Common Platform Enumeration (CPE) is a structured naming scheme for
information technology systems, software, and packages.
Suggested-by: Steffen Pfendtner <s.pfendtner@ads-tec.de>
Signed-off-by: Petr Štetiar <ynezz@true.cz>
Common Platform Enumeration (CPE) is a structured naming scheme for
information technology systems, software, and packages.
Suggested-by: Steffen Pfendtner <s.pfendtner@ads-tec.de>
Signed-off-by: Petr Štetiar <ynezz@true.cz>
Common Platform Enumeration (CPE) is a structured naming scheme for
information technology systems, software, and packages.
Suggested-by: Steffen Pfendtner <s.pfendtner@ads-tec.de>
Signed-off-by: Petr Štetiar <ynezz@true.cz>
Common Platform Enumeration (CPE) is a structured naming scheme for
information technology systems, software, and packages.
Suggested-by: Steffen Pfendtner <s.pfendtner@ads-tec.de>
Signed-off-by: Petr Štetiar <ynezz@true.cz>
The of_mmc_spi.o resource is provider agnostic in kernels greater 5.13
and does not depend anymore on CONFIG_OF [0].
[0] - edd6021465
Suggested-by: John Thomson <git@johnthomson.fastmail.com.au>
Signed-off-by: Nick Hainke <vincent@systemli.org>
Similar to the implementation for the BPi-R3 use the same logic also
for determining the device to look for the U-Boot environment of the
BPi-R64.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
This new NTFS driver was added in kernel 5.15. Avoid building empty
package for kernel 5.10.
Fixes: bd0db6017b ("kernel: 5.15: add new module")
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
Fix accessing the environment in case no OS is installed on the flash
media selected for boot as this is possible when booting initramfs.
In case of relying on the device specified to be mounted as rootfs to
be present, rather just use the kernel cmdline 'root' variable as a
hint to decide where to read/write the U-Boot environment.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
ee54c6b libfstools: skip JFFS2 padding on block devices
Fixes config restore on the BPi R3 when using MMC storage.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Remove patches adding support for MT7621 which have been merged upsteam.
Patches for MT7981 and MT7986 have been merged too, but not in time to
be included in the 2022.10 release, so we have to keep carrying them
until the 2023.01 release.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Make it possible to setup default WAN interface for devices with built-in LTE
modems, using QMI or MBIM.
Signed-off-by: Andrey Butirsky <butirsky@gmail.com>
Reviewed-by: Lech Perczak <lech.perczak@gmail.com>
Replace the extern inline with a static inline. With extern inline the
compiler will generate the function in all compile units including this
file which breaks linking later.
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Provide ATF support for Methode eDPU as well, this makes it easy for
OpenWrt users to update the included U-boot+ATF combo.
Signed-off-by: Robert Marko <robert.marko@sartura.hr>
Add support for building for Methode eDPU board, no patches are needed
as board has been upstreamed and is part of the 2022.10-rc releases.
Signed-off-by: Robert Marko <robert.marko@sartura.hr>
Update mvebu U-boot to 2022.10 to avoid backporting patches in order
to support Methode eDPU.
It also allows dropping existing patches as they are all backports.
Tested-by: Andre Heider <a.heider@gmail.com> # espressobin-v3-v5-1gb-2cs
Tested-by: Russell Morris <github@rkmorris.us> # espressobin-v3-v5-1gb-1cs
Tested-by: Josef Schlehofer <pepe.schlehofer@gmail.com> [Turris Omnia]
Signed-off-by: Robert Marko <robert.marko@sartura.hr>
4fbf6d7 ruleset.uc: log forwarded traffic not matched by zone policies
c7201a3 main.uc: reintroduce set reload restriction
756f1e2 ruleset: fix emitting set_mark/set_xmark rules with masks
3db4741 ruleset: properly handle zone names starting with a digit
43d8ef5 fw4: fix formatting of default log prefix
592ba45 main.uc: remove uneeded/wrong set reload restrictions
b0a6bff tests: fix testcases
145e159 fw4: recognize `option log` and `option counter` in `config nat` sections
ce050a8 fw4: fall back to device if l3_device is not available in ifstatus
Fixes: #10639, #10965
Signed-off-by: Jo-Philipp Wich <jo@mein.io>
On machines with a coarse monotonic clock (here: TP-Link RE200 powered
by a MediaTek MT7620A) it can happen that the two DNS requests (for A
and AAAA) share the same transaction ID. If this happens the second
reply is wrongly dropped and nslookup reports "No answer".
Fix this by ensuring that the transaction IDs are unique.
Signed-off-by: Uwe Kleine-König <uwe@kleine-koenig.org>
This makes it clear, which phy a wlan device belongs to and also helps with
telling them apart by including the mode in the ifname.
Preparation for automatically renaming PHYs
Signed-off-by: Felix Fietkau <nbd@nbd.name>
These will be used to give WLAN PHYs a specific name based on path specified
in board.json. The platform board.d script can assign a specific order based
on available slots (PCIe slots, WMAC device) and device tree configuration.
This helps with maintaining config compatibility in case the device path
changes due to kernel upgrades.
Signed-off-by: Felix Fietkau <nbd@nbd.name>
Reported-by: Chad Monroe <chad.monroe@smartrg.com>
Fixes: 590eaaeed5 ("mac80211: fix issues in HE capabilities")
Signed-off-by: Felix Fietkau <nbd@nbd.name>
Add the measurement report value to the beacon reports send via ubus. It
is possible to derive from the measurement report if a station refused to
do a beacon report and why. It is important to know why a station refuses
to do a beacon-report. In particular, we should not request a beacon
report from a station again that refused a beacon-report before.
The rejection reasons can be found by looking at the bits defined by:
- MEASUREMENT_REPORT_MODE_ACCEPT
- MEASUREMENT_REPORT_MODE_REJECT_LATE
- MEASUREMENT_REPORT_MODE_REJECT_INCAPABLE
- MEASUREMENT_REPORT_MODE_REJECT_REFUSED
Suggested-by: Ian Clowes <clowes_ian@hotmail.com>
Signed-off-by: Nick Hainke <vincent@systemli.org>
This mainly affects scanning and beacon parsing, especially with MBSSID enabled
Fixes: CVE-2022-41674
Fixes: CVE-2022-42719
Fixes: CVE-2022-42720
Fixes: CVE-2022-42721
Fixes: CVE-2022-42722
Signed-off-by: Felix Fietkau <nbd@nbd.name>
Enable HE SU beamformee by default
Fix spatial reuse configuration:
- he_spr_sr_control is not a bool for enabling, it contains multiple bits
which disable features that should be disabled by default
- one of the features (PSR) can be enabled through he_spr_psr_enabled
- add option to disable bss color / spatial reuse
Signed-off-by: Felix Fietkau <nbd@nbd.name>
CONFIG_CMD_MTDPART does not exist, fix it.
Fixes: e9ad412 ("uboot-mediatek: add build for Ubiquiti Networks UniFi 6 LR")
Signed-off-by: Chukun Pan <amadeus@jmu.edu.cn>
CONFIG_CMD_MTDPART does not exist, fix it.
Fixes: ed50004 ("uboot-mediatek: add support for Linksys E8450")
Signed-off-by: Chukun Pan <amadeus@jmu.edu.cn>
dhcpv6.script contained support for disabling prefix delegation of 464XLAT
sub-interface, but netifd protocol handler was missing the required
export to disable this. Add missing export, akin to DS-Lite and MAP.
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
Signed-off-by: Hans Dedecker <dedeckeh@gmail.com> [PKG_RELEASE increase]
This fixes following compile error seen when
building mac80211 with mesh disabled:
.../backports-5.15.58-1/net/mac80211/agg-rx.c: In function 'ieee80211_send_addba_resp':
...backports-5.15.58-1/net/mac80211/agg-rx.c:255:17: error: 'struct sta_info' has no member named 'mesh'
255 | if (!sta->mesh)
| ^~
sta_info.h shows this item as being optional based on flags:
struct mesh_sta *mesh;
Guard the check to fix this.
Fixes: f96744ba6b ("mac80211: mask nested A-MSDU support for mesh")
Signed-off-by: Koen Vandeputte <koen.vandeputte@citymesh.com>
As wolfSSL is having hard time maintaining ABI compatibility between
releases, we need to manually force rebuild of packages depending on
libwolfssl and thus force their upgrade. Otherwise due to the ABI
handling we would endup with possibly two libwolfssl libraries in the
system, including the patched libwolfssl-5.5.1, but still have
vulnerable services running using the vulnerable libwolfssl-5.4.0.
So in order to propagate update of libwolfssl to latest stable release
done in commit ec8fb542ec ("wolfssl: fix TLSv1.3 RCE in uhttpd by
using 5.5.1-stable (CVE-2022-39173)") which fixes several remotely
exploitable vulnerabilities, we need to bump PKG_RELEASE of all
packages using wolfSSL library.
Signed-off-by: Petr Štetiar <ynezz@true.cz>
mac80211 incorrectly processes A-MSDUs contained in A-MPDU frames. This
results in dropped packets and severely impacted throughput.
As a workaround, don't indicate support for A-MSDUs contained in
A-MPDUs. This improves throughput over mesh links by factor 10.
Ref: https://github.com/openwrt/mt76/issues/450
Signed-off-by: David Bauer <mail@david-bauer.net>
If you would like to compile the newest version of U-boot together with the stable
OpenWrt version, which does not have LibreSSL >= 3.5, which was updated
in the master branch by commit 5451b03b7c
("tools/libressl: bump to v3.5.3"), then you need these two patches to
fix it. They are backported from U-boot repository.
This should be backported to stable OpenWrt versions.
Reported-by: Michal Vasilek <michal.vasilek@nic.cz>
Signed-off-by: Josef Schlehofer <pepe.schlehofer@gmail.com>
This issue was reported by @paper42, who is using Void Linux with musl
to compile OpenWrt and its packages and found out it is not possible to
compile U-boot for Turris Omnia (neither any other).
It fixes following output:
```
HOSTCC tools/kwboot
tools/kwboot.c: In function 'kwboot_tty_change_baudrate':
tools/kwboot.c:662:6: error: 'struct termios' has no member named 'c_ospeed'
662 | tio.c_ospeed = tio.c_ispeed = baudrate;
| ^
tools/kwboot.c:662:21: error: 'struct termios' has no member named 'c_ispeed'
662 | tio.c_ospeed = tio.c_ispeed = baudrate;
| ^
tools/kwboot.c:690:31: error: 'struct termios' has no member named 'c_ospeed'
690 | if (!_is_within_tolerance(tio.c_ospeed, baudrate, 3))
| ^
tools/kwboot.c:693:31: error: 'struct termios' has no member named 'c_ispeed'
693 | if (!_is_within_tolerance(tio.c_ispeed, baudrate, 3))
|
```
Tested-by: Michal Vasilek <michal.vasilek@nic.cz>
Signed-off-by: Josef Schlehofer <pepe.schlehofer@gmail.com>
Remove upstremed patch:
- 100-tracecmd-add-NO_LIBZSTD-option-to-disable-libzstd.patch
Changes:
c65c02c trace-cmd: Version 3.1.3
14a7aca trace-cmd library: Add API for mapping between host and guests
9191b8e tracecmd extract: Allow using --compression.
