FCC ID: A8J-EAP1200H
Engenius EAP1200H is an indoor wireless access point with
1 Gb ethernet port, dual-band wireless,
internal antenna plates, and 802.3at PoE+
**Specification:**
- QCA9557 SOC
- QCA9882 WLAN PCI card, 5 GHz, 2x2, 26dBm
- AR8035-A PHY RGMII GbE with PoE+ IN
- 40 MHz clock
- 16 MB FLASH MX25L12845EMI-10G
- 2x 64 MB RAM NT5TU32M16FG
- UART at J10 populated
- 4 internal antenna plates (5 dbi, omni-directional)
- 5 LEDs, 1 button (power, eth0, 2G, 5G, WPS) (reset)
**MAC addresses:**
MAC addresses are labeled as ETH, 2.4G, and 5GHz
Only one Vendor MAC address in flash
eth0 ETH *:a2 art 0x0
phy1 2.4G *:a3 ---
phy0 5GHz *:a4 ---
**Serial Access:**
the RX line on the board for UART is shorted to ground by resistor R176
therefore it must be removed to use the console
but it is not necessary to remove to view boot log
optionally, R175 can be replaced with a solder bridge short
the resistors R175 and R176 are next to the UART RX pin at J10
**Installation:**
2 ways to flash factory.bin from OEM:
Method 1: Firmware upgrade page:
OEM webpage at 192.168.1.1
username and password "admin"
Navigate to "Firmware Upgrade" page from left pane
Click Browse and select the factory.bin image
Upload and verify checksum
Click Continue to confirm and wait 3 minutes
Method 2: Serial to load Failsafe webpage:
After connecting to serial console and rebooting...
Interrupt uboot with any key pressed rapidly
execute `run failsafe_boot` OR `bootm 0x9fd70000`
wait a minute
connect to ethernet and navigate to
"192.168.1.1/index.htm"
Select the factory.bin image and upload
wait about 3 minutes
**Return to OEM:**
If you have a serial cable, see Serial Failsafe instructions
otherwise, uboot-env can be used to make uboot load the failsafe image
*DISCLAIMER*
The Failsafe image is unique to Engenius boards.
If the failsafe image is missing or damaged this will brick the device
DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt
ssh into openwrt and run
`fw_setenv rootfs_checksum 0`
reboot, wait 3 minutes
connect to ethernet and navigate to 192.168.1.1/index.htm
select OEM firmware image from Engenius and click upgrade
**TFTP recovery:**
Requires serial console, reset button does nothing
rename initramfs to 'vmlinux-art-ramdisk'
make available on TFTP server at 192.168.1.101
power board, interrupt boot
execute tftpboot and bootm 0x81000000
NOTE: TFTP is not reliable due to bugged bootloader
set MTU to 600 and try many times
**Format of OEM firmware image:**
The OEM software of EAP1200H is a heavily modified version
of Openwrt Kamikaze. One of the many modifications
is to the sysupgrade program. Image verification is performed
simply by the successful ungzip and untar of the supplied file
and name check and header verification of the resulting contents.
To form a factory.bin that is accepted by OEM Openwrt build,
the kernel and rootfs must have specific names...
openwrt-ar71xx-generic-eap1200h-uImage-lzma.bin
openwrt-ar71xx-generic-eap1200h-root.squashfs
and begin with the respective headers (uImage, squashfs).
Then the files must be tarballed and gzipped.
The resulting binary is actually a tar.gz file in disguise.
This can be verified by using binwalk on the OEM firmware images,
ungzipping then untaring.
Newer EnGenius software requires more checks but their script
includes a way to skip them, otherwise the tar must include
a text file with the version and md5sums in a deprecated format.
The OEM upgrade script is at /etc/fwupgrade.sh.
OKLI kernel loader is required because the OEM software
expects the kernel to be no greater than 1536k
and the factory.bin upgrade procedure would otherwise
overwrite part of the kernel when writing rootfs.
Note on PLL-data cells:
The default PLL register values will not work
because of the external AR8035 switch between
the SOC and the ethernet port.
For QCA955x series, the PLL registers for eth0 and eth1
can be see in the DTSI as 0x28 and 0x48 respectively.
Therefore the PLL registers can be read from uboot
for each link speed after attempting tftpboot
or another network action using that link speed
with `md 0x18050028 1` and `md 0x18050048 1`.
The clock delay required for RGMII can be applied
at the PHY side, using the at803x driver `phy-mode`.
Therefore the PLL registers for GMAC0
do not need the bits for delay on the MAC side.
This is possible due to fixes in at803x driver
since Linux 5.1 and 5.3
Signed-off-by: Michael Pratt <mcpratt@pm.me>
The majority of our targets provide a default value for the variable
SUPPORTED_DEVICES, which is used in images to check against the
compatible on a running device:
SUPPORTED_DEVICES := $(subst _,$(comma),$(1))
At the moment, this is implemented in the Device/Default block of
the individual targets or even subtargets. However, since we
standardized device names and compatible in the recent past, almost
all targets are following the same scheme now:
device/image name: vendor_model
compatible: vendor,model
The equal redundant definitions are a symptom of this process.
Consequently, this patch moves the definition to image.mk making it
a global default. For the few targets not using the scheme above,
SUPPORTED_DEVICES will be defined to a different value in
Device/Default anyway, overwriting the default. In other words:
This change is supposed to be cosmetic.
This can be used as a global measure to get the current compatible
with: $(firstword $(SUPPORTED_DEVICES))
(Though this is not precisely an achievement of this commit.)
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The "netgear,uimage" parser can be replaced by the generic
parser using device specific openwrt,ih-magic and
openwrt,ih-type properties.
