This harmonizes the model names for the ath79 Ubiquiti devices by
applying a few minor cosmetic adjustments:
- Removes hyphens where they are not found in the product names
(Ubiquiti uses hyphens only for the abbreviated version names
like UAP-AC-PRO which we don't use anyway.)
- Add (XM) suffix for DTS model strings to help with distinguishing
them from their XW counterparts.
- Remove DEVICE_VARIANT for LAP-120 which actually was an alternate
device name.
- Generally make DTS model names and those from generic-ubnt.mk
more consistent.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This adds support for the Ubiquiti PowerBridge M, which has the same
board/LEDs as the Bullet M XM, but different case and antennas.
Specifications:
- AR7241 SoC @ 400 MHz
- 64 MB RAM
- 8 MB SPI flash
- 1x 10/100 Mbps Ethernet, 24 Vdc PoE-in
- Internal antenna: 25 dBi
- POWER/LAN green LEDs
- 4x RSSI LEDs (red, orange, green, green)
- UART (115200 8N1) on PCB
Flashing via WebUI:
Upload the factory image via the stock firmware web UI.
Attention: airOS firmware versions >= 5.6 have a new bootloader with
an incompatible partition table!
Please downgrade to <= 5.5 _before_ flashing OpenWrt!
Refer to the device's Wiki page for further information.
Flashing via TFTP:
Same procedure as other Bullet M (XM) boards.
- Use a pointy tool (e.g., pen cap, paper clip) and keep the reset
button on the device or on the PoE supply pressed
- Power on the device via PoE (keep reset button pressed)
- Keep pressing until LEDs flash alternatively LED1+LED3 =>
LED2+LED4 => LED1+LED3, etc.
- Release reset button
- The device starts a TFTP server at 192.168.1.20
- Set a static IP on the computer (e.g., 192.168.1.21/24)
- Upload via tftp the factory image:
$ tftp 192.168.1.20
tftp> bin
tftp> trace
tftp> put openwrt-ath79-generic-xxxxx-ubnt_powerbridge-m-squashfs-factory.bin
Signed-off-by: Vieno Hakkerinen <vieno@hakkerinen.eu>
upstream changed dt-bindings for marvell 88e6060 to use mdio-device
and dropped support for legacy bindings.
fix it in our local dts.
Fixes: FS#2524
Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
The support for this device's Marvell MV88E6060 switch has been
reported to be broken with kernels 4.19/5.4 (see bug report).
Since this a 4/32 device and it has been confirmed to be working
with stable 19.07 release (kernel 4.14), and since fixing it does
not seem trivial, let's just disable it in master.
Fixes: FS#2524
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Port device support for DAP-1330 from the ar71xx target to ath79.
Additionally, images are generated for the European through-socket
case variant DAP-1365. Both devices run the same vendor firmware, the
only difference being the DAP_SIGNATURE field in the factory header.
The vendor's Web UI will display a model string stored in the flash.
Specifications:
* QCA9533, 8 MiB Flash, 64 MiB RAM
* One Ethernet Port (10/100)
* Wall-plug style case (DAP-1365 with additional socket)
* LED bargraph RSSI indicator
Installation:
* Web UI: http://192.168.0.50 (or different address obtained via DHCP)
There is no password set by default
* Recovery Web UI: Keep reset button pressed during power-on
until LED starts flashing red, upgrade via http://192.168.0.50
* Some modern browsers may have problems flashing via the Web UI,
if this occurs consider booting to recovery mode and flashing via:
curl -F \
files=@openwrt-ath79-generic-dlink_dap-1330-a1-squashfs-factory.bin \
http://192.168.0.50/cgi/index
The device will use the same MAC address for both wired and wireless
interfaces, however it is stored at two different locations in the flash.
Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
Arduino Yun is a microcontroller development board, based on Atmel
ATmega32u4 and Atheros AR9331.
Specifications:
- MCU: ATmega32U4
- SoC: AR9331
- RAM: DDR2 64MB
- Flash: SPI NOR 16MB
- WiFi:
- 2.4GHz: SoC internal
- Ethernet: 1x 10/100Mbps
- USB: 1x 2.0
- MicroSD: 1x SDHC
Notes:
- Stock firmware is based on OpenWrt AA.
- The SoC UART can be accessed only through the MCU.
YunSerialTerminal is recommended for access to serial console.
- Stock firmware uses non-standard 250000 baudrate by default.
- The MCU can be reprogrammed from the SoC with avrdude linuxgpio.
Installation:
1. Update U-Boot environment variables to adapt to new partition scheme.
> setenv bootcmd "run addboard; run addtty; run addparts; run addrootfs; bootm 0x9f050000 || bootm 0x9fea0000"
> setenv mtdparts "spi0.0:256k(u-boot)ro,64k(u-boot-env),15936k(firmware),64k(nvram),64k(art)ro"
> saveenv
2. Boot into stock firmware normally and perform sysupgrade with
sysupgrade image.
# sysupgrade -n -F /tmp/sysupgrade.bin
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
The DCH-G020 is a Smart Home Gateway for Z-Wave devices.
Specifications:
* QCA9531, 16 MiB Flash, 64 MiB RAM
* On-Board USB SD3503A Z-Wave dongle
* GL850 USB 2.0 Hub (one rear port, internal Z-Wave)
* Two Ethernet Ports (10/100)
Installation:
* Web UI: http://192.168.0.60 (or different address obtained via DHCP)
Login with 'admin' and the 6-digit PIN Code from the bottom label
* Recovery Web UI: Keep reset button pressed during power-on
until LED starts flashing red, upgrade via http://192.168.0.60
* Some modern browsers may have problems flashing via the Web UI,
if this occurs consider booting to recovery mode and flashing via:
curl -F \
files=@openwrt-ath79-generic-dlink_dch-g020-a1-squashfs-factory.bin \
http://192.168.0.60/cgi/index
Known issues:
* Real-Time-Clock is not working as there is currently no matching driver
It is still included in the dts as compatible = "pericom,pt7c43390";
* openzwave was tested on v19.07 (running MinOZW as a proof-of-concept),
but the package grew too big as lots of device pictures were included,
thus any use of Z-Wave is up to the user (e.g. extroot and domoticz)
The device will use the same MAC address for both wired and wireless
interfaces, however it is stored at two different locations in the flash.
Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
Specification:
• 650/600/216 MHz (CPU/DDR/AHB)
• 64 MB of RAM (DDR2)
• 32 MB of FLASH
• 2T2R 2.4 GHz
• 2x 10/100 Mbps Ethernet
• 1x USB 2.0 Host socket
• 1x miniPCIe slot
• UART for serial console
• 14x GPIO
Flash instructions:
Upgrading from ar71xx target:
• Upload image into the board:
scp openwrt-ath79-generic-8dev_lima-squashfs-sysupgrade.bin
root@192.168.1.1/tmp/
• Run sysupgrade
sysupgrade -F /tmp/openwrt-ath79-generic-8dev_lima-squashfs-sysupgrade.bin
Upgrading from u-boot:
• Set up tftp server with
openwrt-ath79-generic-8dev_lima-initramfs-kernel.bin
• Go to u-boot (reboot and press ESC when prompted)
• Set TFTP server IP
setenv serverip 192.168.1.254
• Set device ip from the same subnet
setenv ipaddr 192.168.1.1
• Copy new firmware to board
tftpboot 0x82000000 initramfs.bin
• Boot OpenWRT
bootm 0x82000000
• Upload image openwrt-ath79-generic-8dev_lima-squashfs-sysupgrade.bin into
the board
• Run sysupgrade.
Signed-off-by: Andrey Bondar <a.bondar@8devices.com>
Fixes following build failures:
WARNING: Image file glinet_gl-ar750s-nor-kernel.bin is too big
WARNING: Image file glinet_gl-ar750s-nor-nand-kernel.bin is too big
Signed-off-by: Petr Štetiar <ynezz@true.cz>
Add support for the ar71xx supported GL.iNet GL-MiFi to ath79.
Specifications:
- Atheros AR9331
- 64 MB of RAM
- 16 MB of FLASH (SPI NOR)
- 2x 10/100/1000 Mbps Ethernet
- 2.4GHz (AR9330), 802.11b/g/n
- 1x USB 2.0 (vbus driven by GPIO)
- 4x LED, driven by GPIO
- 1x button (reset)
- 1x mini pci-e slot (vcc driven by GPIO)
Flash instructions:
Vendor software is based on openwrt so you can flash the sysupgrade
image via the vendor GUI or using command line sysupgrade utility.
Make sure to not save configuration over reflash as uci settings
differ between versions.
Note on MAC addresses:
Even though the platform is capable to providing separate MAC addresses
to the interfaces vendor firmware does not seem to take advantage of
that. It appears that there is only single unique pre-programmed
address in the art partition and vendor firmware uses that for
every interface (eth0/eth1/wlan0). Similar behaviour has also been
implemented in this patch.
Note on GPIOs:
In vendor firmware the gpio controlling mini pci-e slot is named
3gcontrol while it actually controls power supply to the entire mini
pci-e slot. Therefore a more descriptive name (minipcie) was chosen.
Also during development of this patch it became apparent that the
polarity of the signal is actually active low rather than active high
that can be found in vendor firmware.
Acknowledgements:
This patch is based on earlier work[1] done by Kyson Lok. Since the
initial mailing-list submission the patch has been modified to comply
with current openwrt naming schemes and dts conventions.
[1] http://lists.openwrt.org/pipermail/openwrt-devel/2018-September/019576.html
Signed-off-by: Antti Seppälä <a.seppala@gmail.com>
Specifications:
SoC: AR9344
DRAM: 128MB DDR2
Flash: 16MB SPI-NOR
2 Gigabit ethernet ports
2×2 2.4GHz on-board radio
miniPCIe slot that supports 5GHz radio
PoE 48V IEEE 802.3af/at - 24V passive optional
USB 2.0 header
Installation:
To install, either start tftp in bin/targets/ath79/generic/ and use
the u-boot prompt over UART:
tftpboot 0x80500000 openwrt-ath79-generic-compex_wpj344-16m-squashfs-sysupgrade.bin
erase 0x9f030000 +$filesize
erase 0x9f680000 +1
cp.b $fileaddr 0x9f030000 $filesize
boot
The cpximg file can be used with sysupgrade in the stock firmware (add
SSH key in luci for root access) or with the built-in cpximg loader.
The cpximg loader can be started either by holding the reset button
during power up or by entering the u-boot prompt and entering 'cpximg'.
Once it's running, a TFTP-server under 192.168.1.1 will accept the image
appropriate for the board revision that is etched on the board.
For example, if the board is labelled '6A08':
tftp -v -m binary 192.168.1.1 -c put openwrt-ath79-generic-compex_wpj344-16m-squashfs-cpximg-6a08.bin
MAC addresses:
<&uboot 0x2e010> *:99 (label)
<&uboot 0x2e018> *:9a
<&uboot 0x2e020> *:9b
<&uboot 0x2e028> *:9c
Only the first two are used (for ethernet), the WiFi modules have
separate (valid) addresses. The latter two addresses are not used.
Signed-off-by: Leon M. George <leon@georgemail.eu>
[minor commit message adjustments, drop gpio in DTS, DTS style fixes,
sorting, drop unused cpximg recipe]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The replaces the custom uImageArcher build step with the generic uImage
build step. The only different between these two is the difference in
the generated name.
Tested on: TP-Link Archer C59 v1
Acked-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Signed-off-by: David Bauer <mail@david-bauer.net>
For quite some time, the tiny (4M flash) TP-Link sysupgrade and
factory images cannot be built anymore by the buildbots, just
the initramfs-kernel.bin files are still there.
Disable these images for the buildbots and prevent useless builds.
Note that these devices still build fine with default settings,
even for kernel 5.4.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Generate additional images that are compatible to the cpximg loader.
The cpximg loader can be started either by holding the reset button during
power up or by entering the u-boot prompt and entering 'cpximg'.
Once it's running, a TFTP-server under 192.168.1.1 will accept the image
appropriate for the board revision that is etched on the board.
For example, if the board is labelled '7A04':
tftp -v -m binary 192.168.1.1 -c put openwrt-ath79-generic-compex_wpj531-16m-squashfs-cpximg-7A04.bin
These files can also be used with the sysupgrade utility in stock images (add
SSH key in luci for root access).
