The QorIQ LX2160A reference design board provides a comprehensive platform
that enables design and evaluation of the LX2160A processor.
- Enables network intelligence with the next generation Datapath (DPPA2)
which provides differentiated offload and a rich set of IO, including
10GE, 25GE, 40GE, and PCIe Gen4
- Delivers unprecedented efficiency and new virtualized networks
- Supports designs in 5G packet processing, network function
virtualization, storage controller, white box switching, network
interface cards, and mobile edge computing
- Supports all three LX2 family members (16-core LX2160A; 12-core LX2120A;
and 8-core LX2080A)
Signed-off-by: Yangbo Lu <yangbo.lu@nxp.com>
[use AUTORELEASE, add dtb to firmware part]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Add ddr-phy package for layerscape. Currently only LX2160ARDB
requires the package.
Signed-off-by: Yangbo Lu <yangbo.lu@nxp.com>
[use AUTORELEASE]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The LS1046A Freeway board (FRWY) is a high-performance computing,
evaluation, and development platform that supports the QorIQ
LS1046A architecture processor capable of support more than 32,000
CoreMark performance. The FRWY-LS1046A board supports the QorIQ
LS1046A processor, onboard DDR4 memory, multiple Gigabit Ethernet,
USB3.0 and M2_Type_E interfaces for Wi-Fi.
The FRWY-LS1046A-TP includes the Coral Tensor Flow Processing Unit
that offloads AI/ML inferencing from the CPU to provide significant
boost for AI/ML applications. The FRWY-LS1046A-TP includes one M.2
TPU module and more modules can easily be added including USB
versions of the module to scale the AI/ML performance.
Signed-off-by: Yangbo Lu <yangbo.lu@nxp.com>
[rebase, use AUTORELEASE, fix sorting, add dtb to firmware part]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Multiple sources are hosted on OpenWrts source server only. The source
URLs to point to the server vary based on different epochs in OpenWrts
history.
Replace all by @OPENWRT which is an "empty" mirror, therefore using the
fallback servers sources.cdn.openwrt.org and sources.openwrt.org.
Signed-off-by: Paul Spooren <mail@aparcar.org>
This patch adds wil6210 firmware and board files.
Firmware version is not up to date but is only freely redistributable one I found.
Board file is a generic one so most devices and especially those for long distance
PtP links will require so in a ipq-wifi like way.
Signed-off-by: Robert Marko <robimarko@gmail.com>
Specifications:
SOC: Qualcomm IPQ4018 (DAKOTA) ARM Quad-Core
RAM: 256 MiB
FLASH1: 4 MiB NOR
FLASH2: 128 MiB NAND
ETH: Qualcomm QCA8075
WLAN1: Qualcomm Atheros QCA4018 2.4GHz 802.11b/g/n 2x2
WLAN2: Qualcomm Atheros QCA4018 5GHz 802.11n/ac W2 2x2
INPUT: Reset
LED: Power, Internet
UART1: On board pin header near to LED (3.3V, TX, RX, GND), 3.3V without pin - 115200 8N1
OTHER: On board with BLE module - by cp210x USB serial chip
On board hareware watchdog with GPIO0 high to turn on, and GPIO4 for watchdog feed
Install via uboot tftp or uboot web failsafe.
By uboot tftp:
(IPQ40xx) # tftpboot 0x84000000 openwrt-ipq40xx-generic-glinet_gl-ap1300-squashfs-nand-factory.ubi
(IPQ40xx) # run lf
By uboot web failsafe:
Push the reset button for 10 seconds util the power led flash faster,
then use broswer to access http://192.168.1.1
Afterwards upgrade can use sysupgrade image.
Signed-off-by: Dongming Han <handongming@gl-inet.com>
The Makefile is rejecting all files with for a given prefix (here
"board-plasmacloud_pa2200") when it didn't match a known suffix. Instead it
stops the build with an error like:
Makefile:135: *** Unrecognized board-file suffix '.ipq4019' for 'board-plasmacloud_pa2200.ipq4019'. Stop.
The correct suffix for the QCA4019/hw1.0 is qca4019 and not ipq4019.
