Using fakeroot without passing the paths to libfakeroot.sh and faked
causes havoc. Use the $(FAKEROOT) Make variable which includes them.
Fixes: 353ce2e521 ("build: ipkg-build use fakeroot with PKG_FILE_MODES")
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Drop init script from libaudit package. It will be added to the
'audit' package in the packages feed.
Fixes: efdf619f21 ("audit: build only libaudit")
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
The key folder is used by `opkg` and `usign` to store and retrieve
trusted public keys. Using `opkg-key` outside a running device is
unfeasible as the key folder is hard coded to `/etc/opkg/keys`.
This commit adds a variable OPKG_KEYS which defaults to `/etc/opkg/keys`
if unset, however allows set arbitrary key folder locations.
Arbitrary key folder locations are useful to add signature verification
to the ImageBuilders.
Signed-off-by: Paul Spooren <mail@aparcar.org>
Deactivate multiple personalities support, because this causes compile
problems at least on the x86/64 target. As OpenWrt compiles all
binaries itself all binaries will use the native personality which is
also used by strace. This change will make it impossible to debug i386
binaries on x86_64 OpenWrt targets for example.
Just deactivate it for ARM64 too.
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
hwclock was fixed to work with musl.
Unfortunately, the fix breaks under musl 1.2.x. Backported patch to fix
that.
Signed-off-by: Rosen Penev <rosenp@gmail.com>
Switched to upstream tarballs.
Switched to libcxxabi as using libsupc++ is quite wonky.
Fixed description.
Removed patches. The fixes are cosmetic.
Added ssp patch. This one is needed for i386 and powerpc under musl.
Compile tested every C++ package in the tree with the exception of
several boost packages. There's something broken with boost.
Ran tested with gerbera.
Signed-off-by: Rosen Penev <rosenp@gmail.com>
This will be used for libcxx.
libcxxabi is needed as libsupc++ is not good enough for libcxx. It uses
GCC specific stuff which causes failed compilation for some packages.
There are also runtime issues, most notably with cxxopts where the
program just crashes.
Reference: https://github.com/gerbera/gerbera/issues/795
Added patch to fix ARM compilation.
Signed-off-by: Rosen Penev <rosenp@gmail.com>
Static libraries and headers of libselinux and libsepol are required
for checkpolicy to build.
Fixes error:
policy_parse.y:45:10: fatal error: sepol/policydb/expand.h: No such file or directory
#include <sepol/policydb/expand.h>
^~~~~~~~~~~~~~~~~~~~~~~~~
compilation terminated.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Fixes build error:
load_policy.c:11:10: fatal error: libintl.h: No such file or directory
#include <libintl.h> /* for gettext() */
^~~~~~~~~~~
compilation terminated.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
FCC ID: U2M-ENH200
Engenius ENH202 is an outdoor wireless access point with 2 10/100 ports,
built-in ethernet switch, internal antenna plates and proprietery PoE.
Specification:
- Qualcomm/Atheros AR7240 rev 2
- 40 MHz reference clock
- 8 MB FLASH ST25P64V6P (aka ST M25P64)
- 32 MB RAM
- UART at J3 (populated)
- 2x 10/100 Mbps Ethernet (built-in switch at gmac1)
- 2.4 GHz, 2x2, 29dBm (Atheros AR9280 rev 2)
- internal antenna plates (10 dbi, semi-directional)
- 5 LEDs, 1 button (LAN, WAN, RSSI) (Reset)
Known Issues:
- Sysupgrade from ar71xx no longer possible
- Power LED not controllable, or unknown gpio
MAC addresses:
eth0/eth1 *:11 art 0x0/0x6
wlan *:10 art 0x120c
The device label lists both addresses, WLAN MAC and ETH MAC,
in that order.
Since 0x0 and 0x6 have the same content, it cannot be
determined which is eth0 and eth1, so we chose 0x0 for both.
Installation:
2 ways to flash factory.bin from OEM:
- Connect ethernet directly to board (the non POE port)
this is LAN for all images
- if you get Failsafe Mode from failed flash:
only use it to flash Original firmware from Engenius
or risk kernel loop or halt which requires serial cable
Method 1: Firmware upgrade page:
OEM webpage at 192.168.1.1
username and password "admin"
In upper right select Reset
"Restore to factory default settings"
Wait for reboot and login again
Navigate to "Firmware Upgrade" page from left pane
Click Browse and select the factory.bin image
Upload and verify checksum
Click Continue to confirm and wait 3 minutes
Method 2: Serial to load Failsafe webpage:
After connecting to serial console and rebooting...
