Include "Archer" in compatible as it is part of the device name.
Update Makefile device names where necessary to match compatible.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
TP-Link TL-WR841n v14 is a router based on MediaTek MT7628N.
- MediaTek MT7628NN
- 32 MB of RAM
- 4 MB of FLASH
- 2T2R 2.4 GHz
- 5x 10/100 Mbps Ethernet
Installation:
- copy the
'openwrt-ramips-mt76x8-tl-wr841n-v14-squashfs-tftp-recovery.bin'
file to your tftp server root and rename it to 'tp_recovery.bin'.
- configure your PC running the TFTP server with the static IP address
192.168.0.66/24
- push the reset button and plug in the power connector. Wait until
the orange led starts blinking (~6sec)
Signed-off-by: Alexander Müller <donothingloop@gmail.com>
Signed-off-by: Alexander Couzens <lynxis@fe80.eu> [small modifications gpio-hog]
Similiar to the lantiq target use a dts alias to define the wlan led
instead of static mapping in /etc/board.d/01_leds. Reduce code
duplication.
A device tree must define the alias "led-wlan" similiar to "led-boot".
/ {
aliases {
led-wlan = &led_wlan;
};
[..]
led_wlan: wlan {
label = "tl-wr841n-v14:green:wlan";
gpios = <&gpio1 9 GPIO_ACTIVE_LOW>;
};
};
Signed-off-by: Alexander Couzens <lynxis@fe80.eu>
Hardware specs:
SoC: Mediatek MT7621A
CPU: 4x 880Mhz
Cache: 32 KB I-Cache and 32 KB D-Cach
256 KB L2 Cache (shared by Dual-Core)
RAM: DDR3 512MB 16bits BUS
FLASH: 16MB
Switch: Mediatek Gigabit Switch (1 x LAN, 1 x WAN)
USB: 1x 3.0
PCI: 3x Mini PCIe
GPS: Quectel L70B
BTN: Reset
LED: - Power
- Ethernet
- Wifi
- USB
UART: UART is present as Pads with throughholes on the PCB.
They are located on left side.
3.3V - RX - GND - TX / 57600-8N1
3.3V is the square pad
Installation:
The stock image is a modified openwrt and can be overflashed via
# sysupgrade -F image.bin
Signed-off-by: Daniel Danzberger <daniel@dd-wrt.com>
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
[removed unused label, formatting]
This patch fix and enable GELAN port in D-LINK DWR-118-A2.
Tested-by: Richard Toth <trtk1992@gmail.com>
Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com>
SoC: MediaTek MT7620a @ 580MHz
RAM: 64M (Winbond W9751G6KB-25)
FLASH: 8MB (Macronix)
WiFi: SoC-integrated: MediaTek MT7620a bgn
WiFi: MediaTek MT7612EN nac
Switch: Mediatek MT7530W Gigabit Switch (4 x LAN, 1 x WAN)
USB: Yes 1 x 2.0 (+ 1 x 2.0 unpopulated header)
BTN: Reset/WPS
LED: - Power (white)
- Internet (blue)
- Wifi (blue)
- USB (blue)
UART: UART is present as Pads with throughholes on the PCB. They are
located in the lower right corner (GbE ports facing up)
3.3V - RX - GND - TX / 57600-8N1
3.3V is the square pad
Installation
------------
Update the factory image via the web-interfaces (by default:
http://edimax.setup)
Signed-off-by: Birger Koblitz <mail@birger-koblitz.de>
[merge conflicts in 01_leds and mt7620.mk, dts whitespace issues]
Signed-off-by: Petr Štetiar <ynezz@true.cz>
SoC: MediaTek MT7620a @ 580MHz
RAM: 64M (Winbond W9751G6KB-25)
FLASH: 8MB (Macronix)
WiFi: SoC-integrated: MediaTek MT7620a bgn
WiFi: MediaTek MT7612EN nac
GbE: 1x (RTL8211E)
BTN: WPS - RFKILL/RF 50%/RF 100% toggle
LED: - Wifi 5g (blue)
- Wifi 2g (blue)
- Crossband (green)
- Power (green)
- WPS (green)
- LAN (Green)
UART: UART is present as Pads with throughholes on the PCB. They are
located next to the switch for the wifi configuration
3.3V - RX - GND - TX / 57600-8N1
3.3V is the square pad
Installation
------------
Update the factory image via the web-interfaces (by default:
192.168.9.2/24).
http://192.168.9.2/index.asp
ramips: add Edimax EW-7478AC
SoC: MediaTek MT7620a @ 580MHz
RAM: 64M (Winbond W9751G6KB-25)
FLASH: 8MB (Macronix)
WiFi: SoC-integrated: MediaTek MT7620a bgn
WiFi: MediaTek MT7612EN nac
GbE: 1x (RTL8211E)
BTN: WPS - RFKILL/RF 50%/RF 100% toggle
LED: - Wifi 5g (blue)
- Wifi 2g (blue)
- Crossband (green)
- Power (green)
- WPS (green)
- LAN (Green)
UART: UART is present as Pads with throughholes on the PCB. They are
located next to the switch for the wifi configuration
3.3V - RX - GND - TX / 57600-8N1
3.3V is the square pad
Installation
------------
Update the factory image via the web-interfaces (by default:
http://edimaxext.setup)
Or push wpa button on power on and send firmware via tftp to 192.168.1.6
The EW-7478AC is identical to the EW-7476RPC, except instead of 2 internal
antennas it has 2 external ones.
Signed-off-by: Birger Koblitz <mail@birger-koblitz.de>
[merge conflict in 01_leds]
Signed-off-by: Petr Štetiar <ynezz@true.cz>
01_leds has several redundant LED-cases. This commit cleans
up the file by merging these cases into shared cases.