Fixes: 4871fd2616 ("ipq40xx: add support for Plasma Cloud PA2200")
Signed-off-by: Sven Eckelmann <sven@narfation.org>
The Makefile is rejecting all files with for a given prefix (here
"board-plasmacloud_pa1200") when it didn't match a known suffix. Instead it
stops the build with an error like:
Makefile:135: *** Unrecognized board-file suffix '.ipq4019' for 'board-plasmacloud_pa1200.ipq4019'. Stop.
The correct suffix for the QCA4019/hw1.0 is qca4019 and not ipq4019.
Fixes: ea5bb6bbfe ("ipq40xx: add support for Plasma Cloud PA1200")
Signed-off-by: Sven Eckelmann <sven@narfation.org>
SOC: IPQ4018 / QCA Dakota
CPU: Quad-Core ARMv7 Processor rev 5 (v71) Cortex-A7
DRAM: 256 MiB
NOR: 32 MiB
ETH: Qualcomm Atheros QCA8075 (2 ports)
PLC: MaxLinear G.hn 88LX5152
WLAN1: Qualcomm Atheros QCA4018 2.4GHz 802.11bgn 2:2x2
WLAN2: Qualcomm Atheros QCA4018 5GHz 802.11a/n/ac 2:2x2
INPUT: RESET, WiFi, PLC Button
LEDS: red/white home, white WiFi
To modify a retail device to run OpenWRT firmware:
1) Setup a TFTP server on IP address 192.168.0.100 and copy the OpenWRT
initramfs (initramfs-fit-uImage.itb) to the TFTP root as 'uploadfile'.
2) Power on the device while pressing the recessed reset button next to
the Ethernet ports. This causes the bootloader to retrieve and start
the initramfs.
3) Once the initramfs is booted, the device will come up with IP
192.168.1.1. You can then connect through SSH (allow some time for
the first connection).
4) On the device shell, run 'fw_printenv' to show the U-boot environment.
Backup this information since it contains device unique factory data.
5) Change the boot command to support booting OpenWRT:
# fw_setenv bootcmd 'sf probe && sf read 0x84000000 0x180000 0x400000 && bootm'
6) Change directory to /tmp, download the sysupgrade (e.g. through wget)
and install it with sysupgrade. The device will reboot into OpenWRT.
Notice that there is currently no support for booting the G.hn chip.
This requires userland software we lack the rights to share right now.
Signed-off-by: Stefan Schake <stefan.schake@devolo.de>
Device specifications:
* QCA IPQ4019
* 256 MB of RAM
* 32 MB of SPI NOR flash (w25q256)
- 2x 15 MB available; but one of the 15 MB regions is the recovery image
* 2T2R 2.4 GHz
- QCA4019 hw1.0 (SoC)
- requires special BDF in QCA4019/hw1.0/board-2.bin with
bus=ahb,bmi-chip-id=0,bmi-board-id=20,variant=PlasmaCloud-PA2200
* 2T2R 5 GHz (channel 36-64)
- QCA9888 hw2.0 (PCI)
- requires special BDF in QCA9888/hw2.0/board-2.bin
bus=pci,bmi-chip-id=0,bmi-board-id=16,variant=PlasmaCloud-PA2200
* 2T2R 5 GHz (channel 100-165)
- QCA4019 hw1.0 (SoC)
- requires special BDF in QCA4019/hw1.0/board-2.bin with
bus=ahb,bmi-chip-id=0,bmi-board-id=21,variant=PlasmaCloud-PA2200
* GPIO-LEDs for 2.4GHz, 5GHz-SoC and 5GHz-PCIE
* GPIO-LEDs for power (orange) and status (blue)
* 1x GPIO-button (reset)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x gigabit ethernet
- phy@mdio3:
+ Label: Ethernet 1
+ gmac0 (ethaddr) in original firmware
+ used as LAN interface
- phy@mdio4:
+ Label: Ethernet 2
+ gmac1 (eth1addr) in original firmware
+ 802.3at POE+
+ used as WAN interface
* 12V 2A DC
Flashing instructions:
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the factory image to the u-boot when the device boots up.