Interrupt boot with any key pressed rapidly
execute `run failsafe_boot` OR `bootm 0x9f670000`
wait a minute
connect to ethernet and navigate to
"192.168.1.1/index.htm"
Select the factory.bin image and upload
wait about 3 minutes
Return to OEM:
If you have a serial cable, see Serial Failsafe instructions
*DISCLAIMER*
The Failsafe image is unique to Engenius boards.
If the failsafe image is missing or damaged this will not work
DO NOT downgrade to ar71xx this way, can cause kernel loop or halt
The easiest way to return to the OEM software is the Failsafe image
If you dont have a serial cable, you can ssh into openwrt and run
`mtd -r erase fakeroot`
Wait 3 minutes
connect to ethernet and navigate to 192.168.1.1/index.htm
select OEM firmware image from Engenius and click upgrade
Format of OEM firmware image:
The OEM software of ENH202 is a heavily modified version
of Openwrt Kamikaze bleeding-edge. One of the many modifications
is to the sysupgrade program. Image verification is performed
simply by the successful ungzip and untar of the supplied file
and name check and header verification of the resulting contents.
To form a factory.bin that is accepted by OEM Openwrt build,
the kernel and rootfs must have specific names...
openwrt-senao-enh202-uImage-lzma.bin
openwrt-senao-enh202-root.squashfs
and begin with the respective headers (uImage, squashfs).
Then the files must be tarballed and gzipped.
The resulting binary is actually a tar.gz file in disguise.
This can be verified by using binwalk on the OEM firmware images,
ungzipping then untaring, and by swapping headers to see
what the OEM upgrade utility accepts and rejects.
OKLI kernel loader is required because the OEM firmware
expects the kernel to be no greater than 1024k
and the factory.bin upgrade procedure would otherwise
overwrite part of the kernel when writing rootfs.
Note on built-in switch:
ENH202 is originally configured to be an access point,
but with two ethernet ports, both WAN and LAN is possible.
the POE port is gmac0 which is preferred to be
the port for WAN because it gives link status
where swconfig does not.
Signed-off-by: Michael Pratt <mpratt51@gmail.com>
[assign label_mac in 02_network, use ucidef_set_interface_wan,
use common device definition, some reordering]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Engenius ENS202EXT v1 is an outdoor wireless access point with 2 10/100 ports,
with built-in ethernet switch, detachable antennas and proprietery PoE.
FCC ID: A8J-ENS202
Specification:
- Qualcomm/Atheros AR9341 v1
- 535/400/200/40 MHz (CPU/DDR/AHB/REF)
- 64 MB of RAM
- 16 MB of FLASH MX25L12835F(MI-10G)
- UART (J1) header on PCB (unpopulated)
- 2x 10/100 Mbps Ethernet (built-in switch Atheros AR8229)
- 2.4 GHz, up to 27dBm (Atheros AR9340)
- 2x external, detachable antennas
- 7x LED (5 programmable in ath79), 1x GPIO button (Reset)
Known Issues:
- Sysupgrade from ar71xx no longer possible
- Ethernet LEDs stay on solid when connected, not programmable
MAC addresses:
eth0/eth1 *:7b art 0x0/0x6
wlan *:7a art 0x1002
The device label lists both addresses, WLAN MAC and ETH MAC,
in that order.
Since 0x0 and 0x6 have the same content, it cannot be
determined which is eth0 and eth1, so we chose 0x0 for both.
Installation:
2 ways to flash factory.bin from OEM:
- Connect ethernet directly to board (the non POE port)
this is LAN for all images
- if you get Failsafe Mode from failed flash:
only use it to flash Original firmware from Engenius
or risk kernel loop which requires serial cable
Method 1: Firmware upgrade page:
OEM webpage at 192.168.1.1
username and password "admin"
In upper right select Reset
"Restore to factory default settings"
Wait for reboot and login again
Navigate to "Firmware Upgrade" page from left pane
Click Browse and select the factory.bin image
Upload and verify checksum
Click Continue to confirm and wait 3 minutes
Method 2: Serial to load Failsafe webpage:
After connecting to serial console and rebooting...