d63ae35 trace-cmd report: Add callback for kvm plugin to show guest functions
0c7ef72 trace-cmd library: Add man pages for iterator functions
3cd1b55 trace-cmd library: Add tracecmd_follow_event()
27ea9e1 libtracecmd: Add documentation on tracecmd_set/get_private()
3c544ad libtracecmd: Add a man pages for handling of time stamps
5baf7a3 libtracecmd: Add check-manpages.sh
ee007a1 trace-cmd library: Make tracecmd_filter_match() local
cb04105 tracecmd library documentation: Use star and not underscore for function names
54931be trace-cmd: Do not return zero length name for guest by name
43ffa27 trace-cmd: Close socket descriptor on failed connection
4744ca3 trace-cmd record/agent: Add --notimeout option
e512b22 trace-cmd: Add compile time overrides for libraries
a6fe935 trace-cmd: README: Add note on installing libtracecmd
067f45f trace-cmd: libtracecmd: Fixing linking to C++ code
689a0d4 tracecmd: Add NO_LIBZSTD option to disable libzstd
6bbcd3e trace-cmd report: Use library tracecmd_filter_*() logic
955d05f trace-cmd report: Make filter arguments match their files
82ed4a9 trace-cmd library: Add filtering logic for iterating events
dbd8777 trace-cmd report: Use tracecmd_iterate_events_multi()
78a74b1 trace-cmd library: Allow callers to save private data in tracecmd_input handlers
b37903a tracecmd library: Add tracecmd_iterate_events_multi()
d83b662 tracecmd utest: Add test to test using the libraries to read
2cb6cc2 tracecmd library: Add tracecmd_iterate_events()
762839a tracecmd: Use make variable instead of if statement for zlib test
1504f3f trace-cmd: Document new proxy args for {agent,record}
9a1c5d7 trace-cmd record: Keep --proxy from being passed to agents
ef8a8d7 trace-cmd libs: Initialize msg to NULL tracecmd_msg_read_data()
39ec10a trace-cmd: Do not use instance from trace context
Signed-off-by: Nick Hainke <vincent@systemli.org>
Changes:
93f4d52 libtracefs: version 1.5
bc857db libtracefs: Add tracefs_u{ret}probe_alloc to generic man page
db55441 libtracefs: Add tracefs_debug_dir() to generic libtracefs man page
d2d5924 libtracefs: Add test instructions for openSUSE
4a7b475 libtracefs: Fix test suite typo
ee8c644 libtracefs: Add tracefs_tracer_available() helper
799d88e libtracefs: Add API to set custom tracing directory
1bb00d1 libtracefs: allow pthread inclusion overrideable in Makefile
04651d0 libtracefs sqlhist: Allow pointers to match longs
9de59a0 libtracefs: Remove double free attempt of new_event in tracefs_synth_echo_cmd()
0aaa86a libtracefs: Fix use after free in tracefs_synth_alloc()
d2d5340 libtracefs: Add missed_events to record
9aaa8b0 libtracefs: Set the number of CPUs in tracefs_local_events_system()
56a0ba0 libtracefs: Return negative number when tracefs_filter_string_append() fails
c5f849f libtracefs: Set the long size of the tep handle in tracefs_local_events_system()
5c8103e revert: 0de961e74f96 ("libtracefs: Set visibility of parser symbols as 'internal'")
Signed-off-by: Nick Hainke <vincent@systemli.org>
Changes:
fda4ad9 libtraceevent: version 1.6.3
d02a61e libtraceevent: Add man pages for tep_plugin_kvm_get/put_func()
6643bf9 libtraceevent: Have kvm_exit/enter be able to show guest function
a596299 libtraceevent: Add tep_print_field() to check-manpages.sh deprecated
065c9cd libtraceevent: Add man page documentation of tep_get_sub_buffer_size()
6e18ecc libtraceevent: Add man page for tep_plugin_add_option()
6738713 libtraceevent: Add some missing functions to generic libtraceevent man page
deefe29 libtraceevent: Include meta data functions in libtraceevent man pages
cf6dd2d libtraceevent: Add tep_get_function_count() to libtraceevent man page
5bfc11e libtraceevent: Add printk documentation to libtraceevent man page
65c767b libtraceevent: Update man page to reflect tep_is_pid_registered() rename
7cd173f libtraceevent: Add check-manpages.sh
fd6efc9 libtraceevent: Documentation: Correct typo in example
5c375b0 libtraceevent: Fixing linking to C++ code
7839fc2 libtraceevent: Makefile - set LIBS as conditional assignment
c5493e7 libtraceevent: Remove double assignment of val in eval_num_arg()
efd3289 libtraceevent: Add warnings if fields are outside the event
Signed-off-by: Nick Hainke <vincent@systemli.org>
4f96e67 Up the release version to 2.66
60ff008 Fix typos in the cap_from_text.3 man page.
281b6e4 Add captrace to .gitignore file
09a2c1d Add an example of using BPF kprobing to trace capability use.
26e3a09 Clean up getpcaps code.
fc804ac getpcaps: catch PID parsing errors.
fc437fd Fix an issue with bash displaying an error.
7db9589 Some more simplifications for building
27e801b Fix for "make clean ; make -j48 test"
Signed-off-by: Nick Hainke <vincent@systemli.org>
As also ramips/mt7621 now has a user of the ubnt-ledbar driver, make
the package available on all targets by removing the dependency on
@TARGET_mediatek_mt7622.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Fixes denial of service attack and buffer overflow against TLS 1.3
servers using session ticket resumption. When built with
--enable-session-ticket and making use of TLS 1.3 server code in
wolfSSL, there is the possibility of a malicious client to craft a
malformed second ClientHello packet that causes the server to crash.
This issue is limited to when using both --enable-session-ticket and TLS
1.3 on the server side. Users with TLS 1.3 servers, and having
--enable-session-ticket, should update to the latest version of wolfSSL.
Thanks to Max at Trail of Bits for the report and "LORIA, INRIA, France"
for research on tlspuffin.
Complete release notes https://github.com/wolfSSL/wolfssl/releases/tag/v5.5.1-stable
Fixes: CVE-2022-39173
Fixes: https://github.com/openwrt/luci/issues/5962
References: https://github.com/wolfSSL/wolfssl/issues/5629
Tested-by: Kien Truong <duckientruong@gmail.com>
Reported-by: Kien Truong <duckientruong@gmail.com>
Signed-off-by: Petr Štetiar <ynezz@true.cz>
This reverts commit a596a8396b as I've
just discovered private email, that the issue has CVE-2022-39173
assigned so I'm going to reword the commit and push it again.
Signed-off-by: Petr Štetiar <ynezz@true.cz>
Fixes denial of service attack and buffer overflow against TLS 1.3
servers using session ticket resumption. When built with
--enable-session-ticket and making use of TLS 1.3 server code in
wolfSSL, there is the possibility of a malicious client to craft a
malformed second ClientHello packet that causes the server to crash.
This issue is limited to when using both --enable-session-ticket and TLS
1.3 on the server side. Users with TLS 1.3 servers, and having
--enable-session-ticket, should update to the latest version of wolfSSL.
Thanks to Max at Trail of Bits for the report and "LORIA, INRIA, France"
for research on tlspuffin.
Complete release notes https://github.com/wolfSSL/wolfssl/releases/tag/v5.5.1-stable
Fixes: https://github.com/openwrt/luci/issues/5962
References: https://github.com/wolfSSL/wolfssl/issues/5629
Signed-off-by: Petr Štetiar <ynezz@true.cz>
This will prevent `module is already loaded` lines from
appearing in the logs when a PPP connection is reconnecting
Signed-off-by: Manas Sambhus <manas.sambhus+github@gmail.com>
'rule inet dscpclassify dscp_match meta l4proto { udp } th dport { 3478 }
th sport { 3478-3497, 16384-16387 } goto ct_set_ef' works with
'nft add', but not 'nft insert', the latter yields:
"BUG: unhandled op 4".
Signed-off-by: Kevin Darbyshire-Bryant <ldir@darbyshire-bryant.me.uk>
The luci ucode rewrite exposed the definition of START as being over 1K
from start of file. Initial versions limited the search for START &
STOP to within the 1st 1K of a file. Whilst the search has been
expanded, it doesn't do any harm to define START early in the file like
all other init scripts seen so far.
Signed-off-by: Kevin Darbyshire-Bryant <ldir@darbyshire-bryant.me.uk>
This reverts commit 6e9613844c.
The patch was wrong in the first place as we base everything on
backports package and the compilation error was caused by an ath11k
present downstream. (will be needed later when backports package will be
updated but not now)
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
With kernel 5.15.61 the define IEEE80211_MAX_AMPDU_BUF got changed to
IEEE80211_MAX_AMPDU_BUF_HE. Add patch to fix compilation error on next
5.15 kernel versions.
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
Rename libwolfssl-cpu-crypto to libwolfsslcpu-crypto so that the
regular libwolfssl version comes first when running:
opkg install libwolfssl
Normally, if the package name matches the opkg parameter, that package
is preferred. However, for libraries, the ABI version string is
appended to the package official name, and the short name won't match.
Failing a name match, the candidate packages are sorted in alphabetical
order, and a dash will come before any number. So in order to prefer
the original library, the dash should be removed from the alternative
library.
Fixes: c3e7d86d2b (wolfssl: add libwolfssl-cpu-crypto package)
Signed-off-by: Eneas U de Queiroz <cotequeiroz@gmail.com>
Move CONFIG_PACKAGE_libwolfssl-benchmark from the top of
PKG_CONFIG_DEPENDS to after PKG_ABI_VERSION is set.
This avoids changing the ABI version hash whether the bnechmark package
package is selected or not.
Fixes: 05df135cac (wolfssl: Rebuild when libwolfssl-benchmark gets changes)
Signed-off-by: Eneas U de Queiroz <cotequeiroz@gmail.com>
It's a 4G Cat.20 router used by Vodafone Italy (called Vodafone FWA)
and Vodafone DE\T-Mobile PL (called GigaCube).
Modem is a MiniPCIe-to-USB based on Snapdragon X24,
it supports 4CA aggregation.
There are currently two hardware revisions, which
differ on the 5Ghz radio:
AT1 = QCA9984 5Ghz Radio on PCI-E bus
AT2 = IPQ4019 5Ghz Radio inside IPQ4019 like 2.4Ghz
Device specification
--------------------
SoC Type: Qualcomm IPQ4019
RAM: 256 MiB
Flash: 128 MiB SPI NAND (Winbond W25N01GV)
ROM: 2MiB SPI Flash (GD25Q16)
Wireless 2.4 GHz (IP4019): b/g/n, 2x2
Wireless 5 GHz:
(QCA9984): a/n/ac, 4x4 HW REV AT1
(IPA4019): a/n/ac, 2x2 HW REV AT2
Ethernet: 2xGbE (WAN/LAN1, LAN2)
USB ports: No
Button: 2 (Reset/WPS)
LEDs: 3 external leds: Network (white or red), Wifi, Power and 1 internal (blue)
Power: 12 VDC, 1 A
Connector type: Barrel
Bootloader: U-Boot
Installation
------------
1. Place OpenWrt initramfs image for the device on a TFTP
in the server's root. This example uses Server IP: 192.168.0.2
2. Connect serial console (115200,8n1) to serial connector
GND (which is right next to the thing with MF289F MIMO-V1.0), RX, TX
(refer to this image: https://ibb.co/31Gngpr).
3. Connect TFTP server to RJ-45 port (WAN/LAN1).
4. Stop in u-Boot (using ESC button) and run u-Boot commands:
setenv serverip 192.168.0.2
setenv ipaddr 192.168.0.1
set fdt_high 0x85000000
tftp openwrt-ipq40xx-generic-zte_mf289f-initramfs-fit-zImage.itb
bootm $loadaddr
5. Please make backup of original partitions, if you think about revert to
stock, specially mtd16 (Web UI) and mtd17 (rootFS).
Use /tmp as temporary storage and do:
WEB PARITION
--------------------------------------
cat /dev/mtd16 > /tmp/mtd16.bin
scp /tmp/mtd16.bin root@YOURSERVERIP:/
rm /tmp/mtd16.bin
ROOT PARITION
--------------------------------------
cat /dev/mtd17 > /tmp/mtd17.bin
scp /tmp/mtd17.bin root@YOURSERVERIP:/
rm /tmp/mtd17.bin
6. Login via ssh or serial and remove stock partitions
(default IP 192.168.0.1):
# this can return an error, if ubi was attached before
# or rootfs part was erased before.
ubiattach -m 17
# it could return error if rootfs part was erased before
ubirmvol /dev/ubi0 -N ubi_rootfs
# some devices doesn't have it
ubirmvol /dev/ubi0 -N ubi_rootfs_data
7. download and install image via sysupgrade -n
(either use wget/scp to copy the mf289f's squashfs-sysupgrade.bin
to the device's /tmp directory)
sysupgrade -n /tmp/openwrt-...-zte_mf289f-squashfs-sysupgrade.bin
Sometimes it could print ubi attach error, but please ignore it
if process goes forward.
Flash Layout
NAND:
mtd8: 000a0000 00020000 "fota-flag"
mtd9: 00080000 00020000 "0:ART"
mtd10: 00080000 00020000 "mac"
mtd11: 000c0000 00020000 "reserved2"
mtd12: 00400000 00020000 "cfg-param"
mtd13: 00400000 00020000 "log"
mtd14: 000a0000 00020000 "oops"
mtd15: 00500000 00020000 "reserved3"
mtd16: 00800000 00020000 "web"
mtd17: 01d00000 00020000 "rootfs"
mtd18: 01900000 00020000 "data"
mtd19: 03200000 00020000 "fota"
mtd20: 0041e000 0001f000 "kernel"
mtd21: 0101b000 0001f000 "ubi_rootfs"
SPI:
mtd0: 00040000 00010000 "0:SBL1"
mtd1: 00020000 00010000 "0:MIBIB"
mtd2: 00060000 00010000 "0:QSEE"
mtd3: 00010000 00010000 "0:CDT"
mtd4: 00010000 00010000 "0:DDRPARAMS"
mtd5: 00010000 00010000 "0:APPSBLENV"
mtd6: 000c0000 00010000 "0:APPSBL"
mtd7: 00050000 00010000 "0:reserved1"
Back to Stock (!!! need original dump taken from initramfs !!!)
-------------
1. Place mtd16.bin and mtd17.bin initramfs image
for the device on a TFTP in the server's root.
This example uses Server IP: 192.168.0.2
2. Connect serial console (115200,8n1) to serial console
connector (refer to the pin-out from above).
