SKY85329-11)
- Wi-Fi 5 GHz:
- XD4200: 2T2R (QCA9886), with ext. FEM (SKY85728-11)
- A782: 2T2R (QCA9886), with ext. FEM (SKY85735-11)
- LEDs:
- XD4200: 5x (2x driven by SOC, 1x driven by AC radio, 2x Ethernet)
- A782: 3x (1x RGB, driven by SOC and radio, 2x Ethernet)
- 1x button (reset)
- 1x UART (4-pin, 2.54 mm pitch) header on PCB
- 1x DC jack (12 V)
Flash instructions:
If your device comes with generic QSDK based firmware, you can login
over telnet (login: root, empty password, default IP: 192.168.188.253),
issue first (important!) 'fw_setenv' command and then perform regular
upgrade, using 'sysupgrade -n -F ...' (you can use 'wget' to download
image to the device, SSH server is not available):
fw_setenv bootcmd "bootm 0x9f050000 || bootm 0x9fe80000"
sysupgrade -n -F openwrt-...-yuncore_...-squashfs-sysupgrade.bin
In case your device runs firmware with YunCore custom GUI, you can use
U-Boot recovery mode:
1. Set a static IP 192.168.0.141/24 on PC and start TFTP server with
'tftp' image renamed to 'upgrade.bin'
2. Power the device with reset button pressed and release it after 5-7
seconds, recovery mode should start downloading image from server
(unfortunately, there is no visible indication that recovery got
enabled - in case of problems check TFTP server logs)
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
(backported from commit e5d4c09667)
YunCore QCA9k based devices released in 2019 require a custom TFTP image
for U-Boot built-in recovery mode (triggered with reset button). Image
has to be prepended with 'YUNCORE' keyword followed by U-Boot CLI
commands which will be executed later. Images without the custom header
will be ignored by U-Boot.
To be able to support both the vendor firmware (QSDK) and OpenWrt flash
layouts, used here commands change the 'bootcmd' before flashing image.
This commit adds generic helper script for YunCore devices with 16 MB of
flash and enables TFTP image generation for A770 model.
Signed-off-by: Vincent Wiemann <vincent.wiemann@ironai.com>
[pepe2k@gmail.com: commit description reworded, recipe renamed]
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
(cherry picked from commit 8016f64864)
TP-Link Archer C60 v2 is a dual-band AC1350 router,
based on Qualcomm/Atheros QCA9561 + QCA9886.
Specification:
- 775/650/258 MHz (CPU/DDR/AHB)
- 64 MB of RAM (DDR2)
- 8 MB of FLASH (SPI NOR)
- 3T3R 2.4 GHz
- 2T2R 5 GHz
- 5x 10/100 Mbps Ethernet
- 7x LED, 2x button
- UART header on PCB
Flash instruction (WebUI):
Download *-factory.bin image and upload it via the firmwary upgrade
function of the stock firmware WebUI.
Flash instruction (TFTP):
1. Set PC to fixed IP address 192.168.0.66
2. Download *-factory.bin image and rename it to tp_recovery.bin
3. Start a tftp server with the file tp_recovery.bin in its root
directory
4. Turn off the router
5. Press and hold reset button
6. Turn on router with the reset button pressed and wait ~15 seconds
7. Release the reset button and after a short time the firmware should
be transferred from the tftp server
8. Wait ~30 second to complete recovery
Flash instruction (under U-Boot, using UART):
tftp 0x81000000 ...-sysupgrade.bin
erase 0x9f030000 +$filesize
cp.b $fileaddr 0x9f030000 $filesize
reset
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
(cherry picked from commit 974d6958a7)
TP-Link Archer C60v1 is a dual-band AC1350 router,
based on Qualcomm/Atheros QCA9561+QCA9886.
Specification:
- 775/650/258 MHz (CPU/DDR/AHB)
- 64 MB of RAM (DDR2)
- 8 MB of FLASH (SPI NOR)
- 3T3R 2.4 GHz
- 2T2R 5 GHz
- 5x 10/100 Mbps Ethernet
- 7x LED, 2x button
- UART header on PCB
Flash instruction (WebUI):
Download *-factory.bin image and upload it via the firmwary upgrade
function of the stock firmware WebUI.