Signed-off-by: Marek Lindner <marek.lindner@kaiwoo.ai>
[sven@narfation.org: prepare commit message, rebase, use all LEDs, switch
to dualboot_datachk upgrade script, use eth1 as designated WAN interface]
Signed-off-by: Sven Eckelmann <sven@narfation.org>
Device specifications:
* QCA IPQ4018
* 256 MB of RAM
* 32 MB of SPI NOR flash (w25q256)
- 2x 15 MB available; but one of the 15 MB regions is the recovery image
* 2T2R 2.4 GHz
- QCA4019 hw1.0 (SoC)
- requires special BDF in QCA4019/hw1.0/board-2.bin with
bus=ahb,bmi-chip-id=0,bmi-board-id=16,variant=PlasmaCloud-PA1200
* 2T2R 5 GHz
- QCA4019 hw1.0 (SoC)
- requires special BDF in QCA4019/hw1.0/board-2.bin with
bus=ahb,bmi-chip-id=0,bmi-board-id=17,variant=PlasmaCloud-PA1200
* 3x GPIO-LEDs for status (cyan, purple, yellow)
* 1x GPIO-button (reset)
* 1x USB (xHCI)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x gigabit ethernet
- phy@mdio4:
+ Label: Ethernet 1
+ gmac0 (ethaddr) in original firmware
+ used as LAN interface
- phy@mdio3:
+ Label: Ethernet 2
+ gmac1 (eth1addr) in original firmware
+ 802.3af/at POE(+)
+ used as WAN interface
* 12V/24V 1A DC
Flashing instructions:
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the factory image to the u-boot when the device boots up.
Signed-off-by: Marek Lindner <marek.lindner@kaiwoo.ai>
[sven@narfation.org: prepare commit message, rebase, use all LEDs, switch
to dualboot_datachk upgrade script, use eth1 as designated WAN interface]
Signed-off-by: Sven Eckelmann <sven@narfation.org>
All firmwares were added to linux-firmware, so there's no need to keep this
package definitions.
Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
Instead of duplicating board firmware binaries, which are exactly the same
as the ones from linux-firmware, add dependencies and remove duplicated
downloads.
Runtime-tested on ath79 (TP-Link Archer C7 v2) and ipq806x (Netgear R7800).
Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
Split ath10k firmwares into board and firmware packages.
This way we can add dependencies to ath10k-ct firmware packages.
Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
There are linux firmwares packages for 43362, 43430 and 43455 which shouldn't
be installed at the same time as Cypress firmwares.
Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
This expands packages to define not only provides but also conflicts.
These packages provides same files so they should specify conflicts.
Second expansion is that *-ct-htt and *-ct-full-htt firmwares can also
provide *-ct variant as that allows explicit dependency on CT variant
with various firmware modifications.
Signed-off-by: Karel Kočí <karel.koci@nic.cz>
[Bump PKG_RELEASE and format PROVIDES/CONFLICTS]
Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
This patch add missing support of SC16IS740 serial controller, installed
on LS1012A-FRDM board.
It was required to change RCW bits, because SPI was disabled by default.
Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com>
Update ls-rcw to LSDK-20.04-update-290520.
Signed-off-by: Biwen Li <biwen.li@nxp.com>
Signed-off-by: Yangbo Lu <yangbo.lu@nxp.com>
[rebase, fix PKG_RELEASE change]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This adds several stylistic and functional improvements of the recently
added Edgecore ECW5211, especially:
* Drop the local BDFs as those are already in the upstream under different names
* Add SPDX tag to DTS
* Add label MAC address
* Move LED trigger to DTS
* Remove unnecessary status="okay"
* Disable unused SS USB phy as the USB port only supports USB 2.0
* Make uboot-env partition writable
* Remove qcom,poll_required_dynamic property as the driver does not use it
* Tidy up the device recipe
Fixes: 4488b260a0 ("ipq40xx: add Edgecore ECW5211 support")
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
Acked-by: Robert Marko <robert.marko@sartura.hr>
00a84c5 linux-firmware: Update AMD SEV firmware
71338c2 Merge branch 'for-master' of https://github.com/CosmicPenguin/linux-firmware into main
07367b9 linux-firmware: Update firmware file for Intel Bluetooth AX200
1d1586a linux-firmware: Update firmware file for Intel Bluetooth AX201
28b333d linux-firmware: Update firmware file for Intel Bluetooth 9560
db30380 linux-firmware: Update firmware file for Intel Bluetooth 9260
eb3aa1f Mellanox: Add new mlxsw_spectrum firmware xx.2008.1310
ec88f05 mediatek: update MT7915 firmware to 20200819
a9993f8 brcm: Fix a stale symlink for RPi3 model b+
f48fec4 qcom: Add updated a5xx and a6xx microcode
d5f9eea wl18xx: update firmware file 8.9.0.0.83
7a237c6 linux-firmware: mt7615: update firmware to 20200814 version
74bd44f amdgpu: add navi12 firmware from 20.30
b9f69cd amdgpu: update navi10 firmware for 20.30
Signed-off-by: David Bauer <mail@david-bauer.net>
The firmware for Wave1 chips was updated to the latest release
10.2.4-1.0-00047 at the end of 2019 (commit 513d70cc50b).