Device tree properties for the following devices have not
been set, as they have been dropped from OpenWrt with the
removal of the ar71xx target:
FW_MAGIC_WNR2000V1 0x32303031
FW_MAGIC_WNR2000V4 0x32303034
FW_MAGIC_WNR1000V2_VC 0x31303030
FW_MAGIC_WPN824N 0x31313030
Tested-by: Sander Vanheule <sander@svanheule.net> # WNDR3700v2
Tested-by: Stijn Segers <foss@volatilesystems.org> # WNDR3700v1
Signed-off-by: Bjørn Mork <bjorn@mork.no>
The only difference between the "openwrt,okli" and the generic
parser is the magic. Set this in device tree for all affected
devices and remove the "openwrt,okli" parser.
Tested-by: Michael Pratt <mcpratt@protonmail.com> # EAP300 v2, ENS202EXT and ENH202
Signed-off-by: Bjørn Mork <bjorn@mork.no>
Device specifications:
======================
* Qualcomm/Atheros QCA9558 ver 1 rev 0
* 720/600/240 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 3T3R 2.4 GHz Wi-Fi (11n)
* 3T3R 5 GHz Wi-Fi (11ac)
* 6x GPIO-LEDs (2x wifi, 2x status, 1x lan, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default))
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 1x ethernet
- AR8035 ethernet PHY (RGMII)
- 10/100/1000 Mbps Ethernet
- 802.3af POE
- used as LAN interface
* 12-24V 1A DC
* internal antennas
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to the
device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
[rebase, add LED migration]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Device specifications:
======================
* Qualcomm/Atheros QCA9558 ver 1 rev 0
* 720/600/240 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 3T3R 2.4 GHz Wi-Fi (11n)
* 3T3R 5 GHz Wi-Fi (11ac)
* 6x GPIO-LEDs (2x wifi, 2x status, 1x lan, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default))
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 1x ethernet
- AR8035 ethernet PHY (RGMII)
- 10/100/1000 Mbps Ethernet
- 802.3af POE
- used as LAN interface
* 12-24V 1A DC
* internal antennas
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to the
device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
[rebase, apply shared DTSI/device node, add LED migration]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The OpenMesh MR900 and to-be-added MR1750 family are very similar.
Make the existing MR900 DTSI more general so it can be used for
the MR1750 devices as well.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The shared image definitions for OpenMesh devices are currently
organized based on device families. This introduces some duplicate
code, as the image creation code is mostly the same for those.
This patch thus derives two basic shared definitions that work for
all devices and only requires a few variables to be moved back to
the device definitions.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The OpenMesh MR900 is a modified version of the Exx900/Exx1750 family.
These devices are shipped with an AR803x PHY and had various problems with
the delay configuration in ar71xx. These problems are now in the past [1]
and parts of the delay configuration should now be done in the PHY only.
Just switch to the configuration of the ECB1750 to have an already well
tested configuration for ath79 with the newer kernel versions.
[1] https://github.com/openwrt/openwrt/pull/3505#issuecomment-716050292
Reported-by: Michael Pratt <mcpratt@pm.me>
Signed-off-by: Sven Eckelmann <sven@narfation.org>
Device specifications:
======================
* Qualcomm/Atheros QCA9558 ver 1 rev 0
* 720/600/240 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 3T3R 2.4 GHz Wi-Fi
* 3T3R 5 GHz Wi-Fi
* 6x GPIO-LEDs (2x wifi, 2x status, 1x lan, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default))
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 1x ethernet
- AR8035 ethernet PHY (RGMII)
- 10/100/1000 Mbps Ethernet
- 802.3af POE
- used as LAN interface
* 12-24V 1A DC
* internal antennas
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to the
device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
[rebase, add LED migration]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Device specifications:
======================
* Qualcomm/Atheros QCA9558 ver 1 rev 0
* 720/600/240 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 3T3R 2.4 GHz Wi-Fi
* 3T3R 5 GHz Wi-Fi
* 6x GPIO-LEDs (2x wifi, 2x status, 1x lan, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default))
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 1x ethernet
- AR8035 ethernet PHY (RGMII)
- 10/100/1000 Mbps Ethernet
- 802.3af POE
- used as LAN interface
* 12-24V 1A DC
* internal antennas
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to the
device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
[rebase, add LED migration]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The OpenMesh MR600 is a modified version of the EAP600 family. These
devices are shipped with an AR803x PHY and had various problems with the
delay configuration in ar71xx. These problems are now in the past [1] and
parts of the delay configuration should now be done in the PHY only.
Just switch to the configuration of the EAP600 to have an already well
tested configuration for ath79 with the newer kernel versions.
[1] https://github.com/openwrt/openwrt/pull/3505#issuecomment-716050292
Reported-by: Michael Pratt <mcpratt@pm.me>
Signed-off-by: Sven Eckelmann <sven@narfation.org>
Device specifications:
======================
* Qualcomm/Atheros AR9344 rev 2
* 560/450/225 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2T2R 2.4 GHz Wi-Fi
* 2T2R 5 GHz Wi-Fi
* 8x GPIO-LEDs (6x wifi, 1x wps, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default))
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 1x ethernet
- AR8035 ethernet PHY (RGMII)
- 10/100/1000 Mbps Ethernet
- 802.3af POE
- used as LAN interface
* 12-24V 1A DC
* internal antennas
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to the
device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
[rebase, add LED migration]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Device specifications:
======================
* Qualcomm/Atheros AR9344 rev 2
* 560/450/225 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2T2R 2.4 GHz Wi-Fi
* 2T2R 5 GHz Wi-Fi
* 4x GPIO-LEDs (2x wifi, 1x wps, 1x power)
* 1x GPIO-button (reset)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 1x ethernet
- AR8035 ethernet PHY (RGMII)
- 10/100/1000 Mbps Ethernet
- 802.3af POE
- used as LAN interface
* 12-24V 1A DC
* internal antennas
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to the
device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
[rebase, make WLAN LEDs consistent, add LED migration]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
These devices do not run Ubiquiti AirOS. Rename the partition to the
name used by other UniFi devices with vendor dualboot support.