Signed-off-by: Kristian Evensen <kristian.evensen@gmail.com>
Specifications:
- SoC: MT7628DAN (MT7628AN with 64MB built-in RAM)
- Flash: 8M SPI NOR
- Ethernet: 5x 10/100Mbps
- WiFi: 2.4G: MT7628 built-in
5G: MT7612E
- 1x miniPCIe slot for LTE modem (only USB pins connected)
- 1x SIM slot
Flash instruction:
U-boot has a builtin web recovery page:
1. Hold the reset button while powering it up
2. Connect to the ethernet and set an IP in 192.168.1.0/24 range
3. Open your browser and upload firmware through http://192.168.1.1
Note about the LTE modem:
If your router comes with an EC25 module and it doesn't show up
as a QMI device, you should do the following to switch it to QMI
mode:
1. Install kmod-usb-serial-option and a terminal software
(e.g. minicom or screen). All 4 serial ports of the modem
should be available now.
2. Open /dev/ttyUSB3 with the terminal software and type this
AT command: AT+QCFG="usbnet",0
3. Power-cycle the router. You should now get a QMI device
recognized.
Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
The R6220 and WNDR3700v5 are identical apart from using NAND/NOR flash and
having a different casing. This adds a new cleaned up R6220.dtsi with the
common bits for both devices. Both devices now have feature parity.
Performed cleanup:
* generic DTS node names
* regulator for usb power
* added missing pinctrl groups
* use switch port instead of VLAN as trigger for WAN LED
Fixes for WNDR3700v5:
* all LEDS work
* correct ethernet MAC addresses
Signed-off-by: Jan Hoffmann <jan@3e8.eu>
- SoC: MediaTek MT7628AN
- Flash: 16MB (Winbond W25Q128JV)
- RAM: 64MB
- Serial: As marked on PCB, 3V3 logic, baudrate is 115200
- Ethernet: 3x 10/100 Mbps (switched, 2x LAN + WAN)
- WIFI0: MT7628AN 2.4GHz 802.11b/g/n
- WIFI1: MT7612EN 5GHz 802.11ac
- Antennas: 4x external (2 per radio), non-detachable
- LEDs: Programmable power-LED (two-colored, yellow/blue)
Non-programmable internet-LED (shows WAN-activity)
- Buttons: Reset
INSTALLATION:
1. Connect to the serial port of the router and power it up.
If you get a prompt asking for boot-mode, go to step 3.
2. Unplug the router after
> Erasing SPI Flash...
> raspi_erase: offs:20000 len:10000
occurs on the serial port. Plug the router back in.
3. At the prompt select option 2 (Load system code then
write to Flash via TFTP.)
4. Enter 192.168.1.1 as the device IP and 192.168.1.2 as the
Server-IP.
5. Connect your computer to LAN1 and assign it as 192.168.1.2/24.
6. Rename the sysupgrade image to test.bin and serve it via TFTP.
7. Enter test.bin on the serial console and press enter.
Signed-off-by: Markus Scheck <markus@mscheck.de>
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
[added mt76 compatible]
Cudy WR1200 is an AC1200 AP with 3-port FE and 2 non-detachable antennas
Specifications:
MT7628 (580 MHz)
64 MB of RAM (DDR2)
8 MB of FLASH
2T2R 2.4 GHz (MT7628)
2T2R 5 GHz (MT7612E)
3x 10/100 Mbps Ethernet (2 LAN + 1 WAN)
2x external, non-detachable antennas (5dbi)
UART header on PCB (57600 8n1)
7x LED, 2x button
Known issues:
The Power LED is always ON, probably because it is connected
directly to power.
Flash instructions
------------------
Load the ...-factory.bin image via the stock web interface.
Openwrt upgrade instructions
----------------------------
Use the ...-sysupgrade.bin image for future upgrades.
Revert to stock FW
------------------
Warning! This tutorial will work only with the following OEM FW:
WR1000_EU_92.122.2.4987.201806261618.bin
WR1000_US_92.122.2.4987.201806261609.bin
If in the future these firmwares will not be available anymore,
you have to find the new XOR key.
1) Download the original FW from the Cudy website.
(For example WR1000_EU_92.122.2.4987.201806261618.bin)
2) Remove the header.
dd if="WR1000_EU_92.122.2.4987.201806261618.bin" of="WR1000_EU_92.122.2.4987.201806261618.bin.mod" skip=8 bs=64
3) XOR the new file with the region key.
FOR EU: 7B76741E67594351555042461D625F4545514B1B03050208000603020803000D
FOR US: 7B76741E675943555D5442461D625F454555431F03050208000603060007010C
You can use OpenWrt's tools/firmware-utils/src/xorimage.c tool for this:
xorimage -i WR1000..bin.mod -o stock-firmware.bin -x -p 7B767..
Or, you can use this tool (CHANGE THE XOR KEY ACCORDINGLY!):
https://gchq.github.io/CyberChef/#recipe=XOR(%7B'option':'Hex','string':''%7D,'',false)
4) Check the resulting decrypted image.
Check if bytes from 0x20 to 0x3f are:
4C 69 6E 75 78 20 4B 65 72 6E 65 6C 20 49 6D 61 67 65 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Alternatively, you can use u-boot's tool dumpimage tool to check
if the decryption was successful. It should look like:
# dumpimage -l stock-firmware.bin
Image Name: Linux Kernel Image
Created: Tue Jun 26 10:24:54 2018
Image Type: MIPS Linux Kernel Image (lzma compressed)
Data Size: 4406635 Bytes = 4303.35 KiB = 4.20 MiB
Load Address: 80000000
Entry Point: 8000c150
5) Flash it via forced firmware upgrade and don't "Keep Settings"
CLI: sysupgrade -F -n stock-firmware.bin
LuCI: make sure to click on the "Keep settings" checkbox
to disable it. You'll need to do this !TWICE! because
on the first try, LuCI will refuse the image and reset
the "Keep settings" to enable. However a new
"Force upgrade" checkbox will appear as well.