Package firmware for these chips from linux-firmware.
This avoids downloading the ath10k-firmware repository.
Signed-off-by: David Bauer <mail@david-bauer.net>
The Linksys MR8300 is based on QCA4019 and QCA9888
and provides three, independent radios.
NAND provides two, alternate kernel/firmware images
with fail-over provided by the OEM U-Boot.
Hardware Highlights:
SoC: IPQ4019 at 717 MHz (4 CPUs)
RAM: 512MB RAM
SoC: Qualcomm IPQ4019 at 717 MHz (4 CPUs)
RAM: 512M DDR3
FLASH: 256 MB NAND (Winbond W29N02GV, 8-bit parallel)
ETH: Qualcomm QCA8075 (4x GigE LAN, 1x GigE Internet Ethernet Jacks)
BTN: Reset and WPS
USB: USB3.0, single port on rear with LED
SERIAL: Serial pads internal (unpopulated)
LED: Four status lights on top + USB LED
WIFI1: 2x2:2 QCA4019 2.4 GHz radio on ch. 1-14
WIFI2: 2x2:2 QCA4019 5 GHz radio on ch. 36-64
WIFI3: 2x2:2 QCA9888 5 GHz radio on ch. 100-165
Support is based on the already supported EA8300.
Key differences:
EA8300 has 256MB RAM where MR8300 has 512MB RAM.
MR8300 has a revised top panel LED setup.
Installation:
"Factory" images may be installed directly through the OEM GUI using
URL: https://ip-of-router/fwupdate.html (Typically 192.168.1.1)
Signed-off-by: Hans Geiblinger <cybrnook2002@yahoo.com>
[copied Hardware-highlights from EA8300. Fixed alphabetical order.
fixed commit subject, removed bogus unit-address of keys,
fixed author (used Signed-off-By to From:) ]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
Luma Home WRTQ-329ACN, also known as Luma WiFi System, is a dual-band
wireless access point.
Specification
SoC: Qualcomm Atheros IPQ4018
RAM: 256 MB DDR3
Flash: 2 MB SPI NOR
128 MB SPI NAND
WIFI: 2.4 GHz 2T2R integrated
5 GHz 2T2R integrated
Ethernet: 2x 10/100/1000 Mbps QCA8075
USB: 1x 2.0
Bluetooth: 1x 4.0 CSR8510 A10, connected to USB bus
LEDS: 16x multicolor LEDs ring, controlled by MSP430G2403 MCU
Buttons: 1x GPIO controlled
EEPROM: 16 Kbit, compatible with AT24C16
UART: row of 4 holes marked on PCB as J19, starting count from the side
of J19 marking on PCB
1. GND, 2. RX, 3. TX, 4. 3.3V
baud: 115200, parity: none, flow control: none
The device supports OTA or USB flash drive updates, unfotunately they
are signed. Until the signing key is known, the UART access is mandatory
for installation. The difficult part is disassembling the casing, there
are a lot of latches holding it together.
Teardown
Prepare three thin, but sturdy, prying tools. Place the device with back
of it facing upwards. Start with the wall having a small notch. Insert
first tool, until You'll feel resistance and keep it there. Repeat the
procedure for neighbouring walls. With applying a pressure, one edge of
the back cover should pop up. Now carefully slide one of the tools to
free the rest of the latches.
There's no need to solder pins to the UART holes, You can use hook clips,
but wiring them outside the casing, will ease debuging and recovery if
problems occur.
Installation
1. Prepare TFTP server with OpenWrt initramfs image.
2. Connect to UART port (don't connect the voltage pin).
3. Connect to LAN port.
4. Power on the device, carefully observe the console output and when
asked quickly enter the failsafe mode.