Signed-off-by: Leon M. George <leon@georgemail.eu>
[fix sorting of definitions]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Specifications:
SoC: QCA9531
DRAM: 128MB DDR2
Flash: 16MB SPI-NOR
2 100MBit ethernet ports
2×2 2.4GHz on-board radio
miniPCIe slot that supports 5GHz radio
PoE 24V - 48V IEEE 802.3af optional
USB 2.0 header
Installation:
To install, start a tftp server in bin/targets/ath79/generic/ and use the
u-boot prompt over UART:
tftpboot 0x80500000 openwrt-ath79-generic-compex_wpj531-16m-squashfs-sysupgrade.bin
erase 0x9f030000 +$filesize
erase 0x9f680000 +1
cp.b $fileaddr 0x9f030000 $filesize
boot
The cpximg file can be used with sysupgrade in the stock firmware (add SSH key
in luci for root access).
Another way is to hold the reset button during power up or running 'cpximg' in
the u-boot prompt.
Once the last LED starts flashing regularly, a TFTP-server under 192.168.1.1
will accept the image appropriate for the board revision that is etched on the
board.
For example, if the board is labelled '7A04':
tftp -v -m binary 192.168.1.1 -c put openwrt-ath79-generic-compex_wpj531-16m-squashfs-cpximg-7A04.bin
MAC addresses:
<&uboot 0x2e010> *:cb (label)
<&uboot 0x2e018> *:cc
<&uboot 0x2e020> *:cd
<&uboot 0x2e028> *:ce
Only the first two are used (for ethernet), the WiFi modules have
separate (valid) addresses. The latter two addresses are not used.
Signed-off-by: Leon M. George <leon@georgemail.eu>
[commit title/message facelift, fix rssileds, add led aliases]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
switch-bcm53xx-mdio does not exists, use kmod-switch-bcm53xx-mdio
instead.
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Cc: Tobias Schramm <tobleminer@gmail.com>
This commit adds support for the AVM FRITZ!WLAN Repeater DVB-C
SOC: Qualcomm Atheros QCA9556
RAM: 64 MiB
FLASH: 16 MB SPI-NOR
WLAN: QCA9556 3T3R 2.4 GHZ b/g/n and
QCA9880 3T3R 5 GHz n/ac
ETH: Atheros AR8033 1000 Base-T
DVB-C: EM28174 with MaxLinear MXL251 tuner
BTN: WPS Button
LED: Power, WLAN, TV, RSSI0-4
Tested and working:
- Ethernet (correct MAC, gigabit, iperf3 about 200 Mbit/s)
- 2.4 GHz Wi-Fi (correct MAC)
- 5 GHz Wi-Fi (correct MAC)
- WPS Button (tested using wifitoggle)
- LEDs
- Installation via EVA bootloader (FTP recovery)
- OpenWrt sysupgrade (both CLI and LuCI)
- Download of "urlader" (mtd0)
Not working:
- Internal USB
- DVB-C em28174+MxL251 (depends on internal USB)
Installation via EVA bootloader (FTP recovery):
Set NIC to 192.168.178.3/24 gateway 192.168.178.1 and power on the device,
connect to 192.168.178.1 through FTP and sign in with adam2/adam2:
ftp> quote USER adam2
ftp> quote PASS adam2
ftp> binary
ftp> debug
ftp> passive
ftp> quote MEDIA FLSH
ftp> put openwrt-sysupgrade.bin mtd1
Wait for "Transfer complete" together with the transfer details.
Wait two minutes to make sure flash is complete (just to be safe).
Then restart the device (power off and on) to boot into OpenWrt.
Revert your NIC settings to reach OpenWrt at 192.168.1.1
Signed-off-by: Natalie Kagelmacher <nataliek@pm.me>
[fixed sorting - removed change to other board -
prettified commit message]
Signed-off-by: David Bauer <mail@david-bauer.net>
Currently it's not possible to tftpboot initramfs image on archer-c7-v5
as the image contains tplink-v1-header which leads to:
ath> bootm
## Booting image at 81000000 ...
Bad Magic Number
as U-Boot expects uImage wrapped image. This is caused by following
inheritance issue:
define Device/Init
KERNEL_INITRAMFS = $$(KERNEL)
define Device/tplink-v1
KERNEL := kernel-bin | append-dtb | lzma
KERNEL_INITRAMFS := kernel-bin | append-dtb | lzma | tplink-v1-header
define Device/tplink-safeloader
$(Device/tplink-v1)
define Device/tplink-safeloader-uimage
$(Device/tplink-safeloader)
KERNEL := kernel-bin | append-dtb | lzma | uImageArcher lzma
define Device/tplink_archer-c7-v5
$(Device/tplink-safeloader-uimage)
where tplink-v1 defines KERNEL_INITRAMFS with tplink-v1-header and it's
then used by all devices inheriting from tplink-safeloader. Fix this by
overriding KERNEL_INITRAMFS to KERNEL variable again.
Signed-off-by: Petr Štetiar <ynezz@true.cz>
TP-Link CPE610 v2 is an outdoor wireless CPE for 5 GHz with
one Ethernet port based on Atheros AR9344
Specifications:
- 560/450/225 MHz (CPU/DDR/AHB)
- 1x 10/100 Mbps Ethernet
- 64 MB of DDR2 RAM
- 8 MB of SPI-NOR Flash
- 23dBi high-gain directional 2×2 MIMO antenna and a
dedicated metal reflector
- Power, LAN, WLAN5G green LEDs
- 3x green RSSI LEDs
Flashing instructions:
Flash factory image through stock firmware WEB UI
or through TFTP
To get to TFTP recovery just hold reset button while powering on for
around 4-5 seconds and release.
Rename factory image to recovery.bin
Stock TFTP server IP:192.168.0.100
Stock device TFTP adress:192.168.0.254
Signed-off-by: Andrew Cameron <apcameron@softhome.net>
This ports support for these devices from ar71xx.
Specification:
- System-On-Chip: Qualcomm Atheros QCA9533
- CPU/Speed: v3: 560 MHz, v4: 650 MHz
- Flash: 4096 KiB
- RAM: 32 MiB
- Ethernet: 1 port @ 100M
- Wireless: SoC-integrated: QCA9533 2.4GHz 802.11bgn
In contrast to the implementation in ar71xx (reset and WiFi button),
the device actually features reset and WPS buttons.
Flashing instructions:
Upload the ...-factory.bin file via OEM web interface.
TFTP Recovery:
1. Set PC to fixed IP address 192.168.0.66
2. Download *-factory.bin image and rename it to
wa801ndv3_tp_recovery.bin
3. Start a tftp server with the image file in its root directory
4. Turn off the router
5. Press and hold Reset button
6. Turn on router with the reset button pressed and wait ~15 seconds
7. Release the reset button and after a short time
the firmware should be transferred from the tftp server
8. Wait ~30 second to complete recovery.
TFTP recovery has only been tested with v3, and the Wiki states
that the procedure won't work for v4, which cannot be verified
or falsified at the moment.
Tested by Tim Ward (see forum):
https://forum.openwrt.org/t/ath79-support-for-tp-link-tl-wa901nd-v3-v4-v5/61246/13
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Specifications:
- SoC: Atheros AR9344
- RAM: 64MB
- Storage: 8 MB SPI NOR
- Wireless: 2.4GHz N based built into SoC
- Ethernet: 1x 10/100 Mbps with 24V POE IN, 1x 10/100 Mbps
Installation:
Flash factory image through stock firmware WEB UI
or through TFTP
To get to TFTP recovery just hold reset button while powering on for
around 4-5 seconds and release.
Rename factory image to recovery.bin
Stock TFTP server IP:192.168.0.100
Stock device TFTP adress:192.168.0.254
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This patch adds support for the MikroTik RouterBOARD RB493G, ported
from the ar71xx target.
See https://routerboard.com/RB493G for details
Specification:
- SoC Qualcomm Atheros AR7161
- RAM: 256 MiB
- Storage: 128MiB NAND
- Ethernet: 9x 1000/100/10 Mbps
- USB 1x 2.0 / 1.0 type A
- PCIe: 3x Mini slot
- MicroSD slot
Working:
- Board/system detection
- Ethernet
- SPI
- NAND
- LEDs
- USB
- Sysupgrade
Enabled (but untested due to lack of hardware):
- PCIe - ath79_pci_irq struct has the slot/pin/IRQ mappings if needed
Installation methods:
- tftp boot initramfs image, scp then flash via "sysupgrade -n"
- nand boot existing OpenWrt, scp then flash via "sysupgrade -n"
Notes:
- initramfs image will not work if uncompressed image size over ~8.5Mb
- The "rb4xx" drivers have been enabled
Signed-off-by: Christopher Hill <ch6574@gmail.com>
Hardware:
* SoC: Qualcomm Atheros QCA9558
* RAM: 256MB
* Flash: 16MB SPI NOR
* Ethernet: 2x 10/100/1000 (1x 802.3at PoE-PD)
* WiFi 2.4GHz: Qualcomm Atheros QCA9558
* WiFi 5GHz: Qualcomm Ahteros QCA9880-2R4E
* LEDS: 1x 5GHz, 1x 2.4GHz, 1x LAN1(POE), 1x LAN2, 1x POWER
* Buttons: 1x RESET
* UART: 1x RJ45 RS-232 Console port
Installation via stock firmware:
* Install the factory image via the stock firmware web interface
Installation via bootloader Emergency Web Server:
* Connect your PC to the LAN1(PoE) port
* Configure your PC with IP address 192.168.0.90
* Open a serial console to the Console port (115200,8n1)
* Press "q" within 2s when "press 'q' to stop autoboot" appears
* Open http://192.168.0.50 in a browser
* Upload either the factory or the sysupgrade image
* Once you see "write image into flash...OK,dest addr=0x9f070000" you
can power-cycle the device. Ignore "checksum bad" messages.
Setting the MAC addresses for the ethernet interfaces via
/etc/board.d/02_network adds the following snippets to
/etc/config/network:
config device 'lan_eth0_1_dev'
option name 'eth0.1'
option macaddr 'xx:xx:xx:xx:xx:xx'
config device 'wan_eth1_2_dev'
option name 'eth1.2'
option macaddr 'xx:xx:xx:xx:xx:xx'
This would result in the proper MAC addresses being set for the VLAN
subinterfaces, but the parent interfaces would still have a random MAC
address. Using untagged VLANs could solve this, but would still leave
those extra snippets in /etc/config/network, and then the device VLAN
setup would differ from the one used in ar71xx. Therefore, the MAC
addresses of the ethernet interfaces are being set via preinit instead.
The bdcfg partition contains 4 MAC address labels:
- lanmac
- wanmac
- wlanmac
- wlanmac_a
The first 3 all contain the same MAC address, which is also the one on
the label.
Signed-off-by: Stijn Tintel <stijn@linux-ipv6.be>
Reviewed-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Many target use a repetitive if-include scheme for their subtarget
image files, though their names are consistent with the subtarget
names.
This patch removes these redundant conditions and just uses the
variable for the include where the target setup allows it.
For sunxi, this includes a trivial rename of the subtarget image
Makefiles.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The Netgear WNDRMAC v1 is a hardware variant of the Netgear WNDR3700 v2
Specifications
==============
* SoC: Atheros AR7161
* RAM: 64mb
* Flash on board: 16mb
* WiFi: Atheros AR9220 (a/n), Atheros AR9223 (b/g/n)
* Ethernet: RealTek RTL8366SR (1xWAN, 4xLAN, Gigabit)
* Power: 12 VDC, 2.5 A
* Full specs on [openwrt.org](https://openwrt.org/toh/hwdata/netgear/netgear_wndrmac_v1)
Flash Instructions
==================
It is possible to use the OEM Upgrade page to install the `factory`
variant of the firmware.
After the initial upgrade, you will need to telnet into the router
(default IP 192.168.1.1) to install anything. You may install LuCI
this way. At this point, you will have a web interface to configure
OpenWRT on the WNDRMAC v1.
Please use the `sysupgrade` variant for subsequent flashes.