Make sure to do this very carefully!
Signed-off-by: Davide Fioravanti <pantanastyle@gmail.com>
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
[added wifi compatible, spiffed-up the returned to stock instructions]
Specification:
CPU: MT7628 580 MHz. MIPS 24K
RAM: 128 MB
Flash: 32 MB
WIFI: 802.11n/g/b 20/40 MHz
Ethernet: 5 Port ethernet switch
UART: 2x
Flash instruction:
The U-boot is based on Ralink SDK so we can flash the firmware using UART:
1. Configure PC with a static IP address and setup an TFTP server.
2. Put the firmware into the tftp directory.
3. Connect the UART0 line as described on the PCB.
4. Power up the device and press 2, follow the instruction to
set device and tftp server IP address and input the firmware
file name. U-boot will then load the firmware and write it into
the flash.
5. After firmware is started connect via ethernet at 192.168.1.1
Signed-off-by: Liu Yu <f78fk@live.com>
Signed-off-by: Christian Lamparter <chunkeey@gmail.com> [removed dupped subject]
ZBT WE826-E is a dual-SIM version of the ZBT WE826. The router has the
following specifications:
- MT7620A (580 MHz)
- 128MB RAM
- 32MB of flash (SPI NOR)
- 5x 10/100Mbps Ethernet (MT7620A built-in switch)
- 1x microSD slot
- 1x miniPCIe slot (only USB2.0 bus)
- 2x SIM card slots (standard size)
- 1x USB2.0 port
- 1x 2.4GHz wifi (rt2800)
- 10x LEDs (4 GPIO-controlled)
- 1x reset button
The following have been tested and working:
- Ethernet switch
- wifi
- miniPCIe slot
- USB port
- microSD slot
- sysupgrade
- reset button
Installation and recovery:
In order to install OpenWRT the first time or recover the router, you
can use the web-based recovery system. Keep the reset button pressed
during boot and access 192.168.1.1 in your browser when your machine
obtains an IP address. Upload the firmware to start the recovery
process.
How to swap SIMs:
You control which SIM slot to use by writing 0/1 to
/sys/class/gpio/gpio13/value. In order for the change to take effect,
you can either use AT-commands (AT+CFUN) or power-cycle the modem (write
0/1 to /sys/class/gpio/gpio14/value).
Signed-off-by: Kristian Evensen <kristian.evensen@gmail.com>
Head Weblink HDRM200 is a dual-sim router based on MT7620A. The detailed
specifications are:
- MT7620A (580MHz)
- 64MB RAM
- 16MB of flash (SPI NOR)
- 6x 10/100Mbps Ethernet (MT7620A built-in switch)
- 1x microSD slot
- 1x miniPCIe slot (only USB2.0 bus). Device is shipped with a SIMCOM
SIM7100E LTE modem.
- 2x SIM slots (standard size)
- 1x USB2.0 port
- 1x 2.4GHz wifi (rt2800)
- 1x 5GHz wifi (mt7612)
- 1x reset button
- 1x WPS button
- 3x GPIO-controllable LEDs
- 1x 10 pin terminal block (RS232, RS485, 4 x GPIO)
Tested:
- Ethernet switch
- Wifi
- USB slot
- SD card slot
- miniPCIe-slot
- sysupgrade
- reset button
Installation instructions:
Installing OpenWRT for the first time requires a bit of work, as the
board does not ship with OpenWRT. In addition, the bootloader
automatically reboots when installing an image over tftp. In order to
install OpenWRT on the HDRM200, you need to do the following:
* Copy the initramfs-image to your tftp-root (default filename is
test.bin) and configure networking accordingly (default server IP is
10.10.10.3, client 10.10.10.123). Start your tftp server.
* Open the board and connect to UART. The pins are exposed and clearly
marked.
* Boot the board and press 1.
* Either use the default filename and client/server IP-addresses, or
specify your own.
The image should now be loaded to memory and board boot. If the router
reboots while the image is loading, you need to try again. Once the
board has booted, copy the sysupgrade-image to the router and run
sysupgrade in order to install OpenWRT to the flash.
Notes:
- You control which SIM slot to use by writing 0/1 to
/sys/class/gpio/gpio0/value. In order for the change to take
effect, you can either use AT-commands (AT+CFUN) or power-cycle the
modem (write 0/1 to /sys/class/gpio/gpio21/value).
- RS485 is available on /dev/ttyS0.
- RS232 is available on /dev/ttyS1.
- The name of the ioX-gpios map to the labels on the casing.
Signed-off-by: Kristian Evensen <kristian.evensen@gmail.com>
[fixed whitespace issue and merge conflict in target.mk]
Signed-off-by: Petr Štetiar <ynezz@true.cz>
It's OEM module with 2*26 pin header, similar to LinkIt Smart 7688 or
Vocore2.
Specification:
CPU: MT7628 580 MHz. MIPS 24K
RAM: 64 MB
Flash: 8 MB
WIFI: 802.11n/g/b 20/40 MHz
USB: 1x Port USB 2.0
Ethernet: 5 Port ethernet switch
UART: 2x
Installation: Use the installed uboot Bootloader. Connect a serial cable
to serialport 0. Turn power on. Choose the option: "Load system code
then write to Flash via TFTP". Choose the local device IP and the TFTP
server IP and the file name of the system image. After if the
Bootloader will copy the image to the local flash.