5. Invoke 'mount_root'.
6. After the overlayfs is mounted run:
fw_setenv bootdelay 3
This will allow to access U-Boot shell.
7. Reboot the device and when prompted to stop autoboot, hit any key.
8. Adjust "ipaddr" and "serverip" addresses in U-Boot environment, use
'setenv' to do that, then run following commands:
tftpboot 0x84000000 <openwrt_initramfs_image_name>
bootm 0x84000000
and wait till OpenWrt boots.
9. In OpenWrt command line run following commands:
fw_setenv openwrt "setenv mtdids nand1=spi_nand; setenv mtdparts mtdparts=spi_nand:-(ubi); ubi part ubi; ubi read 0x84000000 kernel; bootm 0x84000000"
fw_setenv bootcmd "run openwrt"
10. Transfer OpenWrt sysupgrade image to /tmp directory and flash it
with:
ubirmvol /dev/ubi0 -N ubi_rootfs
sysupgrade -v -n /tmp/<openwrt_sysupgrade_image_name>
11. After flashing, the access point will reboot to OpenWrt, then it's
ready for configuration.
Reverting to OEM firmware
1. Execute installation guide steps: 1, 2, 3, 7, 8.
2. In OpenWrt command line run following commands:
ubirmvol /dev/ubi0 -N rootfs_data
ubirmvol /dev/ubi0 -N rootfs
ubirmvol /dev/ubi0 -N kernel
ubirename /dev/ubi0 kernel1 kernel ubi_rootfs1 ubi_rootfs
ubimkvol /dev/ubi0 -S 34 -N kernel1
ubimkvol /dev/ubi0 -S 320 -N ubi_rootfs1
ubimkvol /dev/ubi0 -S 264 -N rootfs_data
fw_setenv bootcmd bootipq
3. Reboot.
Known issues
The LEDs ring doesn't have any dedicated driver or application to control
it, the only available option atm is to manipulate it with 'i2cset'
command. The default action after applying power to device is spinning
blue light. This light will stay active at all time. To disable it
install 'i2c-tools' with opkg and run:
i2cset -y 2 0x48 3 1 0 0 i
The light will stay off until next cold boot.
Additional information
After completing 5. step from installation guide, one can disable asking
for root password on OEM firmware by running:
sed -e 's/root❌/root::/' -i /etc/passwd
This is useful for investigating the OEM firmware. One can look
at the communication between the stock firmware and the vendor's
cloud servers or as a way of making a backup of both flash chips.
The root password seems to be constant across all sold devices.
This is output of 'led_ctl' from OEM firmware to illustrate
possibilities of LEDs ring:
Usage: led_ctl [status | upgrade | force_upgrade | version]
led_ctl solid COLOR <brightness>
led_ctl single COLOR INDEX <brightness 0 - 15>
led_ctl spinning COLOR <period 1 - 16 (lower = faster)>
led_ctl fill COLOR <period 1 - 16 (lower = faster)>
( default is 5 )
led_ctl flashing COLOR <on dur 1 - 128> <off dur 1 - 128>
(default is 34) ( default is 34 )
led_ctl pulsing COLOR
COLOR: red, green, blue, yellow, purple, cyan, white
Signed-off-by: Tomasz Maciej Nowak <tomek_n@o2.pl>
[squash "ipq-wifi: add BDFs for Luma Home WRTQ-329ACN" into commit,
changed ubi volumes for easier integration, slightly reworded
commit message, changed ubi volume layout to use standard names all
around]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
amd64-microcode (3.20191218.1)
* New microcode update packages from AMD upstream:
+ Removed Microcode updates (known to cause issues):
sig 0x00830f10, patch id 0x08301025, 2019-07-11
* README: update for new release
amd64-microcode (3.20191021.1)
* New microcode update packages from AMD upstream:
+ New Microcodes:
sig 0x00830f10, patch id 0x08301025, 2019-07-11
+ Updated Microcodes:
sig 0x00800f12, patch id 0x08001250, 2019-04-16
sig 0x00800f82, patch id 0x0800820d, 2019-04-16
amd64-microcode (3.20181128.1)
* New microcode update packages from AMD upstream:
+ New Microcodes:
sig 0x00800f82, patch id 0x0800820b, 2018-06-20
Signed-off-by: Tan Zien <nabsdh9@gmail.com>
flashing the unit
* first update to latest edcore FW as per the PDF instructions
* boot the initramfs
- tftpboot 0x88000000 openwrt-ipq40xx-generic-edgecore_oap100-initramfs-fit-uImage.itb; bootm
* inside the initramfs call the following commiands
- ubiattach -p /dev/mtd0
- ubirmvol /dev/ubi0 -n0
- ubirmvol /dev/ubi0 -n1
- ubirmvol /dev/ubi0 -n2
* scp the sysupgrade image to the board and call
- sysupgrade -n openwrt-ipq40xx-generic-edgecore_oap100-squashfs-nand-sysupgrade.bin
Signed-off-by: John Crispin <john@phrozen.org>
This patch adds support for the Edgecore ECW5211 indoor AP.