Recovery Instructions
=====================
A TFTP-based recovery flash is possible if the need arises. Please refer
to the WNDR3700 page on openwrt.org for details.
https://openwrt.org/toh/netgear/wndr3700#troubleshooting_and_recovery
Signed-off-by: Renaud Lepage <root@cybikbase.com>
[update DTSI include name]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The Netgear WNDRMAC v2 is a hardware variant of the Netgear WNDR3800
Specifications
==============
* SoC: Atheros AR7161
* RAM: 128mb
* Flash on board: 16mb
* WiFi: Atheros AR9220 (a/n), Atheros AR9223 (b/g/n)
* Ethernet: RealTek RTL8366SR (1xWAN, 4xLAN, Gigabit)
* Serial console: Yes, 115200 / 8N1 (JTAG)
* USB: 1x2.0
* Power: 12 VDC, 2.5 A
* Full specs on [openwrt.org](https://openwrt.org/toh/hwdata/netgear/netgear_wndrmac_v2)
Flash Instructions
==================
It is possible to use the OEM Upgrade page to install the `factory`
variant of the firmware.
After the initial upgrade, you will need to telnet into the router
(default IP 192.168.1.1) to install anything. You may install LuCI
this way. At this point, you will have a web interface to configure
OpenWRT on the WNDRMAC v2.
Please use the `sysupgrade` variant for subsequent flashes.
Recovery Instructions
=====================
A TFTP-based recovery flash is possible if the need arises. Please refer
to the WNDR3800 page on openwrt.org for details.
https://openwrt.org/toh/netgear/wndr3800#recovery_flash_in_failsafe_mode
Signed-off-by: Renaud Lepage <root@cybikbase.com>
[do not add device to uboot-envtools, update DTSI name]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
TP-Link RE450 v3 is a dual band router/range-extender based on
Qualcomm/Atheros QCA9563 + QCA9880.
This device is nearly identical to RE450 v2 besides a modified flash
layout (hence I think force-flashing a RE450v2 image will lead to at
least loss of MAC address).
Specification:
- 775 MHz CPU
- 64 MB of RAM (DDR2)
- 8 MB of FLASH (SPI NOR)
- 3T3R 2.4 GHz
- 3T3R 5 GHz
- 1x 10/100/1000 Mbps Ethernet (AR8033 PHY)
- 7x LED, 4x button-
- possible UART header on PCB¹
Flash instruction:
Apply factory image in OEM firmware web-gui.
¹ Didn't check to connect as I didn't even manage to connect on
RE450v2 (AFAIU it requires disconnecting some resistors, which I was
too much of a coward to do). But given the similarities to v2 I
think it's the same or very similar procedure (and most likely also
the only way to debrick).
Signed-off-by: Andreas Wiese <aw-openwrt@meterriblecrew.net>
[remove dts-v1 and compatible in DTSI]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Specification:
- SoC: Qualcomm Atheros QCA9533 (560 MHz, MIPS 24Kc)
- RAM: 32 MiB
- Storage: 4 MiB of Flash on board
- Wireless: Built into QCA9533 (Honey Bee), PHY modes b/g/n
- Ethernet: 1x100M (port0)
Installation through OEM Web Interface:
- Connect to TL-WR802N by Ethernet or Wi-Fi
- Go to web interface:
[V1] http://192.168.0.1
[V2] http://192.168.0.254
Default user is "admin" & password is "admin".
On V2, there is no DHCP server running by default, so remember to set
IP manually.
- Go to "System Tools -> Firmware Upgrade"
- Browse for firmware:
[V1] "*.factory.bin"
[V2] "*.factory-us.bin" or "*.factory-eu.bin" for eu model
Web interface may complain if filename is too long. In such case,
rename .bin to something shorter.
- Click upgrade
Installation through tftp:
Note: T_OUT, T_IN and GND on the board must be connected to USB TTL
Serial Configuration 115200 8n1
- Boot the TL-WR802N
- When "Autobooting in 1 seconds" appears type "tpl" followed by enter
- Connect to the board Ethernet port
(IPADDR: 192.168.1.1, ServerIP: 192.168.1.10)
- tftpboot 0x80000000 <Firmware Image Name>
- Record the result of "printenv bootcmd"
- Enter "erase <Result of 'printenv bootcmd'> +0x3c0000"
(e.g erase 0x9f020000 +0x3c0000)
- Enter "cp.b 0x80000000 <Result of 'printenv bootcmd'> 0x3c0000"
(e.g cp.b 0x80000000 0x9f020000 0x3c0000)
- Enter "bootm <Result of 'printenv bootcmd'>"
(e.g bootm 0x9f020000)
Notes:
When porting from ar71xx target to ath79, I found out that on V2,
reset button is on GPIO12 and active low, instead of GPIO11 and
active high. By cross-flashing V1 firmware to V2, I confirmed
the same is true for V1.
Also according to manual of V1, this one also has green
LED instead of blue - both of those issues were fixed accordingly.
The MAC address assignment has been checked with OEM firmware.
Installation manual based on ar71xx support by Thomas Roberts
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
[slightly adjust commit message, add MAC address comment]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Ubiquiti WA devices with newer hw version 2011K require UBNT_VERSION
to be at least 8.5.3, otherwise the image is rejected:
New ver: WA.ar934x.v8.5.0-42.OpenWrt-r10947-65030d81f3
Versions: New(525568) 8.5.0, Required(525571) 8.5.3
Invalid version 'WA.ar934x.v8.5.0-42.OpenWrt-r10947-65030d81f3'
For consistency, also increase version number for XC devices.
Tested-by: Pedro <pedrowrt@cas.cat>
Signed-off-by: Roger Pueyo Centelles <roger.pueyo@guifi.net>
This patch adds support for the COMFAST CF-E130N v2, an outdoor wireless
CPE with a single Ethernet port and a 802.11bgn radio.
Specifications:
- QCA9531 SoC
- 1x 10/100 Mbps Ethernet with PoE-in support
- 64 MB of RAM (DDR2)
- 16 MB of FLASH
- 5 dBi built-in antenna
- POWER/LAN/WLAN green LEDs
- 4x RSSI LEDs (2x red, 2x green)
- UART (115200 8N1) and GPIO (J9) headers on PCB
Flashing instructions:
The original firmware is based on OpenWrt so a sysupgrade image can be
installed via the stock web GUI.
The U-boot bootloader also contains a backup TFTP client to upload the
firmware from. Upon boot, it checks its ethernet network for the IP
192.168.1.10. Host a TFTP server and provide the image to be flashed as
file firmware_auto.bin.
MAC address setup:
The art partition contains four consecutive MAC addresses:
0x0 aa:bb:cc:xx:xx:c4
0x6 aa:bb:cc:xx:xx:c6
0x1002 aa:bb:cc:xx:xx:c5
0x5006 aa:bb:cc:xx:xx:c7
However, the manufacturer in its infinite wisdom decided that one address
is enough and both eth0 and WiFi get the MAC address from 0x0 (yes, that's
overwriting the existing and valid address in 0x1002). This is obviously
also the address on the device's label.
Signed-off-by: Pavel Balan <admin@kryma.net>
[fix configs partition, fix IMAGE_SIZE, add MAC address comment, rename
ATH_SOC to SOC]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This patch adds support for the WNDR4300SW, marketed by California ISP
SureWest (hence the 'SW' suffix). Hardware wise, it's identical to the
WNDR4300 v1.
Specifications:
* SoC: Atheros AR9344
* RAM: 128 MB
* Flash: 128 MB NAND flash
* WiFi: Atheros AR9580 (5 GHz) and AR9344 (2,4 GHz)
* Ethernet: 5x 1000Base-T
* LED: Power, WAN, LAN, WiFi, USB, WPS
* UART: on board, to the right of the RF shield at the top of the board
Installation:
* Flashing through the OEM web interface:
+ Connect your computer to the router with an ethernet cable and browse
to http://192.168.1.1/
+ Log in with the default credentials are admin:password
+ Browse to Advanced > Administration > Firmware Upgrade in the Netgear
interface
+ Upload the Openwrt firmware: openwrt-ath79-nand-netgear_wndr4300sw-squashfs-factory.img
+ Proceed with the firmware installation and give the device a few
minutes to finish and reboot.
* Flashing through TFTP:
+ Configure your wired client with a static IP in the 192.168.1.x range,
e.g. 192.168.1.10 and netmask 255.255.255.0.
+ Power off the router.
+ Press and hold the RESET button (the factory reset button on the bottom
of the device, with the red circle around it) and turn the router on
while keeping the button pressed.
+ The power LED will start flashing orange. You can release the button
once it switches to flashing green.
+ Transfer the image over TFTP:
$ tftp 192.168.1.1 -m binary -c put openwrt-ath79-nand-netgear_wndr4300sw-squashfs-factory.img
Signed-off-by: Stijn Segers <foss@volatilesystems.org>
Hardware
--------
SoC: Atheros AR9344
RAM: 128M DDR2
FLASH: 2x Macronix MX25L12845EM
2x 16MiB SPI-NOR
WLAN2: Atheros AR9344 2x2 2T2R
WLAN5: Atheros AR9580 2x2 2T2R
SERIAL: Cisco-RJ45 on the back (115200 8n1)
Installation
------------
The U-Boot CLI is password protected (using the same credentials as the
OS). Default is admin/new2day.
1. Download the OpenWrt initramfs-image. Place it into a TFTP server
root directory and rename it to 1401A8C0.img. Configure the TFTP
server to listen at 192.168.1.66/24.
2. Connect the TFTP server to the access point.
3. Connect to the serial console of the access point. Attach power and
interrupt the boot procedure when prompted (bootdelay is 1 second).
4. Configure the U-Boot environment for booting OpenWrt from Ram and
flash:
$ setenv boot_openwrt 'setenv bootargs; bootm 0xbf230000'
$ setenv ramboot_openwrt 'setenv serverip 192.168.1.66;
tftpboot 0x85000000; bootm'
$ setenv bootcmd 'run boot_openwrt'
$ saveenv
5. Load OpenWrt into memory:
$ run ramboot_openwrt
Wait for the image to boot.
6. Transfer the OpenWrt sysupgrade image to the device. Write the image
to flash using sysupgrade:
$ sysupgrade -n /path/to/openwrt-sysuograde.bin
Signed-off-by: David Bauer <mail@david-bauer.net>
This ports support for the TL-WA901ND v4 and v5 from ar71xx to ath79.
They are similar to the TP9343-based TL-WR940N v3/v4 and TL-WR941ND v6.
Specifications:
SoC: TP9343
Flash/RAM: 4/32 MiB
CPU: 750 MHz
WiFi: 2.4 GHz b/g/n
Ethernet: 1 port (100M)
Flashing instructions:
Upload the factory image via the vendor firmware upgrade option.
Flash instruction (TFTP):
1. Set PC to fixed ip address 192.168.0.66
2. Download *-factory.bin image and rename it to * (see below)
3. Start a tftp server with the image file in its root directory
4. Turn off the router
5. Press and hold Reset button
6. Turn on router with the reset button pressed and wait ~15 seconds
7. Release the reset button and after a short time
the firmware should be transferred from the tftp server
8. Wait ~30 second to complete recovery.
* The image name for TFTP recovery is wa901ndv4_tp_recovery.bin for
both variants.
In ar71xx, a MAC address with offset 1 was used for ethernet port.
That's probably wrong, but this commit sticks to it until we know
the correct value.
Like in ar71xx, this builds the default factory.bin with EU country
code.
Thanks to Leonardo Weiss for testing on the v5.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
With the implementation of a sysfs interface to access WLAN data, this
target no longer needs a special wrapper to extract caldata.
Signed-off-by: Thibaut VARÈNE <hacks@slashdirt.org>
This board was previously supported in ar71xx as 'RUT9XX'. The
difference between that and the other RUT955 board already supported in
ath79 is that instead of the SPI shift registers driving the LEDs and
digital outputs that model got an I2C GPIO expander instead.
To support LEDs during early boot and interrupt-driven digital inputs,
I2C support as well as support for PCA953x has to be built-in and
cannot be kernel modules, hence select those symbols for ath79/generic.