Signed-off-by: David Bauer <mail@david-bauer.net>
The USB port definition is only needed when it is linked to a USB
LED. Since there is none for this device, we might as well remove
the port definition.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
CPU: Atheros AR9342 rev 3 SoC
RAM: 64 MB DDR2
Flash: 16 MB NOR SPI
WLAN 2.4GHz: Atheros AR9342 v3 (ath9k)
WLAN 5.0GHz: QCA988X
Ports: 1x GbE
Flashing procedure is identical to other ubnt devices.
https://openwrt.org/toh/ubiquiti/common
Flashing through factory firmware
1. Ensure firmware version v8.7.0 is installed.
Up/downgrade to this exact version.
2. Patch fwupdate.real binary using
`hexdump -Cv /bin/ubntbox | sed 's/14 40 fe 27/00 00 00 00/g' | \
hexdump -R > /tmp/fwupdate.real`
3. Make the patched fwupdate.real binary executable using
`chmod +x /tmp/fwupdate.real`
4. Copy the squashfs factory image to /tmp on the device
5. Flash OpenWrt using `/tmp/fwupdate.real -m <squashfs-factory image>`
6. Wait for the device to reboot
(copied from Ubiquiti NanoBeam AC and modified)
Flashing from serial console
1. Connect serial console (115200 baud)
2. Connect ethernet to a network with a TFTP server, through a
passive PoE injector.
3. Press a key to obtain a u-boot prompt
4. Set your TFTP server's ip address, with:
setenv serverip <tftp-server-address>
5. Set the Bullet AC's ip address, with:
setenv ipaddr <bullet-ac-address>
6. Set the boot file, with:
setenv bootfile <name-of-initramfs-binary-on-tftp-server>
7. Fetch the binary with tftp:
tftpboot
8. Boot the initramfs binary:
bootm
9. From the initramfs, fetch the sysupgrade binary, and flash it with
sysupgrade.
The Bullet AC is identified as a 2WA board by Ubiquiti. As such, the UBNT_TYPE
must match from the "Flashing through factory firmware" install instructions
to work.
Phy0 is QCA988X which can tune either band (2.4 or 5GHz). Phy1 is AR9342,
on which 5GHz is disabled. It isn't currently known whether phy1 is
routed to the N connector at all.
Signed-off-by: Russell Senior <russell@personaltelco.net>
For:
- ENH202 v1
- ENS202EXT v1
These boards were committed before it was discovered
that for all Engenius boards with a "failsafe" image,
forcing the failsafe image to load next boot
can be achieved by editing the u-boot environment like:
`fw_setenv rootfs_checksum 0`
So it's not necessary to delete a partition to boot to failsafe image.
Signed-off-by: Michael Pratt <mcpratt@pm.me>
This moves some of the Engenius boards from generic to tiny:
- EAP350 v1
- ECB350 v1
- ENH202 v1
For these, factory.bin builds are already failing on master
branch because of the unique situation for these boards:
- 8 MB flash
- an extra "failsafe" image for recovery
- TFTP does not work (barely possible with 600 MTU)
- bootloader loads image from a longer flash offset
- 1 eraseblock each needed for OKLI kernel loader and fake rootfs
- using mtd-concat to make use of remaining space...
The manual alternative would be removing the failsafe partition.
However this comes with the risk of extremely difficult recovery
if a flash ever fails because TFTP on the bootloader is bugged.
Signed-off-by: Michael Pratt <mcpratt@pm.me>
[improve commit message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
It is good practice to define device tree files based on specific
SoCs. Thus, let's not start to create files that are used across
different architectures.
Duplicate the DTSI file for D-Link DAP-2xxx in order to have one
for qca953x and one for qca955x, respectively.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The device is a one-port, but was set up as two-port by the
default case in 02_network. Fix it.
Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
[commit title/message facelift]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Specifications:
* QCA9533, 16 MiB Flash, 64 MiB RAM, 802.11n 2T2R
* 10/100 Ethernet Port, 802.11af PoE
* IP55 pole-mountable outdoor case
Installation:
* Factory Web UI is at 192.168.0.50
login with 'admin' and blank password, flash factory.bin
* Recovery Web UI is at 192.168.0.50
connect network cable, hold reset button during power-on and keep it
pressed until uploading has started (only required when checksum is ok,
e.g. for reverting back to oem firmware), flash factory.bin
After flashing factory.bin, additional free space can be reclaimed by
flashing sysupgrade.bin, since the factory image requires some padding
to be accepted for upgrading via OEM Web UI.
Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
Specifications:
* QCA9558, 16 MiB Flash, 256 MiB RAM, 802.11n 3T3R
* QCA9984, 802.11ac Wave 2 3T3R
* Gigabit LAN Port (AR8035), 802.11at PoE
Installation:
* Factory Web UI is at 192.168.0.50
login with 'admin' and blank password, flash factory.bin
* Recovery Web UI is at 192.168.0.50
connect network cable, hold reset button during power-on and keep it
pressed until uploading has started (only required when checksum is ok,
e.g. for reverting back to oem firmware), flash factory.bin
After flashing factory.bin, additional free space can be reclaimed by
flashing sysupgrade.bin, since the factory image requires some padding
to be accepted for upgrading via OEM Web UI.
Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
Specifications:
* QCA9533, 16 MiB Flash, 64 MiB RAM, 802.11n 2T2R
* 10/100 Ethernet Port, 802.11af PoE
Installation:
* Factory Web UI is at 192.168.0.50
login with 'admin' and blank password, flash factory.bin
* Recovery Web UI is at 192.168.0.50
connect network cable, hold reset button during power-on and keep it
pressed until uploading has started (only required when checksum is ok,
e.g. for reverting back to oem firmware), flash factory.bin
After flashing factory.bin, additional free space can be reclaimed by
flashing sysupgrade.bin, since the factory image requires some padding
to be accepted for upgrading via OEM Web UI.
Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
The phy label/node name should correspond to the reg property.
While at it, use more common decimal notation for reg property itself.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This patch was backported to the 5.4 kernel tree as commit
c2d5c4df27e0 at least since release v5.4.28. Since then, it enables RX
an TX ready override twice.
Signed-off-by: David Bauer <mail@david-bauer.net>
Device specifications:
======================
* Qualcomm/Atheros AR9344 rev 2
* 560/450/225 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 2T2R 5 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
- eth0
+ builtin switch port 1
+ used as LAN interface
- eth1
+ 18-24V passive POE (mode B)
+ used as WAN interface
* 12-24V 1A DC
* internal antennas
WAN/LAN LEDs appear to be wrong in ar71xx and have been swapped here.
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to the
device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
[add LED swap comment]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Device specifications:
======================
* Qualcomm/Atheros AR9330 rev 1
* 400/400/200 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 1T1R 2.4 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
- eth0
+ builtin switch port 1
+ used as LAN interface
- eth1
+ 18-24V passive POE (mode B)
+ used as WAN interface
* 12-24V 1A DC
* external antenna
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to
the device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
Device specifications:
======================
* Qualcomm/Atheros AR9330 rev 1
* 400/400/200 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 1T1R 2.4 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
- eth0
+ builtin switch port 1
+ used as LAN interface
- eth1
+ 18-24V passive POE (mode B)
+ used as WAN interface
* 12-24V 1A DC
* internal antennas
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to
the device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
Device specifications:
======================
* Qualcomm/Atheros AR9341 rev 1
* 535/400/200 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 2T2R 2.4 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
- eth0
+ 802.3af POE
+ builtin switch port 1
+ used as LAN interface
- eth1
+ 18-24V passive POE (mode B)
+ used as WAN interface
* 12-24V 1A DC
* internal antennas
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to
the device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
Device specifications:
======================
* Qualcomm/Atheros AR9341 rev 1
* 535/400/200 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 2T2R 2.4 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
- eth0
+ 802.3af POE
+ builtin switch port 1
+ used as LAN interface
- eth1
+ 18-24V passive POE (mode B)
+ used as WAN interface
* 12-24V 1A DC
* internal antennas
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to
the device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
Device specifications:
======================
* Qualcomm/Atheros AR9341 rev 1
* 535/400/200 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 2T2R 2.4 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
- eth0
+ 802.3af POE
+ builtin switch port 1
+ used as LAN interface
- eth1
+ 18-24V passive POE (mode B)
+ used as WAN interface
* 12-24V 1A DC
* internal antennas
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to
the device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
[drop redundant status from eth1]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The upgrade script for the openmesh sysupgrade procedure used always an 1
byte block size. This made it easier to seek the correct position in the CE
image and to make sure the right amount of data was copied. But this also
meant that the reading/writing of data required an excessive amount of
syscalls and copy operations.
A 5.4MB big sysupgrade image on an OM2P-HS v3 needed roughly 120s for the
write operation (170s in total) during the sysupgrade.
But it is possible to reduce this overhead slightly:
* index access to read the file size can be done in single 8 byte chunk
(while doing the seek with byte granularity) because each size entry is
example 8 bytes long
* the fwupgrade.cfg can be read as one block (while seeking to its position
using its actual byte offset) because it should be rather small and fit
into the RAM easily
* the kernel can be read in 1KB blocks (while seking to its positions using
its actual byte offset) because the the size of the kernel is always a
multiple of the NOR flash block size (64KB and 256KB)
This results in a sysupgrade write time of roughly 90s (140s in total).
This could be reduced even further when also using larger chunks for the
rootfs. But the squashfs rootfs image is at the moment always
(256KB or 64KB) * block + 4 bytes
long. It would be expected that the time for the sysupgrade write could be
reduced to roughly 30s (80s in total) when busybox's dd would support
the iflag count_bytes.
Reported-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Signed-off-by: Sven Eckelmann <sven@narfation.org>
Device specifications:
======================
* Qualcomm/Atheros QCA9533 v2
* 650/600/217 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 2T2R 2.4 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
- eth0
+ 24V passive POE (mode B)
+ used as WAN interface
- eth1
+ 802.3af POE
+ builtin switch port 1
+ used as LAN interface
* 12-24V 1A DC
* internal antennas
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to
the device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
Device specifications:
======================
* Qualcomm/Atheros QCA9533 v2
* 650/600/217 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 1T1R 2.4 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
- eth0
+ Label: Ethernet 1
+ 24V passive POE (mode B)
- eth1
+ Label: Ethernet 2
+ 802.3af POE
+ builtin switch port 1
* 12-24V 1A DC
* external antenna
Flashing instructions:
======================
Various methods can be used to install the actual image on the flash.
Two easy ones are:
ap51-flash
----------
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.
initramfs from TFTP
-------------------
The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):
setenv serverip 192.168.1.21
setenv ipaddr 192.168.1.1
tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr
The actual sysupgrade image can then be transferred (on the LAN port) to
the device via
scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/
On the device, the sysupgrade must then be started using
sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin
Signed-off-by: Sven Eckelmann <sven@narfation.org>
[wrap two very long lines, fix typo in comment]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
sysupgrade.bin has been added to IMAGES twice, resulting in
warnings like:
Makefile:86: warning: overriding recipe for target
'[...]/tmp/openwrt-ath79-generic-dlink_dap-2660-a1-squashfs-sysupgrade.bin'
Makefile:86: warning: ignoring old recipe for target
'[...]/tmp/openwrt-ath79-generic-dlink_dap-2660-a1-squashfs-sysupgrade.bin'
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The current support for MikroTik NAND-based devices relies on a
gross hack that packs the kernel into a static YAFFS stub, as the
stock bootloader only supports booting a YAFFS-encapsulated kernel.