Interrupt boot with any key pressed rapidly
execute `run failsafe_boot` OR `bootm 0x9fdf0000`
wait a minute
connect to ethernet and navigate to
"192.168.1.1/index.htm"
Select the factory.bin image and upload
wait about 3 minutes
*If you are unable to get network/LuCI after flashing*
You must perform another factory reset:
After waiting 3 minutes or when Power LED stop blinking:
Hold Reset button for 15 seconds while powered on
or until Power LED blinks very fast
release and wait 2 minutes
Return to OEM:
If you have a serial cable, see Serial Failsafe instructions
*DISCLAIMER*
The Failsafe image is unique to this model.
The following directions are unique to this model.
DO NOT downgrade to ar71xx this way, can cause kernel loop
The easiest way to return to the OEM software is the Failsafe image
If you dont have a serial cable, you can ssh into openwrt and run
`mtd -r erase fakeroot`
Wait 3 minutes
connect to ethernet and navigate to 192.168.1.1/index.htm
select OEM firmware image from Engenius and click upgrade
TFTP Recovery:
For some reason, TFTP is not reliable on this board.
Takes many attempts, many timeouts before it fully transfers.
Starting with an initramfs.bin:
Connect to ethernet
set IP address and TFTP server to 192.168.1.101
set up infinite ping to 192.168.1.1
rename the initramfs.bin to "vmlinux-art-ramdisk" and host on TFTP server
disconnect power to the board
hold reset button while powering on board for 8 seconds
Wait a minute, power LED should blink eventually if successful
and a minute after that the pings should get replies
You have now loaded a temporary Openwrt with default settings temporarily.
You can use that image to sysupgrade another image to overwrite flash.
Format of OEM firmware image:
The OEM software of ENS202EXT is a heavily modified version
of Openwrt Kamikaze bleeding-edge. One of the many modifications
is to the sysupgrade program. Image verification is performed
simply by the successful ungzip and untar of the supplied file
and name check and header verification of the resulting contents.
To form a factory.bin that is accepted by OEM Openwrt build,
the kernel and rootfs must have specific names...
openwrt-senao-ens202ext-uImage-lzma.bin
openwrt-senao-ens202ext-root.squashfs
and begin with the respective headers (uImage, squashfs).
Then the files must be tarballed and gzipped.
The resulting binary is actually a tar.gz file in disguise.
This can be verified by using binwalk on the OEM firmware images,
ungzipping then untaring, and by swapping headers to see
what the OEM upgrade utility accepts and rejects.
Note on the factory.bin:
The newest kernel is too large to be in the kernel partition
the new ath79 kernel is beyond 1592k
Even ath79-tiny is 1580k
Checksum fails at boot because the bootloader (modified uboot)
expects kernel to be 1536k. If the kernel is larger, it gets
overwritten when rootfs is flashed, causing a broken image.
The mtdparts variable is part of the build and saving a new
uboot environment will not persist after flashing.
OEM version might interact with uboot or with the custom
OEM partition at 0x9f050000.
Failed checksums at boot cause failsafe image to launch,
allowing any image to be flashed again.
HOWEVER: one should not install older Openwrt from failsafe
because it can cause rootfs to be unmountable,
causing kernel loop after successful checksum.
The only way to rescue after that is with a serial cable.
For these reasons, a fake kernel (OKLI kernel loader)
and fake squashfs rootfs is implemented to take care of
the OEM firmware image verification and checksums at boot.
The OEM only verifies the checksum of the first image
of each partition respectively, which is the loader
and the fake squashfs. This completely frees
the "firmware" partition from all checks.
virtual_flash is implemented to make use of the wasted space.
this leaves only 2 erase blocks actually wasted.
The loader and fakeroot partitions must remain intact, otherwise
the next boot will fail, redirecting to the Failsafe image.
Because the partition table required is so different
than the OEM partition table and ar71xx partition table,
sysupgrades are not possible until one switches to ath79 kernel.
Note on sysupgrade.tgz:
To make things even more complicated, another change is needed to
fix an issue where network does not work after flashing from either
OEM software or Failsafe image, which implants the OEM (Openwrt Kamikaze)
configuration into the jffs2 /overlay when writing rootfs from factory.bin.