Specification:
- 550/400/200 MHz (CPU/DDR/AHB)
- 128 MB of RAM (DDR2)
- 16 MB of FLASH (SPI NOR)
- 4x 10/100 Mbps Ethernet, with passive PoE support on LAN1
- 2T2R 2,4 GHz (AR9344)
- built-in 4G/3G module (example: Quectel EC-25EU)
- internal microSD slot (spi-mmc, buggy and disabled for now)
- RS232 on D-Sub9 port (Cypress ACM via USB, /dev/ttyACM0)
- RS422/RS485 (AR934x high speed UART, /dev/ttyATH1)
- analog 0-24V input (MCP3221)
- various digital inputs and outputs incl. a relay
- 11x LED (4 are driven by AR9344, 7 by PCA9539)
- 2x miniSIM slot (can be swapped via GPIO)
- 2x RP-SMA/F (Wi-Fi), 3x SMA/F (2x WWAN, GPS)
- 1x button (reset)
- DC jack for main power input (9-30 V)
- debugging UART available on PCB edge connector
Serial console (/dev/ttyS0) pinout:
- RX: pin1 (square) on top side of the main PCB (AR9344 is on top)
- TX: pin1 (square) on bottom side
Flash instruction:
Vendor firmware is based on OpenWrt CC release. Use the "factory" image
directly in GUI (make sure to uncheck "keep settings") or in U-Boot web
based recovery. To avoid any problems, make sure to first update vendor
firmware to latest version - "factory" image was successfully tested on
device running "RUT9XX_R_00.06.051" firmware and U-Boot "3.0.1".
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
This adds some still-missing board names for old TP-Link devices
to ath79 SUPPORTED_DEVICES.
Fixes: FS#3017
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The Ubiquiti PowerBeam 5AC Gen 2 (PBE-5AC-Gen2) is an outdoor 802.11ac
5 GHz bridge with a radio feed and a dish antenna. The device is
hardware-compatible with the LiteBeam AC Gen2, plus the 4 extra LEDs.
Specifications:
- SoC: Qualcomm Atheros AR9342 rev 2
- RAM: 64 MB DDR2
- Flash: 16 MB SPI NOR (mx25l12805d)
- Ethernet: 1x 10/100/1000 Mbps Atheros 8035, 24 Vdc PoE-in
- WiFi 5 GHz: QCA988x HW2.0 Ubiquiti target 0x4100016c chip_id 0x043222ff
- WiFi 2.4 GHz: Atheros AR9340 (SoC-based)
- Buttons: 1x (reset)
- LEDs: 1x power, 1x Ethernet, 4x RSSI via GPIO. All blue.
- UART: not tested
Installation from stock airOS firmware:
- Follow instructions for WA-type Ubiquiti devices on OpenWrt wiki
Signed-off-by: Roger Pueyo Centelles <roger.pueyo@guifi.net>
[changed device name in commit title]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
SOC: Qualcomm QCA9556 (Scorpion) 560MHz MIPS74Kc
RAM: 64MB Zentel A3R12E40CBF DDR2
FLASH: 16MiB Winbond W25Q128 SPI NOR
WLAN1: QCA9556 2.4 GHz 802.11b/g/n 3x3
INPUT: WPS button
LED: Power, WiFi, LAN, RSSI indicator
Serial: Header Next to Black metal shield
Pinout is 3.3V - RX - TX - GND (Square Pad is 3.3V)
The Serial setting is 115200-8-N-1.
Installation via EVA:
In the first seconds after Power is connected, the bootloader will
listen for FTP connections on 192.168.178.1. Firmware can be uploaded
like following:
ftp> quote USER adam2
ftp> quote PASS adam2
ftp> binary
ftp> debug
ftp> passive
ftp> quote MEDIA FLSH
ftp> put openwrt-sysupgrade.bin mtd1
Note that this procedure might take up to two minutes.
You need to powercycle the device afterwards to boot OpenWRT.
Tested-by: Andreas Ziegler <dev@andreas-ziegler.de>
Signed-off-by: David Bauer <mail@david-bauer.net>
This commit adds support for the AVM Fritz!WLAN Repeater 1750E
SOC: Qualcomm QCA9556 (Scorpion) 720MHz MIPS74Kc
RAM: 64MB Zentel A3R12E40CBF DDR2
FLASH: 16MiB Winbond W25Q128 SPI NOR
WLAN1: QCA9556 2.4 GHz 802.11b/g/n 3x3
WLAN2: QCA9880 5 GHz 802.11 n/ac 3x3
INPUT: WPS button
LED: Power, WiFi, LAN, RSSI indicator
Serial: Header Next to Black metal shield
Pinout is 3.3V - RX - TX - GND (Square Pad is 3.3V)
The Serial setting is 115200-8-N-1.
Tested and working:
- Ethernet
- 2.4 GHz WiFi (correct MAC)
- 5 GHz WiFi (correct MAC)
- Installation via EVA bootloader
- OpenWRT sysupgrade
- Buttons
- LEDs
Installation via EVA:
In the first seconds after Power is connected, the bootloader will
listen for FTP connections on 192.168.178.1. Firmware can be uploaded
like following:
ftp> quote USER adam2
ftp> quote PASS adam2
ftp> binary
ftp> debug
ftp> passive
ftp> quote MEDIA FLSH
ftp> put openwrt-sysupgrade.bin mtd1
Note that this procedure might take up to two minutes.
You need to powercycle the Device afterwards to boot OpenWRT.
Signed-off-by: David Bauer <mail@david-bauer.net>
This adds the board name from ar71xx to support upgrade without
-F for the TP-Link TL-WA901ND v2.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Specifications:
- Qualcomm QCA9531 + QCA9886
- dual band, antenna 2*3dBi
- Output power 50mW (17dBm)
- 1x 10/100 Mbps LAN RJ45
- 128 MB RAM / 16 MB FLASH (w25q128)
- 3 LEDs (red/green/blue)
incorporated in
"color wheel reset switch"
- UART 115200 8N1
Flashing instructions:
The U-boot bootloader contains a recovery HTTP server
to upload the firmware. Push the reset button while powering the
device on and keep it pressed for ~10 seconds. The device's LEDs will
blink several times and the recovery page will be at
http://192.168.1.1; use it to upload the sysupgrade image.
Alternatively, the original firmware is based on OpenWrt so a
sysupgrade image can be installed via the stock web GUI. Settings from
the original firmware will be saved and restored on the new one, so a
factory reset will be needed. To do so, once the new firmware is flashed,
enter into failsafe mode by pressing the reset button several times during
the boot process, until it starts flashing. Once in failsafe mode, perform
a factory reset as usual.
LED-Info:
The LEDs on the Comfast stock fw have a very proprietary behaviour,
corresponding to the user selected working mode (AP, ROUTER or REPEATER).
In the first two cases, only blue is used for status and LAN signaling. When
using the latter, blue is always off (except for sysupgrade), either red
signals bad rssi on master-link, or green good. Since the default working
mode of OpenWrt resembles that of a router/AP, the default behavior is
implemented accordingly.
MAC addresses (art partition):
location address (example) use in vendor firmware
0x0 xx:xx:xx:xx:xc:f8 -> eth0
0x6 xx:xx:xx:xx:xc:fa -> wlan5g (+2)
0x1002 xx:xx:xx:xx:xc:f9 -> not used
0x5006 xx:xx:xx:xx:xc:fb -> not used
--- xx:xx:xx:xx:xd:02 -> wlan2g (+10)
The same strange situation has already been observed and documented
for COMFAST CF-E560AC.
Signed-off-by: Roman Hampel <rhamp@arcor.de>
Co-developed-by: Joao Albuquerque <joaohccalbu@gmail.com>
Signed-off-by: Joao Albuquerque <joaohccalbu@gmail.com>
[adjust and extend commit message, rebase, minor DTS adjustments,
add correct MAC address for wmac, change RSSI LED names and behavior]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Specifications:
Qualcomm/Atheros QCA9531 + QCA9886
2x 10/100 Mbps Ethernet, with 48v PoE
2T2R 2.4 GHz, 802.11b/g/n
2T2R 5 GHz, 802.11a/n/ac
128MB RAM
16MB SPI Flash
4x LED (Always On Power, LAN, WAN, WLAN)
Flashing Instructions:
Original firmware is based on OpenWRT, so flashing the sysupgrade image on
the factory firmware is sufficient.
Tested: Reset button, WAN LED, LAN LED, Power LED (always on, not much
to test), WLAN LED (one LED only for 2 interfaces, by default it gets
assigned to the first interface), MAC addresses (match factory firmware).
My LAN factory MAC address ends in F2.
use stock_mac art_loc
lan :f2 0x0
wan :f3 0x1002
5g :f4 0x6
2g :f5 0x5006
Since MAC address flash locations do not really match their use in vendor
firmware (e.g. address from 5 GHz calibration data is assigned to 2.4 GHz
WiFi), just calculate the MAC addresses with an offset based on 0x0 address.
Signed-off-by: Chris Morgan <macromorgan@hotmail.com>
[add MAC address comment]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This adds support for the TP-Link TL-MR3420 v3, a later revision of the
v2 with an external gpiochip similar to TP-Link Archer C7 v4.
Specifications:
SOC: Qualcomm Atheros QCA9531
CPU: 650MHz
Flash: 4 MiB
RAM: 32 MiB
WLAN: Qualcomm Atheros QCA9531 bgn 2T2R 2.4 GHz
Ethernet: 5 ports (100M)
Flashing instructions:
- Flash factory image from OEM WebUI:
openwrt-ath79-tiny-tplink_tl-mr3420-v3-squashfs-factory.bin
- Sysupgrade from ath79 image:
openwrt-ath79-tiny-tplink_tl-mr3420-v3-squashfs-sysupgrade.bin
Signed-off-by: Lim Guo Wei <limguowei@gmail.com>
[remove SUPPORTED devices, some typo adjustments, fix WAN MAC
address, fix sorting in 01_leds]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This ports support for the TL-WA860RE v1 range extender from ar71xx
to ath79.
Specifications:
Board: AP123 / AR9341 rev. 3
Flash/RAM: 4/32 MiB
CPU: 535 MHz
WiFi: 2.4 GHz b/g/n
Ethernet: 1 port (100M)
Two external antennas
Flashing instructions:
Upload the factory image via the vendor firmware upgrade option.
Recovery:
Note that this device does not provide TFTP via ethernet like many
other TP-Link devices do. You will have to open the case if you
require recovery beyond failsafe.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Tested-by: Sebastian Knapp <sebastian4842@outlook.com>
This device seems to be identical to the TL-WDR4300, just with
different release date/region and TPLINK_HWID.
Support is added based on the ar71xx implementation.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This patch adds support for the Ubiquiti NanoBridge M (XM), a
802.11n wireless with a feed+dish form factor, with the same board
definition as the Bullet M (XM).
Specifications:
- Atheros AR7241 SoC
- 32 MB RAM
- 8 MB SPI flash
- 1x 10/100 Mbps Ethernet port, 24 Vdc PoE-in
- Power and LAN green LEDs
- 4x RSSI LEDs (red, orange, green, green)
- UART (115200 8N1)
Flashing via stock GUI:
- WARNING: flashing OpenWrt from AirOS v5.6 or newer will brick your
device! Read the wiki for more info.
- Downgrade to AirOS v5.5.x (latest available is 5.5.11) first.
- Upload the factory image via AirOS web GUI.
Flashing via TFTP:
- WARNING: flashing OpenWrt from AirOS v5.6 or newer will brick your
device! Read the wiki for more info.
- Downgrade to AirOS v5.5.x (latest available is 5.5.11) first.
- Use a pointy tool (e.g., pen cap, slotted screwdriver) to keep the
reset button pressed.
- Power on the device (keep reset button pressed).
- Keep pressing until LEDs flash alternatively LED1+LED3 =>
LED2+LED4 => LED1+LED3, etc.
- Release reset button.
- The device starts a TFTP server at 192.168.1.20.
- Set a static IP on the computer (e.g., 192.168.1.21/24).
- Upload via tftp the factory image:
$ tftp 192.168.1.20
tftp> bin
tftp> trace
tftp> put openwrt-ath79-generic-xxxxx-ubnt_nanobridge-m-squashfs-factory.bin
Signed-off-by: Roger Pueyo Centelles <roger.pueyo@guifi.net>
[rebase, fix includes in DTS, add label MAC address, add SOC and
fix sorting in generic-ubnt.mk]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Now that check-size uses IMAGE_SIZE by default, we can skip the argument from
image recipes to reduce redundancy.