The problem with this approach is that since the kernel partition is
blindly overwritten without any kind of wear or badblock management
(due to lack of proper support for YAFFS in OpenWRT), the NAND flash
is not worn uniformly and eventually badblocks appear, leading to
unbootable devices.
This issue has been reported here [1] and discussed in more detail
here [2].
[1] https://forum.openwrt.org/t/rb433-bad-sector-cannot-start-openwrt/71519
[2] https://github.com/openwrt/openwrt/pull/3026#issuecomment-673597461
Until a proper fix is found (or the stock bootloader supports other
filesystems), we disable building these images to prevent unknowing
users from risking their devices.
Thanks to Thibaut Varène for summarizing the details above.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
A few devices in ath79 and ramips use mtd-concat to concatenate
individual partitions into a bigger "firmware" or "ubi" partition.
However, the original partitions are still present and visible,
and one can write to them directly although this might break the
actual virtual, concatenated partition.
As we cannot do much about the former, let's at least choose more
descriptive names than just "firmwareX" in order to indicate the
concatenation to the user. He might be less tempted into overwriting
a "fwconcat1" than a "firmware1", which might be perceived as an
alternate firmware for dual boot etc.
This applies the new naming consistently for all relevant devices,
i.e. fwconcatX for virtual "firmware" members and ubiconcatX for
"ubi" members.
While at it, use DT labels and label property consistently, and
also use consistent zero-based indexing.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
FCC ID: U2M-EAP350
Engenius EAP350 is a wireless access point with 1 gigabit PoE ethernet port,
2.4 GHz wireless, external ethernet switch, and 2 internal antennas.
Specification:
- AR7242 SOC
- AR9283 WLAN (2.4 GHz, 2x2, PCIe on-board)
- AR8035-A switch (GbE with 802.3af PoE)
- 40 MHz reference clock
- 8 MB FLASH MX25L6406E
- 32 MB RAM EM6AA160TSA-5G
- UART at J2 (populated)
- 3 LEDs, 1 button (power, eth, 2.4 GHz) (reset)
- 2 internal antennas
MAC addresses:
MAC address is labeled as "MAC"
Only 1 address on label and in flash
The OEM software reports these MACs for the ifconfig
eth0 MAC *:0c art 0x0
phy0 --- *:0d ---
Installation:
2 ways to flash factory.bin from OEM:
- if you get Failsafe Mode from failed flash:
only use it to flash Original firmware from Engenius
or risk kernel loop or halt which requires serial cable
Method 1: Firmware upgrade page:
OEM webpage at 192.168.10.1
username and password "admin"
Navigate to "Upgrade Firmware" page from left pane
Click Browse and select the factory.bin image
Upload and verify checksum
Click Continue to confirm and wait 3 minutes
Method 2: Serial to load Failsafe webpage:
After connecting to serial console and rebooting...
Interrupt uboot with any key pressed rapidly
execute `run failsafe_boot` OR `bootm 0x9f670000`
wait a minute
connect to ethernet and navigate to
"192.168.1.1/index.htm"
Select the factory.bin image and upload
wait about 3 minutes
Return to OEM:
If you have a serial cable, see Serial Failsafe instructions
otherwise, uboot-env can be used to make uboot load the failsafe image
*DISCLAIMER*
The Failsafe image is unique to Engenius boards.
If the failsafe image is missing or damaged this will not work
DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt
ssh into openwrt and run
`fw_setenv rootfs_checksum 0`
reboot, wait 3 minutes
connect to ethernet and navigate to 192.168.1.1/index.htm
select OEM firmware image from Engenius and click upgrade
Format of OEM firmware image:
The OEM software of EAP350 is a heavily modified version
of Openwrt Kamikaze. One of the many modifications
is to the sysupgrade program. Image verification is performed
simply by the successful ungzip and untar of the supplied file
and name check and header verification of the resulting contents.
To form a factory.bin that is accepted by OEM Openwrt build,
the kernel and rootfs must have specific names...
openwrt-senao-eap350-uImage-lzma.bin
openwrt-senao-eap350-root.squashfs
and begin with the respective headers (uImage, squashfs).
Then the files must be tarballed and gzipped.
The resulting binary is actually a tar.gz file in disguise.
This can be verified by using binwalk on the OEM firmware images,
ungzipping then untaring.
The OEM upgrade script is at /etc/fwupgrade.sh
Later models in the EAP series likely have a different platform
and the upgrade and image verification process differs.
OKLI kernel loader is required because the OEM software
expects the kernel to be no greater than 1024k
and the factory.bin upgrade procedure would
overwrite part of the kernel when writing rootfs.
Note on PLL-data cells:
The default PLL register values will not work
because of the external AR8035-A switch between
the SOC and the ethernet PHY chips.
For AR724x series, the PLL register for GMAC0
can be seen in the DTSI as 0x2c.
Therefore the PLL register can be read from uboot
for each link speed after attempting tftpboot
or another network action using that link speed
with `md 0x1805002c 1`.
uboot did not have a good value for 1 GBps
so it was taken from other similar DTS file.
Tested from master, all link speeds functional
Signed-off-by: Michael Pratt <mcpratt@pm.me>
FCC ID: A8J-EAP600
Engenius EAP600 is a wireless access point with 1 gigabit ethernet port,
dual-band wireless, external ethernet switch, 4 internal antennas
and 802.3af PoE.