The upgrade script has this:
mtd -j "/tmp/_sys/sysupgrade.tgz" write "${rootfs}" "rootfs"
However, it also accepts scripts before and after:
before_local="/etc/before-upgradelocal.sh"
after_local="/etc/after-upgradelocal.sh"
before="before-upgrade.sh"
after="after-upgrade.sh"
Thus, we can solve the issue by making the .tgz an empty file
by making a before-upgrade.sh in the factory.bin
Note on built-in switch:
There is two ports on the board, POE through the power supply brick,
the other is on the board. For whatever reason, in the ar71xx target,
both ports were on the built-in switch on eth1. In order to make use
of a port for WAN or a different LAN, one has to set up VLANs.
In ath79, eth0 and eth1 is defined in the DTS so that the
built-in switch is seen as eth0, but only for 1 port
the other port is on eth1 without a built-in switch.
eth0: switch0
CPU is port 0
board port is port 1
eth1: POE port on the power brick
Since there is two physical ports,
it can be configured as a full router,
with LAN for both wired and wireless.
According to the Datasheet, the port that is not on the switch
is connected to gmac0. It is preferred that gmac0 is chosen as WAN
over a port on an internal switch, so that link status can pass
to the kernel immediately which is more important for WAN connections.
Signed-off-by: Michael Pratt <mpratt51@gmail.com>
[apply sorting in 01_leds, make factory recipe more generic, create common
device node, move label-mac to 02_network, add MAC addresses to commit
message, remove kmod-leds-gpio, use gzip directly]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This network setup for MikroTik devices based on the LHG-HB platform
avoids using the integrated switch and connects the single Ethernet
port directly. This way, link speed (10/100 Mbps) is properly repor-
ted by eth0.
Fixes: FS#3309
Signed-off-by: Roger Pueyo Centelles <roger.pueyo@guifi.net>
The base address is used for the LAN and 2G WLAN interfaces.
5G WLAN interface is +1 and the PLC interface uses +2.
Signed-off-by: Sven Wegener <sven.wegener@stealer.net>
[improve commit title, fix assignment in 11-ath10k-caldata]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Port device support for Meraki MR16 from the ar71xx target to ath79.
Specifications:
* AR7161 CPU, 16 MiB Flash, 64 MiB RAM
* One PoE-capable Gigabit Ethernet Port
* AR9220 / AR9223 (2x2 11an / 11n) WLAN
Installation:
* Requires TFTP server at 192.168.1.101, w/ initramfs & sysupgrade .bins
* Open shell case and connect a USB to TTL cable to upper serial headers
* Power on the router; connect to U-boot over 115200-baud connection
* Interrupt U-boot process to boot Openwrt by running:
setenv bootcmd bootm 0xbf0a0000; saveenv;
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin;
bootm 0c00000;
* Copy sysupgrade image to /tmp on MR16
* sysupgrade /tmp/<filename-of-sysupgrade>.bin
Notes:
- There are two separate ARTs in the partition (offset 0x1000/0x5000 and
0x11000/0x15000) in the OEM device. I suspect this is an OEM artifact;
possibly used to configure the radios for different regions,
circumstances or RF frontends. Since the ar71xx target uses the
second offsets, use that second set (0x11000 and 0x15000) for the ART.
- kmod-owl-loader is still required to load the ART partition into the
driver.
- The manner of storing MAC addresses is updated from ar71xx; it is
at 0x66 of the 'config' partition, where it was discovered that the
OEM firmware stores it. This is set as read-only. If you are
migrating from ar71xx and used the method mentioned above to
upgrade, use kmod-mtd-rw or UCI to add the MAC back in. One more
method for doing this is described below.
- Migrating directly from ar71xx has not been thoroughly tested, but
one method has been used a couple of times with good success,
migrating 18.06.2 to a full image produced as of this commit. Please
note that these instructions are only for experienced users, and/or
those still able to open their device up to flash it via the serial
headers should anything go wrong.
1) Install kmod-mtd-rw and uboot-envtools
2) Run `insmod mtd-rw.ko i_want_a_brick=1`
3) Modify /etc/fw_env.config to point to the u-boot-env partition.
The file /etc/fw_env.config should contain:
# MTD device env offset env size sector size
/dev/mtd1 0x00000 0x10000 0x10000
See https://openwrt.org/docs/techref/bootloader/uboot.config
for more details.
4) Run `fw_printenv` to verify everything is correct, as per the
link above.
5) Run `fw_setenv bootcmd bootm 0xbf0a0000` to set a new boot address.