Specification:
- SoC: Qualcomm Atheros IPQ4018 ARMv7-A 4x Cortex A-7
- RAM: 256MB DDR3
- NOR Flash: 16MB SPI NOR
- NAND Flash: 128MB MX35LFxGE4AB SPI-NAND
- Ethernet: 2 x 1G via Q8075 PHY connected to ethernet adapter via PSGMII (802.3af POE IN on eth0)
- USB: 1 x USB 3.0 SuperSpeed
- WLAN: Built-in IPQ4018 (2x2 802.11bng, 2x2 802.11 acn)
- CC2540 BLE connected to USB 2.0 port
- Atmel AT97SC3205T I2C TPM
Signed-off-by: Robert Marko <robert.marko@sartura.hr>
This patch adds support for the Edgecore ECW5410 indoor AP.
Specification:
- SoC: Qualcomm Atheros IPQ8068 ARMv7 2x Cortex A-15
- RAM: 256MB(225 usable) DDR3
- NOR Flash: 16MB SPI NOR
- NAND Flash: 128MB S34MS01G2 Parallel NAND
- Ethernet: 2 x 1G via 2x AR8033 PHY-s connected directly to GMAC2 and GMAC3 via SGMII (802.3af POE IN on eth0)
- USB: 1 x USB 3.0 SuperSpeed
- WLAN: 2x QCA9994 AC Wawe 2 (1x 2GHz bgn, 1x 5GHz acn)
- CC2540 BLE
- UART console on RJ45 next to ethernet ports exposed.
Its Cisco pin compatible, 115200 8n1 baud.
Installation instructions:
Through stock firmware or initramfs.
1.Connect to console
2. Login with root account, if password is unknown then interrupt the boot with f and reset it in failsafe.
3. Transfer factory image
4. Flash the image with ubiformat /dev/mtd1 -y -f <your factory image path>
This will replace the rootfs2 with OpenWrt, if you are currently running from rootfs2 then simply change /dev/mtd1 to /dev/mtd0
Note
Initramfs:
1. Connect to console
2. Transfer the image from TFTP server with tftpboot,
or by using DHCP advertised image with dhcp command.
3. bootm
4. Run ubiformat /dev/mtd1
You need to interrupt the bootloader after rebooting and run:
run altbootcmd
This will switch your active rootfs partition to one you wrote to and boot from it.
So if rootfs1 is active, then it will change it to rootfs2.
This will format the rootfs2 partition, if your active partition is 2 then simply change /dev/mtd1 with /dev/mtd0
If you dont format the partition you will be writing too, then sysupgrade will find existing UBI rootfs and kernel volumes and update those.
This will result in wrong ordering and OpenWrt will panic on boot.
5. Transfer sysupgrade image
6. Flash with sysupgrade -n.
Note that sysupgrade will write the image to rootfs partition that is not currently in use.
Signed-off-by: Robert Marko <robert.marko@sartura.hr>
This enables the ipq-wifi package to be used on IPQ806x target.
Its needed for boards using a different BDF than one shipped in the upstream board-2.bin.
Currently needed for Edgecore ECW5410.
Signed-off-by: Robert Marko <robert.marko@sartura.hr>
Instead of using http and https for source downloads from
downloads.openwrt.org, always use https for it's better security.
