Commit Graph

56 Commits

Author SHA1 Message Date
David Bauer
b7da0d2944 ath79: add support for Ubiquiti UniFi AP Pro
This adds support for the Ubiquiti UniFi AP Pro to the ath79 target. The
device was previously supported on the now removed ar71xx target.

SoC   Atheros AR9344
WiFi  Atheros AR9344 & Atheros AR9280
ETH   Atheros AR8327
RAM   128M DDR2
FLASH 16M SPI-NOR

Installation
------------

Follow the Ubiquiti TFTP recovery procedure for this device.

1. Hold down the reset button while connecting power for 10 seconds.
2. Transfer the factory image via TFTP to the AP (192.168.1.20)
3. Wait 2 minutes for the AP to write the firmware to flash. The device
   will automatically reboot to OpenWrt.

Signed-off-by: David Bauer <mail@david-bauer.net>
2020-09-17 18:07:39 +02:00
Adrian Schmutzler
25f2f66eea ath79: add support for Buffalo WZR-600DHP
The hardware of this device seems to be identical to WZR-HP-AG300H.
It was already implemented as a clone in ar71xx.

Specification:
- 680 MHz CPU (Qualcomm Atheros AR7161)
- 128 MiB RAM
- 32 MiB Flash
- WiFi 5 GHz a/n
- WiFi 2.4 GHz b/g/n
- 5x 1000Base-T Ethernet
- 1x USB 2.0

Installation of OpenWRT from vendor firmware:
- Connect to the Web-interface at http://192.168.11.1
- Go to “Administration” → “Firmware Upgrade”
- Upload the OpenWrt factory image

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-09-16 17:32:12 +02:00
Adrian Schmutzler
a99614a44f ath79: consistently use "info" label for default-mac partition
The tp-link safeloader devices typically contain a partition
"default-mac" which stores the MAC addresses. It is followed by other
partitions containing device info, like

  {"default-mac", 0x610000, 0x00020},
  {"pin", 0x610100, 0x00020},
  {"product-info", 0x611100, 0x01000},

In DTS, we typically assign a 0x10000 sized partition for these,
which is mostly labelled "mac" or "info". In rarer cases, the
partitions have been enclosed in a larger "tplink" or "config"
partition.

However, when comparing different devices, the implementation appears
relatively arbitrary at the moment.
Thus, this PR aims at harmonizing these partitions by always using
the name "info" for the DTS partition containing "default-mac".
"info" is preferred over "mac" as we never just have "default-mac"
alone, but always some other device-info partitions as well.

While at it, this also establishes a similar partitioning for the
few devices where the "info" partitions are part of a bigger
unspecific "config" partition or similar.

Besides the harmonization itself, this also allows to merge a few
cases in 11-ath10k-caldata.

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-09-16 17:28:48 +02:00
Sander Vanheule
c9f51a9ad6 ath79: support for TP-Link EAP225-Wall v2
TP-Link EAP225-Wall v2 is an AC1200 (802.11ac Wave-2) wall plate access
point. UART access and debricking require fine soldering.

The device was kindly provided for porting by Stijn Segers.

Device specifications:
* SoC: QCA9561 @ 775MHz
* RAM: 128MiB DDR2
* Flash: 16MiB SPI-NOR (GD25Q127CSIG)
* Wireless 2.4GHz (SoC): b/g/n, 2x2
* Wireless 5Ghz (QCA9886): a/n/ac, 2x2 MU-MIMO
* Ethernet (SoC): 4× 100Mbps
  * Eth0 (back): 802.3af/at PoE in
  * Eth1, Eth2 (bottom)
  * Eth3 (bottom): PoE out (can be toggled by GPIO)
* One status LED
* Two buttons (both work as failsafe)
  * LED button, implemented as KEY_BRIGHTNESS_TOGGLE
  * Reset button

Flashing instructions, requires recent firmware (tested on 1.20.0):
* ssh into target device and run `cliclientd stopcs`
* Upgrade with factory image via web interface

Debricking:
* Serial port can be soldered on PCB J4 (1: TXD, 2: RXD, 3: GND, 4: VCC)
    * Bridge unpopulated resistors R162 (TXD) and R165 (RXD)
      Do NOT bridge R164
    * Use 3.3V, 115200 baud, 8n1
* Interrupt bootloader by holding CTRL+B during boot
* tftp initramfs to flash via sysupgrade or LuCI web interface

MAC addresses:
MAC address (as on device label) is stored in device info partition at
an offset of 8 bytes. ath9k device has same address as ethernet, ath10k
uses address incremented by 1.
From OEM ifconfig:
    br0       Link encap:Ethernet  HWaddr 50:...:04
    eth0      Link encap:Ethernet  HWaddr 50:...:04
    wifi0     Link encap:UNSPEC  HWaddr 50-...-04-...
    wifi1     Link encap:UNSPEC  HWaddr 50-...-05-...

Signed-off-by: Sander Vanheule <sander@svanheule.net>
[fix IMAGE_SIZE]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-09-12 19:37:24 +02:00
Zhong Jianxin
53df30f02b ath79: add support for Mercury MW4530R v1
Mercury MW4530R is a TP-Link TL-WDR4310 clone.

Specification:

* SOC: Atheros AR9344 (560 MHz)
* RAM: 128 MiB
* Flash: 8192 KiB
* Ethernet: 5 x 10/100/1000 (4 x LAN, 1 x WAN) (AR8327)
* Wireless:
  - 2.4 GHz b/g/n (internal)
  - 5 GHz a/n (AR9580)
* USB: yes, 1 x USB 2.0

Installation:

Flash factory image via OEM web interface.

Signed-off-by: Zhong Jianxin <azuwis@gmail.com>
2020-09-12 18:47:26 +02:00
Sander Vanheule
9dd4ba3d7e ath79: add support for TP-Link EAP245-v3
TP-Link EAP245 v3 is an AC1750 (802.11ac Wave-2) ceiling mount access
point. UART access (for debricking) requires non-trivial soldering.

Specifications:
* SoC: QCA9563 (CPU/DDR/AHB @ 775/650/258 MHz)
* RAM: 128MiB
* Flash: 16MiB SPI-NOR
* Wireless 2.4GHz (SoC): b/g/n 3x3
* Wireless 5GHz (QCA9982): a/n/ac 3x3 with MU-MIMO
* Ethernet (QCA8337N switch): 2× 1GbE, ETH1 (802.3at PoE) and ETH2
* Green and amber status LEDs
* Reset switch (GPIO, available for failsafe)

Flashing instructions:
All recent firmware versions (latest is 2.20.0), can disable firmware
signature verification and use a padded firmware file to flash OpenWrt:
* ssh into target device and run `cliclientd stopcs`
* upload factory image via web interface

The stopcs-method is supported from firmware version 2.3.0. Earlier
versions need to be upgraded to a newer stock version before flashing
OpenWrt.

Factory images for these devices are RSA signed by TP-Link. While the
signature verification can be disabled, the factory image still needs to
have a (fake) 1024 bit signature added to pass file checks.

Debricking instructions:
You can recover using u-boot via the serial port:
* Serial port is available from J3 (1:TX, 2:RX, 3:GND, 4:3.3V)
* Bridge R237 to connect RX, located next to J3
* Bridge R225 to connect TX, located inside can on back-side of board
* Serial port is 115200 baud, 8n1, interrupt u-boot by holding ctrl+B
* Upload initramfs with tftp and upgrade via OpenWrt

Device mac addresses:
Stock firmware has the same mac address for 2.4GHz wireless and
ethernet, 5GHz is incremented by one. The base mac address is stored in
the 'default-mac' partition (offset 0x90000) at an offset of 8 bytes.
ART blobs contain no mac addresses.
From OEM ifconfig:
    ath0      Link encap:Ethernet  HWaddr 74:..:E2
    ath10     Link encap:Ethernet  HWaddr 74:..:E3
    br0       Link encap:Ethernet  HWaddr 74:..:E2
    eth0      Link encap:Ethernet  HWaddr 74:..:E2

Signed-off-by: Sander Vanheule <sander@svanheule.net>
Tested-by: Stijn Tintel <stijn@linux-ipv6.be>
2020-09-09 20:42:10 +03:00
Michael Pratt
22caf30a65 ath79: add support for Senao Engenius ENH202 v1
FCC ID: U2M-ENH200

Engenius ENH202 is an outdoor wireless access point with 2 10/100 ports,
built-in ethernet switch, internal antenna plates and proprietery PoE.

Specification:

  - Qualcomm/Atheros AR7240 rev 2
  - 40 MHz reference clock
  - 8 MB FLASH                  ST25P64V6P (aka ST M25P64)
  - 32 MB RAM
  - UART at J3                  (populated)
  - 2x 10/100 Mbps Ethernet     (built-in switch at gmac1)
  - 2.4 GHz, 2x2, 29dBm         (Atheros AR9280 rev 2)
  - internal antenna plates     (10 dbi, semi-directional)
  - 5 LEDs, 1 button            (LAN, WAN, RSSI) (Reset)

Known Issues:

  - Sysupgrade from ar71xx no longer possible
  - Power LED not controllable, or unknown gpio

MAC addresses:

  eth0/eth1  *:11   art 0x0/0x6
  wlan       *:10   art 0x120c

  The device label lists both addresses, WLAN MAC and ETH MAC,
  in that order.

  Since 0x0 and 0x6 have the same content, it cannot be
  determined which is eth0 and eth1, so we chose 0x0 for both.

Installation:

  2 ways to flash factory.bin from OEM:

  - Connect ethernet directly to board (the non POE port)
      this is LAN for all images
  - if you get Failsafe Mode from failed flash:
      only use it to flash Original firmware from Engenius
      or risk kernel loop or halt which requires serial cable

  Method 1: Firmware upgrade page:

    OEM webpage at 192.168.1.1
    username and password "admin"
    In upper right select Reset
    "Restore to factory default settings"
    Wait for reboot and login again
    Navigate to "Firmware Upgrade" page from left pane
    Click Browse and select the factory.bin image
    Upload and verify checksum
    Click Continue to confirm and wait 3 minutes

  Method 2: Serial to load Failsafe webpage:

    After connecting to serial console and rebooting...
    Interrupt boot with any key pressed rapidly
    execute `run failsafe_boot` OR `bootm 0x9f670000`
    wait a minute
    connect to ethernet and navigate to
    "192.168.1.1/index.htm"
    Select the factory.bin image and upload
    wait about 3 minutes

Return to OEM:

  If you have a serial cable, see Serial Failsafe instructions

  *DISCLAIMER*
  The Failsafe image is unique to Engenius boards.
  If the failsafe image is missing or damaged this will not work
  DO NOT downgrade to ar71xx this way, can cause kernel loop or halt

  The easiest way to return to the OEM software is the Failsafe image
  If you dont have a serial cable, you can ssh into openwrt and run

  `mtd -r erase fakeroot`

  Wait 3 minutes
  connect to ethernet and navigate to 192.168.1.1/index.htm
  select OEM firmware image from Engenius and click upgrade

Format of OEM firmware image:

  The OEM software of ENH202 is a heavily modified version
  of Openwrt Kamikaze bleeding-edge. One of the many modifications
  is to the sysupgrade program. Image verification is performed
  simply by the successful ungzip and untar of the supplied file
  and name check and header verification of the resulting contents.
  To form a factory.bin that is accepted by OEM Openwrt build,
  the kernel and rootfs must have specific names...

    openwrt-senao-enh202-uImage-lzma.bin
    openwrt-senao-enh202-root.squashfs

  and begin with the respective headers (uImage, squashfs).
  Then the files must be tarballed and gzipped.
  The resulting binary is actually a tar.gz file in disguise.
  This can be verified by using binwalk on the OEM firmware images,
  ungzipping then untaring, and by swapping headers to see
  what the OEM upgrade utility accepts and rejects.