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
[do not touch ar71xx]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Place DEVICE_VARS assignments at the top of the file or above Device/Default
to make them easier to find.
For ramips, remove redundant values already present in parent file.
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
[do not touch ar71xx, extend commit message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This adds support for the Ubiquiti Bullet M (AR7240).
Specifications:
- AR7240 SoC @ 400 MHz
- 32 MB RAM
- 8 MB SPI flash
- 1x 10/100 Mbps Ethernet, 24 Vdc PoE-in
- External antenna
- POWER/LAN green LEDs
- 4x RSSI LEDs (red, orange, green, green)
- UART (115200 8N1) on PCB
Flashing via WebUI:
Upload the factory image via the stock firmware web UI.
Attention: airOS firmware versions >= 5.6 have a new bootloader with
an incompatible partition table!
Please downgrade to <= 5.5 _before_ flashing OpenWrt!
Refer to the device's Wiki page for further information.
Flashing via TFTP:
Same procedure as other Ubiquiti M boards.
- Use a pointy tool (e.g., pen cap, paper clip) and keep the reset
button on the device or on the PoE supply pressed
- Power on the device via PoE (keep reset button pressed)
- Keep pressing until LEDs flash alternatively LED1+LED3 =>
LED2+LED4 => LED1+LED3, etc.
- Release reset button
- The device starts a TFTP server at 192.168.1.20
- Set a static IP on the computer (e.g., 192.168.1.21/24)
- Upload via tftp the factory image:
$ tftp 192.168.1.20
tftp> bin
tftp> trace
tftp> put openwrt-ath79-generic-xxxxx-ubnt_bullet-m-ar7240-squashfs-factory.bin
The "fixed-link" section of the device tree is needed to avoid errors like this:
Generic PHY mdio.0:1f:04: Master/Slave resolution failed, maybe conflicting manual settings?
With "fixed-link", the errors go away and eth0 comes up reliably.
Signed-off-by: Russell Senior <russell@personaltelco.net>
[fix SUPPORTED_DEVICES]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
TP-Link Archer D7 v1 is a dual-band AC1750 router + modem.
The router section is based on Qualcomm/Atheros QCA9558 + QCA9880.
The "DSL" section is based on BCM6318 but it's currently not supported.
The Archer D7b seems to differ from the Archer D7 only in the
partition table.
Router section - Specification:
775/650/258 MHz (CPU/DDR/AHB)
128 MB of RAM (DDR2)
16 MB of FLASH (SPI NOR)
3T3R 2.4 GHz
3T3R 5 GHz
4x 10/100/1000 Mbps Ethernet
7x LED, 2x button
UART header on PCB
Known issues:
- Broadband LED (missing GPIO - probably driven by the BCM6318)
- Internet LED (missing GPIO - probably driven by the BCM6318)
- WIFI LED (working only for one interface at a time, while in the
OEM firmware works for both wifi interfaces; thus, this patch does
not set a trigger by default)
- DSL not working (eth0)
UART connection
---------------
J1 HEADER (Qualcomm CPU)
. VCC
. GND
. RX
O TX
J41 HEADER (Broadcom CPU)
. VCC
. GND
. RX
O TX
The following instructions require a connection to the J1 UART header
and are tested for the Archer D7 v1.
For the Archer D7b v1, names should be changed accordingly.
Flash instructions under U-Boot, using UART
------------------------------------------
1. Press "tpl" to stop autobooting and obtain U-Boot CLI access.
2. Setup ip addresses for U-Boot and your tftp server.
3. Issue below commands:
tftpboot 0x81000000 openwrt-ath79-generic-tplink_archer-d7-v1-squashfs-sysupgrade.bin
erase 0x9f020000 +f90000
cp.b 0x81000000 0x9f020000 0xf90000
reset
Initramfs instructions under U-Boot for testing, using UART
----------------------------------------------------------
1. Press "tpl" to stop autobooting and obtain U-Boot CLI access.
2. Setup ip addresses for U-Boot and your tftp server.
3. Issue below commands:
tftpboot 0x81000000 openwrt-ath79-generic-tplink_archer-d7-v1-initramfs-kernel.bin
bootm 0x81000000
4. Here you can backup the original firmware and/or flash the sysupgrade openwrt if you want
Restore the original firmware
-----------------------------
0. Backup every partition using the OpenWrt web interface
1. Download the OEM firmware from the TP-Link website
2. Extract the bin file in a folder (eg. Archer_D7v1_1.6.0_0.9.1_up_boot(160216)_2016-02-16_15.55.48.bin)
3. Remove the U-Boot and the Broadcom image part from the file.
Issue the following command:
dd if="Archer_D7v1_1.6.0_0.9.1_up_boot(160216)_2016-02-16_15.55.48.bin" of="Archer_D7v1_1.6.0_0.9.1_up_boot(160216)_2016-02-16_15.55.48.bin.mod" skip=257 bs=512 count=31872
4. Double check the .mod file size. It must be 16318464 bytes.
5. Flash it using the OpenWrt web interface. Force the update if needed.
WARNING: Remember to NOT keep settings.
5b. (Alternative to 5.) Flash it using the U-Boot and UART connection.
Issue below commands in the U-Boot:
tftpboot 0x81000000 Archer_D7v1_1.6.0_0.9.1_up_boot(160216)_2016-02-16_15.55.48.bin.mod
erase 0x9f020000 +f90000
cp.b 0x81000000 0x9f020000 0xf90000
reset
Signed-off-by: Davide Fioravanti <pantanastyle@gmail.com>
[cosmetic DTS changes, remove TPLINK_HWREVADD := 0, do not use two
phyXtpt at once, add missing buttons, minor commit message adjustments]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
TP-Link Archer C60 v3 is a dual-band AC1350 router,
based on Qualcomm/Atheros QCA9561 + QCA9886.
It seems to be identical to the v2 revision, except that
it lacks a WPS LED and has different GPIO for amber WAN LED.
Specification:
- 775/650/258 MHz (CPU/DDR/AHB)
- 64 MB of RAM (DDR2)
- 8 MB of FLASH (SPI NOR)
- 3T3R 2.4 GHz
- 2T2R 5 GHz
- 5x 10/100 Mbps Ethernet
- 6x LED, 2x button
- UART header on PCB
Flash instruction (WebUI):
Download *-factory.bin image and upload it via the firmwary upgrade
function of the stock firmware WebUI.
Flash instruction (TFTP):
1. Set PC to fixed IP address 192.168.0.66
2. Download *-factory.bin image and rename it to tp_recovery.bin
3. Start a tftp server with the file tp_recovery.bin in its root
directory
4. Turn off the router
5. Press and hold reset button
6. Turn on router with the reset button pressed and wait ~15 seconds
7. Release the reset button and after a short time the firmware should
be transferred from the tftp server
8. Wait ~30 second to complete recovery
While TFTP works for OpenWrt images, my device didn't accept the
only available official firmware "Archer C60(EU)_V3.0_190115.bin".
In contrast to earlier revisions (v2), the v3 contains the (same)
MAC address twice, once in 0x1fa08 and again in 0x1fb08.
While the partition-table on the device refers to the latter, the
firmware image contains a different partition-table for that region:
name device firmware
factory-boot 0x00000-0x1fb00 0x00000-0x1fa00
default-mac 0x1fb00-0x1fd00 0x1fa00-0x1fc00
pin 0x1fd00-0x1fe00 0x1fc00-0x1fd00
product-info 0x1fe00-0x1ff00 0x1fd00-0x1ff00
device-id 0x1ff00-0x20000 0x1ff00-0x20000
While the MAC address is present twice, other data like the PIN isn't,
so with the partitioning from the firmware image the PIN on the device
would actually be outside of its partition.
Consequently, the patch uses the MAC location from the device (which
is the same as for the v2).
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Since there exists another variant of the Bullet M with AR7240 SoC
under the same name, this patch introduces the SoC into the device
name to be able to distinguish these variants.
Signed-off-by: Russell Senior <russell@personaltelco.net>
[add commit message, adjust model in DTS, fix 02_network and
SUPPORTED_DEVICES]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* Prepare to support the AR7240 variant of ubiquiti bullet m, by
reorganizing the related dtsi files.
* Distribute SOC variable across ubnt-xm devices.
Signed-off-by: Russell Senior <russell@personaltelco.net>
So far, specifying "BOARD_NAME := routerboard" is required by the
upgrade code of Mikrotik NAND devices, as "sysupgrade-routerboard"
is hardcoded in platform_do_upgrade_mikrotik_nand().
This patch replaces the latter with a grep for the name like it
is already done in nand_upgrade_tar() in /lib/upgrade/nand.sh.
By that, BOARD_NAME is obsolete now for this device.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This commit creates the ath79/mikrotik subtarget in order to support
MikroTik devices based on Qualcomm Atheros MIPS SoCs.
MikroTik devices need a couple of specific features: the split MiNOR
firmware MTD format, which is not used by other devices, and the 4k
sector erase size on SPI NOR storage, which can not be added to the
ath79/generic and ath79/nand subtargets now.
Additionally, the commit moves the two MikroTik devices already in
the generic and nand subtargets to this new one.
Tested on the RB922 board and the wAP AC router.
Signed-off-by: Roger Pueyo Centelles <roger.pueyo@guifi.net>
Currently kmod-i2c-* will not get into images unless kmod-i2c-core is added to
DEVICE_PACKAGES as well. By changing the dependencies from "depends on" to
"select", we do not have the issue anymore.
Furthermore, we can remove most occurrences of the package from DEVICE_PACKAGES
and similar variables, as it is now pulled by dependent modules such as:
- kmod-hwmon-lm75
- kmod-i2c-gpio
- kmod-i2c-gpio-custom
- kmod-i2c-mux
- kmod-i2c-ralink
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
[do not touch ar71xx]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This adds support for the TP-Link TL-WR740N v5, a clone of the
v4 only with a different TPLINK_HWID. It was already supported
in ar71xx as well.
Specifications:
SOC: Atheros AR9331
CPU: 400MHz
Flash: 4 MiB
RAM: 32 MiB
WLAN: Atheros AR9330 bgn
Ethernet: 5 ports (100M)
Flashing instructions:
- Flash factory image from OEM WebUI:
openwrt-ath79-tiny-tplink_tl-wr740n-v5-squashfs-factory.bin
- Sysupgrade from ar71xx image:
openwrt-ath79-tiny-tplink_tl-wr740n-v5-squashfs-sysupgrade.bin
Signed-off-by: Jun Su <howard0su@gmail.com>
[commit title/message facelift]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
IMAGE_SIZE is widely used in many targets. Declare it in the default template to
clean up redundant code. This also prevents deriving IMAGE_SIZE unintentionally
from the previously defined device.
While at it, remove duplicate KERNEL_SIZE declaration.
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
This applies the common indent (one tab) for the wrapped lines of
domywifi_dw33d and glinet_gl-ar750s-nor-nand.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Sitecom WLR-8100 v1 002 (marketed as X8 AC1750) is a dual band wireless
router.
Specification:
- Qualcomm Atheros SoC QCA9558
- 128 MB of RAM (DDR2)
- 16 MB of FLASH (Macronix MX25L12845EMI-10G - SPI NOR)
- 5x 10/100/1000 Mbps Ethernet
- 3T3R 2.4 GHz (QCA9558 WMAC)
- 3T3R 5.8 Ghz (QCA9880-BR4A)
- 1x USB 3.0 (Etron EJ168A)
- 1x USB 2.0
- 9x LEDs
- 2x GPIO buttons
Everything working.
Installation and restore procedure tested
Installation
1. Connect to one of LAN (yellow) ethernet ports,
2. Open router configuration interface,
3. Go to Toolbox > Firmware,
4. Browse for OpenWrt factory image with dlf extension and hit Apply,
5. Wait few minutes, after the Power LED will stop blinking, the router
is ready for configuration.