Notes: The I2C Kernel module work not correctly. You can send and
receive data. But the command i2cdetect doesn’t work. FS#845
Signed-off-by: Eike Feldmann <eike.feldmann@outlook.com>
[commit subject and message touches, DTS whitespace fixes, wifi LED
rename, pinctrl fixes, network settings fixes, lan/wmac mac addresses,
removed i2c kernel modules]
Signed-off-by: Petr Štetiar <ynezz@true.cz>
Hardware
--------
SoC: MediaTek MT7628NN
RAM: 64M DDR2 (Etron EM68B16CWQD-25H)
FLASH: 8M (Winbond W25Q64JVSIQ)
LED: Power - WLAN
BTN: Reset
UART: 115200 8N1
TX and RX are labled on the board as pads next to the SoC
Installation via web-interface
------------------------------
1. Visit the web-interface at 192.168.8.1
Note: The ethernet port is by default WAN. So you need to connect to
the router via WiFi
2. Navigate to the Update tab on the left side.
3. Select "Local Update"
4. Upload the OpenWrt sysupgrade image.
Note: Make sure you select not to preserve the configuration.
Installation via U-Boot
-----------------------
1. Hold down the reset button while powering on the device.
Wait for the LED to flash 5 times.
2. Assign yourself a static IPv4 in 192.168.1.0/24
3. Upload the OpenWrt sysupgrade image at 192.168.1.1.
Signed-off-by: David Bauer <mail@david-bauer.net>
Hardware spec:
CPU: MTK MT7621A
RAM: 256MB
ROM: 16MB SPI Flash
WiFi: MT7603EN + MT7612EN
Button: 2 buttons (reset, wps)
LED: 8 LEDs (Power 2G 5G WPS Internet LAN1 LAN2 USB)
Ethernet: 3 ports, 2 LAN + 1 WAN
Other: USB3.0
Flashing instructions:
Visit the openwrt forum topic for this router:
https://forum.openwrt.org/t/add-openwrt-support-for-youku-yk-l2/34692
to get the bootloader and unlock firmware.
0. upgrade your router with the telnet firmware via the
firmware upgrade page on the webui.
1. telnet 192.168.11.1 from your PC
2. Download the pb-boot-youku_l2-20190317-61b6d33.bin and transfer
it to the /tmp directory of the router.
3. mtd write /tmp/pb-boot-youku_l2-20190317-61b6d33.bin Bootloader
4. turn off the power
5. Push the reset button while turning on the router and
wait until LED start blinking (~10sec.)
6. Connect Ethernet port and goto http://192.168.1.1.
7. Upload the firmware to firmware restore page in webui.
Signed-off-by: Zhao Yu <574249312@qq.com>
Signed-off-by: Christian Lamparter <chunkeey@gmail.com> [rewrote the
flashing instructions, fixed author]
SoC: MediaTek MT7621
RAM: 64M (Winbond W9751G6KB-25)
FLASH: 16MB (Macronix MX25L12835F)
WiFi: MediaTek MT7662E bgn 2SS
WiFi: MediaTek MT7662E nac 2SS
BTN: ON/OFF - Reset - WPS - AP/Extender toggle
LED: - Arrow Right (blue)
- Arrow Left (blue)
- WiFi 1 (red/green)
- WiFi 2 (red/green)
- Power (green/amber)
- WPS (Green)
UART: UART is present as Pads on the backside of the PCB. They are
located on the other side of the Ethernet port.
3.3V - GND - TX - RX / 57600-8N1
3.3V is the nearest one to the antenna connectors
Installation
------------
Update the factory image via the Netgear web-interfaces (by default:
192.168.1.250/24).
You can also use the factory image with the nmrpflash tool.
For more information see https://github.com/jclehner/nmrpflash
Signed-off-by: David Bauer <mail@david-bauer.net>
[merge conflict in 02_network, flash@0 node rename, wlan DTS triggers]
Signed-off-by: Petr Štetiar <ynezz@true.cz>
Device specification:
- SoC: RT5350F
- CPU Frequency: 360 MHz
- Flash Chip: Winbond 25Q32 (4096 KiB)
- RAM: 32768 KiB
- 5x 10/100 Mbps Ethernet (4x LAN, 1x WAN)
- 1x external, non-detachable antenna
- UART (J1) header on PCB (57800 8n1)
- Wireless: SoC-intergated: 2.4GHz 802.11bgn
- USB: None
- 3x LED, 2x button
Flash instruction:
1. Configure PC with static IP 192.168.1.2/24 and start TFTP server.
2. Rename "openwrt-ramips-rt305x-kn_st-squashfs-sysupgrade.bin"
to "kstart_recovery.bin" and place it in TFTP server directory.
3. Connect PC with one of LAN ports, press the reset button, power up
the router and keep button pressed until power LED start blinking.
4. Router will download file from TFTP server, write it to flash and reboot.
Signed-off-by: Vladimir Kot <vova28rus@gmail.com>
[fixed git commit author and whitespace issues in DTS]
Signed-off-by: Petr Štetiar <ynezz@true.cz>
The WIZnet WizFi630S board is in the miniPCIe form factor.
SoC: Mediatek MT7688AN
RAM: 128MB
Flash: 32Mb
WiFi: 2.4GHz
Ethernet: 3x 100Mbit
USB: 1 (USB 2.0)
serial ports: 2 (1x full, 1xlite)
Flash and recovery instructions: Use the factory installed u-boot boot
loader. It is available on UART2 (115200,8,n,1). Then get the
sysupgrade image from a tftp server.
Signed-off-by: Tobias Welz <tw@wiznet.eu>
[whitespace and device name in makefile fixes]
Signed-off-by: Petr Štetiar <ynezz@true.cz>
The DIR-510L Wireless Router are based on the MT7620A SoC.
Specification:
-MediaTek MT7620A (580 Mhz)
-128 MB of RAM
-16 MB of FLASH
-802.11bgn radio
-1x 10/100 Mbps Ethernet
-2x internal, non-detachable antennas
-UART (J3) header on PCB (57600 8n1)
-1x bi-color LED (GPIO-controlled), 2x button
-JBOOT bootloader
Known issues:
-Ethernet port is used as LAN
-No communication with charger IC. (uart bitbang needed)
Installation:
Apply factory image via d-link http web-gui.