Flash instruction (TFTP):
1. Set PC to fixed ip address 192.168.0.66
2. Download *-factory.bin image and rename it to tp_recovery.bin
3. Start a tftp server with the file tp_recovery.bin in its root directory
4. Turn off the router
5. Press and hold Reset button
6. Turn on router with the reset button pressed and wait ~15 seconds
7. Release the reset button and after a short time
the firmware should be transferred from the tftp server
8. Wait ~30 second to complete recovery.
Flash instruction under U-Boot, using UART:
1. tftp 0x81000000 ...-sysupgrade.bin
2. erase 0x9f020000 +$filesize
3. cp.b $fileaddr 0x9f020000 $filesize
4. reset
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
(cherry picked from commit 6d313da6dc)
In order to make RSSI indicator on the device work out of box,
include "rssileds" package in per-device rootfs image by default
for Ubiquiti XM and XW devices, namely:
- Bullet M (XM/XW)
- Rocket M (XM/XW)
- Nanostation M (XM/XW)
- Nanostation Loco-M (XW)
This moves the package addition to the individual devices in order
to prevent accidental inclusions of the package when not looking
at the parent node carefully enough.
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
[add bullet-m-xw, remove rocket-m-ti, extend commit message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
(cherry picked from commit 08d9c95417)
This adds the gpio switch to enable PoE passthrough on Ubiquiti
Nanostation (XM/XW).
Values are copied from the implementation in ar71xx.
GPIO values checked on:
- NanoStation M5 XW
- NanoStation M2 XM
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
(cherry picked from commit 317e98a5a2)
ALFA Network Quad-E4G is a universal Wi-Fi/4G platform, which offers
three miniPCIe (PCIe, USB 2.0, SIM) and a single M.2 B-key (dual-SIM,
USB 3.0) slots, RTC and five Gigabit Ethernet ports with PoE support.
Specification:
- MT7621A (880 MHz)
- 256/512 MB of RAM (DDR3)
- 16/32+ MB of FLASH (SPI NOR)
- optional second SPI flash (8-pin WSON/SOIC)
- 1x microSD (SDXC) flash card reader
- 5x 10/100/1000 Mbps Ethernet, with passive PoE support (24 V) in LAN1
- optional 802.3at/af PoE module for WAN
- 3x miniPCIe slot (with PCIe and USB 2.0 buses, micro SIM and 5 V)
- 1x M.2/NGFF B-key 3042 (USB 3.0/2.0, mini + micro SIM)
- RTC (TI BQ32002, I2C bus) with backup battery (CR2032)
- external hardware watchdog (EM Microelectronic EM6324)
- 1x USB 2.0 Type-A
- 1x micro USB Type-B for system serial console (Holtek HT42B534)
- 11x LED (5 for Ethernet, 5 driven by GPIO, 1x power indicator)
- 3x button (reset, user1, user2)
- 1x I2C (4-pin, 2.54 mm pitch) header on PCB
- 4x SIM (6-pin, 2.00 mm pitch) headers on PCB
- 2x UART2/3 (4-pin, 2.54 mm pitch) headers on PCB
- 1x mechanical power switch
- 1x DC jack with lock (24 V)
Other:
- U-Boot selects default SIM slot, based on value of 'default_sim' env
variable: '1' or unset -> SIM1 (mini), '2' -> SIM2 (micro). This board
has additional logic circuit for M.2 SIM switching. The 'sim-select'
will work only if both SIM slots are occupied. Otherwise, always slot
with SIM inside is selected, no matter 'sim-select' value.
- U-Boot enables power in all three miniPCIe and M.2 slots before
loading the kernel
- this board supports 'dual image' feature (controlled by 'dual_image'
U-Boot environment variable)
- all three miniPCIe slots have additional 5 V supply on pins 47 and 49
- the board allows to install up to two oversized miniPCIe cards (vendor
has dedicated MediaTek MT7615N/D cards for this board)
- this board has additional logic circuit controlling PERSTn pins inside
miniPCIe slots. By default, PERSTn (GPIO19) is routed to all miniPCIe
slots but setting GPIO22 to high allows PERSTn control per slot, using
GPIO23-25 (value is inverted)
Flash instructions:
You can use the 'sysupgrade' image directly in vendor firmware which is
based on OpenWrt (make sure to not preserve settings - use 'sysupgrade
-n -F ...' command). Alternatively, use web recovery mode in U-Boot:
1. Power the device with reset button pressed, the modem LED will start
blinking slowly and after ~3 seconds, when it starts blinking faster,
you can release the button.
2. Setup static IP 192.168.1.2/24 on your PC.
3. Go to 192.168.1.1 in browser and upload 'sysupgrade' image.
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
(backported from commit e68539aca4)
ALFA Network R36M-E4G is a dual-SIM, N300 Wi-Fi, compact size platform
based on MediaTek MT7620A WiSoC. This product is designed for operation
with 4G modem (can be bought in bundle with Quectel EC25, EG25 or EP06)
but supports also Wi-Fi modules (miniPCIe slot has USB and PCIe buses).