  OKLI kernel loader is required because the OEM firmware
  expects the kernel to be no greater than 1024k
  and the factory.bin upgrade procedure would otherwise
  overwrite part of the kernel when writing rootfs.

Note on built-in switch:

  ENH202 is originally configured to be an access point,
  but with two ethernet ports, both WAN and LAN is possible.

  the POE port is gmac0 which is preferred to be
  the port for WAN because it gives link status
  where swconfig does not.

Signed-off-by: Michael Pratt <mpratt51@gmail.com>
[assign label_mac in 02_network, use ucidef_set_interface_wan,
use common device definition, some reordering]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-08-31 17:41:21 +02:00
Sven Wegener
0348a02c7c ath79: use correct MAC address for TP-Link TL-WPA8630 v2
The base address is used for the LAN and 2G WLAN interfaces.
5G WLAN interface is +1 and the PLC interface uses +2.

Signed-off-by: Sven Wegener <sven.wegener@stealer.net>
[improve commit title, fix assignment in 11-ath10k-caldata]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-08-31 17:41:21 +02:00
Martin Kennedy
af9dee336d ath79: add support for Meraki MR16
Port device support for Meraki MR16 from the ar71xx target to ath79.

Specifications:

  * AR7161 CPU, 16 MiB Flash, 64 MiB RAM
  * One PoE-capable Gigabit Ethernet Port
  * AR9220 / AR9223 (2x2 11an / 11n) WLAN

Installation:

  * Requires TFTP server at 192.168.1.101, w/ initramfs & sysupgrade .bins
  * Open shell case and connect a USB to TTL cable to upper serial headers
  * Power on the router; connect to U-boot over 115200-baud connection
  * Interrupt U-boot process to boot Openwrt by running:
       setenv bootcmd bootm 0xbf0a0000; saveenv;
       tftpboot 0c00000 <filename-of-initramfs-kernel>.bin;
       bootm 0c00000;
  * Copy sysupgrade image to /tmp on MR16
  * sysupgrade /tmp/<filename-of-sysupgrade>.bin

Notes:

  - There are two separate ARTs in the partition (offset 0x1000/0x5000 and
    0x11000/0x15000) in the OEM device. I suspect this is an OEM artifact;
    possibly used to configure the radios for different regions,
    circumstances or RF frontends. Since the ar71xx target uses the
    second offsets, use that second set (0x11000 and 0x15000) for the ART.

  - kmod-owl-loader is still required to load the ART partition into the
    driver.

  - The manner of storing MAC addresses is updated from ar71xx; it is
    at 0x66 of the 'config' partition, where it was discovered that the
    OEM firmware stores it. This is set as read-only. If you are
    migrating from ar71xx and used the method mentioned above to
    upgrade, use kmod-mtd-rw or UCI to add the MAC back in. One more
    method for doing this is described below.

  - Migrating directly from ar71xx has not been thoroughly tested, but
    one method has been used a couple of times with good success,
    migrating 18.06.2 to a full image produced as of this commit. Please
    note that these instructions are only for experienced users, and/or
    those still able to open their device up to flash it via the serial
    headers should anything go wrong.

    1) Install kmod-mtd-rw and uboot-envtools
    2) Run `insmod mtd-rw.ko i_want_a_brick=1`
    3) Modify /etc/fw_env.config to point to the u-boot-env partition.
       The file /etc/fw_env.config should contain:

       # MTD device   env offset  env size    sector size
       /dev/mtd1      0x00000     0x10000     0x10000

       See https://openwrt.org/docs/techref/bootloader/uboot.config
       for more details.

    4) Run `fw_printenv` to verify everything is correct, as per the
       link above.
    5) Run `fw_setenv bootcmd bootm 0xbf0a0000` to set a new boot address.
    6) Manually modify /lib/upgrade/common.sh's get_image function:
       Change ...

       cat "$from" 2>/dev/null | $cmd

       ... into ...

       (
         dd if=/dev/zero bs=1 count=$((0x66)) ; # Pad the first 102 bytes
         echo -ne '\x00\x18\x0a\x12\x34\x56'  ; # Add in MAC address
         dd if=/dev/zero bs=1 count=$((0x20000-0x66-0x6)) ; # Pad the rest
         cat "$from" 2>/dev/null | $cmd
       )

       ... which, during the upgrade process, will pad the image by
       128K of zeroes-plus-MAC-address, in order for the ar71xx's
       firmware partition -- which starts at 0xbf080000 -- to be
       instead aligned with the ath79 firmware partition, which
       starts 128K later at 0xbf0a0000.

    7) Copy the sysupgrade image into /tmp, as above
    8) Run `sysupgrade -F /tmp/<sysupgrade>.bin`, then wait

    Again, this may BRICK YOUR DEVICE, so make *sure* to have your
    serial cable handy.

Addenda:

  - The MR12 should be able to be migrated in a nearly identical manner as
    it shares much of its hardware with the MR16.

  - Thank-you Chris B for copious help with this port.

Signed-off-by: Martin Kennedy <hurricos@gmail.com>
[fix typo in compat message, drop art DT label,
move 05_fix-compat-version to subtarget]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-08-31 17:41:21 +02:00
Tomasz Maciej Nowak
ebf71533f9 ath79: add support for ALLNET ALL-WAP02860AC
ALLNET ALL-WAP02860AC is a dual-band wireless access point.

Specification
SoC: Qualcomm Atheros QCA9558
RAM: 128 MB DDR2
Flash: 16 MB SPI NOR
WIFI: 2.4 GHz 3T3R integrated
      5 GHz 3T3R QCA9880 Mini PCIe card
Ethernet: 1x 10/100/1000 Mbps AR8035-A, PoE capable (802.3at)
LEDS: 5x, which four are GPIO controlled
Buttons: 1x GPIO controlled
UART: 4 pin header near Mini PCIe card, starting count from white
      triangle on PCB
      1. VCC 3.3V, 2. GND, 3. TX, 4. RX
      baud: 115200, parity: none, flow control: none

MAC addresses
Calibration data does not contain valid MAC addresses.
The calculated MAC addresses are chosen in accordance with OEM firmware.

Because of:
a) constrained environment (SNMP) when connecting through Telnet
   or SSH,
b) hard-coded kernel and rootfs sizes,
c) checksum verification of kerenel and rootfs images in bootloder,

creating factory image accepted by OEM web interface is difficult,
therefore, to install OpenWrt on this device UART connection is needed.
The teardown is simple, unscrew four screws to disassemble the casing,
plus two screws to separate mainboard from the casing.
Before flashing, be sure to have a copy of factory firmware, in case You
wish to revert to original firmware.

Installation
1. Prepare TFTP server with OpenWrt initramfs-kernel image.
2. Connect to LAN port.
3. Connect to UART port.
4. Power on the device and when prompted to stop autoboot, hit any key.
5. Alter U-Boot environment with following commands:
    setenv failsafe_boot bootm 0x9f0a0000
    saveenv
6. Adjust "ipaddr" and "serverip" addresses in U-Boot environment, use
   'setenv' to do that, then run following commands:
    tftpboot 0x81000000 <openwrt_initramfs-kernel_image_name>
    bootm 0x81000000
7. Wait about 1 minute for OpenWrt to boot.
8. Transfer OpenWrt sysupgrade image to /tmp directory and flash it
   with:
    sysupgrade -n /tmp/<openwrt_sysupgrade_image_name>
9. After flashing, the access point will reboot to OpenWrt. Wait few
   minutes, until the Power LED stops blinking, then it's ready for
   configuration.

Signed-off-by: Tomasz Maciej Nowak <tomek_n@o2.pl>
[add MAC address comment to commit message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-08-15 15:58:39 +02:00
Adrian Schmutzler
7ef7dbaf70 ath79: add support for TP-Link TL-WPA8630 v1
This ports the TP-Link TL-WPA8630 v1 from ar71xx to ath79.

Specifications:

SoC: QCA9563
CPU: 750 MHz
Flash/RAM: 8 / 128 MiB
Ethernet: 3x 1G ports (QCA8337 switch)
WLAN: 2.4 GHz b/g/n, 5 GHz a/n/ac (ath10k)

Buttons, LEDs and network setup appear to be almost identical
to the v2 revision.

Powerline interface is connected to switch port 5 (Label LAN4).

Installation:

No "fresh" device was available for testing the factory image.

It is not known whether flashing via OEM firmware GUI is possible
or not. A discussion from 2018 [1] about that indicates a few
adjustments are necessary, but it is not clear whether those
are already implemented with the TPLINK_HEADER_VERSION = 2 or not.

Note that for the TL-WPA8630P v1, the TPLINK_HWID needs to be
changed to 0x86310001 to allow factory flashing.

[1] https://forum.openwrt.org/t/solved-tl-wpa8630p-lede-does-not-install/8161/27

Recovery:

Recovery is only possible via serial.

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-08-13 20:43:15 +02:00
Christoph Krapp
459c8c9ef8 ath79: add support for ZyXEL NBG6616
Specifications:

  SoC: Qualcomm Atheros QCA9557
  RAM: 128 MB (Nanya NT5TU32M16EG-AC)
  Flash: 16 MB (Macronix MX25L12845EMI-10G)
  Ethernet: 5x 10/100/1000 (1x WAN, 4x LAN)
  Wireless: QCA9557 2.4GHz (nbg), QCA9882 5GHz (ac)
  USB: 2x USB 2.0 port
  Buttons: 1x Reset
  Switches: 1x Wifi
  LEDs: 11 (Pwr, WAN, 4x LAN, 2x Wifi, 2x USB, WPS)

MAC addresses:

WAN *:3f uboot-env ethaddr + 3
LAN *:3e uboot-env ethaddr + 2
2.4GHz *:3c uboot-env ethaddr
5GHz *:3d uboot-env ethaddr + 1

The label contains all four MAC addresses, however the one without
increment is first, so this one is taken for label MAC address.