How to revert to OEM firmware:
1.) Push the reset button and turn on the power. Wait until LED start blinking (~10sec.)
2.) Upload original factory image via JBOOT http (IP: 192.168.123.254)
3.) If http doesn't work, it can be done with curl command:
curl -F FN=@XXXXX.binhttp://192.168.123.254/upg
where XXXXX.bin is name of firmware file.
Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com>
[fixed whitespace issue in 10-rt2x00-eeprom]
Signed-off-by: Petr Štetiar <ynezz@true.cz>
Reading and writing to and from flash storage is slowed down
enormously by some functions which use a block size of 1.
This patch reworks the extraction scripts to be much faster and
efficient by reading and writing in possibly one big block.
This is based on the initial commit a69e101 for ipq40xx by
Christian Lamparter <chunkeey@gmail.com>.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Tested-by: Rosen Penev <rosenp@gmail.com>
- Former "mir3g" board name becomes "xiaomi,mir3g".
- Reorder some entries to maintain alphabetical order.
- Change DTS so status LEDs (yellow/red/blue) mimic
Xiaomi stock firmware: (Section Indicator)
<http://files.xiaomi-mi.co.uk/files/router_pro/router%20PRO%20EN.pdf>
<http://files.xiaomi-mi.co.uk/files/Mi_WiFi_router_3/MiWiFi_router3_EN.pdf>
|Yellow: Update (LED flickering), the launch of the system (steady light);
|Blue: during normal operation (steady light);
|Red: Safe mode (display flicker), system failure (steady light);
Signed-off-by: Ozgur Can Leonard <ozgurcan@gmail.com>
[Added link to similar Router 3 model]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
Hardware:
CPU: MediaTek MT7621AT (2x880MHz)
RAM: 512MB DDR3
FLASH: 256MB NAND
WiFi: 2.4GHz 4x4 MT7615 b/g/n (Needs driver, See Issues!)
WiFI: 5GHz 4x4 MT7615 a/n/ac (Needs driver, See Issues!)
USB: 1x 3.0
ETH: 1x WAN 10/100/1000 3x LAN 10/100/1000
LED: Power/Status
BTN: RESET
UART: 115200 8n1
Partition layout and boot:
Stock Xiaomi firmware has the MTD split into (among others)
- kernel0 (@0x200000)
- kernel1 (@0x600000)
- rootfs0
- rootfs1
- overlay (ubi)
Xiaomi uboot expects to find kernels at 0x200000 & 0x600000
referred to as system 1 & system 2 respectively.
a kernel is considered suitable for handing control over
if its linux magic number exists & uImage CRC are correct.
If either of those conditions fail, a matching sys'n'_fail flag
is set in uboot env & a restart performed in the hope that the
alternate kernel is okay.
If neither kernel checksums ok and both are marked failed, system 2
is booted anyway.
Note uboot's tftp flash install writes the transferred
image to both kernel partitions.
Installation:
Similar to the Xiaomi MIR3G, we keep stock Xiaomi firmware in
kernel0 for ease of recovery, and install OpenWRT into kernel1 and
after.
The installation file for OpenWRT is a *squashfs-factory.bin file that
contains the kernel and a ubi partition. This is flashed as follows:
nvram set flag_try_sys1_failed=1
nvram set flag_try_sys2_failed=0
nvram commit
dd if=factory.bin bs=1M count=4 | mtd write - kernel1
dd if=factory.bin bs=1M skip=4 | mtd write - rootfs0
reboot
Reverting to stock:
The part of stock firmware we've kept in kernel0 allows us to run stock
recovery, which will re-flash stock firmware from a *.bin file on a USB.
For this we do the following:
fw_setenv flag_try_sys1_failed 0
fw_setenv flag_try_sys2_failed 1
reboot
After reboot the LED status light will blink red, at which point pressing
the 'reset' button will cause stock firmware to be installed from USB.
Issues:
OpenWRT currently does not have support for the MT7615 wifi chips. There is
ongoing work to add mt7615 support to the open source mt76 driver. Until that
support is in place, there are closed-source kernel modules that can be used.
See: https://forum.openwrt.org/t/support-for-xiaomi-wifi-r3p-pro/20290/170
Signed-off-by: Ozgur Can Leonard <ozgurcan@gmail.com>
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
[02_network remaps, Added link to notes]
ALFA Network Tube-E4G is an outdoor, dual-SIM LTE Cat. 4 CPE, based on
MediaTek MT7620A, equipped with Quectel EC25 miniPCIe modem.
Specification:
- MT7620A (580 MHz)
- 64/128/256 MB of RAM (DDR2)
- 16/32 MB of flash (SPI NOR)
- 1x 10/100 Mbps Ethernet, with passive PoE support (24 V)
- 1x miniPCIe slot (with PCIe and USB 2.0 buses)
- 2x SIM slot (mini, micro) with detect and switch driven by GPIO
- 1x detachable antenna (modem main)
- 1x internal antenna (modem div)
- 1x GPS passive antenna (optional)
- 5x LED (all driven by GPIO)
- 1x button (reset)
- UART (4-pin, 2.54 mm pitch) header on PCB
Other:
Default SIM slot is selected at an early stage by U-Boot, based on
'default_sim' environment value: 1 or unset = SIM1 (mini), 2 = SIM2
(micro). U-Boot also resets the modem, using #PERST signal, before
starting kernel.
Flash instruction:
You can use the 'sysupgrade' image directly in vendor firmware which is
based on OpenWrt (make sure to not preserve settings - use 'sysupgrade
-n -F ...' command). Alternatively, use web recovery mode in U-Boot:
1. Power the device with reset button pressed, the LAN LED will start
blinking slowly and after ~3 seconds, when it starts blinking faster,
you can release the button.