Restore OEM FW (Linux only)
1. Download OEM FW from website (tested with WLR-8100v1002-firmware-v27.dlf)
2. Compile the FW for this router and locate the "mksenaofw" tool
in build_dir/host/firmware-utils/bin/ inside the OpenWrt buildroot
3. Execute "mksenaofw -d WLR-8100v1002-firmware-v27.dlf -o WLR-8100v1002-firmware-v27.dlf.out" where:
WLR-8100v1002-firmware-v27.dlf is the path to the input file
(use the downloaded file)
WLR-8100v1002-firmware-v27.dlf.out is the path to the output file
(you can use the filename you want)
4. Flash the new WLR-8100v1002-firmware-v27.dlf.out file. WARNING: Do not keep settings.
Additional notes.
The original firmware has the following button configuration:
- Press for 2s the 2.4GHz button: WPS for 2.4GHz
- Press for 2s the 5GHz button: WPS for 5GHz
- Press for 15s both 2.4GHz and 5GHz buttons: Reset
I am not able to replicate this behaviour, so I used the following configuration:
- Press the 2.4GHz button: RFKILL (disable/enable every wireless interfaces)
- Press the 5GHz button: Reset
Signed-off-by: Davide Fioravanti <pantanastyle@gmail.com>
This patch support Devolo Magic 2 WIFI, board devolo_dlan2-2400-ac.
This device is a plc wifi AC2400 router/extender with 2 Ethernet
ports, has a G.hn PLC and uses LCMP protocol from Home Grid Forum.
Hardware:
SoC: AR9344
CPU: 560 MHz
Flash: 16 MiB (W25Q128JVSIQ)
RAM: 128 MiB DDR2
Ethernet: 2xLAN 10/100/1000
PLC: 88LX5152 (MaxLinear G.hn)
PLC Flash: W25Q32JVSSIQ
PLC Uplink: 1Gbps MIMO
PLC Link: RGMII 1Gbps (WAN)
WiFi: Atheros AR9340 2.4GHz 802.11bgn
Atheros AR9882-BR4A 5GHz 802.11ac
Switch: QCA8337, Port0:CPU, Port2:PLC, Port3:LAN1, Port4:LAN2
Button: 3x Buttons (Reset, wifi and plc)
LED: 3x Leds (wifi, plc white, plc red)
GPIO Switch: 11-PLC Pairing (Active Low)
13-PLC Enable
21-WLAN power
MACs Details verified with the stock firmware:
Radio1: 2.4 GHz &wmac *:4c Art location: 0x1002
Radio0: 5.0 GHz &pcie *:4d Art location: 0x5006
Ethernet ðernet *:4e = 2.4 GHz + 2
PLC uplink --- *:4f = 2.4 GHz + 3
Label MAC address is from PLC uplink
OEM SSID: echo devolo-$(grep SerialNumber /dev/mtd1 | grep -o ...$)
OEM WiFi password: grep DlanSecurityID /dev/mtd1|tr -d -|cut -d'=' -f 2
Recommendations: Configure and link your PLC with OEM firmware
BEFORE you flash the device. PLC configuration/link should
remain in different memory and should work straight forward
after flashing.
Restrictions: PLC link detection to trigger plc red led is not
available. PLC G.hn chip is not compatible with open-plc-tools,
it uses LCMP protocol with AES-128 and requires different
software.
Notes: Pairing should be possible with gpio switch. Default
configuration will trigger wifi led with 2.4Ghz wifi traffic
and plc white led with wan traffic.
Flash instruction (TFTP):
1. Set PC to fixed ip address 192.168.0.100
2. Download the sysupgrade image and rename it to uploadfile
3. Start a tftp server with the image file in its root directory
4. Turn off the router
5. Press and hold Reset button
6. Turn on router with the reset button pressed and wait ~15 seconds
7. Release the reset button and after a short time
the firmware should be transferred from the tftp server
8. Allow 1-2 minutes for the first boot.
Signed-off-by: Manuel Giganto <mgigantoregistros@gmail.com>
This commit ports the device from ar71xx to the ath79 target and
modifies the partition layout.
1. Firmware is installed to nand flash.
2. Modify the uboot-env parameter to boot from the nand flash.
3. The kernel size is extended to 5M.
4.nor flash retains the oem firmware.
oem partition layout
dev: size erasesize name
mtd0: 00040000 00010000 "u-boot"
mtd1: 00010000 00010000 "u-boot-env"
mtd2: 00e30000 00010000 "rootfs"
mtd3: 00170000 00010000 "kernel"
mtd4: 00010000 00010000 "art"
mtd5: 00f90000 00010000 "firmware"
mtd6: 06000000 00020000 "rootfs_data"
mtd7: 02000000 00020000 "backup"
new partition layout
dev: size erasesize name
mtd0: 00040000 00010000 "u-boot"
mtd1: 00010000 00010000 "u-boot-env"
mtd2: 00fa0000 00010000 "oem-firmware"
mtd3: 00010000 00010000 "art"
mtd4: 00500000 00020000 "kernel"
mtd5: 05b00000 00020000 "ubi"
mtd6: 02000000 00020000 "oem-backup"
MAC address overview:
All mac addresses are stored in the art partition.
eth0: 0x0
eth1: 0x6
ath9k: 0xc
ath10k: 0x12
No valid addresses in 0x1002 and 0x5006. All addresses match the OEM
firmware.
Install from oem firmware.
Enable ssh service:
Connect to the router web, click professional, click system-startup,
and add dropbear in the local startup input box. Click
system-administration, delete ssh-key, and replace your ssh pub key.
Restart the router.
1.Upload openwrt firmware to the device
scp openwrt-snapshot-r11365-df60a0852c-ath79-nand-domywifi_dw33d-\
squashfs-factory.bin root@192.168.10.1:/tmp
2.modify uboot-env.
ssh login to the device:
fw_setenv bootcmd 'nboot 0x8050000 0;bootm || bootm 0x9fe80000'
Run the fw_printenv command to check if the settings are correct.
3.Write openwrt firmware.
ssh login to the device:
mtd -r write /tmp/openwrt-snapshot-r11365-df60a0852c-ath79-nand-\
domywifi_dw33d-squashfs-factory.bin /dev/mtd6
The device will restart automatically and the openwrt firmware
installation is complete.
Restore oem firmware.just erase the kernel partition and the ubi
partition.
ssh login to the device:
mtd erase /dev/mtd4
mtd -r erase /dev/mtd5
Reboot the device
Signed-off-by: WeiDong Jia <jwdsccd@gmail.com>
[alter flash instruction in commit message]
Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
This patch ports support for the MikroTik RouterBOARD 922UAGS-5HPacD
with a built-in 802.11ac High-Power radio (31dBm), which was already
available in the ar71xx target.
See https://mikrotik.com/product/RB922UAGS-5HPacD for more info.
Specifications:
- SoC: Qualcomm Atheros QCA9558 (720 MHz)
- RAM: 128 MB
- Storage: 128 MB NAND
- Wireless: external QCA9882 802.11a/ac 2x2:2
- Ethernet: 1x 1000/100/10 Mbps, integrated, via AR8031 PHY, passive PoE-in 24V
- SFP: 1x host
- USB: 1x 2.0 type A
- PCIe: 1x Mini slot (also contains USB 2.0 for 3G/LTE modems)
- SIM slot: 1x mini-SIM
Working:
- Board/system detection
- SPI and NAND storage
- PCIe
- USB type A host
- Wireless
- Ethernet
- LEDs (user, phy0)
- Reset button
- Sysupgrade to/from ar71xx
Not supported:
- RSSI LEDs
- SFP cage
Installation methods:
- Sysupgrade from ar71xx (it is advisable to use the -n option to
wipe any previous settings), or
- Boot the initramfs image via TFTP and then flash the sysupgrade
image using "sysupgrade -n"
Signed-off-by: Roger Pueyo Centelles <roger.pueyo@guifi.net>
Specification:
- 550/400/200 MHz (CPU/DDR/AHB)
- 128 MB of RAM (DDR2)
- 16 MB of FLASH (SPI NOR)
- 4x 10/100 Mbps Ethernet, with passive PoE support on LAN1
- 2T2R 2,4 GHz (AR9344)
- built-in 4G/3G module (example: Quectel EC-25EU)
- internal microSD slot (spi-mmc, buggy and disabled for now)
- RS232 on D-Sub9 port (Cypress ACM via USB, /dev/ttyACM0)
- RS422/RS485 (AR934x high speed UART, /dev/ttyATH1)
- analog 0-24V input (MCP3221)
- various digital inputs and outputs incl. a relay
- 11x LED (4 are driven by AR9344, 7 by 74HC595)
- 2x miniSIM slot (can be swapped via GPIO)
- 2x RP-SMA/F (Wi-Fi), 3x SMA/F (2x WWAN, GPS)
- 1x button (reset)
- DC jack for main power input (9-30 V)
- debugging UART available on PCB edge connector
Serial console (/dev/ttyS0) pinout:
- RX: pin1 (square) on top side of the main PCB (AR9344 is on top)
- TX: pin1 (square) on bottom side
Flash instruction:
Vendor firmware is based on OpenWrt CC release. Use the "factory" image
directly in GUI (make sure to uncheck "keep settings") or in U-Boot web
based recovery. To avoid any problems, make sure to first update vendor
firmware to latest version - "factory" image was successfully tested on
device running "RUT9XX_R_00.06.051" firmware and U-Boot "3.0.2".
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
This adds support for the various clones of the TL-WA830RE recently
supported in fb99ac6807 ("ath79: add support for TP-Link TL-WA830RE v1"):
- tplink,tl-wa701nd-v1
- tplink,tl-wa730re-v1
- tplink,tl-wa801nd-v1
- tplink,tl-wa830re-v1 (already supported)
- tplink,tl-wa901nd-v1
Since these devices are 100%-clones in ar71xx, this patch adds all
of them without run-testing (as this has been done for TL-WA830RE v1).
Specifications:
- SOC: Atheros AR7240
- CPU: 400MHz
- Flash: 4 MiB (Spansion S25FL032P)
- RAM: 32 MiB (Zentel A3S56D40FTP-G5)
- WLAN: Atheros AR9280 bgn 2x2
- Ethernet: 1 port (100M)
Flash instructions:
- install from u-boot with tftp (requires serial access)
> setenv ipaddr a.b.c.d
> setenv serverip e.f.g.h
> tftpboot 0x80000000 \
openwrt-ath79-tiny-tplink_tl-waxxxxx-v1-squashfs-factory.bin
> erase 0x9f020000 +0x3c0000
> cp.b 0x80000000 0x9f020000 0x3c0000
> bootm 0x9f020000
- flash factory image from OEM WebUI
- sysupgrade from ar71xx image
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
With the wrong blocksize, the rootfs was not positioned on the boundary
of a block, thus breaking the mtdsplit driver.
Signed-off-by: David Bauer <mail@david-bauer.net>
This adds support for the Ubiquiti Picostation M (XM), which has the
same board/LEDs as the Bullet M XM, but different case and antennas.
Specifications:
- AR7241 SoC @ 400 MHz
- 32 MB RAM
- 8 MB SPI flash
- 1x 10/100 Mbps Ethernet, 24 Vdc PoE-in
- External antenna: 5 dBi (USA), 2 dBi (EU)
- POWER/LAN green LEDs
- 4x RSSI LEDs (red, orange, green, green)
- UART (115200 8N1) on PCB
Flashing via WebUI:
Upload the factory image via the stock firmware web UI.
Attention: airOS firmware versions >= 5.6 have a new bootloader with
an incompatible partition table!
Please downgrade to <= 5.5 _before_ flashing OpenWrt!
Refer to the device's Wiki page for further information.
Flashing via TFTP:
Same procedure as other NanoStation M boards.
- Use a pointy tool (e.g., pen cap, paper clip) and keep the reset
button on the device or on the PoE supply pressed
- Power on the device via PoE (keep reset button pressed)
- Keep pressing until LEDs flash alternatively LED1+LED3 =>
LED2+LED4 => LED1+LED3, etc.
- Release reset button
- The device starts a TFTP server at 192.168.1.20
- Set a static IP on the computer (e.g., 192.168.1.21/24)
- Upload via tftp the factory image:
$ tftp 192.168.1.20
tftp> bin
tftp> trace
tftp> put openwrt-ath79-generic-xxxxx-ubnt_picostation-m-squashfs-factory.bin
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This adds support for the Ubiquiti Nanostation Loco M (XM), which
has the same board/LEDs as the Bullet M XM, but different case and
antennas.