Notes:

The Wifi is controlled by an on/off button, i.e. has to be implemented
by a switch (EV_SW). Despite, it appears that GPIO_ACTIVE_HIGH needs
to be used, just like recently fixed for the NBG6716.
Both parameters have been wrong at ar71xx.

Flash Instructions:

At first the U-Boot variables need to be changed in order to boot the
new combined image format. ZyXEL uses a split kernel + root setup and
the current kernel is too large to fit into the partition. As resizing
didnt do the trick, I've decided to use the prefered combined image
approach to be future-kernel-enlargement-proof (thanks to blocktrron for
the assistance).

First add a new variable called boot_openwrt:
setenv boot_openwrt bootm 0x9F120000

After that overwrite the bootcmd and save the environment:
setenv bootcmd run boot_openwrt
saveenv

After that you can flash the openwrt factory image via TFTP. The servers
IP has to be 192.168.1.33. Connect to one of the LAN ports and hold the
WPS Button while booting. After a few seconds the NBG6616 will look for
a image file called 'ras.bin' and flash it.

Return to vendor firmware is possible by resetting the bootcmd:
setenv bootcmd run boot_flash
saveenv
and flashing the vendor image via the TFTP method as described above.

Accessing the U-Boot Shell:
ZyXEL uses a proprietary loader/shell on top of u-boot: "ZyXEL zloader v2.02"
When the device is starting up, the user can enter the the loader shell
by simply pressing a key within the 3 seconds once the following string
appears on the serial console:

|    Hit any key to stop autoboot:  3

The user is then dropped to a locked shell.

| NBG6616> ?
| ATEN	x,(y)     set BootExtension Debug Flag (y=password)
| ATSE	x         show the seed of password generator
| ATSH	          dump manufacturer related data in ROM
| ATRT	(x,y,z,u) ATRT RAM read/write test (x=level, y=start addr, z=end addr, u=iterations
| ATGO	          boot up whole system
| ATUR	x         upgrade RAS image (filename)

In order to escape/unlock a password challenge has to be passed.
Note: the value is dynamic! you have to calculate your own!

First use ATSE $MODELNAME (MODELNAME is the hostname in u-boot env)
to get the challange value/seed.

| NBG6616> ATSE NBG6616
| 00C91D7EAC3C

This seed/value can be converted to the password with the help of this
bash script (Thanks to http://www.adslayuda.com/Zyxel650-9.html authors):

- tool.sh -
ror32() {
  echo $(( ($1 >> $2) | (($1 << (32 - $2) & (2**32-1)) ) ))
}
v="0x$1"
a="0x${v:2:6}"
b=$(( $a + 0x10F0A563))
c=$(( 0x${v:12:14} & 7 ))
p=$(( $(ror32 $b $c) ^ $a ))
printf "ATEN 1,%X\n" $p
- end of tool.sh -

| # bash ./tool.sh 00C91D7EAC3C
| ATEN 1,10FDFF5

Copy and paste the result into the shell to unlock zloader.

| NBG6616> ATEN 1,10FDFF5

If the entered code was correct the shell will change to
use the ATGU command to enter the real u-boot shell.

| NBG6616> ATGU
| NBG6616#

Signed-off-by: Christoph Krapp <achterin@googlemail.com>
[move keys to DTSI, adjust usb_power DT label, remove kernel config
change, extend commit message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-08-10 18:37:43 +02:00
Andreas Böhler
ab74def0db ath79: add support for TP-Link TL-WPA8630P v2
The TL-WPA8630P v2 is a HomePlug AV2 compatible device with a QCA9563 SoC
and 2.4GHz and 5GHz WiFi modules.

Specifications
--------------

  - QCA9563 750MHz, 2.4GHz WiFi
  - QCA9888 5GHz WiFi
  - 8MiB SPI Flash
  - 128MiB RAM
  - 3 GBit Ports (QCA8337)
  - PLC (QCA7550)

MAC address assignment
----------------------

WiFi 2.4GHz and LAN share the same MAC address as printed on the label.
5GHz WiFi uses LAN-1, based on assumptions from similar devices.

LAN Port assignment
-------------------

While there are 3 physical LAN ports on the device, there will be 4
visible ports in OpenWrt. The fourth port (internal port 5) is used
by the PowerLine Communication SoC and thus treated like a regular
LAN port.

Versions
--------

Note that both TL-WPA8630 and TL-WPA8630P, as well as the different
country-versions, differ in partitioning, and therefore shouldn't be
cross-flashed.

This adds support for the two known partitioning variants of the
TL-WPA8630P, where the variants can be safely distinguished via the
tplink-safeloader SupportList. For the non-P variants (TL-WPA8630),
at least two additional partitioning schemes exist, and the same
SupportList entry can have different partitioning.
Thus, we don't support those officially (yet).

Also note that the P version for Germany (DE) requires the international
image version, but is properly protected by SupportList.

In any case, please check the OpenWrt Wiki pages for the device
before flashing anything!

Installation
------------

Installation is possible from the OEM web interface. Make sure to
install the latest OEM firmware first, so that the PLC firmware is
at the latest version. However, please also check the Wiki page
for hints according to altered partitioning between OEM firmware
revisions.

Additional thanks to Jon Davies and Joe Mullally for bringing
order into the partitioning mess.

Signed-off-by: Andreas Böhler <dev@aboehler.at>
[minor DTS adjustments, add label-mac-device, drop chosen, move
common partitions to DTSI, rename de to int, add AU support strings,
adjust TPLINK_BOARD_ID, create common node in generic-tp-link.mk,
adjust commit message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-08-10 11:48:08 +02:00
Vieno Hakkerinen
8c7e9cc6b5 ath79: add support for Ubiquiti PowerBridge M
This adds support for the Ubiquiti PowerBridge M, which has the same
board/LEDs as the Bullet M XM, but different case and antennas.

Specifications:
- AR7241 SoC @ 400 MHz
- 64 MB RAM
- 8 MB SPI flash
- 1x 10/100 Mbps Ethernet, 24 Vdc PoE-in
- Internal antenna: 25 dBi
- POWER/LAN green LEDs
- 4x RSSI LEDs (red, orange, green, green)
- UART (115200 8N1) on PCB

Flashing via WebUI:
Upload the factory image via the stock firmware web UI.

Attention: airOS firmware versions >= 5.6 have a new bootloader with
an incompatible partition table!

Please downgrade to <= 5.5 _before_ flashing OpenWrt!
Refer to the device's Wiki page for further information.

Flashing via TFTP:
Same procedure as other Bullet M (XM) boards.

- Use a pointy tool (e.g., pen cap, paper clip) and keep the reset
button on the device or on the PoE supply pressed
- Power on the device via PoE (keep reset button pressed)
- Keep pressing until LEDs flash alternatively LED1+LED3 =>
LED2+LED4 => LED1+LED3, etc.
- Release reset button
- The device starts a TFTP server at 192.168.1.20
- Set a static IP on the computer (e.g., 192.168.1.21/24)
- Upload via tftp the factory image:
$ tftp 192.168.1.20
  tftp> bin
  tftp> trace
  tftp> put openwrt-ath79-generic-xxxxx-ubnt_powerbridge-m-squashfs-factory.bin

Signed-off-by: Vieno Hakkerinen <vieno@hakkerinen.eu>
2020-07-15 18:33:56 +02:00
Sebastian Schaper
361c670a46 ath79: add support for D-Link DAP-1330/DAP-1365 A1
Port device support for DAP-1330 from the ar71xx target to ath79.

Additionally, images are generated for the European through-socket
case variant DAP-1365. Both devices run the same vendor firmware, the
only difference being the DAP_SIGNATURE field in the factory header.
The vendor's Web UI will display a model string stored in the flash.

Specifications:

 * QCA9533, 8 MiB Flash, 64 MiB RAM
 * One Ethernet Port (10/100)
 * Wall-plug style case (DAP-1365 with additional socket)
 * LED bargraph RSSI indicator

Installation:

 * Web UI: http://192.168.0.50 (or different address obtained via DHCP)
   There is no password set by default
 * Recovery Web UI: Keep reset button pressed during power-on
   until LED starts flashing red, upgrade via http://192.168.0.50
 * Some modern browsers may have problems flashing via the Web UI,
   if this occurs consider booting to recovery mode and flashing via:
   curl -F \
     files=@openwrt-ath79-generic-dlink_dap-1330-a1-squashfs-factory.bin \
     http://192.168.0.50/cgi/index

The device will use the same MAC address for both wired and wireless
interfaces, however it is stored at two different locations in the flash.

Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
2020-07-09 10:28:40 +02:00
Sebastian Schaper
14599c5945 ath79: add support for D-Link DCH-G020 Rev. A1
The DCH-G020 is a Smart Home Gateway for Z-Wave devices.

Specifications:

 * QCA9531, 16 MiB Flash, 64 MiB RAM
 * On-Board USB SD3503A Z-Wave dongle
 * GL850 USB 2.0 Hub (one rear port, internal Z-Wave)
 * Two Ethernet Ports (10/100)

Installation:

 * Web UI: http://192.168.0.60 (or different address obtained via DHCP)
   Login with 'admin' and the 6-digit PIN Code from the bottom label
 * Recovery Web UI: Keep reset button pressed during power-on
   until LED starts flashing red, upgrade via http://192.168.0.60
 * Some modern browsers may have problems flashing via the Web UI,
   if this occurs consider booting to recovery mode and flashing via:
   curl -F \
     files=@openwrt-ath79-generic-dlink_dch-g020-a1-squashfs-factory.bin \
     http://192.168.0.60/cgi/index

Known issues:

 * Real-Time-Clock is not working as there is currently no matching driver
   It is still included in the dts as compatible = "pericom,pt7c43390";
 * openzwave was tested on v19.07 (running MinOZW as a proof-of-concept),
   but the package grew too big as lots of device pictures were included,
   thus any use of Z-Wave is up to the user (e.g. extroot and domoticz)

The device will use the same MAC address for both wired and wireless
interfaces, however it is stored at two different locations in the flash.

Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
2020-07-08 22:54:34 +02:00
Andrey Bondar
ba59021d64 ath79: add support for 8devices Lima board
Specification:

  • 650/600/216 MHz (CPU/DDR/AHB)
  • 64 MB of RAM (DDR2)
  • 32 MB of FLASH
  • 2T2R 2.4 GHz
  • 2x 10/100 Mbps Ethernet
  • 1x USB 2.0 Host socket
  • 1x miniPCIe slot
  • UART for serial console
  • 14x GPIO

Flash instructions:

Upgrading from ar71xx target:

  • Upload image into the board:
    scp openwrt-ath79-generic-8dev_lima-squashfs-sysupgrade.bin
    root@192.168.1.1/tmp/
  • Run sysupgrade
    sysupgrade -F /tmp/openwrt-ath79-generic-8dev_lima-squashfs-sysupgrade.bin

Upgrading from u-boot:

  • Set up tftp server with
    openwrt-ath79-generic-8dev_lima-initramfs-kernel.bin
  • Go to u-boot (reboot and press ESC when prompted)
  • Set TFTP server IP
    setenv serverip 192.168.1.254
  • Set device ip from the same subnet
    setenv ipaddr 192.168.1.1
  • Copy new firmware to board
    tftpboot 0x82000000 initramfs.bin
  • Boot OpenWRT
    bootm 0x82000000
  • Upload image openwrt-ath79-generic-8dev_lima-squashfs-sysupgrade.bin into
    the board
  • Run sysupgrade.