6) Manually modify /lib/upgrade/common.sh's get_image function:
Change ...
cat "$from" 2>/dev/null | $cmd
... into ...
(
dd if=/dev/zero bs=1 count=$((0x66)) ; # Pad the first 102 bytes
echo -ne '\x00\x18\x0a\x12\x34\x56' ; # Add in MAC address
dd if=/dev/zero bs=1 count=$((0x20000-0x66-0x6)) ; # Pad the rest
cat "$from" 2>/dev/null | $cmd
)
... which, during the upgrade process, will pad the image by
128K of zeroes-plus-MAC-address, in order for the ar71xx's
firmware partition -- which starts at 0xbf080000 -- to be
instead aligned with the ath79 firmware partition, which
starts 128K later at 0xbf0a0000.
7) Copy the sysupgrade image into /tmp, as above
8) Run `sysupgrade -F /tmp/<sysupgrade>.bin`, then wait
Again, this may BRICK YOUR DEVICE, so make *sure* to have your
serial cable handy.
Addenda:
- The MR12 should be able to be migrated in a nearly identical manner as
it shares much of its hardware with the MR16.
- Thank-you Chris B for copious help with this port.
Signed-off-by: Martin Kennedy <hurricos@gmail.com>
[fix typo in compat message, drop art DT label,
move 05_fix-compat-version to subtarget]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Signed-off-by: Thomas Petazzoni <thomas.petazzoni@bootlin.com>
[update to 3.1]
Signed-off-by: W. Michael Petullo <mike@flyn.org>
[removed python part for inclusion in core]
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Signed-off-by: Thomas Petazzoni <thomas.petazzoni@bootlin.com>
[fix build with GCC 10 and disable MIPS16 as build emits sync instruction]
Signed-off-by: W. Michael Petullo <mike@flyn.org>
Add support for building bpftool and libbpf from the latest 5.8.3 kernel
sources, ensuring up-to-date functionality and fixes. Both are written to
be backwards compatible, which simplfies build and usage across different
OpenWRT image kernels.
'bpftool' is the primary userspace tool widely used for introspection and
manipulation of eBPF programs and maps. Two variants are built: a 'full'
version which supports object disassembly and depends on libbfd/libopcodes
(total ~500KB); and a 'minimal' version without disassembly functions and
dependencies. The default 'minimal' variant is otherwise fully functional,
and both are compiled using LTO for further (~30KB) size reductions.
'libbpf' provides shared/static libraries and dev files needed for building
userspace programs that perform eBPF interaction.
Several cross-compilation and build-failure problems are addressed by new
patches and ones backported from farther upstream:
* 001-libbpf-ensure-no-local-symbols-counted-in-ABI-check.patch
* 002-libbpf-fix-build-failure-from-uninitialized-variable.patch
* 003-bpftool-allow-passing-BPFTOOL_VERSION-to-make.patch
* 004-v5.9-bpftool-use-only-ftw-for-file-tree-parsing.patch
Signed-off-by: Tony Ambardar <itugrok@yahoo.com>
Add FTW_ACTIONRETVAL mode and update nftw library for walking file trees.
Update needed to build bpftool userspace utility from Linux kernel source.
Also increment PKG_RELEASE.
Signed-off-by: Tony Ambardar <itugrok@yahoo.com>
The variable VERSION_REPO is used by opkg to download package(list)s.
Now that the default installation support encrypted HTTP opkg should
make use of it.
Suggested-by: Petr Štetiar <ynezz@true.cz>
Suggested-by: Baptiste Jonglez <baptiste@bitsofnetworks.org>
Signed-off-by: Paul Spooren <mail@aparcar.org>
Acked-by: Baptiste Jonglez <baptiste@bitsofnetworks.org>
The line of default packages became very long and it is easier to read
one package per line, therefore split it by newlines and sort it
alphabetically.
Signed-off-by: Paul Spooren <mail@aparcar.org>
To allow HTTPS usage on a router it requires both certificates
(ca-bundle) and a fitting libustream library (libustream-wolfssl)
By adding both, uclient-fetch and wget can connect to encrypted HTTP.
This allows opkg to update package lists in a more secure fashion.