Specification:
- AR9344 SOC (5 GHz, 2x2, WMAC)
- AR9382 WLAN (2.4 GHz, 2x2, PCIe on-board)
- AR8035-A switch (GbE with 802.3af PoE)
- 40 MHz reference clock
- 16 MB FLASH MX25L12845EMI-10G
- 2x 64 MB RAM NT5TU32M16DG
- UART at H1 (populated)
- 5 LEDs, 1 button (power, eth, 2.4 GHz, 5 GHz, wps) (reset)
- 4 internal antennas
MAC addresses:
MAC addresses are labeled MAC1 and MAC2
The MAC address in flash is not on the label
The OEM software reports these MACs for the ifconfig
eth0 MAC 1 *:5e ---
phy1 MAC 2 *:5f --- (2.4 GHz)
phy0 ----- *:60 art 0x0 (5 GHz)
Installation:
2 ways to flash factory.bin from OEM:
- if you get Failsafe Mode from failed flash:
only use it to flash Original firmware from Engenius
or risk kernel loop or halt which requires serial cable
Method 1: Firmware upgrade page:
OEM webpage at 192.168.1.1
username and password "admin"
Navigate to "Upgrade Firmware" page from left pane
Click Browse and select the factory.bin image
Upload and verify checksum
Click Continue to confirm and wait 3 minutes
Method 2: Serial to load Failsafe webpage:
After connecting to serial console and rebooting...
Interrupt uboot with any key pressed rapidly
execute `run failsafe_boot` OR `bootm 0x9fdf0000`
wait a minute
connect to ethernet and navigate to
"192.168.1.1/index.htm"
Select the factory.bin image and upload
wait about 3 minutes
Return to OEM:
If you have a serial cable, see Serial Failsafe instructions
otherwise, uboot-env can be used to make uboot load the failsafe image
*DISCLAIMER*
The Failsafe image is unique to Engenius boards.
If the failsafe image is missing or damaged this will not work
DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt
ssh into openwrt and run
`fw_setenv rootfs_checksum 0`
reboot, wait 3 minutes
connect to ethernet and navigate to 192.168.1.1/index.htm
select OEM firmware image from Engenius and click upgrade
Format of OEM firmware image:
The OEM software of EAP600 is a heavily modified version
of Openwrt Kamikaze. One of the many modifications
is to the sysupgrade program. Image verification is performed
simply by the successful ungzip and untar of the supplied file
and name check and header verification of the resulting contents.
To form a factory.bin that is accepted by OEM Openwrt build,
the kernel and rootfs must have specific names...
openwrt-senao-eap600-uImage-lzma.bin
openwrt-senao-eap600-root.squashfs
and begin with the respective headers (uImage, squashfs).
Then the files must be tarballed and gzipped.
The resulting binary is actually a tar.gz file in disguise.
This can be verified by using binwalk on the OEM firmware images,
ungzipping then untaring.
The OEM upgrade script is at /etc/fwupgrade.sh
Later models in the EAP series likely have a different platform
and the upgrade and image verification process differs.
OKLI kernel loader is required because the OEM software
expects the kernel to be no greater than 1536k
and the factory.bin upgrade procedure would
overwrite part of the kernel when writing rootfs.
Note on PLL-data cells:
The default PLL register values will not work
because of the external AR8035-A switch between
the SOC and the ethernet PHY chips.
For AR934x series, the PLL register for GMAC0
can be seen in the DTSI as 0x2c.
Therefore the PLL register can be read from uboot
for each link speed after attempting tftpboot
or another network action using that link speed
with `md 0x1805002c 1`.
Unfortunately uboot did not have the best values
so they were taken from other similar DTS files.
Tested from master, all link speeds functional
Signed-off-by: Michael Pratt <mcpratt@pm.me>
The boards have equivalent hardware except for LEDs
and equivalent device config except for MACs
also use naming convention for mtd-concat partitions
to prepare for upcoming patch
"treewide: use more descriptive names for concatenated partitions"
Signed-off-by: Michael Pratt <mcpratt@pm.me>
FCC ID: A8J-ECB600
Engenius ECB600 is a wireless access point with 1 gigabit PoE ethernet port,
dual-band wireless, external ethernet switch, and 4 external antennas.
Specification:
- AR9344 SOC (5 GHz, 2x2, WMAC)
- AR9382 WLAN (2.4 GHz, 2x2, PCIe on-board)
- AR8035-A switch (GbE with 802.3af PoE)
- 40 MHz reference clock
- 16 MB FLASH MX25L12845EMI-10G
- 2x 64 MB RAM NT5TU32M16DG
- UART at H1 (populated)
- 4 LEDs, 1 button (power, eth, 2.4 GHz, 5 GHz) (reset)
- 4 external antennas
MAC addresses:
MAC addresses are labeled MAC1 and MAC2
The MAC address in flash is not on the label
The OEM software reports these MACs for the ifconfig
phy1 MAC 1 *:52 --- (2.4 GHz)
phy0 MAC 2 *:53 --- (5 GHz)
eth0 ----- *:54 art 0x0
Installation:
2 ways to flash factory.bin from OEM:
- if you get Failsafe Mode from failed flash:
only use it to flash Original firmware from Engenius
or risk kernel loop or halt which requires serial cable
Method 1: Firmware upgrade page:
OEM webpage at 192.168.1.1
username and password "admin"
Navigate to "Upgrade Firmware" page from left pane
Click Browse and select the factory.bin image
Upload and verify checksum
Click Continue to confirm and wait 3 minutes
Method 2: Serial to load Failsafe webpage:
After connecting to serial console and rebooting...
Interrupt uboot with any key pressed rapidly
execute `run failsafe_boot` OR `bootm 0x9fdf0000`
wait a minute
connect to ethernet and navigate to
"192.168.1.1/index.htm"
Select the factory.bin image and upload
wait about 3 minutes
Return to OEM:
If you have a serial cable, see Serial Failsafe instructions
otherwise, uboot-env can be used to make uboot load the failsafe image
*DISCLAIMER*
The Failsafe image is unique to Engenius boards.