Signed-off-by: Andrey Bondar <a.bondar@8devices.com>
2020-07-08 16:07:05 +02:00
Natalie Kagelmacher
8ff631feff ath79: add support for AVM FRITZ!WLAN Repeater DVB-C
This commit adds support for the AVM FRITZ!WLAN Repeater DVB-C

SOC:   Qualcomm Atheros QCA9556
RAM:   64 MiB
FLASH: 16 MB SPI-NOR
WLAN:  QCA9556 3T3R 2.4 GHZ b/g/n and
       QCA9880 3T3R 5 GHz n/ac
ETH:   Atheros AR8033 1000 Base-T
DVB-C: EM28174 with MaxLinear MXL251 tuner
BTN:   WPS Button
LED:   Power, WLAN, TV, RSSI0-4

Tested and working:
 - Ethernet (correct MAC, gigabit, iperf3 about 200 Mbit/s)
 - 2.4 GHz Wi-Fi (correct MAC)
 - 5 GHz Wi-Fi (correct MAC)
 - WPS Button (tested using wifitoggle)
 - LEDs
 - Installation via EVA bootloader (FTP recovery)
 - OpenWrt sysupgrade (both CLI and LuCI)
 - Download of "urlader" (mtd0)

Not working:
 - Internal USB
 - DVB-C em28174+MxL251 (depends on internal USB)

Installation via EVA bootloader (FTP recovery):
Set NIC to 192.168.178.3/24 gateway 192.168.178.1 and power on the device,
connect to 192.168.178.1 through FTP and sign in with adam2/adam2:

ftp> quote USER adam2
ftp> quote PASS adam2
ftp> binary
ftp> debug
ftp> passive
ftp> quote MEDIA FLSH
ftp> put openwrt-sysupgrade.bin mtd1

Wait for "Transfer complete" together with the transfer details.
Wait two minutes to make sure flash is complete (just to be safe).

Then restart the device (power off and on) to boot into OpenWrt.
Revert your NIC settings to reach OpenWrt at 192.168.1.1

Signed-off-by: Natalie Kagelmacher <nataliek@pm.me>
[fixed sorting - removed change to other board -
prettified commit message]
Signed-off-by: David Bauer <mail@david-bauer.net>
2020-06-25 02:35:35 +02:00
Stijn Tintel
cd09f26660 ath79: add support for D-Link DAP-2695-A1
Hardware:
* SoC: Qualcomm Atheros QCA9558
* RAM: 256MB
* Flash: 16MB SPI NOR
* Ethernet: 2x 10/100/1000 (1x 802.3at PoE-PD)
* WiFi 2.4GHz: Qualcomm Atheros QCA9558
* WiFi 5GHz: Qualcomm Ahteros QCA9880-2R4E
* LEDS: 1x 5GHz, 1x 2.4GHz, 1x LAN1(POE), 1x LAN2, 1x POWER
* Buttons: 1x RESET
* UART: 1x RJ45 RS-232 Console port

Installation via stock firmware:
* Install the factory image via the stock firmware web interface

Installation via bootloader Emergency Web Server:
* Connect your PC to the LAN1(PoE) port
* Configure your PC with IP address 192.168.0.90
* Open a serial console to the Console port (115200,8n1)
* Press "q" within 2s when "press 'q' to stop autoboot" appears
* Open http://192.168.0.50 in a browser
* Upload either the factory or the sysupgrade image
* Once you see "write image into flash...OK,dest addr=0x9f070000" you
  can power-cycle the device. Ignore "checksum bad" messages.

Setting the MAC addresses for the ethernet interfaces via
/etc/board.d/02_network adds the following snippets to
/etc/config/network:

config device 'lan_eth0_1_dev'
        option name 'eth0.1'
        option macaddr 'xx:xx:xx:xx:xx:xx'

config device 'wan_eth1_2_dev'
        option name 'eth1.2'
        option macaddr 'xx:xx:xx:xx:xx:xx'

This would result in the proper MAC addresses being set for the VLAN
subinterfaces, but the parent interfaces would still have a random MAC
address. Using untagged VLANs could solve this, but would still leave
those extra snippets in /etc/config/network, and then the device VLAN
setup would differ from the one used in ar71xx. Therefore, the MAC
addresses of the ethernet interfaces are being set via preinit instead.

The bdcfg partition contains 4 MAC address labels:
 - lanmac
 - wanmac
 - wlanmac
 - wlanmac_a

The first 3 all contain the same MAC address, which is also the one on
the label.

Signed-off-by: Stijn Tintel <stijn@linux-ipv6.be>
Reviewed-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-06-11 19:44:45 +03:00
Renaud Lepage
108df3eabb ath79: add support for the Netgear WNDRMAC v1
The Netgear WNDRMAC v1 is a hardware variant of the Netgear WNDR3700 v2

Specifications
==============
* SoC: Atheros AR7161
* RAM: 64mb
* Flash on board: 16mb
* WiFi: Atheros AR9220 (a/n), Atheros AR9223 (b/g/n)
* Ethernet: RealTek RTL8366SR (1xWAN, 4xLAN, Gigabit)
* Power: 12 VDC, 2.5 A
* Full specs on [openwrt.org](https://openwrt.org/toh/hwdata/netgear/netgear_wndrmac_v1)

Flash Instructions
==================
It is possible to use the OEM Upgrade page to install the `factory`
variant of the firmware.

After the initial upgrade, you will need to telnet into the router
(default IP 192.168.1.1) to install anything. You may install LuCI
this way. At this point, you will have a web interface to configure
OpenWRT on the WNDRMAC v1.

Please use the `sysupgrade` variant for subsequent flashes.

Recovery Instructions
=====================
A TFTP-based recovery flash is possible if the need arises. Please refer
to the WNDR3700 page on openwrt.org for details.

https://openwrt.org/toh/netgear/wndr3700#troubleshooting_and_recovery

Signed-off-by: Renaud Lepage <root@cybikbase.com>
[update DTSI include name]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-06-11 01:44:13 +02:00
Renaud Lepage
7f297e740b ath79: add support for the Netgear WNDRMAC v2
The Netgear WNDRMAC v2 is a hardware variant of the Netgear WNDR3800

Specifications
==============
* SoC: Atheros AR7161
* RAM: 128mb
* Flash on board: 16mb
* WiFi: Atheros AR9220 (a/n), Atheros AR9223 (b/g/n)
* Ethernet: RealTek RTL8366SR (1xWAN, 4xLAN, Gigabit)
* Serial console: Yes, 115200 / 8N1 (JTAG)
* USB: 1x2.0
* Power: 12 VDC, 2.5 A
* Full specs on [openwrt.org](https://openwrt.org/toh/hwdata/netgear/netgear_wndrmac_v2)

Flash Instructions
==================
It is possible to use the OEM Upgrade page to install the `factory`
variant of the firmware.

After the initial upgrade, you will need to telnet into the router
(default IP 192.168.1.1) to install anything. You may install LuCI
this way. At this point, you will have a web interface to configure
OpenWRT on the WNDRMAC v2.

Please use the `sysupgrade` variant for subsequent flashes.

Recovery Instructions
=====================
A TFTP-based recovery flash is possible if the need arises. Please refer
to the WNDR3800 page on openwrt.org for details.

https://openwrt.org/toh/netgear/wndr3800#recovery_flash_in_failsafe_mode

Signed-off-by: Renaud Lepage <root@cybikbase.com>
[do not add device to uboot-envtools, update DTSI name]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-06-11 01:44:13 +02:00
Andreas Wiese
c764c512ac ath79: add support for TP-Link RE450 v3
TP-Link RE450 v3 is a dual band router/range-extender based on
Qualcomm/Atheros QCA9563 + QCA9880.

This device is nearly identical to RE450 v2 besides a modified flash
layout (hence I think force-flashing a RE450v2 image will lead to at
least loss of MAC address).

Specification:

- 775 MHz CPU
- 64 MB of RAM (DDR2)
- 8 MB of FLASH (SPI NOR)
- 3T3R 2.4 GHz
- 3T3R 5 GHz
- 1x 10/100/1000 Mbps Ethernet (AR8033 PHY)
- 7x LED, 4x button-
- possible UART header on PCB¹

Flash instruction:
Apply factory image in OEM firmware web-gui.

¹ Didn't check to connect as I didn't even manage to connect on
  RE450v2 (AFAIU it requires disconnecting some resistors, which I was
  too much of a coward to do).  But given the similarities to v2 I
  think it's the same or very similar procedure (and most likely also
  the only way to debrick).

Signed-off-by: Andreas Wiese <aw-openwrt@meterriblecrew.net>
[remove dts-v1 and compatible in DTSI]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-05-31 15:44:05 +02:00
David Bauer
ebddc5f984 ath79: add support for Enterasys WS-AP3705i
Hardware
--------
SoC:    Atheros AR9344
RAM:    128M DDR2
FLASH:  2x Macronix MX25L12845EM
        2x 16MiB SPI-NOR
WLAN2:  Atheros AR9344 2x2 2T2R
WLAN5:  Atheros AR9580 2x2 2T2R
SERIAL: Cisco-RJ45 on the back (115200 8n1)

Installation
------------

The U-Boot CLI is password protected (using the same credentials as the
OS). Default is admin/new2day.

1. Download the OpenWrt initramfs-image. Place it into a TFTP server
   root directory and rename it to 1401A8C0.img. Configure the TFTP
   server to listen at 192.168.1.66/24.

2. Connect the TFTP server to the access point.

3. Connect to the serial console of the access point. Attach power and
   interrupt the boot procedure when prompted (bootdelay is 1 second).

4. Configure the U-Boot environment for booting OpenWrt from Ram and
   flash:

   $ setenv boot_openwrt 'setenv bootargs; bootm 0xbf230000'
   $ setenv ramboot_openwrt 'setenv serverip 192.168.1.66;
     tftpboot 0x85000000; bootm'
   $ setenv bootcmd 'run boot_openwrt'
   $ saveenv

5. Load OpenWrt into memory:

   $ run ramboot_openwrt

   Wait for the image to boot.

6. Transfer the OpenWrt sysupgrade image to the device. Write the image
   to flash using sysupgrade:

   $ sysupgrade -n /path/to/openwrt-sysuograde.bin

Signed-off-by: David Bauer <mail@david-bauer.net>
2020-05-22 21:54:30 +02:00
Roger Pueyo Centelles
a0ef42e77c ath79: add support for Ubiquiti PowerBeam 5AC 500
The Ubiquiti PowerBeam 5AC 500 (PBE-5AC-500) is an outdoor 802.11ac
5 GHz bridge with a radio feed and a dish antenna.