Suggested-by: Petr Štetiar <ynezz@true.cz>
Suggested-by: Baptiste Jonglez <baptiste@bitsofnetworks.org>
Signed-off-by: Paul Spooren <mail@aparcar.org>
Instead of using http and https for source downloads from
downloads.openwrt.org, always use https for it's better security.
Signed-off-by: Paul Spooren <mail@aparcar.org>
The package manager `opkg` offers the function `whatdepends` to print
packages that depend on a specific package.
This feature is useful when used in a CI to not only build an upgraded
package but all packages with a dependency.
Usage:
make whatdepends PACKAGE=libipset
The resulting list can be fed into a SDK building all packages and warn
if anything fails.
Signed-off-by: Paul Spooren <mail@aparcar.org>
The usage of granular `SOURCE_DATE_EPOCH` for packages is an
incrementing integer which could be useful for downstream tooling,
therefore add it to the packages manifest.
Signed-off-by: Paul Spooren <mail@aparcar.org>
With the new `SOURCE` argument of `get_source_date_epoch` it is possible
to set package timestamps based on actual package changes rather thane
$TOPDIR changes.
This commit adds a new variable PKG_SOURCE_DATE_EPOCH which is used by
the `ipkg` build script. As a fallback the existing SOURCE_DATE_EPOCH is
used or as last resort the current time.
The redundant checks for `.git/` and `.svn/` are removed.
Signed-off-by: Paul Spooren <mail@aparcar.org>
The SOURCE_DATE_EPOCH variable is used to make builds reproducible even
if rebuild at different times. Instead of using the current timestamp,
the time of the last source change is used.
Created packages are `touch`ed with a specific timestamp so resulting
packages have the same checksums.
The `get_source_date_epoch.sh` script tries multiple ways (file, git,
hg) to determine the correct timestamp.
Until now the script would only consider the $TOPDIR instead of package
specific changes. Resulting in packages with same versions but different
timestamps, as $TOPDIR (openwrt.git) received changes not affecting
package versions. This results in warning/erros in `opkg` as the package
versions stay the same but checksums changed.
This commit adds an optional argument to get the `SOURCE_DATE_EPOCH` of
a specific path (e.g. package SOURCE) rather than the $TOPDIR. As a
consequence this allows granular but still reproducible timestamps.
As packages might be distributed over multiple repositories the check
for `.git/` becomes unfeasible. Instead tell `git` and `hg` to change
their working directories and automatically traverse the repo folder.
Signed-off-by: Paul Spooren <mail@aparcar.org>
If a `cd` to `TOPDIR` fails the script should quit.
Also unify `try_mtime` function by storing it in a variable.
Signed-off-by: Paul Spooren <mail@aparcar.org>
Instead of using INSTALL_SUID use the more flexible PKG_FILE_MODES
variable withn the Makefile to set the SUID bit.
Signed-off-by: Paul Spooren <mail@aparcar.org>
The `ipkg-build` script converts a folder into a `opkg` installable
package. Until now it would use root:root for all packages and try to
preserve file modes.
This has the two drawbacks of packages want to add non-root files or add
SUID files, like the `sudo` package does.
To give more flexibility regarding file modes and avoid init script
hacks, a new variable called `PKG_FILE_MODES`. The variable contains a
list of files modes in the format `path:owner:group:mode`.
An example for the `sudo` package below:
```
PKG_FILE_MODES:=\
/usr/bin/sudo:root:root:4755 \
/etc/sudoers:root:root:0440
```
The `ipkg-build` now runs within a fakeroot environment to set any mode
and directly store it in the resulting `ipk` package archive.
Both options `-o` and `-g` are no longer required due to the introduction
of the more flexible `-m` options, which takes the `PKG_FILE_MODES` as
input.
Lastly the option `-c` is removed as it's unused within the script.
Signed-off-by: Paul Spooren <mail@aparcar.org>
4318ab1 opkg: allow to configure the path to the signature verification script
cf44c2f libopkg: fix compiler warning
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Two versions of `px5g` exists without sharing code. For clarification
rename the previously existing MbedTLS based version to `px5g-mbedtls`
to exists next to `px5g-wolfssl`.
Rename code file of MbedTLS from `px5g.c` to `px5g-mbedtls.c`.
Signed-off-by: Paul Spooren <mail@aparcar.org>
This package creates certificates and private keys, just like `px5g`
does. Hower it uses WolfSSL rather than MbedTLS.
Signed-off-by: Paul Spooren <mail@aparcar.org>