Signed-off-by: Paul Spooren <mail@aparcar.org>
This target has been mostly replaced by ath79 and won't be included
in the upcoming release anymore. Finally put it to rest.
This also removes all references in packages, tools, etc. as well as
the uboot-ar71xx and vsc73x5-ucode packages.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
For example, Turris MOX SDIO card is using Marvell (NXP) 88W8997 chip.
Technical specs of 88W8997:
- 28nm
- 802.11 ac wave-2
It should support simultaneous dual-band 2.4 GHz and 5 GHz,
but it requires to support multiSSID for one Wi-Fi card [1], which is
not supported in OpenWrt, yet and if we tried to run two instances of
hostapd, it didn't work well, so it's 2.4 GHz or 5 GHz.
- 2x2 MU-MIMO
- Bluetooth 5.1 with LE support
- Unfortunately, there can be connected only 8 clients at the same time
(limited by FW, however, there exists "enterprise" chip, its equal chip,
it is just different that it uses different FW)
Symlink is necessary as mwifiex_sdio tries to load sd8997_uapsta.bin
[ 13.651182] mwifiex_sdio mmc0:0001:1: Direct firmware load for mrvl/sd8997_uapsta.bin failed with error -2
[ 13.661065] mwifiex_sdio mmc0:0001:1: Falling back to user helper
[ 13.684880] firmware mrvl!sd8997_uapsta.bin: firmware_loading_store: map pages failed
[ 13.695910] mwifiex_sdio mmc0:0001:1: Failed to get firmware mrvl/sd8997_uapsta.bin
[ 13.703774] mwifiex_sdio mmc0:0001:1: info: _mwifiex_fw_dpc: unregister device
Pali Rohár sent two patches [2] [3] into kernel to fix default firmware name for SD8997, so
the symlink will not be required in the future versions of kernel, which
was accepted and right now, according to my details it was backported to 5.8, 5.7 and 5.4
[1] https://bugs.openwrt.org/index.php?do=details&task_id=3243
[2] https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=00eb0cb36fad5
[3] https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=2e1fcac52a9ea
Signed-off-by: Josef Schlehofer <pepe.schlehofer@gmail.com>
Not a large change from last time, but should fix at least one rare wave-2
crash. The htt-mgt-community builds are trimmed for supporting lots of
stations (typically 150+ stations per radio).
Tested on Netgear R7800.
Signed-off-by: Michael Yartys <michael.yartys@gmail.com>
Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
OpenWrt lately has harmonized device (definition) names to the
pattern vendor_model to improve overall consistency, also with
other values like the DTS compatible.
This patch applies that scheme to the layerscape target.
Since this (intentionally) creates a bigger overlap between DTS names,
compatible, and device definition name, it also moves DEVICE_DTS and
SUPPORTED_DEVICES definitions to the Device/Default blocks.
Apart from that, it also modifies several packages to use consistent
naming in order to keep the $(1) file references working.
While at it, remove one layer of complexity for the setup in
tfa-layerscape package.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Quoting part of original message from eefb5f741015 commit in
linux-firmware repository:
This adds the "minifw" version of the EIP197 firmware, which the inside-
secure driver will use as a fallback if the original full-featured
firmware cannot be found. This allows for using the inside-secure driver
and hardware without access to "official" firmware only available under
NDA.
Signed-off-by: Tomasz Maciej Nowak <tomek_n@o2.pl>
Buffalo WTR-M2133HP is a Tri-Band router based on IPQ4019.
Specification
-------------
- SoC: Qualcomm IPQ4019
- RAM: 512MiB
- Flash Memory: NAND 128MiB (MXIC MX30LF1G18AC)
- Wi-Fi: Qualcomm IPQ4019 (2.4GHz, 1ch - 13ch)
- Wi-Fi: Qualcomm IPQ4019 (5GHz, 36ch - 64ch)
- Wi-Fi: Qualcomm QCA9984 (2T2R, 5GHz, 100ch - 140ch)
- Ethernet: 4x 10/100/1000 Mbps (1x WAN, 3x LAN)
- LED: 4x white LED, 4x orange LED, 1x blue LED
- USB: 1x USB 3.0 port
- Input: 2x tactile switch, 2x slide switch (2x SP3T)
- Serial console: 115200bps, pinheader JP5 on PCB
- Power: DC 12V 2A
Flash instruction
-----------------
1. Set up a TFTP server (IP address: 192.168.11.10)
2. Rename "initramfs-fit-uImage.itb" to "WTR-M2133HP-initramfs.uImage"
and put it into the TFTP server directory.