Specifications:
 - SoC: Qualcomm Atheros QCA9558
 - RAM: 128 MB DDR2
 - Flash: 16 MB SPI NOR (mx25l12805d)
 - Ethernet: 1x 10/100/1000 Mbps Atheros 8031, 24 Vdc PoE-in
 - WiFi 5 GHz: QCA988x HW2.0 Ubiquiti target 0x4100016c chip_id 0x043222ff
 - Buttons: 1x (reset)
 - LEDs: 1x power, 1x Ethernet, 4x RSSI, all blue
 - UART: not tested

Not supported:
 - RSSI LEDs (probably through 74HC595 chip)

Installation from stock airOS firmware:
 - Follow instructions for XC-type Ubiquiti devices on OpenWrt wiki at
   https://openwrt.org/toh/ubiquiti/common

Signed-off-by: Roger Pueyo Centelles <roger.pueyo@guifi.net>
2020-05-17 21:03:30 +02:00
Roger Pueyo Centelles
e210fe91b1 ath79: add support for Ubiquiti PowerBeam 5AC Gen2
The Ubiquiti PowerBeam 5AC Gen 2 (PBE-5AC-Gen2) is an outdoor 802.11ac
5 GHz bridge with a radio feed and a dish antenna. The device is
hardware-compatible with the LiteBeam AC Gen2, plus the 4 extra LEDs.

Specifications:
 - SoC: Qualcomm Atheros AR9342 rev 2
 - RAM: 64 MB DDR2
 - Flash: 16 MB SPI NOR (mx25l12805d)
 - Ethernet: 1x 10/100/1000 Mbps Atheros 8035, 24 Vdc PoE-in
 - WiFi 5 GHz: QCA988x HW2.0 Ubiquiti target 0x4100016c chip_id 0x043222ff
 - WiFi 2.4 GHz: Atheros AR9340 (SoC-based)
 - Buttons: 1x (reset)
 - LEDs: 1x power, 1x Ethernet, 4x RSSI via GPIO. All blue.
 - UART: not tested

Installation from stock airOS firmware:
 - Follow instructions for WA-type Ubiquiti devices on OpenWrt wiki

Signed-off-by: Roger Pueyo Centelles <roger.pueyo@guifi.net>
[changed device name in commit title]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-04-27 23:17:30 +02:00
David Bauer
8d9c1087e4 ath79: add support for AVM FRITZ!WLAN Repeater 450E
SOC:    Qualcomm QCA9556 (Scorpion) 560MHz MIPS74Kc
RAM:    64MB Zentel A3R12E40CBF DDR2
FLASH:  16MiB Winbond W25Q128 SPI NOR
WLAN1:  QCA9556 2.4 GHz 802.11b/g/n 3x3
INPUT:  WPS button
LED:    Power, WiFi, LAN, RSSI indicator
Serial: Header Next to Black metal shield
        Pinout is 3.3V - RX - TX - GND (Square Pad is 3.3V)
        The Serial setting is 115200-8-N-1.

Installation via EVA:
In the first seconds after Power is connected, the bootloader will
listen for FTP connections on 192.168.178.1. Firmware can be uploaded
like following:

  ftp> quote USER adam2
  ftp> quote PASS adam2
  ftp> binary
  ftp> debug
  ftp> passive
  ftp> quote MEDIA FLSH
  ftp> put openwrt-sysupgrade.bin mtd1

Note that this procedure might take up to two minutes.
You need to powercycle the device afterwards to boot OpenWRT.

Tested-by: Andreas Ziegler <dev@andreas-ziegler.de>
Signed-off-by: David Bauer <mail@david-bauer.net>
2020-04-19 16:45:40 +02:00
David Bauer
8918c038f3 ath79: add support for AVM FRITZ!WLAN Repeater 1750E
This commit adds support for the AVM Fritz!WLAN Repeater 1750E

SOC:	Qualcomm QCA9556 (Scorpion) 720MHz MIPS74Kc
RAM:    64MB Zentel A3R12E40CBF DDR2
FLASH:  16MiB Winbond W25Q128 SPI NOR
WLAN1:  QCA9556 2.4 GHz 802.11b/g/n 3x3
WLAN2:  QCA9880 5 GHz 802.11 n/ac 3x3
INPUT:  WPS button
LED:    Power, WiFi, LAN, RSSI indicator
Serial: Header Next to Black metal shield
        Pinout is 3.3V - RX - TX - GND (Square Pad is 3.3V)
        The Serial setting is 115200-8-N-1.

Tested and working:
 - Ethernet
 - 2.4 GHz WiFi (correct MAC)
 - 5 GHz WiFi (correct MAC)
 - Installation via EVA bootloader
 - OpenWRT sysupgrade
 - Buttons
 - LEDs

Installation via EVA:
In the first seconds after Power is connected, the bootloader will
listen for FTP connections on 192.168.178.1. Firmware can be uploaded
like following:

  ftp> quote USER adam2
  ftp> quote PASS adam2
  ftp> binary
  ftp> debug
  ftp> passive
  ftp> quote MEDIA FLSH
  ftp> put openwrt-sysupgrade.bin mtd1

Note that this procedure might take up to two minutes.
You need to powercycle the Device afterwards to boot OpenWRT.

Signed-off-by: David Bauer <mail@david-bauer.net>
2020-04-17 13:27:40 +02:00
Roman Hampel
cd510e775b ath79: add support for Comfast CF-WR752AC v1
Specifications:

- Qualcomm QCA9531 + QCA9886
- dual band, antenna 2*3dBi
- Output power 50mW (17dBm)
- 1x 10/100 Mbps LAN RJ45
- 128 MB RAM / 16 MB FLASH (w25q128)
- 3 LEDs (red/green/blue)
  incorporated in
  "color wheel reset switch"
- UART 115200 8N1

Flashing instructions:

 The U-boot bootloader contains a recovery HTTP server
 to upload the  firmware. Push the reset button while powering the
 device on and keep it pressed for ~10 seconds. The device's LEDs will
 blink several times and the recovery page will be at
 http://192.168.1.1; use it to upload the sysupgrade image.

 Alternatively, the original firmware is based on OpenWrt so a
 sysupgrade image can be installed via the stock web GUI. Settings from
 the original firmware will be saved and restored on the new one, so a
 factory reset will be needed. To do so, once the new firmware is flashed,
 enter into failsafe mode by pressing the reset button several times during
 the boot process, until it starts flashing. Once in failsafe mode, perform
 a factory reset as usual.

LED-Info:

 The LEDs on the Comfast stock fw have a very proprietary behaviour,
 corresponding to the user selected working mode (AP, ROUTER or REPEATER).
 In the first two cases, only blue is used for status and LAN signaling. When
 using the latter, blue is always off (except for sysupgrade), either red
 signals bad rssi on master-link, or green good. Since the default working
 mode of OpenWrt resembles that of a router/AP, the default behavior is
 implemented accordingly.

MAC addresses (art partition):

location  address (example)    use in vendor firmware
0x0       xx:xx:xx:xx:xc:f8 -> eth0
0x6       xx:xx:xx:xx:xc:fa -> wlan5g (+2)
0x1002    xx:xx:xx:xx:xc:f9 -> not used
0x5006    xx:xx:xx:xx:xc:fb -> not used
---       xx:xx:xx:xx:xd:02 -> wlan2g (+10)

The same strange situation has already been observed and documented
for COMFAST CF-E560AC.

Signed-off-by: Roman Hampel <rhamp@arcor.de>
Co-developed-by: Joao Albuquerque <joaohccalbu@gmail.com>
Signed-off-by: Joao Albuquerque <joaohccalbu@gmail.com>
[adjust and extend commit message, rebase, minor DTS adjustments,
add correct MAC address for wmac, change RSSI LED names and behavior]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-04-09 01:06:37 +02:00
Chris Morgan
7daab62861 ath79: add support for Comfast CF-EW72
Specifications:
Qualcomm/Atheros QCA9531 + QCA9886
2x 10/100 Mbps Ethernet, with 48v PoE
2T2R 2.4 GHz, 802.11b/g/n
2T2R 5 GHz, 802.11a/n/ac
128MB RAM
16MB SPI Flash
4x LED (Always On Power, LAN, WAN, WLAN)

Flashing Instructions:
Original firmware is based on OpenWRT, so flashing the sysupgrade image on
the factory firmware is sufficient.

Tested: Reset button, WAN LED, LAN LED, Power LED (always on, not much
to test), WLAN LED (one LED only for 2 interfaces, by default it gets
assigned to the first interface), MAC addresses (match factory firmware).
My LAN factory MAC address ends in F2.

use	stock_mac	art_loc
lan	:f2		0x0
wan	:f3		0x1002
5g	:f4		0x6
2g	:f5		0x5006

Since MAC address flash locations do not really match their use in vendor
firmware (e.g. address from 5 GHz calibration data is assigned to 2.4 GHz
WiFi), just calculate the MAC addresses with an offset based on 0x0 address.

Signed-off-by: Chris Morgan <macromorgan@hotmail.com>
[add MAC address comment]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-04-07 01:00:10 +02:00
Adrian Schmutzler
676ca94c3c ath79: add support for TP-Link TL-WDR4310 v1
This device seems to be identical to the TL-WDR4300, just with
different release date/region and TPLINK_HWID.

Support is added based on the ar71xx implementation.

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-03-26 15:05:49 +01:00
Roger Pueyo Centelles
1775d50bde ath79: add support for Ubiquiti NanoBridge M (XM)
This patch adds support for the Ubiquiti NanoBridge M (XM), a
802.11n wireless with a feed+dish form factor, with the same board
definition as the Bullet M (XM).

Specifications:
 - Atheros AR7241 SoC
 - 32 MB RAM
 - 8 MB SPI flash
 - 1x 10/100 Mbps Ethernet port, 24 Vdc PoE-in
 - Power and LAN green LEDs
 - 4x RSSI LEDs (red, orange, green, green)
 - UART (115200 8N1)

Flashing via stock GUI:
 - WARNING: flashing OpenWrt from AirOS v5.6 or newer will brick your
   device! Read the wiki for more info.
 - Downgrade to AirOS v5.5.x (latest available is 5.5.11) first.
 - Upload the factory image via AirOS web GUI.