3. Connect TFTP server to RJ-45 port (WAN/LAN1).
4. rename mtd16.bin to web.img and mtd17.bin to root_uImage_s
5. Stop in u-Boot (using ESC button) and run u-Boot commands:
This will erase RootFS+Web:
nand erase 0x1000000 0x800000
nand erase 0x1800000 0x1D00000
This will restore RootFS:
tftpboot 0x84000000 ${dir}root_uImage_s
nand erase 0x1800000 0x1D00000
nand write $fileaddr 0x1800000 $filesize
This will restore Web Interface:
tftpboot 0x84000000 ${dir}web.img
nand erase 0x1000000 0x800000
nand write $fileaddr 0x1000000 $filesize
After first boot on stock firwmare, do a factory reset.
Push reset button for 5 seconds so all parameters will
be reverted to the one printed on label on bottom of the router
Signed-off-by: Giammarco Marzano <stich86@gmail.com>
Reviewed-by: Lech Perczak <lech.perczak@gmail.com>
(Warning: commit message did not conform to UTF-8 - hopefully fixed?,
added description of the pin-out if image goes down, reformatted
commit message to be hopefully somewhat readable on git-web,
redid some of the gpio-buttons & leds DT nodes, etc.)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
Sony NCP-HG100/Cellular is a IoT Gateway with 2.4/5 GHz band 11ac
(WiFi-5) wireless function, based on IPQ4019.
Specification:
- SoC : Qualcomm IPQ4019
- RAM : DDR3 512 MiB (H5TC4G63EFR)
- Flash : eMMC 4 GiB (THGBMNG5D1LBAIT)
- WLAN : 2.4/5 GHz 2T2R (IPQ4019)
- Ethernet : 10/100/1000 Mbps x2
- Transceiver : Qualcomm QCA8072
- WWAN : Telit LN940A9
- Z-Wave : Silicon Labs ZM5101
- Bluetooth : Qualcomm CSR8811
- Audio DAC : Realtek ALC5629
- Audio Amp. : Realtek ALC1304
- Voice Input Processor : Conexant CX20924
- Micro Controller Unit : Nuvoton MINI54FDE
- RGB LED, Fan, Temp. sensors
- Touch Sensor : Cypress CY8C4014LQI
- RGB LED driver : TI LP55231 (2x)
- LEDs/Keys : 11x, 6x
- UART : through-hole on PCB
- J1: 3.3V, TX, RX, GND from tri-angle marking
- 115200n8
- Power : 12 VDC, 2.5 A
Flash instruction using initramfs image:
1. Prepare TFTP server with the IP address 192.168.132.100 and place the
initramfs image to TFTP directory with the name "C0A88401.img"
2. Boot NCP-HG100/Cellular and interrupt after the message
"Hit any key to stop autoboot: 2"
3. Perform the following commands and set bootcmd to allow booting from
eMMC
setenv bootcmd "mmc read 0x84000000 0x2e22 0x4000 && bootm 0x84000000"
saveenv
4. Perform the following command to load/boot the OpenWrt initramfs image
tftpboot && bootm
5. On the initramfs image, perform sysupgrade with the sysupgrade image
(if needed, backup eMMC partitions by dd command and download to
other place before performing sysupgrade)
6. Wait for ~120 seconds to complete flashing
Known issues:
- There are no drivers for audio-related chips/functions in Linux Kernel
and OpenWrt, they cannot be used.
- There is no driver for MINI54FDE Micro-Controller Unit, customized for
this device by the firmware in the MCU. This chip controls the
following functions, but they cannot be controlled in OpenWrt.
- RGB LED
- Fan
this fan is controlled automatically by MCU by default, without
driver
- Thermal Sensors (2x)
- Currently, there is no driver or tool for CY8C4014LQI and cannot be
controlled. It cannot be exited from "booting mode" and moved to "normal
op mode" after booting. And also, the 4x buttons (mic mute, vol down,
vol up, alexa trigger) connected to the IC cannot be controlled.
- it can be exited from "booting mode" by installing and executing
i2cset command:
opkg update
opkg install i2c-tools
i2cset -y 1 0x14 0xf 1
- There is a connection issue on the control by uqmi for the WWAN module.
But modemmanager can be used without any issues and the use of it is
recommended.
- With the F2FS format, too many errors are reported on erasing eMMC
partition "rootfs_data" while booting:
[ 1.360270] sdhci: Secure Digital Host Controller Interface driver
[ 1.363636] sdhci: Copyright(c) Pierre Ossman
[ 1.369730] sdhci-pltfm: SDHCI platform and OF driver helper
[ 1.374729] sdhci_msm 7824900.sdhci: Got CD GPIO
...
[ 1.413552] mmc0: SDHCI controller on 7824900.sdhci [7824900.sdhci] using ADMA 64-bit
[ 1.528325] mmc0: new HS200 MMC card at address 0001
[ 1.530627] mmcblk0: mmc0:0001 004GA0 3.69 GiB
[ 1.533530] mmcblk0boot0: mmc0:0001 004GA0 partition 1 2.00 MiB
[ 1.537831] mmcblk0boot1: mmc0:0001 004GA0 partition 2 2.00 MiB
[ 1.542918] mmcblk0rpmb: mmc0:0001 004GA0 partition 3 512 KiB, chardev (247:0)
[ 1.550323] Alternate GPT is invalid, using primary GPT.
[ 1.561669] mmcblk0: p1 p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15 p16 p17
...
[ 8.841400] mount_root: loading kmods from internal overlay
[ 8.860241] kmodloader: loading kernel modules from //etc/modules-boot.d/*
[ 8.863746] kmodloader: done loading kernel modules from //etc/modules-boot.d/*
[ 9.240465] block: attempting to load /etc/config/fstab
[ 9.246722] block: unable to load configuration (fstab: Entry not found)
[ 9.246863] block: no usable configuration
[ 9.254883] mount_root: overlay filesystem in /dev/mmcblk0p17 has not been formatted yet
[ 9.438915] urandom_read: 5 callbacks suppressed
[ 9.438924] random: mkfs.f2fs: uninitialized urandom read (16 bytes read)
[ 12.243332] mmc_erase: erase error -110, status 0x800
[ 12.246638] mmc0: cache flush error -110
[ 15.134585] mmc_erase: erase error -110, status 0x800
[ 15.135891] mmc_erase: group start error -110, status 0x0
[ 15.139850] mmc_erase: group start error -110, status 0x0
...(too many the same errors)...
[ 17.350811] mmc_erase: group start error -110, status 0x0
[ 17.356197] mmc_erase: group start error -110, status 0x0
[ 17.439498] sdhci_msm 7824900.sdhci: Card stuck in wrong state! card_busy_detect status: 0xe00
[ 17.446910] mmc0: tuning execution failed: -5
[ 17.447111] mmc0: cache flush error -110
[ 18.012440] F2FS-fs (mmcblk0p17): Found nat_bits in checkpoint
[ 18.062652] F2FS-fs (mmcblk0p17): Mounted with checkpoint version = 428fa16b
[ 18.198691] block: attempting to load /etc/config/fstab
[ 18.198972] block: unable to load configuration (fstab: Entry not found)
[ 18.203029] block: no usable configuration
[ 18.211371] mount_root: overlay filesystem has not been fully initialized yet
[ 18.214487] mount_root: switching to f2fs overlay
So, this support uses ext4 format instead which has no errors.
Note:
- The primary uart is shared for debug console and Z-Wave chip. The
function is switched by GPIO15 (Linux: 427).
value:
1: debug console
0: Z-Wave
- NCP-HG100/Cellular has 2x os-image pairs in eMMC.
- 0:HLOS, rootfs
- 0:HLOS_1, rootfs_1
In OpenWrt, the first image pair is used.
- "bootipq" command in U-Boot requires authentication with signed-image
by default. To boot unsigned image of OpenWrt, use "mmc read" and
"bootm" command instead.
- This support is for "Cellular" variant of NCP-HG100 and not tested on
"WLAN" (non-cellular) variant.
- The board files of ipq-wifi may also be used in "WLAN" variant of
NCP-HG100, but unconfirmed and add files as for "Cellular" variant.
- "NET" LED is used to indicate WWAN status in stock firmware.
- There is no MAC address information in the label on the case, use the
address included in UUID in the label as "label-MAC" instead.
- The "CLOUD" LEDs are partially used for indication of system status in
stock firmware, use they as status LEDs in OpenWrt instead of RGB LED
connected to the MCU.
MAC addresses:
LAN : 5C:FF:35:**:**:ED (ART, 0x6 (hex))
WAN : 5C:FF:35:**:**:EF (ART, 0x0 (hex))
2.4 GHz: 5C:FF:35:**:**:ED (ART, 0x1006 (hex))
5 GHz : 5C:FF:35:**:**:EE (ART, 0x5006 (hex))
partition layout in eMMC (by fdisk, GPT):
Disk /dev/mmcblk0: 7733248 sectors, 3776M
Logical sector size: 512
Disk identifier (GUID): ****
Partition table holds up to 20 entries
First usable sector is 34, last usable sector is 7634910
Number Start (sector) End (sector) Size Name
1 34 1057 512K 0:SBL1
2 1058 2081 512K 0:BOOTCONFIG
3 2082 3105 512K 0:QSEE
4 3106 4129 512K 0:QSEE_1
5 4130 4641 256K 0:CDT
6 4642 5153 256K 0:CDT_1
7 5154 6177 512K 0:BOOTCONFIG1
8 6178 6689 256K 0:APPSBLENV
9 6690 8737 1024K 0:APPSBL
10 8738 10785 1024K 0:APPSBL_1
11 10786 11297 256K 0:ART
12 11298 11809 256K 0:HSEE
13 11810 28193 8192K 0:HLOS
14 28194 44577 8192K 0:HLOS_1
15 44578 306721 128M rootfs
16 306722 568865 128M rootfs_1
17 568866 3958065 1654M rootfs_data
[initial work]
Signed-off-by: Iwao Yuki <dev.clef@gmail.com>
Co-developed-by: Iwao Yuki <dev.clef@gmail.com>
[adjustments, cleanups, commit message, sending patch]
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
(dropped clk_unused_ignore, dropped 901-* patches, renamed
key nodes, changed LEDs chan/labels to match func-en, made
:net -> (w)wan leds)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
The "tx_burst" option which should control the value was
expecting more of a list and hence tx_queue_data2_burst
value wasn't updated.
Yes, it would make sense to have a list for this, the
existing code only updates tx_queue_data2_burst and
not the other tx_queue_data[0134]_burst values.
Signed-off-by: Alberto Martinez-Alvarez <amteza@gmail.com>
(formatted commit message, wrote extra information into commit,
moved tx_burst to existing json_get_vars)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
Prevents build errors by ensuring that it is only selected when a wext based
driver that needs it is also selected
Signed-off-by: Felix Fietkau <nbd@nbd.name>
This package downloads raw files
which have names that are not corresponding to
the name and version of the package
as it is defined in the Makefile.
Use the option DL_SUBDIR to set the DL_DIR
to be a subdirectory named with
PKG_NAME and PKG_RELEASE
to better organize the downloads.
Signed-off-by: Michael Pratt <mcpratt@pm.me>
This package downloads raw files
which have names that are not corresponding to
the name and version of the package
as it is defined in the Makefile.
Use the option DL_SUBDIR to set the DL_DIR
to be a subdirectory named with
PKG_NAME and PKG_VERSION
to better organize the downloads.
Signed-off-by: Michael Pratt <mcpratt@pm.me>
This package downloads raw files
which have names that are not corresponding to
the name and version of the package
as it is defined in the Makefile.
Use the option DL_SUBDIR to set the DL_DIR
to be a subdirectory named with
PKG_NAME and PKG_VERSION
to better organize the downloads.
Signed-off-by: Michael Pratt <mcpratt@pm.me>
This package downloads raw files
which have names that are not corresponding to
the name and version of the package
as it is defined in the Makefile.
Use the option DL_SUBDIR to set the DL_DIR
to be a subdirectory named with
PKG_NAME and PKG_SOURCE_DATE
to better organize the downloads.
Define PKG_VERSION here
using PKG_SOURCE_DATE.
Signed-off-by: Michael Pratt <mcpratt@pm.me>
The currently used shell expansion doesn't seem to exist [0] and also
does not work. This surely was not intended, so lets allow default
naming to actually work.
[0]: https://pubs.opengroup.org/onlinepubs/9699919799/utilities/V3_chap02.html
Fixes: be09c5a3cd ("base-files: add board.d support for bridge device")
Signed-off-by: Olliver Schinagl <oliver@schinagl.nl>
46f04f3808e8 devices: add MediaTek MT7986 WiSoC
b3e08c8b5a8f ops: make support for wireless extensions optional
1f695d9c7f82 nl80211: allow phy names that don't start with 'phy'
b7f9f06e1594 nl80211: fix phy/netdev index lookup
4a43b0d40ba5 nl80211: look up the phy name instead of assuming name == phy<idx>
Signed-off-by: Felix Fietkau <nbd@nbd.name>
Also include the station auth_type in the ubus and log message in order
to detect, if clients used FT or FILS to associate
Signed-off-by: Felix Fietkau <nbd@nbd.name>
All contents of staging_dir/image are included in Image Builder (IB) in
case some binary needs to be included in final image. But in case of
this package, all sources are stored there and those clutter the final
tarball of IB for no reason. Those sources are not used during image
creation and are just dead weight. To put it in perspective, the IB for
21.02.0 is 158 MiB, 22.03.0-rc6 is 366 MiB and snapshot is over 620 MiB!