Specification:
- MT7620A (580 MHz)
- 64/128/256 MB of RAM (DDR2)
- 16/32+ MB of FLASH (SPI NOR)
- 2x 10/100 Mbps Ethernet, with passive PoE support (24 V)
- 2T2R 2.4 GHz (MT7620A), with ext. LNA (RFFM4227)
- 1x miniPCIe slot (with PCIe and USB 2.0 buses and optional 5 V)
- 2x SIM slot (mini, micro) with detect and switch driven by GPIO
- 2x u.fl antenna connectors (for Wi-Fi)
- 8x LED (7 driven by GPIO)
- 2x button (reset, wifi)
- 2x UART (4-pin/2.54 mm pitch, 10-pin/1.27 mm pitch) headers on PCB
- 1x I2C (4-pin, 1.27 mm pitch) header on PCB
- 1x LED (8-pin, 1.27 mm pitch) header on PCB
- 1x DC jack with lock (12 V)
Other:
- there is a dedicated, 4-pin connector for optional RTC module (Holtek
HT138x) with 'enable' input, not available at the time of preparing
support for this board
- miniPCIe slot supports additional 5 V supply on pins 47 and 49 but a
jumper resistor (R174) is not installed by default
- U-Boot selects default SIM slot, based on value of 'default_sim' env
variable: '1' or unset -> SIM1 (mini), '2' -> SIM2 (micro). This will
work only if both slots are occupied, otherwise U-Boot will always
select slot with SIM card inside (user can override it later, in
user-space)
- U-Boot resets the modem, using PERSTn signal, before starting kernel
- this board supports 'dual image' feature (controlled by 'dual_image'
U-Boot environment variable)
Flash instruction:
You can use the 'sysupgrade' image directly in vendor firmware which is
based on OpenWrt (make sure to not preserve settings - use 'sysupgrade
-n -F ...' command). Alternatively, use web recovery mode in U-Boot:
1. Power the device with reset button pressed, the modem LED will start
blinking slowly and after ~3 seconds, when it starts blinking faster,
you can release the button.
2. Setup static IP 192.168.1.2/24 on your PC.
3. Go to 192.168.1.1 in browser and upload 'sysupgrade' image.
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
(backported from commit dfecf94c20)
New U-Boot version for MediaTek MT76x8/MT762x based ALFA Network boards
includes support for a 'dual image' feature. Users can enable it using
U-Boot environment variable 'dual_image' ('1' -> enabled).
When 'dual image' feature is enabled, U-Boot will modify DTB and divide
the original 'firmware' flash area into two, equal in size and aligned
to 64 KB partitions: 'firmware' and 'backup'. U-Boot will also adjust
size of 'firmware' area to match installed flash chip size.
U-Boot will load kernel from active partition which is marked with env
variable 'bootactive' ('1' -> first partition, '2' -> second partition)
and rename both partitions accordingly ('firmware' <-> 'backup').
There are 3 additional env variables used to control 'dual image' mode:
- bootlimit - maximum number of unsuccessful boot tries (default: '3')
- bootcount - current number of boot tries
- bootchanged - flag which informs that active partition was changed; if
it is set and 'bootcount' reaches 'bootlimit' value,
U-Boot will start web-based recovery which then updates
both partitions with provided image
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
(backported from commit bc173ddd83)
Upstream kernel added support for RAW_APPENDED_DTB on ralink arch
in the following commit:
02564fc89d3d ("ralink: Introduce fw_passed_dtb to arch/mips/ralink")
Use upstream solution and get rid of our OWRTDTB hack.
This commit set DEVICE_DTS to $$(DTS) instead of replacing DTS with
DEVICE_DTS in device profile because DTS variable will be dropped
in later commits.
Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
[Tested on mt7621/mt76x8]
Tested-by: Chuanhong Guo <gch981213@gmail.com>
[Tested on rt305x/mt7620]
Tested-by: INAGAKI Hiroshi <musashino.open@gmail.com>
(cherry picked from commit 7a8d3432c7)
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
Ath10k packages were removed from ar71xx in master in commit
34113999ef ("ar71xx: Remove ath10k packages from archer-c7-v1 (fixes
FS#1743)") but ath79 in master and the 19.07 branch still suffer from
the issue.
Signed-off-by: Stijn Segers <foss@volatilesystems.org>
[commit subject and description facelift]
Signed-off-by: Petr Štetiar <ynezz@true.cz>
Hardware
--------
SoC: Qualcomm IPQ4019
RAM: 256M DDR3
FLASH: 128M NAND
WiFi: 2T2R IPQ4019 bgn
2T2R IPQ4019 a/n/ac
ETH: Atheros AR8033 RGMII PHY
BTN: 1x Connect (WPS)
LED: Power (green/red/yellow)
Installation
------------
1. Grab the uboot for the Device from the 'u-boot-fritz1200'
subdirectory. Place it in the same directory as the 'eva_ramboot.py'
script. It is located in the 'scripts/flashing' subdirectory of the
OpenWRT tree.