Flashing via TFTP:
 - WARNING: flashing OpenWrt from AirOS v5.6 or newer will brick your
   device! Read the wiki for more info.
 - Downgrade to AirOS v5.5.x (latest available is 5.5.11) first.
 - Use a pointy tool (e.g., pen cap, slotted screwdriver) to keep the
   reset button pressed.
 - Power on the device (keep reset button pressed).
 - Keep pressing until LEDs flash alternatively LED1+LED3 =>
   LED2+LED4 => LED1+LED3, etc.
 - Release reset button.
 - The device starts a TFTP server at 192.168.1.20.
 - Set a static IP on the computer (e.g., 192.168.1.21/24).
 - Upload via tftp the factory image:
    $ tftp 192.168.1.20
    tftp> bin
    tftp> trace
    tftp> put openwrt-ath79-generic-xxxxx-ubnt_nanobridge-m-squashfs-factory.bin

Signed-off-by: Roger Pueyo Centelles <roger.pueyo@guifi.net>
[rebase, fix includes in DTS, add label MAC address, add SOC and
fix sorting in generic-ubnt.mk]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-03-22 00:54:44 +01:00
Russell Senior
d5812478ad ath79: add support for ubnt_bullet-m-ar7240 variant
This adds support for the Ubiquiti Bullet M (AR7240).

Specifications:
- AR7240 SoC @ 400 MHz
- 32 MB RAM
- 8 MB SPI flash
- 1x 10/100 Mbps Ethernet, 24 Vdc PoE-in
- External antenna
- POWER/LAN green LEDs
- 4x RSSI LEDs (red, orange, green, green)
- UART (115200 8N1) on PCB

Flashing via WebUI:
  Upload the factory image via the stock firmware web UI.

  Attention: airOS firmware versions >= 5.6 have a new bootloader with
  an incompatible partition table!

  Please downgrade to <= 5.5 _before_ flashing OpenWrt!
  Refer to the device's Wiki page for further information.

Flashing via TFTP:
  Same procedure as other Ubiquiti M boards.

- Use a pointy tool (e.g., pen cap, paper clip) and keep the reset
  button on the device or on the PoE supply pressed
- Power on the device via PoE (keep reset button pressed)
- Keep pressing until LEDs flash alternatively LED1+LED3 =>
  LED2+LED4 => LED1+LED3, etc.
- Release reset button
- The device starts a TFTP server at 192.168.1.20
- Set a static IP on the computer (e.g., 192.168.1.21/24)
- Upload via tftp the factory image:
  $ tftp 192.168.1.20
  tftp> bin
  tftp> trace
  tftp> put openwrt-ath79-generic-xxxxx-ubnt_bullet-m-ar7240-squashfs-factory.bin

The "fixed-link" section of the device tree is needed to avoid errors like this:

  Generic PHY mdio.0:1f:04: Master/Slave resolution failed, maybe conflicting manual settings?

With "fixed-link", the errors go away and eth0 comes up reliably.

Signed-off-by: Russell Senior <russell@personaltelco.net>
[fix SUPPORTED_DEVICES]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-03-21 19:22:21 +01:00
Davide Fioravanti
213250b56b ath79: add support for TP-Link Archer D7/D7b v1
TP-Link Archer D7 v1 is a dual-band AC1750 router + modem.
The router section is based on Qualcomm/Atheros QCA9558 + QCA9880.
The "DSL" section is based on BCM6318 but it's currently not supported.

The Archer D7b seems to differ from the Archer D7 only in the
partition table.

Router section - Specification:

775/650/258 MHz (CPU/DDR/AHB)
128 MB of RAM (DDR2)
16 MB of FLASH (SPI NOR)
3T3R 2.4 GHz
3T3R 5 GHz
4x 10/100/1000 Mbps Ethernet
7x LED, 2x button
UART header on PCB

Known issues:

- Broadband LED (missing GPIO - probably driven by the BCM6318)
- Internet LED (missing GPIO - probably driven by the BCM6318)
- WIFI LED (working only for one interface at a time, while in the
  OEM firmware works for both wifi interfaces; thus, this patch does
  not set a trigger by default)
- DSL not working (eth0)

UART connection
---------------
J1 HEADER (Qualcomm CPU)
. VCC
. GND
. RX
O TX

J41 HEADER (Broadcom CPU)
. VCC
. GND
. RX
O TX

The following instructions require a connection to the J1 UART header
and are tested for the Archer D7 v1.
For the Archer D7b v1, names should be changed accordingly.

Flash instructions under U-Boot, using UART
------------------------------------------
 1. Press "tpl" to stop autobooting and obtain U-Boot CLI access.
 2. Setup ip addresses for U-Boot and your tftp server.
 3. Issue below commands:
	tftpboot 0x81000000 openwrt-ath79-generic-tplink_archer-d7-v1-squashfs-sysupgrade.bin
	erase 0x9f020000 +f90000
	cp.b 0x81000000 0x9f020000 0xf90000
	reset

Initramfs instructions under U-Boot for testing, using UART
----------------------------------------------------------
 1. Press "tpl" to stop autobooting and obtain U-Boot CLI access.
 2. Setup ip addresses for U-Boot and your tftp server.
 3. Issue below commands:
	tftpboot 0x81000000 openwrt-ath79-generic-tplink_archer-d7-v1-initramfs-kernel.bin
	bootm 0x81000000
 4. Here you can backup the original firmware and/or flash the sysupgrade openwrt if you want

Restore the original firmware
-----------------------------
 0. Backup every partition using the OpenWrt web interface
 1. Download the OEM firmware from the TP-Link website
 2. Extract the bin file in a folder (eg. Archer_D7v1_1.6.0_0.9.1_up_boot(160216)_2016-02-16_15.55.48.bin)
 3. Remove the U-Boot and the Broadcom image part from the file.
    Issue the following command:
	dd if="Archer_D7v1_1.6.0_0.9.1_up_boot(160216)_2016-02-16_15.55.48.bin" of="Archer_D7v1_1.6.0_0.9.1_up_boot(160216)_2016-02-16_15.55.48.bin.mod" skip=257 bs=512 count=31872
 4. Double check the .mod file size. It must be 16318464 bytes.
 5. Flash it using the OpenWrt web interface. Force the update if needed.
    WARNING: Remember to NOT keep settings.

 5b. (Alternative to 5.) Flash it using the U-Boot and UART connection.
     Issue below commands in the U-Boot:
	tftpboot 0x81000000 Archer_D7v1_1.6.0_0.9.1_up_boot(160216)_2016-02-16_15.55.48.bin.mod
	erase 0x9f020000 +f90000
	cp.b 0x81000000 0x9f020000 0xf90000
	reset

Signed-off-by: Davide Fioravanti <pantanastyle@gmail.com>
[cosmetic DTS changes, remove TPLINK_HWREVADD := 0, do not use two
phyXtpt at once, add missing buttons, minor commit message adjustments]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-03-18 14:25:38 +01:00
Adrian Schmutzler
646d95c374 ath79: add support for TP-Link Archer C60 v3
TP-Link Archer C60 v3 is a dual-band AC1350 router,
based on Qualcomm/Atheros QCA9561 + QCA9886.

It seems to be identical to the v2 revision, except that
it lacks a WPS LED and has different GPIO for amber WAN LED.

Specification:

- 775/650/258 MHz (CPU/DDR/AHB)
- 64 MB of RAM (DDR2)
- 8 MB of FLASH (SPI NOR)
- 3T3R 2.4 GHz
- 2T2R 5 GHz
- 5x 10/100 Mbps Ethernet
- 6x LED, 2x button
- UART header on PCB

Flash instruction (WebUI):
Download *-factory.bin image and upload it via the firmwary upgrade
function of the stock firmware WebUI.

Flash instruction (TFTP):
1. Set PC to fixed IP address 192.168.0.66
2. Download *-factory.bin image and rename it to tp_recovery.bin
3. Start a tftp server with the file tp_recovery.bin in its root
   directory
4. Turn off the router
5. Press and hold reset button
6. Turn on router with the reset button pressed and wait ~15 seconds
7. Release the reset button and after a short time the firmware should
   be transferred from the tftp server
8. Wait ~30 second to complete recovery

While TFTP works for OpenWrt images, my device didn't accept the
only available official firmware "Archer C60(EU)_V3.0_190115.bin".

In contrast to earlier revisions (v2), the v3 contains the (same)
MAC address twice, once in 0x1fa08 and again in 0x1fb08.
While the partition-table on the device refers to the latter, the
firmware image contains a different partition-table for that region:

name           device            firmware
factory-boot   0x00000-0x1fb00   0x00000-0x1fa00
default-mac    0x1fb00-0x1fd00   0x1fa00-0x1fc00
pin            0x1fd00-0x1fe00   0x1fc00-0x1fd00
product-info   0x1fe00-0x1ff00   0x1fd00-0x1ff00
device-id      0x1ff00-0x20000   0x1ff00-0x20000

While the MAC address is present twice, other data like the PIN isn't,
so with the partitioning from the firmware image the PIN on the device
would actually be outside of its partition.
Consequently, the patch uses the MAC location from the device (which
is the same as for the v2).

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-03-18 13:49:06 +01:00
Russell Senior
8cacb84041 ath79: rename ubnt_bullet-m to ubnt_bullet-m-ar7241
Since there exists another variant of the Bullet M with AR7240 SoC
under the same name, this patch introduces the SoC into the device
name to be able to distinguish these variants.

Signed-off-by: Russell Senior <russell@personaltelco.net>
[add commit message, adjust model in DTS, fix 02_network and
SUPPORTED_DEVICES]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-03-18 13:45:57 +01:00
Roger Pueyo Centelles
a66eee6336 ath79: add mikrotik subtarget
This commit creates the ath79/mikrotik subtarget in order to support
MikroTik devices based on Qualcomm Atheros MIPS SoCs.

MikroTik devices need a couple of specific features: the split MiNOR
firmware MTD format, which is not used by other devices, and the 4k
sector erase size on SPI NOR storage, which can not be added to the
ath79/generic and ath79/nand subtargets now.

Additionally, the commit moves the two MikroTik devices already in
the generic and nand subtargets to this new one.

Tested on the RB922 board and the wAP AC router.

Signed-off-by: Roger Pueyo Centelles <roger.pueyo@guifi.net>
2020-03-17 11:50:47 +01:00
Davide Fioravanti
dfb7a4ce5d ath79: add support for Sitecom WLR-8100
Sitecom WLR-8100 v1 002 (marketed as X8 AC1750) is a dual band wireless
router.

Specification:

- Qualcomm Atheros SoC QCA9558
- 128 MB of RAM (DDR2)
- 16 MB of FLASH (Macronix MX25L12845EMI-10G - SPI NOR)
- 5x 10/100/1000 Mbps Ethernet
- 3T3R 2.4 GHz (QCA9558 WMAC)
- 3T3R 5.8 Ghz (QCA9880-BR4A)
- 1x USB 3.0 (Etron EJ168A)
- 1x USB 2.0
- 9x LEDs
- 2x GPIO buttons

Everything working.
Installation and restore procedure tested

Installation
1. Connect to one of LAN (yellow) ethernet ports,
2. Open router configuration interface,
3. Go to Toolbox > Firmware,
4. Browse for OpenWrt factory image with dlf extension and hit Apply,
5. Wait few minutes, after the Power LED will stop blinking, the router
	is ready for configuration.