To fix it, put them in package build directory, so they won't end up
included in IB tarball.
Signed-off-by: Tomasz Maciej Nowak <tmn505@gmail.com>
Reviewed-by: Andre Heider <a.heider@gmail.com>
b704dc72e tests: sigma_dut and updated ConfResult value for Configurator failures
89de431f2 DPP: Add config response status value to DPP-CONF-SENT
10104915a tests: sigma_dut and DPP PB session overlap
80d5e264c Enhance QCA vendor roam event to indicate MLO links after reassociation
662249306 Update copyright notices for the QCA vendor definitions
8adcdd659 tests: Temporary workaround for dpp_chirp_ap_5g
ddcd15c2d tests: Fix fuzzing/sae build
7fa67861a tests: Fix p2p_channel_avoid3
ee3567d65 tests: Add more time for scan/connection
1d08b238c nl80211: Allow more time for the initial scan with 6 GHz
ac9e6a2ab tests: Allow 6 GHz opclasses in MBO checks
faf9c04cb Remove a host of unnecessary OPENSSL_IS_BORINGSSL ifdefs
b9cd5a82f Always process pending QCA_NL80211_VENDOR_SUBCMD_KEY_MGMT_ROAM_AUTH data
ef4cd8e33 QoS: Use common classifier_mask for ipv4/ipv6
93be02592 Add fixed FDD mode to qca_btc_chain_mode QCA vendor attribute
e7cbfa1c1 tests: sigma_dut and DPP Enrollee unsupported curves
5565fbee2 DPP: Check Enrollee supported curves when building Config Response
ceae05cec tests: sigma_dut and DPP MUDURL setting for hostapd
4cfb484e9 DPP: Allow dpp_controller_start without arguments in CLIs
c97000933 Fix ifdef condition for imsi_privacy_cert
2a9a61d6c tests: SAE with extended key AKM
e35f6ed1d tests: More detailed report on SAE PMKSA caching error case
f70db167a SAE: Derive a variable length PMK with the new AKM suites
91010e6f6 SAE: Indicate AKM suite selector in commit for new AKM suites
e81ec0962 SAE: Use H2E unconditionally with the new AKM suites
f8eed2e8b SAE: Store PMK length and AKM in SAE data
9dc4e9d13 SAE: EAPOL-Key and key/MIC length information for the new AKM suites
a32ef3cfb SAE: Driver capability flags for the new SAE AKM suites
91df8c9c6 SAE: Internal WPA_KEY_MGMT_* defines for extended key AKMs
5c8a714b1 SAE: Use wpa_key_mgmt_sae() helper
5456b0f26 Define new RSN AKM suite selector values
def33101c DPP: Clear push button announcement state on wpa_supplicant FLUSH
35587fa8f tests: DPP Controller/Relay with need to discover Controller
d22dfe918 DPP: Event message for indicating when Relay would need a Controller
ca7892e98 tests: DPP Relay and adding/removing connection to a Controller
bfe3cfc38 DPP: Allow Relay connections to Controllers to be added and removed
808834b18 Add a comparison function for hostapd_ip_addr
f7763880b DPP: Advertise Configurator connectivity on Relay automatically
ff7cc1d49 tests: DPP Relay and dynamic Controller addition
ca682f80a DPP: Dynamic Controller initiated connection on Relay
d2388bcca DPP: Strict validation of PKEX peer bootstrapping key during auth
a7b8cef8b DPP3: Fix push button boostrapping key passing through PKEX
69d7c8e6b DPP: Add peer=id entry for PKEX-over-TCP case
b607d2723 tests: sigma_dut and DPP PB Configurator in wpa_supplicant
1ff9251a8 DPP3: Push button Configurator in wpa_supplicant
b94e46bc7 tests: PB Configurator in wpa_supplicant
ca4e82cbf tests: sigma_dut DPP/PKEX initiator as Configurator over TCP and Wi-Fi
e9137950f DPP: Recognize own PKEX Exchange Request if it ends up being received
692956446 DPP: Note PKEX code/identifier deletion in debug log
dfa9183b1 tests: DPP reconfig after Controller-initiated operation through Relay
ae4a3a6f6 DPP: Add DPP-CONF-REQ-RX event for Controller
17216b524 tests: sigma_dut DPP/PKEX initiator as Configurator (TCP) through Relay
fb2937b85 DPP: Allow Controller to initiate PKEX through Relay
15af83cf1 DPP: Delete PKEX code and identifier on success completion of PKEX
d86ed5b72 tests: Allow DPP_PKEX_REMOVE success in dpp_pkex_hostapd_errors
0a4f391b1 tests: sigma_dut and DPP Connector Privacy
479e412a6 DPP3: Default value for dpp_connector_privacy
7d12871ba test: DPP Private Peer Introduction protocol
148de3e0d DPP3: Private Peer Introduction protocol
786ea402b HPKE base mode with single-shot API
f0273bc81 OpenSSL: Remove a forgotten debug print
f2bb0839f test: DPP 3rd party config information
68209ddbe DPP: Allow 3rd party information to be added into config object
0e2217c95 DPP: Allow 3rd party information to be added into config request obj
3d82fbe05 Add QCA vendor subcommand and attributes for SCS rule configuration
16b62ddfa QCA vendor attribute for DBAM configuration
004b1ff47 tests: DPP Controller initiating through Relay
451ede2c3 DPP: Allow AP/Relay to be configured to listed for new TCP connections
248654d36 tests: sigma_dut DPP PB test cases
697b7d7ec tests: DPP push button
7bbe85987 DPP3: Allow external configuration to be specified on AP for PB
8db786a43 DPP3: Testing functionality for push button announcements
37bccfcab DPP3: Push button bootstrap mechanism
a0054fe7c Add AP and STA specific P802.11az security capabilities (vendor command)
159e63613 QCA vendor command for CoAP offload processing
3b7bb17f6 Add QCA vendor attribute for TIM beacon statistics
09a281e52 Add QCA vendor interface for PASN offload to userspace
809fb96fa Add a vendor attribute to configure concurrency policy for AP interface
a5754f531 Rename QCA_NL80211_VENDOR_SUBCMD_CONCURRENT_MULTI_STA_POLICY
085a3fc76 EHT: Add 320 channel width support
bafe35df0 Move CHANWIDTH_* definitions from ieee80211_defs.h to defs.h
92f549901 tests: Remove the 80+80 vs. 160 part from wpa2_ocv_ap_vht160_mismatch
c580c2aec tests: Make OCV negative test error cases more robust
3c2ba98ad Add QCA vendor event to indicate driver recovery after internal failures
6b461f68c Set current_ssid before changing state to ASSOCIATING
8dd826741 QCA vendor attribute to configure direct data path for audio traffic
504be2f9d QCA vendor command support to get WLAN radio combinations
d5905dbc8 OCV: Check the Frequency Segment 1 Channel Number only on 80+80 MHz
Signed-off-by: David Bauer <mail@david-bauer.net>
Don't select channels designated for exclusive-indoor use when the
country3 element is set on outdoor operation.
Signed-off-by: David Bauer <mail@david-bauer.net>
This matches the scheme used by other target packages and will avoid
confusion with any future version.
Signed-off-by: Andre Heider <a.heider@gmail.com>
The 'fxload' tool contained in the examples provided with libusb is
actually useful and turns out to be the only way to load firmware into
some rather ancient EZ-USB microcontrollers made by Cypress (formerly
Anchor Chips).
The original 'fxload' tool from hotplug-linux has been abandonned long
ago and requires usbfs to be mounted in /proc/bus/usb/ (like it was in
Linux 2.4...).
Hence the best option is to package the modern 'fxload' from the libusb
examples which (unsurprisingly) uses libusb and works on modern
systems.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
e065a7627a46 pex: update last query sent timestamp
6c888f897862 unet-cli: add stun server list editing support
Signed-off-by: Felix Fietkau <nbd@nbd.name>
21360a1b1ce6 cli: fix typo
abfebece0af1 wg-linux: ship a copy of linux/wireguard.h
1cbb1a543cb3 pex: reduce unnecessary ping traffic
0c2f39e52d5d pex: remove pex event debug spam
dcf1362c2104 pex: add support for sending/receiving global PEX messages via unix socket
df5f70b8858c ubus: notify on network updates
e58a56697131 add DHT discovery service
be175767bc67 pex: keep active pex hosts after the specified timeout
543e4a3d2ed7 pex: move rx header check to callback function
395659b9c415 pex: move raw ip send code to sendto_rawudp() in utils.c
dda15ea8b3b2 pex: add utility function to get the sockets based on type / address family
e88f2cd4d3f0 utils: add support for passings address family to network_get_endpoint()
639cdcdf6eda pex: add support for figuring out the external data port via STUN servers
9144339ebe1f pex: improve handling of a longer list of PEX hosts
38212218ecdd unet-cli: add DHT support
0d37ca75434d pex: automatically create host entries from incoming endpoint port notifications
035fcc56ef60 host: keep multiple endpoint candidates, one for each type
a089e8ae7504 pex: avoid sending a query to a host more than once every 15 seconds
Signed-off-by: Felix Fietkau <nbd@nbd.name>
libwolfssl-cpu-crypto is a variant of libwolfssl with support for
cryptographic CPU instructions on x86_64 and aarch64.
On aarch64, wolfSSL does not perform run-time detection, so the library
will crash when the AES functions are called. A preinst script attempts
to check for support by querying /proc/cpuinfo, if installed in a
running system. When building an image, the script will check the
DISTRIB_TARGET value in /etc/openwrt_release, and will abort
installation if target is bcm27xx.
Signed-off-by: Eneas U de Queiroz <cotequeiroz@gmail.com>
cc4eb79 ubus: support obtaining numeric error code
01c412c ubus: add toplevel constants for ubus status codes
8e240fa ubus: allow object method call handlers to return a numeric status code
5cdddd3 lib: add limit support to split() and replace()
0ba9c3e fs: add optional third permission argument to fs.open()
c1f7b3b lib: remove fixed capture group limit in match() and regex replace()
Signed-off-by: Jo-Philipp Wich <jo@mein.io>
Instead of always including the XHCI driver in the kernel on all
MediaTek boards, selectively include the kernel module only on boards
which actually make use of USB functionality.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
add Flow Queuing with Proportional Integral controller Enhanced (FQ-PIE) as an
optional kmod in network support and extract sched-pie from kmod-sched to
allow dependency on just kmod-sched-pie (PIE).
Signed-off-by: Kabuli Chana <newtownBuild@gmail.com>
Add support for the TP-Link SG2210P switch. This is an RTL8380 based
switch with eight RJ-45 ports with 802.3af PoE, and two SFP ports.
This device shares the same board with the SG2008P and SG2008. To
model this, declare all the capabilities in the sg2xxx dtsi, and
disable unpopulated on the lower end models.
Specifications:
---------------
- SoC: Realtek RTL8380M
- Flash: 32 MiB SPI flash (Vendor varies)
- RAM: 256 MiB (Vendor varies)
- Ethernet: 8x 10/100/1000 Mbps with PoE (all ports)
2x SFP ports
- Buttons: 1x "Reset" button on front panel
- Power: 53.5V DC barrel jack
- UART: 1x serial header, unpopulated
- PoE: 2x TI TPS23861 I2C PoE controller
Works:
------
- (8) RJ-45 ethernet ports
- (2) SFP ports (with caveats)
- Switch functions
- System LED
Not yet enabled:
----------------
- Power-over-Ethernet (driver works, but doesn't enable "auto" mode)
- PoE LEDs
Enabling SFP ports:
-------------------
The SFP port control lines are hardwired, except for tx-disable. These
lines are controller by the RTL8231 in shift register mode. There is
no driver support for this yet.
However, to enable the lasers on SFP1 and SFP2 respectively:
echo 0x0510ff00 > /sys/kernel/debug/rtl838x/led/led_p_en_ctrl
echo 0x140 > /sys/kernel/debug/rtl838x/led/led_sw_p_ctrl.26
echo 0x140 > /sys/kernel/debug/rtl838x/led/led_sw_p_ctrl.24
Install via serial console/tftp:
--------------------------------
The footprints R27 (0201) and R28 (0402) are not populated. To enable
serial console, 50 ohm resistors should be soldered -- any value from
0 ohm to 50 ohm will work. R27 can be replaced by a solder bridge.
The u-boot firmware drops to a TP-Link specific "BOOTUTIL" shell at
38400 baud. There is no known way to exit out of this shell, and no
way to do anything useful.
Ideally, one would trick the bootloader into flashing the sysupgrade
image first. However, if the image exceeds 6MiB in size, it will not
work. The sysupgrade image can also be flashed. To install OpenWrt:
Prepare a tftp server with:
1. server address: 192.168.0.146
2. the image as: "uImage.img"
Power on device, and stop boot by pressing any key.