Specifications:
- AR7241 SoC @ 400 MHz
- 32 MB RAM
- 8 MB SPI flash
- 1x 10/100 Mbps Ethernet, 24 Vdc PoE-in
- NS Loco M2: built-in antenna: 8 dBi; AR9287
- NS Loco M5: built-in antenna: 13 dBi; 2T2R 5 GHz radio
- POWER/LAN green LEDs
- 4x RSSI LEDs (red, orange, green, green)
- UART (115200 8N1) on PCB
Flashing via WebUI:
Upload the factory image via the stock firmware web UI.
Note that only certain firmware versions accept unsigned
images. Refer to the device's Wiki page for further information.
Flashing via TFTP:
Same procedure as other NanoStation M boards.
- Use a pointy tool (e.g., pen cap, paper clip) and keep the reset
button on the device or on the PoE supply pressed
- Power on the device via PoE (keep reset button pressed)
- Keep pressing until LEDs flash alternatively LED1+LED3 =>
LED2+LED4 => LED1+LED3, etc.
- Release reset button
- The device starts a TFTP server at 192.168.1.20
- Set a static IP on the computer (e.g., 192.168.1.21/24)
- Upload via tftp the factory image:
$ tftp 192.168.1.20
tftp> bin
tftp> trace
tftp> put openwrt-ath79-generic-xxxxx-ubnt_nanostation-loco-m-squashfs-factory.bin
Tested on NanoStation Loco M2.
Signed-off-by: Sven Roederer <freifunk@it-solutions.geroedel.de>
Co-developed-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Several devices with tplink-safeloader contain default values (0x0)
for TPLINK_HWID and TPLINK_HWREV in their device definitions.
Move those to common tplink-safeloader definition so they do not
have to be repeated each time.
While at it, set default value for tplink-v1 and tplink-v2 as well.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Hardware
--------
SoC: Atheros AR7161
RAM: Samsung K4H511638D-UCCC
2x 64M DDR1
SPI: Micron M25P128 (16M)
WiFi: Atheros AR9160 bgn
Atheros AR9160 an
ETH: Broadcom BCM5481
LED: Power (Green/Red)
ETH (Green / Blue / Yellow)
(PHY-controlled)
WiFi 5 (Green / Blue)
WiFi 2 (Green / Blue)
BTN: Reset
Serial: Cisco-Style RJ45 - 115200 8N1
Installation
------------
1. Download the OpenWrt initramfs-image. Place it into a TFTP server
root directory and rename it to 1401A8C0.img. Configure the TFTP
server to listen at 192.168.1.66/24.
2. Connect the TFTP server to the access point.
3. Connect to the serial console of the access point. Attach power and
interrupt the boot procedure when prompted (bootdelay is 1 second).
4. Configure the U-Boot environment for booting OpenWrt from Ram and
flash:
$ setenv boot_openwrt 'setenv bootargs; bootm 0xbf080000'
$ setenv ramboot_openwrt 'setenv serverip 192.168.1.66;
tftpboot; bootm'
$ saveenv
5. Load OpenWrt into memory:
$ run ramboot_openwrt
Wait for the image to boot.
6. Transfer the OpenWrt sysupgrade image to the device. Write the image
to flash using sysupgrade:
$ sysupgrade -n /path/to/openwrt-sysuograde.bin
Signed-off-by: David Bauer <mail@david-bauer.net>
The TL-WR940N v6 is similar to v3/v4, it just has different
LEDs and MAC address assignment.
Specification:
- 750 MHz CPU
- 32 MB of RAM
- 4 MB of FLASH
- 2.4 GHz WiFi
- 4x 10/100 Mbps Ethernet
The use of LEDs is based on ar71xx, so blue LED is used for WAN
and orange LED for diag (boot/failsafe/etc.).
Flash instruction (WebUI):
Download *-factory.bin image and upload it via the firmwary upgrade
function of the stock firmware WebUI.
Flash instruction (TFTP):
1. Set PC to fixed ip address 192.168.0.66
2. Download *-factory.bin image and rename it to
wr940nv6_tp_recovery.bin
3. Start a tftp server with the image file in its root directory
4. Turn off the router
5. Press and hold Reset button
6. Turn on router with the reset button pressed and wait ~15 seconds
7. Release the reset button and after a short time
the firmware should be transferred from the tftp server
8. Wait ~30 second to complete recovery.
Thanks to Manuel Kock for reviewing and testing this patch.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Tested-by: Manuel Kock <github.web@manu.li>
This adds the ar71xx board name to the SUPPORTED_DEVICES on ath79,
so forceless sysupgrade on this device becomes possible.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This ports support for the TL-WA830RE v1 range extender from ar71xx to
ath79.
Specifications:
- SOC: Atheros AR7240
- CPU: 400MHz
- Flash: 4 MiB (Spansion S25FL032P)
- RAM: 32 MiB (Zentel A3S56D40FTP-G5)
- WLAN: Atheros AR9280 bgn 2x2
- Ethernet: 1 port (100M)
Flash instructions:
- install from u-boot with tftp (requires serial access)
> setenv ipaddr a.b.c.d
> setenv serverip e.f.g.h
> tftpboot 0x80000000 \
openwrt-ath79-tiny-tplink_tl-wa830re-v1-squashfs-factory.bin
> erase 0x9f020000 +0x3c0000
> cp.b 0x80000000 0x9f020000 0x3c0000
> bootm 0x9f020000
- flash factory image from OEM WebUI
- sysupgrade from ar71xx image
The device seems to be a clone of the following devices not yet
added to ath79:
- tl-wa701nd-v1
- tl-wa730re-v1
- tl-wa801nd-v1
- tl-wa901nd-v1
Signed-off-by: Christian Buschau <christian.buschau@mailbox.org>
[make use of ar7240_tplink.dtsi, add note about clones]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This commit adds support for the COMFAST CF-E560AC, an ap143 based
in-wall access point.
Specifications:
- SoC: Qualcomm Atheros QCA9531
- RAM: 128 MB DDR2 (Winbond W971GG6SB-25)
- Storage: 16 MB NOR (Winbond 25Q128JVSO)
- WAN: 1x 10/100 PoE ethernet (48v)
- LAN: 4x 10/100 ethernet
- WLAN1: QCA9531 - 802.11b/g/n - 2x SKY85303-21 FEM
- WLAN2: QCA9886 - 802.11ac/n/a - 2x SKY85735-11 FEM
- USB: one external USB2.0 port
- UART: 3.3v, 2.54mm headers already populated on board
- LED: 7x external
- Button: 1x external
- Boot: U-Boot 1.1.4 (pepe2k/u-boot_mod)
MAC addressing:
- stock
LAN *:40 (label)
WAN *:41
5G *:42
2.4G *:4a
- flash (art partition)
0x0 *:40 (label)
0x6 *:42
0x1002 *:41
0x5006 *:43
This device contains valid MAC addresses in art 0x0, 0x6, 0x1002 and
0x5006, however the vendor firmware only reads from art:0x0 for the LAN
interface and then increments in 02_network. They also jump 8 addresses
for the second wifi interface (2.4 GHz). This behavior has been duplicated
in the DTS and ath10k hotplug to align addresses with the vendor firmware
v2.6.0.
Recovery instructions:
This device contains built-in u-boot tftp recovery.
1. Configure PC with static IP 192.168.1.10/24 and tftp server.
2. Place desired image at /firmware_auto.bin at tftp root.
3. Connect device to PC, and power on.
4. Device will fetch flash from tftp, flash and reboot into new image.
Signed-off-by: August Huber <auh@google.com>
[move jtag_disable_pins, remove unnecessary statuses in DTS, remove
duplicate entry in 11-ath10k-caldata, remove hub_port0 label in DTS]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Adapt Netgear WNDR3700v2 device identification string to ath79 naming
scheme by changing from 'wndr3700v2' to 'wndr3700-v2' (affects config,
makefile, init scripts and device tree definition).
Signed-off-by: Michal Cieslakiewicz <michal.cieslakiewicz@wp.pl>
This adds a shared definition Device/tplink-v2 to common-tp-link.mk.
Though currently only one device in ath79 uses it, putting it in
the common file seems more organized. The definitions are based
on the implementation in ramips target, where a lot of devices
is using tplink-v2-* commands already.
The '-V "ver. 2.0"' suffix for Archer D50 v1 can be removed because
it's default in Build/tplink-v2-image anyway.
While at it, add TPLINK_HWREVADD and TPLINK_HVERSION to DEVICE_VARS,
which seems to have been overlooked when adding Archer D50 v1.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This renames Device/tplink-loader-okli to Device/tplink-safeloader-okli
since the latter more accurately describes the combination of
tplink-safeloader and loader-okli use there. The old version might
be confused with other uses of the okli loader.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
As we have tplink-v2-header and tplink-v2-image recipes as well,
this patch renames the Device/tplink definition to Device/tplink-v1,
as it's using the tplink-v1-* commands. This should provide easier
distinction in the future.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This commit adds support for the NanoStation Loco M2/M5 XW devices
on the ath79 target (support was long ago available on ar71xx).
Specifications:
- AR9342 SoC @ 535 MHz
- 64 MB RAM
- 8 MB SPI flash
- 1x 10/100 Mbps Ethernet, 24 Vdc PoE-in
- AR8032 switch
- 2T2R 5 GHz radio, 22 dBm
- 13 dBi built-in antenna
- POWER/LAN green LEDs
- 4x RSSI LEDs (red, orange, green, green)
- UART (115200 8N1) on PCB
Flashing via TFTP:
- Use a pointy tool (e.g., pen cap, paper clip) and keep the reset
button on the device or on the PoE supply pressed
- Power on the device via PoE (keep reset button pressed)
- Keep pressing until LEDs flash alternatively LED1+LED3 =>
LED2+LED4 => LED1+LED3, etc.
- Release reset button
- The device starts a TFTP server at 192.168.1.20
- Set a static IP on the computer (e.g., 192.168.1.21/24)
- Upload via tftp the factory image:
$ tftp 192.168.1.20
tftp> bin
tftp> trace
tftp> put openwrt-ath79-generic-xxxxx-ubnt_nanostation-loco-m-xw-squashfs-factory.bin
Signed-off-by: Roger Pueyo Centelles <roger.pueyo@guifi.net>
This ports the GL.iNet 6408/6416 from ar71xx.
The GL-Connect GL.iNet v1 routers are basically a TP-Link TL-WR710N with
more DRAM/Flash and console/GPIO header in the same small form-factor.
Specifications:
- SoC: Atheros AR9331
- CPU: 400 MHz
- Flash: 8/16 MiB
- RAM: 64 MiB
- WiFi: 2.4 GHz b/g/n (SoC)
- Ethernet: 2x 100M ports (LAN/WAN)
- USB: 1x 2.0
The difference between 6408 and 6416 is just the flash size. It looks like
only the 16 MiB version has been advertised, while the 6408 is a modified
version. There are also 1-port versions sold by third parties.
Installation:
Install the sysupgrade image via stock firmware GUI or upload it via uboot
(web-based). The device will be available at 192.168.1.1.
Attention: In ar71xx, the same board name is used for both flash versions.
So, please make sure you flash the correct ath79 image when upgrading.
This has been device-tested on a GL.iNet 6416.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Based on a script for comparison, this fixes (hopefully) all errors
in SUPPORTED_DEVICES for ar71xx->ath79 upgrade.