Restore OEM FW (Linux only)
1. Download OEM FW from website (tested with WLR-8100v1002-firmware-v27.dlf)
2. Compile the FW for this router and locate the "mksenaofw" tool
	in build_dir/host/firmware-utils/bin/ inside the OpenWrt buildroot
3. Execute "mksenaofw -d WLR-8100v1002-firmware-v27.dlf -o WLR-8100v1002-firmware-v27.dlf.out" where:
	WLR-8100v1002-firmware-v27.dlf is the path to the input file
		(use the downloaded file)
	WLR-8100v1002-firmware-v27.dlf.out is the path to the output file
		(you can use the filename you want)
4. Flash the new WLR-8100v1002-firmware-v27.dlf.out file. WARNING: Do not keep settings.

Additional notes.
The original firmware has the following button configuration:
- Press for 2s the 2.4GHz button: WPS for 2.4GHz
- Press for 2s the 5GHz button: WPS for 5GHz
- Press for 15s both 2.4GHz and 5GHz buttons: Reset
I am not able to replicate this behaviour, so I used the following configuration:
- Press the 2.4GHz button: RFKILL (disable/enable every wireless interfaces)
- Press the 5GHz button: Reset

Signed-off-by: Davide Fioravanti <pantanastyle@gmail.com>
2020-03-07 11:02:13 +08:00
Manuel Giganto
b2130b9ce8 ath79: add support for Devolo Magic 2 WIFI
This patch support Devolo Magic 2 WIFI, board devolo_dlan2-2400-ac.
This device is a plc wifi AC2400 router/extender with 2 Ethernet
ports, has a G.hn PLC and uses LCMP protocol from Home Grid Forum.

Hardware:
   SoC:         AR9344
   CPU:         560 MHz
   Flash:       16 MiB (W25Q128JVSIQ)
   RAM:         128 MiB DDR2
   Ethernet:    2xLAN 10/100/1000
   PLC:         88LX5152 (MaxLinear G.hn)
   PLC Flash:   W25Q32JVSSIQ
   PLC Uplink:  1Gbps MIMO
   PLC Link:    RGMII 1Gbps (WAN)
   WiFi:        Atheros AR9340 2.4GHz 802.11bgn
                Atheros AR9882-BR4A 5GHz 802.11ac
   Switch:      QCA8337, Port0:CPU, Port2:PLC, Port3:LAN1, Port4:LAN2
   Button:      3x Buttons (Reset, wifi and plc)
   LED:         3x Leds (wifi, plc white, plc red)
   GPIO Switch: 11-PLC Pairing (Active Low)
                13-PLC Enable
                21-WLAN power

MACs Details verified with the stock firmware:
   Radio1: 2.4 GHz &wmac     *:4c Art location: 0x1002
   Radio0: 5.0 GHz &pcie     *:4d Art location: 0x5006
   Ethernet        &ethernet *:4e = 2.4 GHz + 2
   PLC uplink      ---       *:4f = 2.4 GHz + 3
Label MAC address is from PLC uplink

OEM SSID: echo devolo-$(grep SerialNumber /dev/mtd1 | grep -o ...$)
OEM WiFi password: grep DlanSecurityID /dev/mtd1|tr -d -|cut -d'=' -f 2

Recommendations: Configure and link your PLC with OEM firmware
BEFORE you flash the device. PLC configuration/link should
remain in different memory and should work straight forward
after flashing.

Restrictions: PLC link detection to trigger plc red led is not
available. PLC G.hn chip is not compatible with open-plc-tools,
it uses LCMP protocol with AES-128 and requires different
software.

Notes: Pairing should be possible with gpio switch. Default
configuration will trigger wifi led with 2.4Ghz wifi traffic
and plc white led with wan traffic.

Flash instruction (TFTP):
 1. Set PC to fixed ip address 192.168.0.100
 2. Download the sysupgrade image and rename it to uploadfile
 3. Start a tftp server with the image file in its root directory
 4. Turn off the router
 5. Press and hold Reset button
 6. Turn on router with the reset button pressed and wait ~15 seconds
 7. Release the reset button and after a short time
    the firmware should be transferred from the tftp server
 8. Allow 1-2 minutes for the first boot.

Signed-off-by: Manuel Giganto <mgigantoregistros@gmail.com>
2020-03-07 11:02:13 +08:00
Adrian Schmutzler
6fdaf16dd0 ath79: add support for Ubiquiti Picostation M (XM)
This adds support for the Ubiquiti Picostation M (XM), which has the
same board/LEDs as the Bullet M XM, but different case and antennas.

Specifications:
- AR7241 SoC @ 400 MHz
- 32 MB RAM
- 8 MB SPI flash
- 1x 10/100 Mbps Ethernet, 24 Vdc PoE-in
- External antenna: 5 dBi (USA), 2 dBi (EU)
- POWER/LAN green LEDs
- 4x RSSI LEDs (red, orange, green, green)
- UART (115200 8N1) on PCB

Flashing via WebUI:
  Upload the factory image via the stock firmware web UI.

  Attention: airOS firmware versions >= 5.6 have a new bootloader with
  an incompatible partition table!

  Please downgrade to <= 5.5 _before_ flashing OpenWrt!
  Refer to the device's Wiki page for further information.

Flashing via TFTP:
  Same procedure as other NanoStation M boards.

- Use a pointy tool (e.g., pen cap, paper clip) and keep the reset
  button on the device or on the PoE supply pressed
- Power on the device via PoE (keep reset button pressed)
- Keep pressing until LEDs flash alternatively LED1+LED3 =>
  LED2+LED4 => LED1+LED3, etc.
- Release reset button
- The device starts a TFTP server at 192.168.1.20
- Set a static IP on the computer (e.g., 192.168.1.21/24)
- Upload via tftp the factory image:
  $ tftp 192.168.1.20
  tftp> bin
  tftp> trace
  tftp> put openwrt-ath79-generic-xxxxx-ubnt_picostation-m-squashfs-factory.bin

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-02-19 23:20:09 +01:00
Sven Roederer
b56bcfe3be ath79: add support for Ubiquiti Nanostation Loco M (XM)
This adds support for the Ubiquiti Nanostation Loco M (XM), which
has the same board/LEDs as the Bullet M XM, but different case and
antennas.

Specifications:
- AR7241 SoC @ 400 MHz
- 32 MB RAM
- 8 MB SPI flash
- 1x 10/100 Mbps Ethernet, 24 Vdc PoE-in
- NS Loco M2: built-in antenna: 8 dBi; AR9287
- NS Loco M5: built-in antenna: 13 dBi; 2T2R 5 GHz radio
- POWER/LAN green LEDs
- 4x RSSI LEDs (red, orange, green, green)
- UART (115200 8N1) on PCB

Flashing via WebUI:
  Upload the factory image via the stock firmware web UI.
  Note that only certain firmware versions accept unsigned
  images. Refer to the device's Wiki page for further information.

Flashing via TFTP:
  Same procedure as other NanoStation M boards.

- Use a pointy tool (e.g., pen cap, paper clip) and keep the reset
  button on the device or on the PoE supply pressed
- Power on the device via PoE (keep reset button pressed)
- Keep pressing until LEDs flash alternatively LED1+LED3 =>
  LED2+LED4 => LED1+LED3, etc.
- Release reset button
- The device starts a TFTP server at 192.168.1.20
- Set a static IP on the computer (e.g., 192.168.1.21/24)
- Upload via tftp the factory image:
  $ tftp 192.168.1.20
  tftp> bin
  tftp> trace
  tftp> put openwrt-ath79-generic-xxxxx-ubnt_nanostation-loco-m-squashfs-factory.bin

Tested on NanoStation Loco M2.

Signed-off-by: Sven Roederer <freifunk@it-solutions.geroedel.de>
Co-developed-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-02-19 23:20:00 +01:00
David Bauer
d2b8ccb1c0 ath79: add support for Siemens WS-AP3610
Hardware
--------
SoC:  Atheros AR7161
RAM:  Samsung K4H511638D-UCCC
      2x 64M DDR1
SPI:  Micron M25P128 (16M)
WiFi: Atheros AR9160 bgn
      Atheros AR9160 an
ETH:  Broadcom BCM5481
LED:  Power (Green/Red)
      ETH (Green / Blue / Yellow)
          (PHY-controlled)
      WiFi 5 (Green / Blue)
      WiFi 2 (Green / Blue)
BTN:  Reset

Serial: Cisco-Style RJ45 - 115200 8N1

Installation
------------

1. Download the OpenWrt initramfs-image. Place it into a TFTP server
   root directory and rename it to 1401A8C0.img. Configure the TFTP
   server to listen at 192.168.1.66/24.

2. Connect the TFTP server to the access point.

3. Connect to the serial console of the access point. Attach power and
   interrupt the boot procedure when prompted (bootdelay is 1 second).

4. Configure the U-Boot environment for booting OpenWrt from Ram and
   flash:

   $ setenv boot_openwrt 'setenv bootargs; bootm 0xbf080000'
   $ setenv ramboot_openwrt 'setenv serverip 192.168.1.66;
     tftpboot; bootm'
   $ saveenv

5. Load OpenWrt into memory:

   $ run ramboot_openwrt

   Wait for the image to boot.

6. Transfer the OpenWrt sysupgrade image to the device. Write the image
   to flash using sysupgrade:

   $ sysupgrade -n /path/to/openwrt-sysuograde.bin

Signed-off-by: David Bauer <mail@david-bauer.net>
2020-02-16 15:36:29 +01:00
August Huber
ae61d21ca3 ath79: add support for COMFAST CF-E560AC
This commit adds support for the COMFAST CF-E560AC, an ap143 based
in-wall access point.

Specifications:
 - SoC: Qualcomm Atheros QCA9531
 - RAM: 128 MB DDR2 (Winbond W971GG6SB-25)
 - Storage: 16 MB NOR (Winbond 25Q128JVSO)
 - WAN: 1x 10/100 PoE ethernet (48v)
 - LAN: 4x 10/100 ethernet
 - WLAN1: QCA9531 - 802.11b/g/n - 2x SKY85303-21 FEM
 - WLAN2: QCA9886 - 802.11ac/n/a - 2x SKY85735-11 FEM
 - USB: one external USB2.0 port
 - UART: 3.3v, 2.54mm headers already populated on board
 - LED: 7x external
 - Button: 1x external
 - Boot: U-Boot 1.1.4 (pepe2k/u-boot_mod)

MAC addressing:

- stock
  LAN    *:40 (label)
  WAN    *:41
  5G     *:42
  2.4G   *:4a

- flash (art partition)
  0x0    *:40 (label)
  0x6    *:42
  0x1002 *:41
  0x5006 *:43

This device contains valid MAC addresses in art 0x0, 0x6, 0x1002 and
0x5006, however the vendor firmware only reads from art:0x0 for the LAN
interface and then increments in 02_network. They also jump 8 addresses
for the second wifi interface (2.4 GHz). This behavior has been duplicated
in the DTS and ath10k hotplug to align addresses with the vendor firmware
v2.6.0.