Once the shell is active:
1. Ground out the CLK (pin 16) of the ROM (U7)
2. Select option "3. Start"
3. Bootloader notes that "The kernel has been damaged!"
4. Release CLK as sson as bootloader thinks image is corrupted.
5. Bootloader enters automatic recovery -- details printed on console
6. Watch as the bootloader flashes and boots OpenWrt.
Signed-off-by: Alexandru Gagniuc <mr.nuke.me@gmail.com>
[OpenWrt capitalisation in commit message]
Signed-off-by: Sander Vanheule <sander@svanheule.net>
Serge Vasilugin reports:
To improve mt7620 built-in wifi performance some changes:
1. Correct BW20/BW40 switching (see comments with mark (1))
2. Correct TX_SW_CFG1 MAC reg from v3 of vendor driver see
https://gitlab.com/dm38/padavan-ng/-/blob/master/trunk/proprietary/rt_wifi/rtpci/3.0.X.X/mt76x2/chips/rt6352.c#L531
3. Set bbp66 for all chains.
4. US_CYC_CNT init based on Programming guide, default value was 33 (pci),
set chipset bus clock with fallback to cpu clock/3.
5. Don't overwrite default values for mt7620.
6. Correct some typos.
7. Add support for external LNA:
a) RF and BBP regs never be corrected for this mode
b) eLNA is driven the same way as ePA with mt7620's pin PA
but vendor driver explicitly pin PA to gpio mode (for forrect calibration?)
so I'm not sure that request for pa_pin in dts-file will be enough
First 5 changes (really 2) improve performance for boards w/o eLNA/ePA.
Changes 7 add support for eLNA
Configuration w/o eLAN/ePA and with eLNA show results
tx/rx (from router point of view) for each stream:
35-40/30-35 Mbps for HT20
65-70/60-65 Mbps for HT40
Yes. Max results for 2T2R client is 140-145/135-140
with peaks 160/150, It correspond to mediatek driver results.
Boards with ePA untested.
Reported-by: Serge Vasilugin <vasilugin@yandex.ru>
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Prepare patches for sending upstream by adding patch descriptions
generated from the original OpenWrt commits adding each patch.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Hardware:
SoC: MediaTek MT7629 Cortex-A7 (ARMv7 1.25GHz, Dual-Core)
RAM: DDR3 128MB
Flash: Macronix MX35LF1GE4AB (SPI-NAND 128MB)
WiFi: MediaTek MT7761N (2.4GHz) / MediaTek MT7762N (5GHz) - no driver
Ethernet: SoC (WAN) / MediaTek MT7531 (LAN x4)
UART: [GND, RX, TX, 3.3V] (115200)
Installation:
- Flash recovery image with TFTP recovery
Revert to stock firmware:
- Flash stock firmware with TFTP recovery
TFTP Recovery method:
1. Unplug the router
2. Hold the reset button and plug in
3. Release when the power LED stops flashing and go off
4. Set your computer IP address manually to 192.168.0.x / 255.255.255.0
5. Flash image with TFTP client to 192.168.0.1
Signed-off-by: Yoonji Park <koreapyj@dcmys.kr>
xdp-tools build currently breaks on build hosts which do not have
libbpf headers installed because the build system wrongly tries to
use the host's include path.
Properly pass path to libbpf headers to xdp-tools build system to
fix build e.g. on the buildbots.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Add support for TP-Link Deco S4 wifi router
The label refers to the device as S4R and the TP-Link firmware
site calls it the Deco S4 v2. (There does not appear to be a v1)
Hardware (and FCC id) are identical to the Deco M4R v2 but the
flash layout is ordered differently and the OEM firmware encrypts
some config parameters (including the label mac address) in flash
In order to set the encrypted mac address, the wlan's caldata
node is removed from the DTS so the mac can be decrypted with
the help of the uencrypt tool and patched into the wlan fw
via hotplug
Specifications:
SoC: QCA9563-AL3A
RAM: Zentel A3R1GE40JBF
Wireless 2.4GHz: QCA9563-AL3A (main SoC)
Wireless 5GHz: QCA9886
Ethernet Switch: QCA8337N-AL3C
Flash: 16 MB SPI NOR
UART serial access (115200N1) on board via solder pads:
RX = TP1 pad
TX = TP2 pad
GND = C201 (pad nearest board edge)
The device's bootloader and web gui will only accept images that
were signed using TP-Link's RSA key, however a memory safety bug
in the bootloader can be leveraged to install openwrt without
accessing the serial console. See developer forum S4 support page
for link to a "firmware" file that starts a tftp client, or you
may generate one on your own like this:
```
python - > deco_s4_faux_fw_tftp.bin <<EOF
import sys
from struct import pack
b = pack('>I', 0x00008000) + b'X'*16 + b"fw-type:" \
+ b'x'*256 + b"S000S001S002" + pack('>I', 0x80060200) \
b += b"\x00"*(0x200-len(b)) \
+ pack(">33I", *[0x3c0887fc, 0x35083ddc, 0xad000000, 0x24050000,
0x3c048006, 0x348402a0, 0x3c1987f9, 0x373947f4,
0x0320f809, 0x00000000, 0x24050000, 0x3c048006,
0x348402d0, 0x3c1987f9, 0x373947f4, 0x0320f809,
0x00000000, 0x24050000, 0x3c048006, 0x34840300,
0x3c1987f9, 0x373947f4, 0x0320f809, 0x00000000,
0x24050000, 0x3c048006, 0x34840400, 0x3c1987f9,
0x373947f4, 0x0320f809, 0x00000000, 0x1000fff1,
0x00000000])
b += b"\xff"*(0x2A0-len(b)) + b"setenv serverip 192.168.0.2\x00"
b += b"\xff"*(0x2D0-len(b)) + b"setenv ipaddr 192.168.0.1\x00"
b += b"\xff"*(0x300-len(b)) + b"tftpboot 0x81000000 initramfs-kernel.bin\x00"
b += b"\xff"*(0x400-len(b)) + b"bootm 0x81000000\x00"
b += b"\xff"*(0x8000-len(b))
sys.stdout.buffer.write(b)
EOF
```
Installation:
1. Run tftp server on pc with static ip 192.168.0.2
2. Place openwrt "initramfs-kernel.bin" image in tftp root dir
3. Connect pc to router ethernet port1
4. While holding in reset button on bottom of router, power on router
5. From pc access router webgui at http://192.168.0.1
6. Upload deco_s4_faux_fw_tftp.bin
7. Router will load and execture in-memory openwrt
8. Switch pc back to dhcp or static 192.168.1.x
9. Flash openwrt sysupgrade image via luci/ssh at 192.168.1.1
Revert to stock:
Press and hold reset button while powering device to start the
bootloader's recovery mode, where stock firmware can be uploaded
via web gui at 192.168.0.1
Please note that one additional non-github commits is also needed:
firmware-utils: add tplink-safeloader support for Deco S4
Signed-off-by: Nick French <nickfrench@gmail.com>
FCC ID: U2M-CAP2100AG
WatchGuard AP100 is an indoor wireless access point with
1 Gb ethernet port, dual-band but single-radio wireless,
internal antenna plates, and 802.3at PoE+
this board is a Senao device:
the hardware is equivalent to EnGenius EAP300 v2
the software is modified Senao SDK which is based on openwrt and uboot
including image checksum verification at boot time,
and a failsafe image that boots if checksum fails
**Specification:**
- AR9344 SOC MIPS 74kc, 2.4 GHz AND 5 GHz WMAC, 2x2
- AR8035-A EPHY RGMII GbE with PoE+ IN
- 25 MHz clock
- 16 MB FLASH mx25l12805d
- 2x 64 MB RAM
- UART console J11, populated
- GPIO watchdog GPIO 16, 20 sec toggle
- 2 antennas 5 dBi, internal omni-directional plates
- 5 LEDs power, eth0 link/data, 2G, 5G
- 1 button reset
**MAC addresses:**
Label has no MAC
Only one Vendor MAC address in flash at art 0x0
eth0 ---- *:e5 art 0x0 -2
phy0 ---- *:e5 art 0x0 -2
**Installation:**
Method 1: OEM webpage
use OEM webpage for firmware upgrade to upload factory.bin
Method 2: root shell
It may be necessary to use a Watchguard router to flash the image to the AP
and / or to downgrade the software on the AP to access SSH
For some Watchguard devices, serial console over UART is disabled.
NOTE: DHCP is not enabled by default after flashing
**TFTP recovery:**
reset button has no function at boot time
only possible with modified uboot environment,
(see commit message for Watchguard AP300)
**Return to OEM:**
user should make backup of MTD partitions
and write the backups back to mtd devices
in order to revert to OEM reliably
It may be possible to use sysupgrade
with an OEM image as well...
(not tested)
**OEM upgrade info:**
The OEM upgrade script is at /etc/fwupgrade.sh
OKLI kernel loader is required because the OEM software
expects the kernel to be no greater than 1536k
and the factory.bin upgrade procedure would otherwise
overwrite part of the kernel when writing rootfs.
**Note on eth0 PLL-data:**
The default Ethernet Configuration register values will not work
because of the external AR8035 switch between
the SOC and the ethernet port.
For AR934x series, the PLL registers for eth0
can be see in the DTSI as 0x2c.
Therefore the PLL registers can be read from uboot
for each link speed after attempting tftpboot
or another network action using that link speed
with `md 0x1805002c 1`.
The clock delay required for RGMII can be applied
at the PHY side, using the at803x driver `phy-mode`.
Therefore the PLL registers for GMAC0
do not need the bits for delay on the MAC side.
This is possible due to fixes in at803x driver
since Linux 5.1 and 5.3
**Note on WatchGuard Magic string:**
The OEM upgrade script is a modified version of
the generic Senao sysupgrade script
which is used on EnGenius devices.
On WatchGuard boards produced by Senao,
images are verified using a md5sum checksum of
the upgrade image concatenated with a magic string.
this checksum is then appended to the end of the final image.
This variable does not apply to all the senao devices
so set to null string as default
Tested-by: Steve Wheeler <stephenw10@gmail.com>
Signed-off-by: Michael Pratt <mcpratt@pm.me>
FCC ID: U2M-CAP4200AG
WatchGuard AP200 is an indoor wireless access point with
1 Gb ethernet port, dual-band wireless,
internal antenna plates, and 802.3at PoE+
this board is a Senao device:
the hardware is equivalent to EnGenius EAP600
the software is modified Senao SDK which is based on openwrt and uboot
including image checksum verification at boot time,
and a failsafe image that boots if checksum fails
**Specification:**
- AR9344 SOC MIPS 74kc, 2.4 GHz WMAC, 2x2
- AR9382 WLAN PCI card 168c:0030, 5 GHz, 2x2, 26dBm
- AR8035-A EPHY RGMII GbE with PoE+ IN
- 25 MHz clock
- 16 MB FLASH mx25l12805d
- 2x 64 MB RAM
- UART console J11, populated
- GPIO watchdog GPIO 16, 20 sec toggle
- 4 antennas 5 dBi, internal omni-directional plates
- 5 LEDs power, eth0 link/data, 2G, 5G
- 1 button reset
**MAC addresses:**
Label has no MAC
Only one Vendor MAC address in flash at art 0x0
eth0 ---- *:be art 0x0 -2
phy1 ---- *:bf art 0x0 -1
phy0 ---- *:be art 0x0 -2
**Installation:**
Method 1: OEM webpage
use OEM webpage for firmware upgrade to upload factory.bin
Method 2: root shell
It may be necessary to use a Watchguard router to flash the image to the AP
and / or to downgrade the software on the AP to access SSH
For some Watchguard devices, serial console over UART is disabled.
NOTE: DHCP is not enabled by default after flashing
**TFTP recovery:**
reset button has no function at boot time
only possible with modified uboot environment,
(see commit message for Watchguard AP300)
**Return to OEM:**
user should make backup of MTD partitions
and write the backups back to mtd devices
in order to revert to OEM reliably
It may be possible to use sysupgrade
with an OEM image as well...
(not tested)
**OEM upgrade info:**
The OEM upgrade script is at /etc/fwupgrade.sh
OKLI kernel loader is required because the OEM software
expects the kernel to be no greater than 1536k
and the factory.bin upgrade procedure would otherwise
overwrite part of the kernel when writing rootfs.
**Note on eth0 PLL-data:**
The default Ethernet Configuration register values will not work
because of the external AR8035 switch between
the SOC and the ethernet port.
For AR934x series, the PLL registers for eth0
can be see in the DTSI as 0x2c.
Therefore the PLL registers can be read from uboot
for each link speed after attempting tftpboot
or another network action using that link speed
with `md 0x1805002c 1`.
The clock delay required for RGMII can be applied
at the PHY side, using the at803x driver `phy-mode`.
Therefore the PLL registers for GMAC0
do not need the bits for delay on the MAC side.
This is possible due to fixes in at803x driver
since Linux 5.1 and 5.3
**Note on WatchGuard Magic string:**
The OEM upgrade script is a modified version of
the generic Senao sysupgrade script
which is used on EnGenius devices.
On WatchGuard boards produced by Senao,
images are verified using a md5sum checksum of
the upgrade image concatenated with a magic string.
this checksum is then appended to the end of the final image.
