Incorrect values were used for the switch initialization causing the
lan port leds to not light up in case of 10Mb or 100Mb connections.
This commit fixes this problem and removes unused values.
Signed-off-by: Davide Fioravanti <pantanastyle@gmail.com>
None of the spi drivers on ath79 uses the num-cs property.
Cc: Chuanhong Guo <gch981213@gmail.com>
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Acked-by: Chuanhong Guo <gch981213@gmail.com>
Currently, we request LED labels in OpenWrt to follow the scheme
modelname:color:function
However, specifying the modelname at the beginning is actually
entirely useless for the devices we support in OpenWrt. On the
contrary, having this part actually introduces inconvenience in
several aspects:
- We need to ensure/check consistency with the DTS compatible
- We have various exceptions where not the model name is used,
but the vendor name (like tp-link), which is hard to track
and justify even for core-developers
- Having model-based components will not allow to share
identical LED definitions in DTSI files
- The inconsistency in what's used for the model part complicates
several scripts, e.g. board.d/01_leds or LED migrations from
ar71xx where this was even more messy
Apart from our needs, upstream has deprecated the label property
entirely and introduced new properties to specify color and
function properties separately. However, the implementation does
not appear to be ready and probably won't become ready and/or
match our requirements in the foreseeable future.
However, the limitation of generic LEDs to color and function
properties follows the same idea pointed out above. Generic LEDs
will get names like "green:status" or "red:indicator" then, and
if a "devicename" is prepended, it will be the one of an internal
device, like "phy1:amber:status".
With this patch, we move into the same direction, and just drop
the boardname from the LED labels. This allows to consolidate
a few definitions in DTSI files (will be much more on ramips),
and to drop a few migrations compared to ar71xx that just changed
the boardname. But mainly, it will liberate us from a completely
useless subject to take care of for device support review and
maintenance.
To also drop the boardname from existing configurations, a simple
migration routine is added unconditionally.
Although this seems unfamiliar at first look, a quick check in kernel
for the arm/arm64 dts files revealed that while 1033 lines have
labels with three parts *:*:*, still 284 actually use a two-part
labelling *:*, and thus is also acceptable and not even rare there.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The "/dts-v1/;" identifier is supposed to be present once at the
top of a device tree file after the includes have been processed.
In ath79, we therefore requested to have in the DTS files so far,
and omit it in the DTSI files. However, essentially the syntax of
the parent ath79.dtsi file already determines the DTS version, so
putting it into the DTS files is just a useless repetition.
Consequently, this patch puts the dts-v1 statement into the parent
ath79.dtsi, which is (indirectly) included by all DTS files. All
other occurences are removed.
Since the dts-v1 statement needs to be before any other definitions,
this also moves the includes to make sure the ath79.dtsi or its
descendants are always included first.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
In ath79, for several SoCs the console bootargs are defined to the
very same value in every device's DTS. Consolidate these definitions
in the SoC dtsi files and drop further redundant definitions elsewhere.
The only device without any bootargs set has been OpenMesh OM5P-AC V2.
This will now inherit the setting from qca955x.dtsi
Note that while this tidies up master a lot, it might develop into a
frequent pitfall for backports.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
There are at least 3 different chips in the Scorpion series of SoCs.
Rename the common DTSI to better reflect it's purpose for the whole
series.
Also rename the compatible bindings from qca,ar9557 and qca,qca9557
to qca,qca9550.
Signed-off-by: David Bauer <mail@david-bauer.net>
Sitecom WLR-8100 v1 002 (marketed as X8 AC1750) is a dual band wireless
router.
Specification:
- Qualcomm Atheros SoC QCA9558
- 128 MB of RAM (DDR2)
- 16 MB of FLASH (Macronix MX25L12845EMI-10G - SPI NOR)
- 5x 10/100/1000 Mbps Ethernet
- 3T3R 2.4 GHz (QCA9558 WMAC)
- 3T3R 5.8 Ghz (QCA9880-BR4A)
- 1x USB 3.0 (Etron EJ168A)
- 1x USB 2.0
- 9x LEDs
- 2x GPIO buttons
Everything working.
Installation and restore procedure tested
Installation
1. Connect to one of LAN (yellow) ethernet ports,
2. Open router configuration interface,
3. Go to Toolbox > Firmware,
4. Browse for OpenWrt factory image with dlf extension and hit Apply,
5. Wait few minutes, after the Power LED will stop blinking, the router
is ready for configuration.
Restore OEM FW (Linux only)
1. Download OEM FW from website (tested with WLR-8100v1002-firmware-v27.dlf)
2. Compile the FW for this router and locate the "mksenaofw" tool
in build_dir/host/firmware-utils/bin/ inside the OpenWrt buildroot
3. Execute "mksenaofw -d WLR-8100v1002-firmware-v27.dlf -o WLR-8100v1002-firmware-v27.dlf.out" where:
WLR-8100v1002-firmware-v27.dlf is the path to the input file
(use the downloaded file)
WLR-8100v1002-firmware-v27.dlf.out is the path to the output file
(you can use the filename you want)
4. Flash the new WLR-8100v1002-firmware-v27.dlf.out file. WARNING: Do not keep settings.
Additional notes.
The original firmware has the following button configuration:
- Press for 2s the 2.4GHz button: WPS for 2.4GHz
- Press for 2s the 5GHz button: WPS for 5GHz
- Press for 15s both 2.4GHz and 5GHz buttons: Reset
I am not able to replicate this behaviour, so I used the following configuration:
- Press the 2.4GHz button: RFKILL (disable/enable every wireless interfaces)
- Press the 5GHz button: Reset
Signed-off-by: Davide Fioravanti <pantanastyle@gmail.com>