3. Connect the TFTP server and WTR-M2133HP.
4. Hold down the AOSS button, then power on the router.
5. After booting OpenWrt initramfs image, connect to the router by SSH.
6. Transfer "squashfs-nand-factory.ubi" to the router.
7. Execute the following commands.
# ubidetach -p /dev/mtd15
# ubiformat /dev/mtd15 -f /tmp/openwrt-ipq40xx-generic-buffalo_wtr-m2133hp-squashfs-nand-factory.ubi
# fw_setenv bootcmd bootipq
8. Perform reboot.
Recover to stock firmware
-------------------------
1. Execute the following command.
# fw_setenv bootcmd bootbf
2. Reboot and wait several minutes.
Signed-off-by: Yanase Yuki <dev@zpc.sakura.ne.jp>
Specifications:
SOC: Qualcomm IPQ4029 (DAKOTA) ARM Quad-Core
RAM: 512 MiB
FLASH1: 16 MiB NOR - SPI0
FLASH2: 8 GiB eMMC
ETH: Qualcomm QCA8075
WLAN1: Qualcomm Atheros QCA4029 2.4GHz 802.11b/g/n 2x2
WLAN2: Qualcomm Atheros QCA4029 5GHz 802.11n/ac W2 2x2
INPUT: Reset, WPS
LED: Power, Mesh, WLAN
UART1: On board pin header near to LED (3.3V, TX, RX, GND), 3.3V without pin - 115200 8N1
UART2: On board with BLE module
SPI1: On board socket for Zigbee module
Install via tftp
- NB: need to flash transition image firstly
Firstly install transition image:
(IPQ40xx) # tftpboot 0x84000000 s1300-factory-to-openwrt.img
(IPQ40xx) # sf probe && imgaddr=0x84000000 && source :script
Secondly install openwrt sysupgrade bin:
(IPQ40xx) # run lf
Revert to factory image:
(IPQ40xx) # tftpboot 0x84000000 s1300-openwrt-to-factory.img
(IPQ40xx) # sf probe && imgaddr=0x84000000 && source :script
The kernel and rootfs of factory firmware are on eMMC, and openwrt
firmware is on NOR flash. The transition image includes U-boot
and partition table, which decides where to load kernel and rootfs.
After you firstly install openwrt image, you can switch between
factory and openwrt firmware by flashing transition image.
Signed-off-by: Dongming Han <handongming@gl-inet.com>
SOC: IPQ4018 / QCA Dakota
CPU: Quad-Core ARMv7 Processor rev 5 (v7l) Cortex-A7
DRAM: 256 MiB
NOR: 32 MiB
ETH: Qualcomm Atheros QCA8072 (2 ports)
USB: 1 x 2.0 (Host controller in the SoC)
WLAN1: Qualcomm Atheros QCA4018 2.4GHz 802.11bgn 2:2x2
WLAN2: Qualcomm Atheros QCA4018 5GHz 802.11a/n/ac 2:2x2
INPUT: RESET Button
LEDS: White, Blue, Red, Orange
Flash instruction:
From EnGenius firmware to OpenWrt firmware:
In Firmware Upgrade page, upgrade your openwrt-ipq40xx-generic-engenius_emr3500-squashfs-factory.bin directly.
From OpenWrt firmware to EnGenius firmware:
1. Setup a TFTP server on your computer and configure static IP to 192.168.99.8
Put the EnGenius firmware in the TFTP server directory on your computer.
2. Power up EMR3500. Press 4 and then press any key to enter u-boot.
3. Download EnGenius firmware
(IPQ40xx) # tftpboot 0x84000000 openwrt-ipq40xx-emr3500-nor-fw-s.img
4. Flash the firmware
(IPQ40xx) # imgaddr=0x84000000 && source 0x84000000:script
5. Reboot
(IPQ40xx) # reset
Signed-off-by: Yen-Ting-Shen <frank.shen@senao.com>
[squashed update patch, updated to 5.4, dropped BOARD_NAME,
migrated to SOC]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>