2. Setup static IP 192.168.1.2/24 on your PC.
3. Go to 192.168.1.1 in browser and upload 'sysupgrade' image.
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
dts: disable port4 and leave it ephy mode because it connect to nothing
switch port5 connected to GE port we use it as wan port
Signed-off-by: Chen Minqiang <ptpt52@gmail.com>
Device specification:
- SoC: Ralink RT3883 (MIPS 74Kc) 500Mhz
- RAM: 64Mb
- Flash: 8MB (SPI-NOR)
- Ethernet: 10/100/1000 Mbps
- WLAN
Wireless 1: SoC-integrated : 2.4/5 GHz
Wireless 2: 2.4 GHz RT3092L
- LED: 2x USB, WAN, LAN
- Key: WPS, reset
- Serial: 4-pin header, (57600,8,N,1), 3.3V TTL,
GND, RX, TX, V - J12 marking on board
- USB ports: 2 x USB 2.0
Flashing instructions:
Option 1 (from bootloader web)
- Hold reset button on the back of router when plugging
in power (for at-least 10 seconds after plugged in)
- Connect to a Lan port
- Set computer IP to 10.10.10.3
- Go to http://10.10.10.123 in a web browser
- Click the Browse... Button and select the
*squashfs.sysupgrade.bin file then click APPLY
Option 2 (from the stock admin web)
- Go to firmware upgrade
- Upload the **factory** image *initramfs.bin first
- Boot into openwrt
- From Luci web in openwrt upload the *squashfs.sysupgrade.bin
Signed-off-by: Kip Porterfield <kip.porterfield@gmail.com>
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
[added v1 to the compatible identifier, added pciid for
the RT3092L, fixed pci unit-address, split out the F9K110X.dtsi
to prepare for a possible F9K1103 patch]
This patch adds support for the TP-Link TL-WR802N-v4.
https://openwrt.org/toh/tp-link/tl-wr802n
Specification:
- MT7628N (580 MHz)
- 64 MB RAM
- 8 MB FLASH
- 2T2R 2.4 GHz
- 1x 10/100 Mbps Ethernet
- 1x LED
Flash instruction:
The only way to flash the image in TL-WR802N v4 is to use
tftp recovery mode in U-Boot:
1. Configure PC with static IP 192.168.0.225/24 and tftp server.
2. Rename "openwrt-ramips-mt76x8-tplink_tl-wr802n-v4-squashfs-tftp-recovery.bin"
to "tp_recovery.bin" and place it in tftp server directory.
3. Connect PC with the LAN port, press the reset button, power up
the router and keep button pressed for around 10 seconds, until
device starts downloading the file.
4. Router will download file from server, write it to flash and reboot.
Signed-off-by: Marcel Jost <majo@icutech.ch>
The R6120 has no 5GHz WLAN LED, the assigned GPIO in fact controls
the WAN LED.
Renames the LED accordingly in the device-tree.
Removes the 5GHz WLAN LED trigger.
Adds the correct WAN port LED trigger.
----
Currently, the MAC address for the Netgear R6120 is read from the NVRAM
partition. The offset for the MAC address however is not consistent
across devices or firmware versions.
Switch to using the factory partition like all other Netgear devices do.
----
The LAN ports of the R6120 are labled in reverse on the casing.
Adjust LuCI switchport numbering accordingly.
----
The WiFi eeprom offsets for the R6120 are currently wrong (5GHz offset
is bigger than the partition itself).
Fixes poor performance on 2.4 and 5 GHz.
Signed-off-by: David Bauer <mail@david-bauer.net>
This adds support for the TP-Link Archer C50 v4.
It uses the same hardware as the v3 variant, sharing the same FCC-ID.
CPU: MediaTek MT7628 (580MHz)
RAM: 64M DDR2
FLASH: 8M SPI
WiFi: 2.4GHz 2x2 MT7628 b/g/n integrated
WiFI: 5GHz 2x2 MT7612 a/n/ac
ETH: 1x WAN 4x LAN
LED: Power, WiFi2, WiFi5, LAN, WAN, WPS
BTN: WPS/WiFi, RESET
UART: Near ETH ports, 115200 8n1, TP-Link pinout
Create Factory image
--------------------
As all installation methods require a U-Boot to be integrated into the
Image (and we do not ship one with the image) we are not able to create
an image in the OpenWRT build-process.
Download a TP-Link image from their Wesite and a OpenWRT sysupgrade
image for the device and build yourself a factory image like following:
TP-Link image: tpl.bin
OpenWRT sysupgrade image: owrt.bin
> dd if=tpl.bin of=boot.bin bs=131584 count=1
> cat owrt.bin >> boot.bin
Installing via Web-UI
---------------------
Upload the boot.bin via TP-Links firmware upgrade tool in the
web-interface.
Installing via Recovery
-----------------------
Activate Web-Recovery by beginning the upgrade Process with a
Firmware-Image from TP-Link. After starting the Firmware Upgrade,
wait ~3 seconds (When update status is switching to 0%), then
disconnect the power supply from the device. Upgrade flag (which
activates Web-Recovery) is written before the OS-image is touched and
removed after write is succesfull, so this procedure should be safe.
Plug the power back in. It will come up in Recovery-Mode on 192.168.0.1.
When active, all LEDs but the WPS LED are off.
Remeber to assign yourself a static IP-address as DHCP is not active in
this mode.
The boot.bin can now be uploaded and flashed using the web-recovery.
Installing via TFTP
-------------------
Prepare an image like following (Filenames from factory image steps
apply here)
> dd if=/dev/zero of=tp_recovery.bin bs=196608 count=1
> dd if=tpl.bin of=tmp.bin bs=131584 count=1
> dd if=tmp.bin of=boot.bin bs=512 skip=1
> cat boot.bin >> tp_recovery.bin
> cat owrt.bin >> tp_recovery.bin
Place tp_recovery.bin in root directory of TFTP server and listen on
192.168.0.66/24.