This variable does not apply to all the senao devices
so set to null string as default
Tested-by: Steve Wheeler <stephenw10@gmail.com>
Tested-by: John Delaney <johnd@ankco.net>
Signed-off-by: Michael Pratt <mcpratt@pm.me>
FCC ID: Q6G-AP300
WatchGuard AP300 is an indoor wireless access point with
1 Gb ethernet port, dual-band wireless,
internal antenna plates, and 802.3at PoE+
this board is a Senao device:
the hardware is equivalent to EnGenius EAP1750
the software is modified Senao SDK which is based on openwrt and uboot
including image checksum verification at boot time,
and a failsafe image that boots if checksum fails
**Specification:**
- QCA9558 SOC MIPS 74kc, 2.4 GHz WMAC, 3x3
- QCA9880 WLAN PCI card 168c:003c, 5 GHz, 3x3, 26dBm
- AR8035-A PHY RGMII GbE with PoE+ IN
- 40 MHz clock
- 32 MB FLASH S25FL512S
- 2x 64 MB RAM NT5TU32M16
- UART console J10, populated
- GPIO watchdog GPIO 16, 20 sec toggle
- 6 antennas 5 dBi, internal omni-directional plates
- 5 LEDs power, eth0 link/data, 2G, 5G
- 1 button reset
**MAC addresses:**
MAC address labeled as ETH
Only one Vendor MAC address in flash at art 0x0
eth0 ETH *:3c art 0x0
phy1 ---- *:3d ---
phy0 ---- *:3e ---
**Serial console access:**
For this board, its not certain whether UART is possible
it is likely that software is blocking console access
the RX line on the board for UART is shorted to ground by resistor R176
the resistors R175 and R176 are next to the UART RX pin at J10
however console output is garbage even after this fix
**Installation:**
Method 1: OEM webpage
use OEM webpage for firmware upgrade to upload factory.bin
Method 2: root shell access
downgrade XTM firewall to v2.0.0.1
downgrade AP300 firmware: v1.0.1
remove / unpair AP from controller
perform factory reset with reset button
connect ethernet to a computer
login to OEM webpage with default address / pass: wgwap
enable SSHD in OEM webpage settings
access root shell with SSH as user 'root'
modify uboot environment to automatically try TFTP at boot time
(see command below)
rename initramfs-kernel.bin to test.bin
load test.bin over TFTP (see TFTP recovery)
(optionally backup all mtdblocks to have flash backup)
perform a sysupgrade with sysupgrade.bin
NOTE: DHCP is not enabled by default after flashing
**TFTP recovery:**
server ip: 192.168.1.101
reset button seems to do nothing at boot time...
only possible with modified uboot environment,
running this command in the root shell:
fw_setenv bootcmd 'if ping 192.168.1.101; then tftp 0x82000000 test.bin && bootm 0x82000000; else bootm 0x9f0a0000; fi'
and verify that it is correct with
fw_printenv
then, before boot, the device will attempt TFTP from 192.168.1.101
looking for file 'test.bin'
to return uboot environment to normal:
fw_setenv bootcmd 'bootm 0x9f0a0000'
**Return to OEM:**
user should make backup of MTD partitions
and write the backups back to mtd devices
in order to revert to OEM
(see installation method 2)
It may be possible to use sysupgrade
with an OEM image as well...
(not tested)
**OEM upgrade info:**
The OEM upgrade script is at /etc/fwupgrade.sh
OKLI kernel loader is required because the OEM software
expects the kernel to be no greater than 1536k
and the factory.bin upgrade procedure would otherwise
overwrite part of the kernel when writing rootfs.
**Note on eth0 PLL-data:**
The default Ethernet Configuration register values will not work
because of the external AR8035 switch between
the SOC and the ethernet port.
For QCA955x series, the PLL registers for eth0 and eth1
can be see in the DTSI as 0x28 and 0x48 respectively.
Therefore the PLL registers can be read from uboot
for each link speed after attempting tftpboot
or another network action using that link speed
with `md 0x18050028 1` and `md 0x18050048 1`.
The clock delay required for RGMII can be applied
at the PHY side, using the at803x driver `phy-mode`.
Therefore the PLL registers for GMAC0
do not need the bits for delay on the MAC side.
This is possible due to fixes in at803x driver
since Linux 5.1 and 5.3
**Note on WatchGuard Magic string:**
The OEM upgrade script is a modified version of
the generic Senao sysupgrade script
which is used on EnGenius devices.
On WatchGuard boards produced by Senao,
images are verified using a md5sum checksum of
the upgrade image concatenated with a magic string.
this checksum is then appended to the end of the final image.
This variable does not apply to all the senao devices
so set to null string as default
Tested-by: Alessandro Kornowski <ak@wski.org>
Tested-by: John Wagner <john@wagner.us.org>
Signed-off-by: Michael Pratt <mcpratt@pm.me>
Ruckus ZoneFlex 7321 is a dual-band, single radio 802.11n 2x2 MIMO enterprise
access point. It is very similar to its bigger brother, ZoneFlex 7372.
Hardware highligts:
- CPU: Atheros AR9342 SoC at 533 MHz
- RAM: 64MB DDR2
- Flash: 32MB SPI-NOR
- Wi-Fi: AR9342 built-in dual-band 2x2 MIMO radio
- Ethernet: single Gigabit Ethernet port through AR8035 gigabit PHY
- PoE: input through Gigabit port
- Standalone 12V/1A power input
- USB: optional single USB 2.0 host port on the 7321-U variant.
Serial console: 115200-8-N-1 on internal H1 header.
Pinout:
H1 ----------
|1|x3|4|5|
----------
Pin 1 is near the "H1" marking.
1 - RX
x - no pin
3 - VCC (3.3V)
4 - GND
5 - TX
JTAG: Connector H5, unpopulated, similar to MIPS eJTAG, standard,
but without the key in pin 12 and not every pin routed:
------- H5
|1 |2 |
-------
|3 |4 |
-------
|5 |6 |
-------
|7 |8 |
-------
|9 |10|
-------
|11|12|
-------
|13|14|
-------
3 - TDI
5 - TDO
7 - TMS
9 - TCK
2,4,6,8,10 - GND
14 - Vref
1,11,12,13 - Not connected
Installation:
There are two methods of installation:
- Using serial console [1] - requires some disassembly, 3.3V USB-Serial
adapter, TFTP server, and removing a single T10 screw,
but with much less manual steps, and is generally recommended, being
safer.
- Using stock firmware root shell exploit, SSH and TFTP [2]. Does not
work on some rare versions of stock firmware. A more involved, and
requires installing `mkenvimage` from u-boot-tools package if you
choose to rebuild your own environment, but can be used without
disassembly or removal from installation point, if you have the
credentials.
If for some reason, size of your sysupgrade image exceeds 13312kB,
proceed with method [1]. For official images this is not likely to
happen ever.
[1] Using serial console:
0. Connect serial console to H1 header. Ensure the serial converter
does not back-power the board, otherwise it will fail to boot.
1. Power-on the board. Then quickly connect serial converter to PC and
hit Ctrl+C in the terminal to break boot sequence. If you're lucky,
you'll enter U-boot shell. Then skip to point 3.
Connection parameters are 115200-8-N-1.
2. Allow the board to boot. Press the reset button, so the board
reboots into U-boot again and go back to point 1.
3. Set the "bootcmd" variable to disable the dual-boot feature of the
system and ensure that uImage is loaded. This is critical step, and
needs to be done only on initial installation.
> setenv bootcmd "bootm 0x9f040000"
> saveenv
4. Boot the OpenWrt initramfs using TFTP. Replace IP addresses as needed:
> setenv serverip 192.168.1.2
> setenv ipaddr 192.168.1.1
> tftpboot 0x81000000 openwrt-ath79-generic-ruckus_zf7321-initramfs-kernel.bin
> bootm 0x81000000
5. Optional, but highly recommended: back up contents of "firmware" partition:
$ ssh root@192.168.1.1 cat /dev/mtd1 > ruckus_zf7321_fw1_backup.bin
$ ssh root@192.168.1.1 cat /dev/mtd5 > ruckus_zf7321_fw2_backup.bin
6. Copy over sysupgrade image, and perform actual installation. OpenWrt
shall boot from flash afterwards:
$ ssh root@192.168.1.1
# sysupgrade -n openwrt-ath79-generic-ruckus_zf7321-squashfs-sysupgrade.bin
[2] Using stock root shell:
0. Reset the device to factory defaullts. Power-on the device and after
it boots, hold the reset button near Ethernet connectors for 5
seconds.
1. Connect the device to the network. It will acquire address over DHCP,
so either find its address using list of DHCP leases by looking for
label MAC address, or try finding it by scanning for SSH port:
$ nmap 10.42.0.0/24 -p22
From now on, we assume your computer has address 10.42.0.1 and the device
has address 10.42.0.254.
2. Set up a TFTP server on your computer. We assume that TFTP server
root is at /srv/tftp.
3. Obtain root shell. Connect to the device over SSH. The SSHD ond the
frmware is pretty ancient and requires enabling HMAC-MD5.
$ ssh 10.42.0.254 \
-o UserKnownHostsFile=/dev/null \
-o StrictHostKeyCheking=no \
-o MACs=hmac-md5
Login. User is "super", password is "sp-admin".
Now execute a hidden command:
Ruckus
It is case-sensitive. Copy and paste the following string,
including quotes. There will be no output on the console for that.
";/bin/sh;"
Hit "enter". The AP will respond with:
grrrr
OK
Now execute another hidden command:
!v54!
At "What's your chow?" prompt just hit "enter".
Congratulations, you should now be dropped to Busybox shell with root
permissions.
4. Optional, but highly recommended: backup the flash contents before
installation. At your PC ensure the device can write the firmware
over TFTP:
$ sudo touch /srv/tftp/ruckus_zf7321_firmware{1,2}.bin
$ sudo chmod 666 /srv/tftp/ruckus_zf7321_firmware{1,2}.bin
Locate partitions for primary and secondary firmware image.
NEVER blindly copy over MTD nodes, because MTD indices change
depending on the currently active firmware, and all partitions are
writable!
# grep rcks_wlan /proc/mtd
Copy over both images using TFTP, this will be useful in case you'd
like to return to stock FW in future. Make sure to backup both, as
OpenWrt uses bot firmwre partitions for storage!
# tftp -l /dev/<rcks_wlan.main_mtd> -r ruckus_zf7321_firmware1.bin -p 10.42.0.1
# tftp -l /dev/<rcks_wlan.bkup_mtd> -r ruckus_zf7321_firmware2.bin -p 10.42.0.1
When the command finishes, copy over the dump to a safe place for
storage.
$ cp /srv/tftp/ruckus_zf7321_firmware{1,2}.bin ~/
5. Ensure the system is running from the BACKUP image, i.e. from
rcks_wlan.bkup partition or "image 2". Otherwise the installation
WILL fail, and you will need to access mtd0 device to write image
which risks overwriting the bootloader, and so is not covered here
and not supported.
Switching to backup firmware can be achieved by executing a few
consecutive reboots of the device, or by updating the stock firmware. The
system will boot from the image it was not running from previously.
Stock firmware available to update was conveniently dumped in point 4 :-)
6. Prepare U-boot environment image.
Install u-boot-tools package. Alternatively, if you build your own
images, OpenWrt provides mkenvimage in host staging directory as well.
It is recommended to extract environment from the device, and modify
it, rather then relying on defaults:
$ sudo touch /srv/tftp/u-boot-env.bin
$ sudo chmod 666 /srv/tftp/u-boot-env.bin
On the device, find the MTD partition on which environment resides.
Beware, it may change depending on currently active firmware image!
# grep u-boot-env /proc/mtd
Now, copy over the partition
# tftp -l /dev/mtd<N> -r u-boot-env.bin -p 10.42.0.1
Store the stock environment in a safe place:
$ cp /srv/tftp/u-boot-env.bin ~/
Extract the values from the dump:
$ strings u-boot-env.bin | tee u-boot-env.txt
Now clean up the debris at the end of output, you should end up with
each variable defined once. After that, set the bootcmd variable like
this:
bootcmd=bootm 0x9f040000
You should end up with something like this:
bootcmd=bootm 0x9f040000
bootargs=console=ttyS0,115200 rootfstype=squashfs init=/sbin/init
baudrate=115200
ethaddr=0x00:0xaa:0xbb:0xcc:0xdd:0xee
mtdparts=mtdparts=ar7100-nor0:256k(u-boot),13312k(rcks_wlan.main),2048k(datafs),256k(u-boot-env),512k(Board Data),13312k(rcks_wlan.bkup)
mtdids=nor0=ar7100-nor0
bootdelay=2
ethact=eth0
filesize=78a000
fileaddr=81000000
partition=nor0,0
mtddevnum=0
mtddevname=u-boot
ipaddr=10.0.0.1
serverip=10.0.0.5
stdin=serial
stdout=serial
stderr=serial
These are the defaults, you can use most likely just this as input to
mkenvimage.