2. Assign yourself the IP address 192.168.178.10/24. Connect your
Computer to one of the boxes LAN ports.
3. Connect Power to the Box. As soon as the LAN port of your computer
shows link, load the U-Boot to the box using following command.
> ./eva_ramboot.py --offset 0x85000000 192.168.178.1 uboot-fritz1200.bin
4. The U-Boot will now start. Now assign yourself the IP address
192.168.1.70/24. Copy the OpenWRT initramfs (!) image to a TFTP
server root directory and rename it to 'FRITZ1200.bin'.
5. The Box will now boot OpenWRT from RAM. This can take up to two
minutes.
6. Copy the U-Boot and the OpenWRT sysupgrade (!) image to the Box using
scp. SSH into the Box and first write the Bootloader to both previous
kernel partitions.
> mtd write /path/to/uboot-fritz1200.bin uboot0
> mtd write /path/to/uboot-fritz1200.bin uboot1
7. Remove the AVM filesystem partitions to make room for our kernel +
rootfs + overlayfs.
> ubirmvol /dev/ubi0 --name=avm_filesys_0
> ubirmvol /dev/ubi0 --name=avm_filesys_1
8. Flash OpenWRT peristently using sysupgrade.
> sysupgrade -n /path/to/openwrt-sysupgrade.bin
Signed-off-by: David Bauer <mail@david-bauer.net>
(cherry picked from commit 7f187229a8)
Signed-off-by: Matthias Schiffer <mschiffer@universe-factory.net>
This was found by the build bot.
Fixes: db345220b4 ("kernel: bump 4.14 to 4.14.155")
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
(cherry picked from commit 103e49f62e)
While at it, also reorder the items for
improved readability.
Signed-off-by: Koen Vandeputte <koen.vandeputte@ncentric.com>
(cherry picked from commit 6b2f953db346cfb4ddf05654efa3ad7eb84ed99f)
TP-Link TL-WDR4900 v2 only has one combined WPS/Reset button, so
don't set up an RFKILL for this device.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
(cherry picked from commit 25127f58b4)
In ar71xx there is only one combined mach file for Archer C5/C7 and
TL-WDR4900 v2. This one uses the same LED struct for all devices,
defining "green" LEDs for them. However, WDR4900 uses blue front
LEDs, while only C5/C7 uses green ones. Despite, in base-files
WDR4900 is actually set up with "blue" for the mentioned LEDs.
Thus, this patch creates a separate LED struct for WDR4900, so the
LEDs can be set up correctly. Despite, the wlan5g LED is removed as
it is controlled by ath9k chip for WDR4900 (in contrast to C5/C7).
Note: While front LEDs are blue, USB LEDs (on the back) are green,
so colors are mixed intentionally for the WDR4900 v2.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
(cherry picked from commit 93f2bcc35e)
The stock firmware and bootloader only accept uImage with names that
match certain patterns. This patch enables OpenWrt installation from
stock firmware without having to reflash the bootloader or access the
UART console.
Installation via web interface:
1. Flash **initramfs** image through the stock web interface.
2. Boot into OpenWrt and perform sysupgrade with sysupgrade image.
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
(cherry picked from commit 19800ac095)
[backported]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The MAC address setup of the TL-WDR4900 v2 is different from the
C5/C7. This aligns ar71xx with the setup in ath79:
wlan0 (5GHz) : -2
wlan1 (2.4GHz) : -1
eth1 (LAN) : 0
eth0 (WAN) : 1
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
(cherry picked from commit a9d3084b83)
As discussed in 1d18a14a90 ("ath79: really fix TP-Link Archer C7
v2 MAC address"), stock firmware MAC address assignment is
actually as follows:
wlan0 (5GHz) : -1
wlan1 (2.4GHz) : 0
eth1 (LAN) : 0
eth0 (WAN) : 1
This has never been fixed for ar71xx, so let's do it now.
Note that with WDR4900 v2 even both wlan0 and wlan1 where assigned
to basemac-1 before ...
Fixes: FS#408
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
(cherry picked from commit a021268032)
ar71xx has just one board name "wndr3700" for WNDR3700 V1/V2,
WNDR3800 and WNDR3800CH, whereas ath79 provides separate images for
the boards. So, update SUPPORTED_DEVICES to store the correct
ar71xx board names.
Fixes: FS#2510
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
(cherry picked from commit fc44a8481c)