If the failsafe image is missing or damaged this will not work
DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt
ssh into openwrt and run
`fw_setenv rootfs_checksum 0`
reboot, wait 3 minutes
connect to ethernet and navigate to 192.168.1.1/index.htm
select OEM firmware image from Engenius and click upgrade
Format of OEM firmware image:
The OEM software of ECB600 is a heavily modified version
of Openwrt Kamikaze. One of the many modifications
is to the sysupgrade program. Image verification is performed
simply by the successful ungzip and untar of the supplied file
and name check and header verification of the resulting contents.
To form a factory.bin that is accepted by OEM Openwrt build,
the kernel and rootfs must have specific names...
openwrt-senao-ecb600-uImage-lzma.bin
openwrt-senao-ecb600-root.squashfs
and begin with the respective headers (uImage, squashfs).
Then the files must be tarballed and gzipped.
The resulting binary is actually a tar.gz file in disguise.
This can be verified by using binwalk on the OEM firmware images,
ungzipping then untaring.
The OEM upgrade script is at /etc/fwupgrade.sh
Later models in the ECB series likely have a different platform
and the upgrade and image verification process differs.
OKLI kernel loader is required because the OEM software
expects the kernel to be no greater than 1536k
and the factory.bin upgrade procedure would
overwrite part of the kernel when writing rootfs.
Note on PLL-data cells:
The default PLL register values will not work
because of the external AR8035-A switch between
the SOC and the ethernet PHY chips.
For AR934x series, the PLL register for GMAC0
can be seen in the DTSI as 0x2c.
Therefore the PLL register can be read from uboot
for each link speed after attempting tftpboot
or another network action using that link speed
with `md 0x1805002c 1`.
Unfortunately uboot did not have the best values
so they were taken from other similar DTS files.
Tested from master, all link speeds functional
Signed-off-by: Michael Pratt <mcpratt@pm.me>
Commit 5fc28ef479 ("ath79: Add support for Plasma Cloud PA300")
added the IMAGE/sysupgrade.bin/squashfs definition, which leaks into
other devices, resulting in sysupgrade.bin images that are actually
tarballs and do not boot when directly written to flash.
We can use the normal sysupgrade.bin command variable for this device.
Signed-off-by: Sven Wegener <sven.wegener@stealer.net>
[fix format, spelling]
Signed-off-by: David Bauer <mail@david-bauer.net>
Newer EnGenius software that still uses the tar.gz platform
instead of the custom header requires more checks for upgrading,
but their script includes a way to skip them...
the existence of a file in the tar.gz called failsafe.bin
Their upgrade script has these lines:
\#pass check when upload with full image file
[ "${errcode}" -eq "1" ] && [ -f failsafe.bin ] && errcode="0"
This overrides the script's "errcode" variable
which can be set if any of the following actions/checks fail:
- untarring of the upload
- magic number for kernel: "2705"
- magic num for rootfs: "7371" or "6873"
- md5sums for each file in the format
filename:md5
- existence of a file matching FWINFO*
that it has boardname in the name somewhere (grep)
that the 4th field of separator "-" is at least 3 (version)
Otherwise we would need to generate md5sums in this strange format
and touch a file with specific requirements in the name.
This does not effect boards where the advanced checks do not apply.
Signed-off-by: Michael Pratt <mcpratt@pm.me>
[fixed SoB to match From:]
Signed-off-by: Petr Štetiar <ynezz@true.cz>
FCC ID: A8J-ENSTAC
Engenius EnStationAC v1 is an outdoor wireless access point/bridge with
2 gigabit ethernet ports on 2 external ethernet switches,
5 GHz only wireless, internal antenna plates, and proprietery PoE.
Specification:
- QCA9557 SOC
- QCA9882 WLAN (PCI card, 5 GHz, 2x2, 26dBm)
- AR8035-A switch (RGMII GbE with PoE+ IN)
- AR8031 switch (SGMII GbE with PoE OUT)
- 40 MHz reference clock
- 16 MB FLASH MX25L12845EMI-10G
- 2x 64 MB RAM NT5TU32M16FG
- UART at J10 (unpopulated)
- internal antenna plates (19 dbi, directional)
- 7 LEDs, 1 button (power, eth, wlan, RSSI) (reset)
MAC addresses:
MAC addresses are labeled as ETH and 5GHz
Vendor MAC addresses in flash are duplicate
eth0 ETH *:d3 art 0x0/0x6
eth1 ---- *:d4 ---
phy0 5GHz *:d5 ---
Installation:
2 ways to flash factory.bin from OEM:
- if you get Failsafe Mode from failed flash:
only use it to flash Original firmware from Engenius
or risk kernel loop or halt which requires serial cable
Method 1: Firmware upgrade page:
OEM webpage at 192.168.1.1
username and password "admin"
Navigate to "Firmware" page from left pane
Click Browse and select the factory.bin image
Upload and verify checksum
Click Continue to confirm and wait 3 minutes
Method 2: Serial to load Failsafe webpage:
After connecting to serial console and rebooting...
Interrupt uboot with any key pressed rapidly
execute `run failsafe_boot` OR `bootm 0x9fd70000`
wait a minute
connect to ethernet and navigate to
"192.168.1.1/index.htm"
Select the factory.bin image and upload
wait about 3 minutes
Return to OEM:
If you have a serial cable, see Serial Failsafe instructions
otherwise, uboot-env can be used to make uboot load the failsafe image
*DISCLAIMER*
The Failsafe image is unique to Engenius boards.