Now, create environment image and copy it over to TFTP root:
$ mkenvimage -s 0x40000 -b -o u-boot-env.bin u-boot-env.txt
$ sudo cp u-boot-env.bin /srv/tftp
This is the same image, gzipped and base64-encoded:
H4sIAAAAAAAAA+3QQW7TQBQAUF8EKRtQI6XtJDS0VJoN4gYcAE3iCbWS2MF2Sss1ORDYqVq6YMEB3rP0
Z/7Yf+aP3/56827VNP16X8Zx3E/Cw8dNuAqDYlxI7bcurpu6a3Y59v3jlzCbz5eLECbt8HbT9Y+HHLvv
x9TdbbpJVVd9vOxWVX05TotVOpZt6nN8qilyf5fKso3hIYTb8JDSEFarIazXQyjLIeRc7PvykNq+iy+T
1F7PQzivmzbcLpYftmfH87G56Wz+/v18sT1r19vu649dqi/2qaqns0W4utmelalPm27I/lac5/p+OluO
NZ+a1JaTz8M3/9hmtT0epmMjVdnF8djXLZx+TJl36TEuTlda93EYQrGpdrmrfuZ4fZPGHzjmp/vezMNJ
MV6n6qumPm06C+MRZb6vj/v4Mk/7HJ+6LarDqXweLsZnXnS5vc9tdXheWRbd0GIdh/Uq7cakOfavsty2
z1nxGwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAD+1x9eTkHLAAAEAA==
7. Perform actual installation. Copy over OpenWrt sysupgrade image to
TFTP root:
$ sudo cp openwrt-ath79-generic-ruckus_zf7321-squashfs-sysupgrade.bin /srv/tftp
Now load both to the device over TFTP:
# tftp -l /tmp/u-boot-env.bin -r u-boot-env.bin -g 10.42.0.1
# tftp -l /tmp/openwrt.bin -r openwrt-ath79-generic-ruckus_zf7321-squashfs-sysupgrade.bin -g 10.42.0.1
Vverify checksums of both images to ensure the transfer over TFTP
was completed:
# sha256sum /tmp/u-boot-env.bin /tmp/openwrt.bin
And compare it against source images:
$ sha256sum /srv/tftp/u-boot-env.bin /srv/tftp/openwrt-ath79-generic-ruckus_zf7321-squashfs-sysupgrade.bin
Locate MTD partition of the primary image:
# grep rcks_wlan.main /proc/mtd
Now, write the images in place. Write U-boot environment last, so
unit still can boot from backup image, should power failure occur during
this. Replace MTD placeholders with real MTD nodes:
# flashcp /tmp/openwrt.bin /dev/<rcks_wlan.main_mtd>
# flashcp /tmp/u-boot-env.bin /dev/<u-boot-env_mtd>
Finally, reboot the device. The device should directly boot into
OpenWrt. Look for the characteristic power LED blinking pattern.
# reboot -f
After unit boots, it should be available at the usual 192.168.1.1/24.
Return to factory firmware:
1. Boot into OpenWrt initramfs as for initial installation. To do that
without disassembly, you can write an initramfs image to the device
using 'sysupgrade -F' first.
2. Unset the "bootcmd" variable:
fw_setenv bootcmd ""
3. Write factory images downloaded from manufacturer website into
fwconcat0 and fwconcat1 MTD partitions, or restore backup you took
before installation:
mtd write ruckus_zf7321_fw1_backup.bin /dev/mtd1
mtd write ruckus_zf7321_fw2_backup.bin /dev/mtd5
4. Reboot the system, it should load into factory firmware again.
Quirks and known issues:
- Flash layout is changed from the factory, to use both firmware image
partitions for storage using mtd-concat, and uImage format is used to
actually boot the system, which rules out the dual-boot capability.
- The 5GHz radio has its own EEPROM on board, not connected to CPU.
- The stock firmware has dual-boot capability, which is not supported in
OpenWrt by choice.
It is controlled by data in the top 64kB of RAM which is unmapped,
to avoid the interference in the boot process and accidental
switch to the inactive image, although boot script presence in
form of "bootcmd" variable should prevent this entirely.
- U-boot disables JTAG when starting. To re-enable it, you need to
execute the following command before booting:
mw.l 1804006c 40
And also you need to disable the reset button in device tree if you
intend to debug Linux, because reset button on GPIO0 shares the TCK
pin.
- On some versions of stock firmware, it is possible to obtain root shell,
however not much is available in terms of debugging facitilies.
1. Login to the rkscli
2. Execute hidden command "Ruckus"
3. Copy and paste ";/bin/sh;" including quotes. This is required only
once, the payload will be stored in writable filesystem.
4. Execute hidden command "!v54!". Press Enter leaving empty reply for
"What's your chow?" prompt.
5. Busybox shell shall open.
Source: https://alephsecurity.com/vulns/aleph-2019014
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
Ruckus ZoneFlex 7372 is a dual-band, dual-radio 802.11n 2x2 MIMO enterprise
access point.
Ruckus ZoneFlex 7352 is also supported, lacking the 5GHz radio part.
Hardware highligts:
- CPU: Atheros AR9344 SoC at 560 MHz
- RAM: 128MB DDR2
- Flash: 32MB SPI-NOR
- Wi-Fi 2.4GHz: AR9344 built-in 2x2 MIMO radio
- Wi-Fi 5Ghz: AR9582 2x2 MIMO radio (Only in ZF7372)
- Antennas:
- Separate internal active antennas with beamforming support on both
bands with 7 elements per band, each controlled by 74LV164 GPIO
expanders, attached to GPIOs of each radio.
- Two dual-band external RP-SMA antenna connections on "7372-E"
variant.
- Ethernet 1: single Gigabit Ethernet port through AR8035 gigabit PHY
- Ethernet 2: single Fast Ethernet port through AR9344 built-in switch
- PoE: input through Gigabit port
- Standalone 12V/1A power input
- USB: optional single USB 2.0 host port on "-U" variants.
The same image should support:
- ZoneFlex 7372E (variant with external antennas, without beamforming
capability)
- ZoneFlex 7352 (single-band, 2.4GHz-only variant).
which are based on same baseboard (codename St. Bernard),
with different populated components.
Serial console: 115200-8-N-1 on internal H1 header.
Pinout:
H1
---
|5|
---
|4|
---
|3|
---
|x|
---
|1|
---
Pin 5 is near the "H1" marking.
1 - RX
x - no pin
3 - VCC (3.3V)
4 - GND
5 - TX
JTAG: Connector H2, similar to MIPS eJTAG, standard,
but without the key in pin 12 and not every pin routed:
------- H2
|1 |2 |
-------
|3 |4 |
-------
|5 |6 |
-------
|7 |8 |
-------
|9 |10|
-------
|11|12|
-------
|13|14|
-------
3 - TDI
5 - TDO
7 - TMS
9 - TCK
2,4,6,8,10 - GND
14 - Vref
1,11,12,13 - Not connected
Installation:
There are two methods of installation:
- Using serial console [1] - requires some disassembly, 3.3V USB-Serial
adapter, TFTP server, and removing a single T10 screw,
but with much less manual steps, and is generally recommended, being
safer.
- Using stock firmware root shell exploit, SSH and TFTP [2]. Does not
work on some rare versions of stock firmware. A more involved, and
requires installing `mkenvimage` from u-boot-tools package if you
choose to rebuild your own environment, but can be used without
disassembly or removal from installation point, if you have the
credentials.
If for some reason, size of your sysupgrade image exceeds 13312kB,
proceed with method [1]. For official images this is not likely to
happen ever.
[1] Using serial console:
0. Connect serial console to H1 header. Ensure the serial converter
does not back-power the board, otherwise it will fail to boot.
1. Power-on the board. Then quickly connect serial converter to PC and
hit Ctrl+C in the terminal to break boot sequence. If you're lucky,
you'll enter U-boot shell. Then skip to point 3.
Connection parameters are 115200-8-N-1.
2. Allow the board to boot. Press the reset button, so the board
reboots into U-boot again and go back to point 1.
3. Set the "bootcmd" variable to disable the dual-boot feature of the
system and ensure that uImage is loaded. This is critical step, and
needs to be done only on initial installation.
> setenv bootcmd "bootm 0x9f040000"
> saveenv
4. Boot the OpenWrt initramfs using TFTP. Replace IP addresses as needed:
> setenv serverip 192.168.1.2
> setenv ipaddr 192.168.1.1
> tftpboot 0x81000000 openwrt-ath79-generic-ruckus_zf7372-initramfs-kernel.bin
> bootm 0x81000000
5. Optional, but highly recommended: back up contents of "firmware" partition:
$ ssh root@192.168.1.1 cat /dev/mtd1 > ruckus_zf7372_fw1_backup.bin
$ ssh root@192.168.1.1 cat /dev/mtd5 > ruckus_zf7372_fw2_backup.bin
6. Copy over sysupgrade image, and perform actual installation. OpenWrt
shall boot from flash afterwards:
$ ssh root@192.168.1.1
# sysupgrade -n openwrt-ath79-generic-ruckus_zf7372-squashfs-sysupgrade.bin
[2] Using stock root shell:
0. Reset the device to factory defaullts. Power-on the device and after
it boots, hold the reset button near Ethernet connectors for 5
seconds.
1. Connect the device to the network. It will acquire address over DHCP,
so either find its address using list of DHCP leases by looking for
label MAC address, or try finding it by scanning for SSH port:
$ nmap 10.42.0.0/24 -p22
From now on, we assume your computer has address 10.42.0.1 and the device
has address 10.42.0.254.
2. Set up a TFTP server on your computer. We assume that TFTP server
root is at /srv/tftp.
3. Obtain root shell. Connect to the device over SSH. The SSHD ond the
frmware is pretty ancient and requires enabling HMAC-MD5.
$ ssh 10.42.0.254 \
-o UserKnownHostsFile=/dev/null \
-o StrictHostKeyCheking=no \
-o MACs=hmac-md5
Login. User is "super", password is "sp-admin".
Now execute a hidden command:
Ruckus
It is case-sensitive. Copy and paste the following string,
including quotes. There will be no output on the console for that.
";/bin/sh;"
Hit "enter". The AP will respond with:
grrrr
OK
Now execute another hidden command:
!v54!
At "What's your chow?" prompt just hit "enter".
Congratulations, you should now be dropped to Busybox shell with root
permissions.
4. Optional, but highly recommended: backup the flash contents before
installation. At your PC ensure the device can write the firmware
over TFTP:
$ sudo touch /srv/tftp/ruckus_zf7372_firmware{1,2}.bin
$ sudo chmod 666 /srv/tftp/ruckus_zf7372_firmware{1,2}.bin
Locate partitions for primary and secondary firmware image.
NEVER blindly copy over MTD nodes, because MTD indices change
depending on the currently active firmware, and all partitions are
writable!
# grep rcks_wlan /proc/mtd
Copy over both images using TFTP, this will be useful in case you'd
like to return to stock FW in future. Make sure to backup both, as
OpenWrt uses bot firmwre partitions for storage!
# tftp -l /dev/<rcks_wlan.main_mtd> -r ruckus_zf7372_firmware1.bin -p 10.42.0.1
# tftp -l /dev/<rcks_wlan.bkup_mtd> -r ruckus_zf7372_firmware2.bin -p 10.42.0.1
When the command finishes, copy over the dump to a safe place for
storage.
$ cp /srv/tftp/ruckus_zf7372_firmware{1,2}.bin ~/
5. Ensure the system is running from the BACKUP image, i.e. from
rcks_wlan.bkup partition or "image 2". Otherwise the installation
WILL fail, and you will need to access mtd0 device to write image
which risks overwriting the bootloader, and so is not covered here
and not supported.
Switching to backup firmware can be achieved by executing a few
consecutive reboots of the device, or by updating the stock firmware. The
system will boot from the image it was not running from previously.
Stock firmware available to update was conveniently dumped in point 4 :-)
6. Prepare U-boot environment image.
Install u-boot-tools package. Alternatively, if you build your own
images, OpenWrt provides mkenvimage in host staging directory as well.
It is recommended to extract environment from the device, and modify
it, rather then relying on defaults:
$ sudo touch /srv/tftp/u-boot-env.bin
$ sudo chmod 666 /srv/tftp/u-boot-env.bin
On the device, find the MTD partition on which environment resides.
Beware, it may change depending on currently active firmware image!
# grep u-boot-env /proc/mtd
Now, copy over the partition
# tftp -l /dev/mtd<N> -r u-boot-env.bin -p 10.42.0.1
Store the stock environment in a safe place:
$ cp /srv/tftp/u-boot-env.bin ~/
Extract the values from the dump:
$ strings u-boot-env.bin | tee u-boot-env.txt
Now clean up the debris at the end of output, you should end up with
each variable defined once. After that, set the bootcmd variable like
this:
bootcmd=bootm 0x9f040000
You should end up with something like this:
bootcmd=bootm 0x9f040000
bootargs=console=ttyS0,115200 rootfstype=squashfs init=/sbin/init
baudrate=115200
ethaddr=0x00:0xaa:0xbb:0xcc:0xdd:0xee
bootdelay=2
mtdids=nor0=ar7100-nor0
mtdparts=mtdparts=ar7100-nor0:256k(u-boot),13312k(rcks_wlan.main),2048k(datafs),256k(u-boot-env),512k(Board Data),13312k(rcks_wlan.bkup)
ethact=eth0
filesize=1000000
fileaddr=81000000
ipaddr=192.168.0.7
serverip=192.168.0.51
partition=nor0,0
mtddevnum=0
mtddevname=u-boot
stdin=serial
stdout=serial
stderr=serial
These are the defaults, you can use most likely just this as input to
mkenvimage.