Connect router LAN ports with your computer and power up the router
while pressing the reset button. The router will download the image via
tftp and after ~1 Minute reboot into OpenWRT.
U-Boot CLI
----------
U-Boot CLI can be activated by holding down '4' on bootup.
Dual U-Boot
-----------
This is the first TP-Link MediaTek device to feature a split-uboot
design. The first (factory-uboot) provides recovery via TFTP and HTTP,
jumping straight into the second (firmware-uboot) if no recovery needs
to be performed. The firmware-uboot unpacks and executed the kernel.
Web-Recovery
------------
TP-Link integrated a new Web-Recovery like the one on the Archer C7v4 /
TL-WR1043v5. Stock-firmware sets a flag in the "romfile" partition
before beginning to write and removes it afterwards. If the router boots
with this flag set, bootloader will automatically start Web-recovery and
listens on 192.168.0.1. This way, the vendor-firmware or an OpenWRT
factory image can be written.
By doing the same while performing sysupgrade, we can take advantage of
the Web-recovery in OpenWRT.
It is important to note that Web-Recovery is only based on this flag. It
can't detect e.g. a crashing kernel or other means. Once activated it
won't boot the OS before a recovery action (either via TFTP or HTTP) is
performed. This recovery-mode is indicated by an illuminated WPS-LED on
boot.
Signed-off-by: David Bauer <mail@david-bauer.net>
Always enable the pwr led and use the usr led for boot status indication.
Rename nodes in the dts, to match what is recommend in the devicetree
specification.
Increase the maximum spi frequency to 20MHz and drop the m25p,chunked-io
which isn't required on mt7621.
Use the BTN_0 keycode for the mode button. This board doesn't have any
wireless.
Use a more descriptive label for the reset button and the GPIO enabling
the usb vcc supply.
Use the beeper kernel module for the buzzer.
Fix the pinmux to switch only pins used as GPIOs to the GPIO function.
Add support for the PoE enable GPIO to the userspace. The PoE power
status can be read via GPIO7. Since OpenWrt doesn't have support for
reading inputs from userspace, prepare only the pinmux for the GPIO.
Signed-off-by: Anton Arapov <arapov@gmail.com>
Signed-off-by: Thibaut VARÈNE <hacks@slashdirt.org>
Signed-off-by: Mathias Kresin <dev@kresin.me>
This patch adds support of MikroTik RouterBOARD 750Gr3, without the need
to reflashing the bootloader.
Installation through RouterBoot follows the usual MikroTik method
https://openwrt.org/toh/mikrotik/common
Since the image isn't compatible with RouterBOARD 750Gr3 installations
which have replaced the bootloader, the former used userspace boardname
is not added to the SUPPORTED_DEVICES, to prevent a brick while trying
to upgrade to the image with native support.
Signed-off-by: Anton Arapov <arapov@gmail.com>
Signed-off-by: Thibaut VARÈNE <hacks@slashdirt.org>
Signed-off-by: Mathias Kresin <dev@kresin.me>
Specs
SoC: MT7621AT
RAM: 512MiB
Flash: 32MiB MX25L25635F SPI NOR
2.4G: MT7603EN
5G: MT7612EN
Ethernet: 4x GE ports (1x WAN, 3x LAN) with link status LEDs
USB 3.0
LEDs: POWER, 5G WIFI, 2.4G WIFI, USB, Internet.
The last two ones are controlled by GPIO
UART: There are 2 UARTs (UARTLITE1/ttyS0 and UARTLITE3/ttyS1) on board.
UARTLITE1 is close to LEDs, and UARTLITE3 is close to flash chip.
The stock u-boot uses UARTLITE1 by default. Baud rate is 57600
Flash instruction
1. telnet 192.168.9.1 2317, username is "root" and password is "admin"
One can alternatively use UART to log in
2. Put OpenWrt firmware in a FAT32 USB drive, and connect it to the router
One can alternatively download the firmware via wget through Internet
3. mtd write /path/to/openwrt.bin firmware
4. reboot
Signed-off-by: Deng Qingfang <dengqf6@mail2.sysu.edu.cn>
Very similar to the DWR-921-C1, except has a telephony/RJ11 port (not
sure if supported, I didn't try), wireless router with QMI LTE embedded
modem is based on the MT7620N SoC.
Specification:
* MediaTek MT7620N (580 Mhz)
* 64 MB of RAM
* 16 MB of FLASH
* 802.11bgn radio
* 5x 10/100 Mbps Ethernet (1 WAN and 4 LAN)
* 2x external, detachable (LTE) antennas
* UART header on PCB (57600 8n1)
* 6x LED (GPIO-controlled)
* 1x bi-color Signal Strength LED (GPIO-controlled)
* 2x button
* JBOOT bootloader
The status led has been assigned to the dwr-922-e2:green:signalstrength
(lte signal strength) led. At the end of the boot it is switched off and
is available for lte operation. Works correctly also during sysupgrade
operation.
Installation:
Apply factory image via d-link http web-gui, or via recovery interface:
How to recover/revert to OEM firmware:
1.) Push and hold the reset button and turn on the power. Wait until all
LEDs start rapidly blinking (~10sec.)
2.) DHCP should give you an IP in the 192.168.123.0/24 subnet, or set
one manually
3.) Upload original factory image via JBOOT http interface at IP
192.168.123.254
4.) If http doesn't work, it can be done with curl command:
curl -F FN=@XXXXX.binhttp://192.168.123.254/upg
where XXXXX.bin is name of firmware file.
5.) You can optionally telnet to 192.168.123.254 before or during the
upload and it will report the flashing status, memory address etc.
6.) Once web UI and/or telnet says "Success", power cycle the router, or
type "reboot" into the telnet session.