Devices where old string is removed as the device does not exist
in ar71xx:
- dlink_dir-859-a1
- tplink_archer-a7-v5
- tplink_cpe510-v3
Devices where string is changed because it did not match the board
name in ar71xx:
- tplink_tl-mr3220-v1
- tplink_tl-mr3420-v1
- tplink_tl-wr2543-v1
- tplink_tl-wr741nd-v4
- tplink_tl-wr841-v7
- ubnt_unifiac-mesh
- ubnt_unifiac-mesh-pro
- ubnt_unifiac-pro
For this device, the correct string could not be found, but we could
not determine the correct one. Thus, the string is removed for now:
- tplink_tl-wr740n-v4
The script for checking this is quite simple (note that newer
entries, i.e. ath79->ath79 upgrade, are displayed as missing):
newpath=target/linux/ath79/image/
oldpath=target/linux/ar71xx/base-files/lib/ar71xx.sh
for s in $(grep -roh "SUPPORTED_DEVICES.*" $newpath | sed 's/SUPPORTED_DEVICES *.= *//'); do
found="Missing"
grep -q -r "\"$s\"" $oldpath && found="Found"
echo "$s: $found."
done
The errors might be filtered by appending 'grep "Missing"' to the script.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
In certain cases, the uncompressed initramfs image will overwrite
the lzma-loader, which is currently only 10 MB away from kernel image
start. To prevent this, change LZMA_TEXT_START to 24 MB, so loader
and compressed image have 8 MB at the end of RAM and uncompressed
image has 24 MB available.
This is only enabled for ath79 at the moment, as there we can be sure
that all devices have 32+ MB RAM and TARGET_INITRAMFS_COMPRESSION_LZMA
is not enabled there.
Despite, since lzma-loader is currently build specifically for ath79
anyway, there is no need to re-specify LOADADDR and LZMA_TEXT_START
in image/Makefile, so the values are set directly in
image/lzma-loader/Makefile and the overwrite in image/Makefile is
removed.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Tested-by: Koen Vandeputte <koen.vandeputte@ncentric.com>
This commit adds support for the MikroTik RouterBOARD wAP G-5HacT2HnD
(wAP AC), a small weatherproof dual band, dual-radio 802.11ac
wireless AP with integrated omnidirectional anntennae and one
10/100/1000 Mbps Ethernet port.
See https://mikrotik.com/product/RBwAPG-5HacT2HnD for more info.
Specifications:
- SoC: Qualcomm Atheros QCA9556
- RAM: 64 MB
- Storage: 16 MB NOR
- Wireless:
· Atheros AR9550 (SoC) 802.11b/g/n 2x2:2, 2 dBi antennae
· Qualcomm QCA9880 802.11a/n/ac 3x3:3, 2 dBi antennae
- Ethernet: Atheros AG71xx (SoC, AR8033), 1x 1000/100/10 port,
passive PoE in
Working:
- Board/system detection
- Sysupgrade
- Serial console
- Ethernet
- 2.4 GHz radio
- 5 GHz radio and LED
- Reset button
Not working/Unsupported:
- 2.4 GHz LED
- AP/CAP LED
- ZT2046Q SPI temperature and voltage sensor
This adds the basic features for supporting MikroTik devices:
- a common recipe for mikrotik images in common-mikrotik.mk
- support for minor (MikroTik NOR) split firmware (only for
generic subtarget so far)
Acknowledgments: Robert Marko <robimarko@gmail.com>
Andrew Cameron <apcameron@softhome.net>
Koen Vandeputte <koen.vandeputte@ncentric.com>
Chuanhong Guo <gch981213@gmail.com>
Signed-off-by: Roger Pueyo Centelles <roger.pueyo@guifi.net>
Co-developed-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Tested-by: Koen Vandeputte <koen.vandeputte@ncentric.com>
TP-Link TL-WA850RE v2 is a wall-plug N300 Wi-Fi range extender,
based on Qualcomm/Atheros QCA9533 v2.
Short specification:
- 550/391/195 MHz (CPU/DDR/AHB)
- 1x 10/100 Mbps Ethernet
- 32 MB of RAM (DDR1)
- 4 MB of FLASH
- 2T2R 2.4 GHz
- 2x internal antennas (embedded on PCB)
- 9x LED (all can be turned off with GPIO15), 2x button
- UART (J3) header on PCB
Flash instruction: use "factory" image directly in vendor GUI.
Warning: this device does not include any kind of recovery mechanism
in the bootloader and disassembling process is not trivial.
You can access vendor firmware over serial line using:
- login: root
- password: sohoadmin
Stock firmware uses label MAC address for WiFi and same with local
bit set for ethernet. Since this is difficult to reproduce with
the toolset of OpenWrt, we just keep both ethernet and WiFi to
the same address here.
This is the first tiny device with tplink-safeloader in ath79.
Firmware partition is only 3648k and thus even smaller than for
the tplink-4m(lzma) devices.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This ports support for the TL-WA850RE v1 range extender from ar71xx
to ath79.
Specifications:
Board: AP123 / AR9341 rev. 3
Flash/RAM: 4/32 MiB
CPU: 535 MHz
WiFi: 2.4 GHz b/g/n
Ethernet: 1 port (100M)
Flashing instructions:
Upload the factory image via the vendor firmware upgrade option.
Recovery:
Note that this device does not provide TFTP via ethernet like many
other TP-Link devices do. You will have to open the case if you
require recovery beyond failsafe.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
TPLINK_BOARD_NAME has been renamed to TPLINK_BOARD_ID a long time
ago (7d6c63d875: "build: rename TPLINK_BOARD_NAME to
TPLINK_BOARD_ID" for ar71xx), and before introducing ath79 target
at all.
TPLINK_BOARD_NAME seems to have been introduced into ath79 target
only by mistake. It has never been used. Remove it.
Fixes: 53c474abbd ("ath79: add new OF only target for QCA MIPS silicon")
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This device is an LTE router supported in ar71xx so far.
As per original commit, hardware specifications (v1.0 EU):
- SoC: QCA9531
- Flash: Winbond W25Q64FV (8MiB)
- RAM: EtronTech EM6AB160TSE-5G (64MiB)
- Wireless: SoC platform only (2.4GHz b/g/n, 2x internal antenna)
- Ethernet: 2NIC (3x100M + 1x100M)
- WWAN: TP-LINK LTE MODULE (2x external detachable antenna)
- Power: DC 12V 1A
Flashing instructions:
You can flash via tftp recovery (serve factory image as /mr6400_tp_recovery.bin
on 192.168.0.66/24, connect to any ethernet port and power on device while
holding the reset button). Flashing via OEM web interface does not work.
Known issues:
- LTE module does not always come up during boot (showing USB enumeration errors). Similar behavior has been reported at least from one user for ar71xx, too. Turning USB off and on again will serve as a workaround.
- eth0 (LAN) always shows carrier as 1 even if no cable is plugged in (this works "correctly" on ar71xx)
Signed-off-by: Enrico Mioso <mrkiko.rs@gmail.com>
[several adjustments]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Tested-by: Filip Moc <lede@moc6.cz>
Kernel partition increase to 4 MiBs for Netgear WNDR3700v4 and WNDR4300
routers breaks sysupgrade image compatibility with ar71xx builds.
Therefore, SUPPORTED_DEVICES variable has to be removed for both devices
from target makefile.
Reported-by: DENG Qingfang <dengqf6@mail2.sysu.edu.cn>
Signed-off-by: Michal Cieslakiewicz <michal.cieslakiewicz@wp.pl>
This patch introduces support for Netgear WNDR4500v3. Router
is very similar to WNDR4300v2 and is based on the same PCB.
Information gathered from various Internet sources (including
https://patchwork.ozlabs.org/patch/809227/) shows following
differences to WNDR4300v2:
* two USB 2.0 ports with separate LEDs
* USB LEDs soldered to secondary pads
* WPS and RFKILL buttons soldered to secondary pads
* described as N900 device with 3x3:3 MIMO for 2.4GHz radio
* power supply requirement is DC 12V 2.5A
* vendor HW ID suffix differs in one digit
* bigger chassis
Signed-off-by: Michal Cieslakiewicz <michal.cieslakiewicz@wp.pl>
This patch introduces support for Netgear WNDR4300v2.
Specification
=============
* Description: Netgear WNDR4300 v2
* Loader: U-boot
* SOC: Qualcomm Atheros QCA9563 (775 MHz)
* RAM: 128 MiB
* Flash: 2 MiB SPI-NOR + 128 MiB SPI-NAND
- NOR: U-boot binary: 256 KiB
- NOR: U-boot environment: 64 KiB
- NOR: ART Backup: 64 KiB
- NOR: Config: 64 KiB
- NOR: Traffic Meter: 64 KiB
- NOR: POT: 64 KiB
- NOR: Reserved: 1408 KiB
- NOR: ART: 64 KiB
- NAND: Firmware: 25600 KiB (see notes for OpenWrt)
- NAND: Language: 2048 KiB
- NAND: mtdoops Crash Dump: 128 KiB
- NAND: Reserved: 103296 KiB
* Ethernet: 5 x 10/100/1000 (4 x LAN, 1 x WAN) (AR8337)
* Wireless:
- 2.4 GHz b/g/n (internal)
- 5 GHz a/n (AR9580)
* USB: yes, 1 x USB 2.0
* Buttons:
- Reset
- WiFi (rfkill)
- WPS
* LEDs:
- Power (amber/green)
- WAN (amber/green)
- WLAN 2G (green)
- WLAN 5G (blue)
- 4 x LAN (amber/green)
- USB (green)
- WPS (green)
* UART: 4-pin connector JP1, 3.3V (Vcc, TX, RX, GND), 115200 8N1
* Power supply: DC 12V 1.5A
* MAC addresses: LAN=WLAN2G on case label, WAN +1, WLAN5G +2
Important Notes
===============
0. NOR Flash (2 MiB) is not touched by OpenWrt installation.
1. NAND Flash (128 MiB) layout under OpenWrt is changed as follows:
all space is split between 4 MiB kernel and 124 MiB UBI areas;
vendor partitions (language and mtdoops) are removed; kernel space
size can be further expanded if needed; maximum image size is set
to 25600k for compatibility reasons and can also be increased.
2. CPU clock is 775 MHz, not 750 MHz.
3. 5 GHz wireless radio chip is Atheros AR9580-AR1A with bogus PCI
device ID 0xabcd. For ath9k driver to load successfully, this is
overriden in DTS with correct value for this chip, 0x0033.
4. RFKILL button is wired to AR9580 pin 9 which is normally disabled
by chip definition in ath9k code (0x0000F4FF gpio mask). Therefore
'qca,gpio-mask=<0xf6ff>' hack must be used for button to work
properly.
5. USB port is always on, no GPIO for 5V power control has been
identified.
Installation
============
* TFTP recovery
* TFTP via U-boot prompt
* sysupgrade
* Web interface
Test build configuration
========================
CONFIG_TARGET_ath79=y
CONFIG_TARGET_ath79_nand=y
CONFIG_TARGET_ath79_nand_DEVICE_netgear_wndr4300-v2=y
CONFIG_ALL_KMODS=y
CONFIG_DEVEL=y
CONFIG_CCACHE=y
CONFIG_COLLECT_KERNEL_DEBUG=y
CONFIG_IMAGEOPT=y
Signed-off-by: Michal Cieslakiewicz <michal.cieslakiewicz@wp.pl>
This commit adds support for the D-Link DIR-505, previously supported in
ar71xx.
Hardware
--------
SoC: Atheros AR9330
FLASH: 8M SPI-NOR
RAM: 64M
WIFI: 1T1R 1SS Atheros AR9330
LED: Power green, Status red
BTN: WPS, Reset
Installation
------------
Currently, installation is only possible by sysupgrading from an earlier
OpenWrt version, U-Boot TFTP or a modded U-Boot. I do not have the
original bootloader from D-Link on my device anymore, so i cannot test
the factory image.
Signed-off-by: David Bauer <mail@david-bauer.net>
The present U-Boot for GL-AR750S has a limit of 2 MB for kernel size.
While sysupgrade can manage kernels up to the present limit of 4 MB,
directly flashing a factory.img with a kernel size greater than 2 MB
through U-Boot will result in an unbootable device.
This commit uses the newly-introduced check-kernel-size build
operation to prevent the output of factory.img when the kernel
exceeds 2 MB in size, yet permits output of sysupgrade.img
as long as the kernel is within KERNEL_SIZE := 4096k
Cc: Chuanhong Guo <gch981213@gmail.com>
Signed-off-by: Jeff Kletsky <git-commits@allycomm.com>
The memory hacks got removed from ath10k with 1e27bef ("mac80211: remove
ath10k_pci memory hacks"). As this device has low amount of RAM, switch
to ath-10k-ct small buffers variant, to avoid the OOM Reaper.
Signed-off-by: Tomasz Maciej Nowak <tomek_n@o2.pl>