Now, create environment image and copy it over to TFTP root:
$ mkenvimage -s 0x40000 -b -o u-boot-env.bin u-boot-env.txt
$ sudo cp u-boot-env.bin /srv/tftp
This is the same image, gzipped and base64-encoded:
H4sIAAAAAAAAA+3QTW7TQBQAYB+AQ2TZSGk6Tpv+SbNBrNhyADSJHWolsYPtlJaDcAWOCXaqQhdIXOD7
Fm/ee+MZ+/nHu58fV03Tr/dFHNf9JDzdbcJVGGRjI7Vfurhu6q7ZlbHvnz+FWZ4vFyFM2mF30/XPhzJ2
X4+pe9h0k6qu+njRrar6YkyzVToWberL+HImK/uHVBRtDE8h3IenlIawWg1hvR5CUQyhLE/vLcpdeo6L
bN8XVdHFumlDTO1NHsL5mI/9Q2r7Lv5J3uzeL5bX27Pj+XjRdJZfXuaL7Vm73nafv+1SPd+nqp7OFuHq
dntWpD5tuqH6e+K8rB+ns+V45n2T2mLyYXjmH9estsfD9DTSuo/DErJNtSu76vswbjg5NU4D3752qsOp
zu8W8/z6dh7mN1lXto9lWx3eNJd5Ng5V9VVTn2afnSYuysf6uI9/8rQv48s3Z93wn+o4XFWl3Vg0x/5N
Vbbta5X9AgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAAAAAAAAAAID/+Q2Z/B7cAAAEAA==
7. Perform actual installation. Copy over OpenWrt sysupgrade image to
TFTP root:
$ sudo cp openwrt-ath79-generic-ruckus_zf7372-squashfs-sysupgrade.bin /srv/tftp
Now load both to the device over TFTP:
# tftp -l /tmp/u-boot-env.bin -r u-boot-env.bin -g 10.42.0.1
# tftp -l /tmp/openwrt.bin -r openwrt-ath79-generic-ruckus_zf7372-squashfs-sysupgrade.bin -g 10.42.0.1
Verify checksums of both images to ensure the transfer over TFTP
was completed:
# sha256sum /tmp/u-boot-env.bin /tmp/openwrt.bin
And compare it against source images:
$ sha256sum /srv/tftp/u-boot-env.bin /srv/tftp/openwrt-ath79-generic-ruckus_zf7372-squashfs-sysupgrade.bin
Locate MTD partition of the primary image:
# grep rcks_wlan.main /proc/mtd
Now, write the images in place. Write U-boot environment last, so
unit still can boot from backup image, should power failure occur during
this. Replace MTD placeholders with real MTD nodes:
# flashcp /tmp/openwrt.bin /dev/<rcks_wlan.main_mtd>
# flashcp /tmp/u-boot-env.bin /dev/<u-boot-env_mtd>
Finally, reboot the device. The device should directly boot into
OpenWrt. Look for the characteristic power LED blinking pattern.
# reboot -f
After unit boots, it should be available at the usual 192.168.1.1/24.
Return to factory firmware:
1. Boot into OpenWrt initramfs as for initial installation. To do that
without disassembly, you can write an initramfs image to the device
using 'sysupgrade -F' first.
2. Unset the "bootcmd" variable:
fw_setenv bootcmd ""
3. Write factory images downloaded from manufacturer website into
fwconcat0 and fwconcat1 MTD partitions, or restore backup you took
before installation:
mtd write ruckus_zf7372_fw1_backup.bin /dev/mtd1
mtd write ruckus_zf7372_fw2_backup.bin /dev/mtd5
4. Reboot the system, it should load into factory firmware again.
Quirks and known issues:
- This is first device in ath79 target to support link state reporting
on FE port attached trough the built-in switch.
- Flash layout is changed from the factory, to use both firmware image
partitions for storage using mtd-concat, and uImage format is used to
actually boot the system, which rules out the dual-boot capability.
The 5GHz radio has its own EEPROM on board, not connected to CPU.
- The stock firmware has dual-boot capability, which is not supported in
OpenWrt by choice.
It is controlled by data in the top 64kB of RAM which is unmapped,
to avoid the interference in the boot process and accidental
switch to the inactive image, although boot script presence in
form of "bootcmd" variable should prevent this entirely.
- U-boot disables JTAG when starting. To re-enable it, you need to
execute the following command before booting:
mw.l 1804006c 40
And also you need to disable the reset button in device tree if you
intend to debug Linux, because reset button on GPIO0 shares the TCK
pin.
- On some versions of stock firmware, it is possible to obtain root shell,
however not much is available in terms of debugging facitilies.
1. Login to the rkscli
2. Execute hidden command "Ruckus"
3. Copy and paste ";/bin/sh;" including quotes. This is required only
once, the payload will be stored in writable filesystem.
4. Execute hidden command "!v54!". Press Enter leaving empty reply for
"What's your chow?" prompt.
5. Busybox shell shall open.
Source: https://alephsecurity.com/vulns/aleph-2019014
- Stock firmware has beamforming functionality, known as BeamFlex,
using active multi-segment antennas on both bands - controlled by
RF analog switches, driven by a pair of 74LV164 shift registers.
Shift registers used for each radio are connected to GPIO14 (clock)
and GPIO15 of the respective chip.
They are mapped as generic GPIOs in OpenWrt - in stock firmware,
they were most likely handled directly by radio firmware,
given the real-time nature of their control.
Lack of this support in OpenWrt causes the antennas to behave as
ordinary omnidirectional antennas, and does not affect throughput in
normal conditions, but GPIOs are available to tinker with nonetheless.
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
Aka Kroks Rt-Cse5 UW DRSIM (KNdRt31R16), ID 1958:
https://kroks.ru/search/?text=1958
See Kroks OpenWrt fork for support of other models:
https://github.com/kroks-free/openwrt
Device specs:
- CPU: MediaTek MT7628AN
- Flash: 16MB SPI NOR
- RAM: 64MB
- Bootloader: U-Boot
- Ethernet: 5x 10/100 Mbps
- 2.4 GHz: b/g/n SoC
- USB: 1x
- SIM-reader: 2x (driven by a dedicated chip with it's own firmware)
- Buttons: reset
- LEDs: 1x Power, 1x Wi-Fi, 12x others (SIM status, Internet, etc.)
Flashing:
- sysupgrade image via stock firmware WEB interface, IP: 192.168.1.254
- U-Boot launches a WEB server if Reset button is held during power up,
IP: 192.168.1.1
MAC addresses as verified by OEM firmware:
vendor OpenWrt source
LAN eth0 factory 0x4 (label)
2g wlan0 label
Signed-off-by: Andrey Butirsky <butirsky@gmail.com>
Aka "Kroks KNdRt31R19".
Ported from v19.07.8 of OpenWrt fork:
see https://github.com/kroks-free/openwrt
for support of other models.
Device specs:
- CPU: MediaTek MT7628AN
- Flash: 16MB SPI NOR
- RAM: 64MB
- Bootloader: U-Boot
- Ethernet: 1x 10/100 Mbps
- 2.4 GHz: b/g/n SoC
- mPCIe: 1x (usually equipped with an LTE modem by vendor)
- Buttons: reset
- LEDs: 1x Modem, 1x Injector, 1x Wi-Fi, 1x Status
Flashing:
- sysupgrade image via stock firmware WEB interface.
- U-Boot launches a WEB server if Reset button is held during power up.
Server IP: 192.168.1.1
SIM card switching:
The device supports up to 4 SIM cards - 2 locally on board and 2 on
remote SIM-injector.
By default, 1-st local SIM is active.
To switch to e.g. 1-st remote SIM:
echo 0 > /sys/class/gpio/modem1power/value
echo 0 > /sys/class/gpio/modem1sim1/value
echo 1 > /sys/class/gpio/modem1rsim1/value
echo 1 > /sys/class/gpio/modem1power/value
MAC addresses as verified by OEM firmware:
vendor OpenWrt source
LAN eth0 factory 0x4 (label)
2g wlan0 label
Signed-off-by: Kroks <dev@kroks.ru>
[butirsky@gmail.com: port to master; drop dts-v1]
Signed-off-by: Andrey Butirsky <butirsky@gmail.com>
This patch adds libbpf to the dependencies of tc-mod-iptables.
The package tc-mod-iptables is missing libbpf as a dependency,
which leads to the build failure described in bug #9491
LIBBPF_FORCE=on set, but couldn't find a usable libbpf
The build dependency is already automatically added because some other
packages from iproute2 depend on libbpf, but bpftools has multiple build
variants. With multiple build variants none gets build by default and
the build system will not build bpftools before iproute2.
Fixes: #9491
Signed-off-by: Kien Truong <duckientruong@gmail.com>
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
This is an RTL8393-based switch with 802.3af on all 48 ports.
Specifications:
---------------
* SoC: Realtek RTL8393M
* Flash: 32 MiB SPI flash
* RAM: 256 MiB
* Ethernet: 48x 10/100/1000 Mbps with PoE+
* Buttons: 1x "Reset" button, 1x "Speed" button
* UART: 1x serial header, unpopulated
* PoE: 12x TI TPS23861 I2C PoE controller, 384W PoE budget
* SFP: 4 SFP ports
Works:
------
- (48) RJ-45 ethernet ports
- Switch functions
- Buttons
- All LEDs on front panel except port LEDs
- Fan monitoring and basic control
Not yet enabled:
----------------
- PoE - ICs are not in AUTO mode, so the kernel driver is not usable
- Port LEDs
- SFP cages
Install via web interface:
-------------------------
Not supported at this time.
Install via serial console/tftp:
--------------------------------
The U-Boot firmware drops to a TP-Link specific "BOOTUTIL" shell at
38400 baud. There is no known way to exit out of this shell, and no
way to do anything useful.
Ideally, one would trick the bootloader into flashing the sysupgrade
image first. However, if the image exceeds 6MiB in size, it will not
work. To install OpenWRT:
Prepare a tftp server with:
1. server address: 192.168.0.146
2. the image as: "uImage.img"
Power on device, and stop boot by pressing any key.
Once the shell is active:
1. Ground out the CLK (pin 16) of the ROM (U6)
2. Select option "3. Start"
3. Bootloader notes that "The kernel has been damaged!"
4. Release CLK as soon as bootloader thinks image is corrupted.
5. Bootloader enters automatic recovery -- details printed on console
6. Watch as the bootloader flashes and boots OpenWRT.
Blind install via tftp:
-----------------------
This method works when it's not feasible to install a serial header.
Prepare a tftp server with:
1. server address: 192.168.0.146
2. the image as: "uImage.img"
3. Watch network traffic (tcpdump or wireshark works)
4. Power on the device.
5. Wait 1-2 seconds then ground out the CLK (pin 16) of the ROM (U6)
6. When 192.168.0.30 makes tftp requests, release pin 16
7. Wait 2-3 minutes for device to auto-flash and boot OpenWRT
Signed-off-by: Andreas Böhler <dev@aboehler.at>
Some platforms lack an established way to name netdevs; for example,
on x86, PCIe-based ethernet interfaces will be named starting from
eth0 in the order they are probed. This is a problem for many devices
supported explicitly by OpenWrt which have hard-wired, standalone or
on-CPU NICs not supported by DSA (which is usually used to rename the
ports based on their ostensible function).
To fix this, add a mapping between ethernet device name and sysfs
device path to board.json; this allows us to configure ethernet device
names we know about for a given board so that they correspond to
external labeling.
Signed-off-by: Martin Kennedy <hurricos@gmail.com>
The GPIO used for the RST button is also used for PCIe-CLKREQ signal.
Hence it cannot be used as button signal if PCIe is also used.
Wire up WPS button to serve as KEY_RESTART in Linux and "reset" button
in U-Boot.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
It allows prepopulating /etc/config/network interface-s with predefined
metric. It may be useful for devices with multiple WAN ports.
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
btusb fails to start on MT792[12] hardware without the appropriate
firmware being loaded first:
[ 9.750285] bluetooth hci0: Direct firmware load for mediatek/BT_RAM_CODE_MT7961_1_2_hdr.bin failed with error -2
[ 9.765723] bluetooth hci0: Falling back to sysfs fallback for: mediatek/BT_RAM_CODE_MT7961_1_2_hdr.bin
Package firmware for MediaTek MT792[12] Bluetooth from linux-firmware.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Enable MediaTek protocol in btusb module to support e.g. the Bluetooth
part of the MT7921K NGFF/M.2 module.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>