If the failsafe image is missing or damaged this will not work
DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt
ssh into openwrt and run
`fw_setenv rootfs_checksum 0`
reboot, wait 3 minutes
connect to ethernet and navigate to 192.168.1.1/index.htm
select OEM firmware image from Engenius and click upgrade
TFTP recovery:
rename initramfs to 'vmlinux-art-ramdisk'
make available on TFTP server at 192.168.1.101
power board
hold or press reset button repeatedly
NOTE: for some Engenius boards TFTP is not reliable
try setting MTU to 600 and try many times
Format of OEM firmware image:
The OEM software of EnStationAC is a heavily modified version
of Openwrt Altitude Adjustment 12.09. One of the many modifications
is to the sysupgrade program. Image verification is performed
simply by the successful ungzip and untar of the supplied file
and name check and header verification of the resulting contents.
To form a factory.bin that is accepted by OEM Openwrt build,
the kernel and rootfs must have specific names...
openwrt-ar71xx-enstationac-uImage-lzma.bin
openwrt-ar71xx-enstationac-root.squashfs
and begin with the respective headers (uImage, squashfs).
Then the files must be tarballed and gzipped.
The resulting binary is actually a tar.gz file in disguise.
This can be verified by using binwalk on the OEM firmware images,
ungzipping then untaring.
Newer EnGenius software requires more checks but their script
includes a way to skip them, otherwise the tar must include
a text file with the version and md5sums in a deprecated format.
The OEM upgrade script is at /etc/fwupgrade.sh.
OKLI kernel loader is required because the OEM software
expects the kernel to be no greater than 1536k
and the factory.bin upgrade procedure would otherwise
overwrite part of the kernel when writing rootfs.
Note on PLL-data cells:
The default PLL register values will not work
because of the external AR8033 switch between
the SOC and the ethernet PHY chips.
For QCA955x series, the PLL registers for eth0 and eth1
can be see in the DTSI as 0x28 and 0x48 respectively.
Therefore the PLL registers can be read from uboot
for each link speed after attempting tftpboot
or another network action using that link speed
with `md 0x18050028 1` and `md 0x18050048 1`.
For eth0 at 1000 speed, the value returned was
ae000000 but that didn't work, so following
the logical pattern from the rest of the values,
the guessed value of a3000000 works better.
later discovered that delay can be placed on the PHY end only
with phy-mode as 'rgmii-id' and set register to 0x82...
Tested from master, all link speeds functional
Signed-off-by: Michael Pratt <mcpratt@pm.me>
[fixed SoB to match From:]
Signed-off-by: Petr Štetiar <ynezz@true.cz>
Specifications:
* QCA9557, 16 MiB Flash, 128 MiB RAM, 802.11n 2T2R
* QCA9882, 802.11ac 2T2R
* Gigabit LAN Port (AR8035), 802.11af PoE
Installation:
* Factory Web UI is at 192.168.0.50
login with 'admin' and blank password, flash factory.bin
* Recovery Web UI is at 192.168.0.50
connect network cable, hold reset button during power-on and keep it
pressed until uploading has started (only required when checksum is ok,
e.g. for reverting back to oem firmware), flash factory.bin
After flashing factory.bin, additional free space can be reclaimed by
flashing sysupgrade.bin, since the factory image requires some padding
to be accepted for upgrading via OEM Web UI.
Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
The Ubiquiti Network airCube AC is a cube shaped device supporting
2.4 GHz and 5 GHz with internal 2x2 MIMO antennas.
It can be powered with either one of:
- 24v power supply with 3.0mm x 1.0mm barrel plug
- 24v passive PoE on first LAN port
There are four 10/100/1000 Mbps ports (1 * WAN + 3 * LAN).
First LAN port have optional PoE passthrough to the WAN port.
SoC: Qualcomm / Atheros AR9342
RAM: 64 MB DDR2
Flash: 16 MB SPI NOR
Ethernet: 4x 10/100/1000 Mbps (1 WAN + 3 LAN)
LEDS: 1x via a SPI controller (not yet supported)
Buttons: 1x Reset
Serial: 1x (only RX and TX); 115200 baud, 8N1
Missing features:
- LED control is not supported
Physical to internal switch port mapping:
- physical port #1 (poe in) = switchport 2
- physical port #2 = switchport 3
- physical port #3 = switchport 5
- physical port #4 (wan/poe out) = switchport 4
Factory update is tested and is the same as for Ubiquiti AirCube ISP
hence the shared configuration between that devices.
Signed-off-by: Roman Kuzmitskii <damex.pp@icloud.com>
This patch adds support for the MikroTik RouterBOARD wAPR-2nD (wAP R)
router, a weatherproof 2.4 GHz access point with a miniPCI-e slot and
a SIM card slot.
Specifications:
- SoC: Qualcomm Atheros QCA9533
- Flash: 16 MB (SPI)
- RAM: 64 MB
- Ethernet: 1x 10/100 Mbps (PoE in)
- WiFi: AR9531 2T2R 2.4 GHz (SoC)
- miniPCI-e slot
- 4x green LEDs (1x WiFi, 3x RSSI)
- 1x reset button
See https://mikrotik.com/product/RBwAPR-2nD for more details.
Flashing:
TFTP boot initramfs image and then perform sysupgrade. Follow common
MikroTik procedure as in https://openwrt.org/toh/mikrotik/common.
Signed-off-by: Roger Pueyo Centelles <roger.pueyo@guifi.net>
Device specifications:
* Qualcomm/Atheros QCA9533 v2
* 650/600/217 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash (mx25l12805d)
- 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 2T2R 2.4 GHz Wi-Fi
* multi-color LED (controlled via red/green/blue GPIOs)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
- eth0
+ Label: Ethernet 1
+ 24V passive POE (mode B)
+ used as WAN interface
- eth1
+ Label: Ethernet 2
+ 802.3af POE
+ builtin switch port 2
+ used as LAN interface
* 12-24V 1A DC
* external antennas
Flashing instructions:
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the factory image to the u-boot when the device boots up.
Signed-off-by: Sven Eckelmann <sven@narfation.org>