Signed-off-by: Simon Quigley <squigley@squigley.net>
[squashed commits, word wrap commit message, rename signal strenght led
name to match what is used for the DWR-921-C1 since they share the led
configuration, add label referenced in the aliases node]
Signed-off-by: Mathias Kresin <dev@kresin.me>
Netgear R6350 is a wireless router, aka Netgear AC1750.
Specification:
- SoC: Mediatek MT7621AT (2 CPU cores, 4 threads)
- RAM: 128MiB (Nanya NT5CC64M16GP-DI)
- ROM: 128MiB NAND Flash (Macronix MX30LF1G18AC-TI)
- Wireless:
for 11b/g/n (upto 300Mbps): MT7603
for 11a/ac (upto 1450Mbps) : MT7615, is not avaliable now
- Ethernet LAN speed: up to 1000Mbps
- Ethernet LAN ports: 4
- Ethernet WAN speed: up to 1000Mbps
- Ethernet WAN ports: 1
- USB ports: 1 (USB 2.0)
- LEDs: 4 (all can be controlled by SoC's GPIO)
- buttons: 2
- serial ports: unknown
Installation through telnet:
- Copy kernel.bin and rootfs.bin to a USB flash disk,
plug to usb port on the router.
- Enable telnet with link: http://192.168.1.1/setup.cgi?todo=debug
(login if required, default: admin password)
- You will see "Debug Enabled!"
- Telnet 192.168.1.1 and login with "root"
- ls /mnt/shares/ to find out path of your USB disk.
'myUdisk' for example.
- cd /mnt/shares/myUdisk
- mtd_write write rootfs.bin Rootfs
- mtd_write write kernel.bin Kernel
- reboot
recovery when bricked:
nmrpflash can be used to recover to the netgear firmware
if a broken image was flashed.
The SC_PART_MAP partition suggests that an on flash partition table
exists. After implementing a partition parser/builder for the sercom
partition format, the definitions don't match the flash layout used by
the stock firmware.
It either means the partition format has not yet been completely
understood or it isn't used by the stock firmware. For now, use fixed
partitions instead.
Signed-off-by: NOGUCHI Hiroshi <drvlabo@gmail.com>
[apply latest ramips changes and document the on flash partition map
issues]
Signed-off-by: Mathias Kresin <dev@kresin.me>
- Mark other partitions as read-only for HC5x61
- Only enable USB and PCIe for HC5761/HC5861
HC5661 doesn't have a USB port, and there is nothing attached to its PCIe.
- Fix HC5761 switch ports
HC5761 has only 3 ethernet ports (1x WAN + 2x LAN). Remove unused ports.
- Fix HC5861 5GHz radio
HC5861 has MT7612EN 5GHz WiFi chip, not MT7610EN.
- Fix HC5761/HC5861 WiFi LEDs
After 5GHz is enabled, it becomes wlan0. And 2.4GHz would be wlan1.
- Fix HC5x61 image size
It should be 15872k (0xf80000)
Signed-off-by: Deng Qingfang <dengqf6@mail2.sysu.edu.cn>
Due to the enforced image metadata we ensure that the correct image is
uploaded. Checks based on a magic arn't required any more.
Signed-off-by: Mathias Kresin <dev@kresin.me>
Beside one exception, no one took care of these two remaining boards
still using the legacy image build code during the last two years.
Since OpenWrt 14.07 the ALLNET ALL0239-3G image building is broken.
The Sitecom WL-341 v3 image build code looks pretty hackish and broken.
It's questionable if the legacy image works as all.
Signed-off-by: Mathias Kresin <dev@kresin.me>
I wanted to add status LEDs support to my imx6 based board and have found out,
that I could use diag.sh script found in ramips platform, which seems to be
also shared in a few other platforms:
4801276bc2078c5bcf03003c831e3b0a target/linux/ramips/base-files/etc/diag.sh
4801276bc2078c5bcf03003c831e3b0a target/linux/ipq40xx/base-files/etc/diag.sh
4801276bc2078c5bcf03003c831e3b0a target/linux/ath79/base-files/etc/diag.sh
And @chunkeey suggested to me, that I can also add lantiq, ipq806x and
apm821xx to the list of platforms which could share this generic
diag.sh.
I've extended the base diag.sh in a way, that if it detects any of the
DTS LED aliases, then it would use the generic DTS set_led_state code.
The code in platform's diag.sh has moved to base-files package in this
commit:
base-files: diag.sh: Make it more generic towards DTS so it could be reused
Signed-off-by: Petr Štetiar <ynezz@true.cz>
Tested-by: Christian Lamparter <chunkeey@gmail.com> (apm821xx and ipq40xx)
The DWR-118-A1 Wireless Router is based on the MT7620A SoC.
Specification:
- MediaTek MT7620A (580 Mhz)
- 64 MB of RAM
- 16 MB of FLASH
- 1x 802.11bgn radio
- 1x 802.11ac radio (MT7610EN)
- 3x 10/100 Mbps Ethernet (3 LAN)
- 2x 10/100/1000 Mbps ICPlus IP1001 Ethernet PHY (1 WAN AND 1 LAN)
- 1x internal, non-detachable antenna
- 2x external, non-detachable antennas
- 1x USB 2.0
- UART (J1) header on PCB (57600 8n1)
- 7x LED (5x GPIO-controlled), 2x button
- JBOOT bootloader
Known issues:
- WIFI 5G LED not working
- flash is very slow
The status led has been assigned to the dwr-118-a1:green:internet led.
At the end of the boot it is switched off and is available for other
operation. Work correctly also during sysupgrade operation.
Installation:
Apply factory image via http web-gui or JBOOT recovery page
How to revert to OEM firmware:
- push the reset button and turn on the power. Wait until LED start
blinking (~10sec.)
- upload original factory image via JBOOT http (IP: 192.168.123.254)
Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com>