Recovery instructions:

This device contains built-in u-boot tftp recovery.

1. Configure PC with static IP 192.168.1.10/24 and tftp server.
2. Place desired image at /firmware_auto.bin at tftp root.
3. Connect device to PC, and power on.
4. Device will fetch flash from tftp, flash and reboot into new image.

Signed-off-by: August Huber <auh@google.com>
[move jtag_disable_pins, remove unnecessary statuses in DTS, remove
duplicate entry in 11-ath10k-caldata, remove hub_port0 label in DTS]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-02-03 16:18:08 +01:00
Michal Cieslakiewicz
3b99d67639 ath79: WNDR3700 v2: add dash before version in device name
Adapt Netgear WNDR3700v2 device identification string to ath79 naming
scheme by changing from 'wndr3700v2' to 'wndr3700-v2' (affects config,
makefile, init scripts and device tree definition).

Signed-off-by: Michal Cieslakiewicz <michal.cieslakiewicz@wp.pl>
2020-02-03 11:28:05 +01:00
Roger Pueyo Centelles
6aaa5ce2c5 ath79: add support for MikroTik RouterBOARD wAP G-5HacT2HnD
This commit adds support for the MikroTik RouterBOARD wAP G-5HacT2HnD
(wAP AC), a small weatherproof dual band, dual-radio 802.11ac
wireless AP with integrated omnidirectional anntennae and one
10/100/1000 Mbps Ethernet port.

See https://mikrotik.com/product/RBwAPG-5HacT2HnD for more info.

Specifications:
 - SoC: Qualcomm Atheros QCA9556
 - RAM: 64 MB
 - Storage: 16 MB NOR
 - Wireless:
   · Atheros AR9550 (SoC) 802.11b/g/n 2x2:2, 2 dBi antennae
   · Qualcomm QCA9880 802.11a/n/ac 3x3:3, 2 dBi antennae
 - Ethernet: Atheros AG71xx (SoC, AR8033), 1x 1000/100/10 port,
   passive PoE in

Working:
 - Board/system detection
 - Sysupgrade
 - Serial console
 - Ethernet
 - 2.4 GHz radio
 - 5 GHz radio and LED
 - Reset button

Not working/Unsupported:
 - 2.4 GHz LED
 - AP/CAP LED
 - ZT2046Q SPI temperature and voltage sensor

This adds the basic features for supporting MikroTik devices:
 - a common recipe for mikrotik images in common-mikrotik.mk
 - support for minor (MikroTik NOR) split firmware (only for
   generic subtarget so far)

Acknowledgments: Robert Marko <robimarko@gmail.com>
                 Andrew Cameron <apcameron@softhome.net>
                 Koen Vandeputte <koen.vandeputte@ncentric.com>
                 Chuanhong Guo <gch981213@gmail.com>

Signed-off-by: Roger Pueyo Centelles <roger.pueyo@guifi.net>
Co-developed-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Tested-by: Koen Vandeputte <koen.vandeputte@ncentric.com>
2020-01-23 15:28:03 +01:00
David Bauer
c9ac7b1729 ath79: add support for D-Link DIR-505
This commit adds support for the D-Link DIR-505, previously supported in
ar71xx.

Hardware
--------
SoC:   Atheros AR9330
FLASH: 8M SPI-NOR
RAM:   64M
WIFI:  1T1R 1SS Atheros AR9330
LED:   Power green, Status red
BTN:   WPS, Reset

Installation
------------
Currently, installation is only possible by sysupgrading from an earlier
OpenWrt version, U-Boot TFTP or a modded U-Boot. I do not have the
original bootloader from D-Link on my device anymore, so i cannot test
the factory image.

Signed-off-by: David Bauer <mail@david-bauer.net>
2020-01-15 20:38:46 +01:00
Lech Perczak
60de1fdbb4 ath79: add support for TP-Link TL-WR902AC v1
TP-Link TL-WR902AC v1 is a pocket-size, dual-band (AC750), successor of
TL-MR3020 (both devices use very similar enclosure, in same size). New
device is based on Qualcomm QCA9531 v2 + QCA9887. FCC ID: TE7WR902AC.

Specification:

- 650/391/216 MHz (CPU/DDR/AHB)
- 1x 10/100 Mbps Ethernet
- 1x USB 2.0 (GPIO-controlled power)
- 64 MB of RAM (DDR2)
- 8 MB of FLASH
- 2T2R 2.4 GHz (QCA9531)
- 1T1R 5 GHz (QCA9887)
- 5x LED (GPIO-controlled), 2x button, 1x 3-pos switch
- UART pads on PCB (TP1 -> TX, TP2 -> RX, TP3 -> GND, TP4 -> 3V3, jumper
  resitors are missing on TX/RX lines)
- 1x micro USB (for power only)

Flash instructions:

Use "factory" image under vendor GUI.

Recovery instructions:

This device contains tftp recovery mode inside U-Boot. You can use it to
flash OpenWrt (use "factory" image) or vendor firmware.

1. Configure PC with static IP 192.168.0.66/24 and tftp server.
2. Rename "openwrt-ath79-generic-tplink_tl-wr902ac-v1-squashfs-factory.bin"
   to "wr902acv1_un_tp_recovery.bin" and place it in tftp server dir.
3. Connect PC with LAN port, press the reset button, power up the router
   and keep button pressed until WPS LED lights up.
4. Router will download file from server, write it to flash and reboot.

MAC Address summary:
- wlan1 (2.4GHz Wi-Fi): Label MAC
- wlan0 (5GHz Wi-Fi): Offset -1 from label
- eth0 (Wired): Offset +1 from label

Root access over serial line in vendor firmware: root/sohoadmin.

Based on support in ar71xx target by: Piotr Dymacz <pepe2k@gmail.com>

Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
[remove size-cells from gpio-export]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2019-12-19 15:40:40 +01:00
Adrian Schmutzler
c642a97aa6 ath79: add support for TP-Link TL-WDR4300 v1 (IL)
The TL-WDR4300 v1 sold in Israel has a different TPLINK_HWID.

Thanks to Josh4300 for testing on device.

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2019-12-12 14:42:05 +01:00
Stijn Tintel
157e17e985 ath79: add support for Ubiquiti LiteBeam AC Gen2
Hardware:
* SoC: Atheros AR9342-BL1A
* RAM: 64MB DDR2 (Winbond W9751G6KB-25)
* Flash: 16MB SPI NOR (Macronix MX25L12835FZ2I-10G)
* Ethernet: 1x 10/100/1000 Mbps (Atheros AR8035-A) with 24V PoE support
* Wifi 2.4GHz: Atheros AR9340 v2
* WiFi 5GHz: Ubiquiti U-AME-G1-BR4A (rebranded QCA988X v2)
* LEDs: 1x Power, 1x Ethernet
* Buttons: 1x Reset
* UART: 1x TTL 115200n8, 3.3V RX TX GND, 3.3V pin closest to RJ45 port

The LEDs do not seem to be connected to any GPIO, so there is currently
no way to control them.

Installation via U-Boot, TFTP and serial console:
* Configure your TFTP server with IP 192.168.1.254
* Connect serial console and power up the device
* Hit any key to stop autoboot
* tftpboot 0x81000000 openwrt-ath79-generic-ubnt_litebeam-ac-gen2-initramfs-kernel.bin
* bootm 0x81000000
* copy openwrt-ath79-generic-ubnt_litebeam-ac-gen2-squashfs-sysupgrade.bin
  to /tmp
* sysupgrade /tmp/openwrt-ath79-generic-ubnt_litebeam-ac-gen2-squashfs-sysupgrade.bin

Signed-off-by: Stijn Tintel <stijn@linux-ipv6.be>
Acked-by: Petr Štetiar <ynezz@true.cz>
Acked-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2019-12-04 23:17:41 +02:00
Anderson Vulczak
9b90dc05f5 ath79: add support for TP-Link Archer C6 v2 (US) and A6 (US/TW)
This patch is based on #1689 and adds support for TP-Link Archer
C6 v2 (US) and A6 (US/TW).

The hardware is the same as EU and RU variant, except for GPIOs
(LEDS/Buttons), flash(chip/partitions) and UART being available
on the board.

- SOC: Qualcomm QCA9563 @ 775MHz
- Flash: GigaDevice GD25Q127CS1G (16MiB)
- RAM: Zentel A3R1GE40JBF (128 MiB DDR2)
- Ethernet: Qualcomm QCA8337N: 4x 1Gbps LAN + 1x 1Gbps WAN
- Wireless:
  - 2.4GHz (bgn) QCA9563 integrated (3x3)
  - 5GHz (ac) Qualcomm QCA9886 (2x2)
- Button: 1x power, 1x reset, 1x wps
- LED: 6x LEDs: power, wlan2g, wlan5g, lan, wan, wps
- UART: 115200, 8n1 (header available on board)

Known issues:
 - Wireless: 5GHz is known to have lower RSSI signal, it affects speed and range.

Flash instructions:

Upload openwrt-ath79-generic-tplink_archer-c6-v2-us-squashfs-factory.bin
via the router Web interface.

Flash instruction using tftp recovery:

1. Connect the computer to one of the LAN ports of the router
2. Set the computer IP to 192.168.0.66
3. Start a tftp server with the OpenWrt factory image in the
   tftp root directory renamed to ArcherA6v2_tp_recovery.bin.
4. Connect power cable to router, press and hold the
   reset button and turn the router on
5. Keep the reset button pressed until the WPS LED lights up
6. Wait ~150 seconds to complete flashing

Flash partitioning: I've followed #1689 for defining the partition layout
for this patch. The partition named as "tplink" @ 0xfd0000 is marked
as read only as it is where some config for stock firmware are stored.
On stock firmware those stock partitions starts at 0xfd9400 however
I had not been able to make it functional starting on the same address as
on stock fw, so it has been partitioned following #1689 and not the stock
partition layout for this specific partition. Due to that firmware/rootfs
partition lenght is 0xf80000 and not 0xf89400 as stock.

According to the GPL code, the EU/RU/JP variant does have different GPIO pins
assignment to LEDs and buttons, also the flash memory layout is different.

GPL Source Code: https://static.tp-link.com/resources/gpl/gpl-A6v2_us.tar.gz

Signed-off-by: Anderson Vulczak <andi@andi.com.br>
[wrap commit message, remove soft_ver change for C6 v2 EU, move LED aliases
to DTS files, remove dts-v1 in DTSI, node/property reorder in DTSI]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2019-11-27 22:54:36 +01:00
Adrian Schmutzler
c08ddfce3f ath79: rename EEPROM to art
This renames all remaining occurrences of "EEPROM" to "art" to
further harmonize the partition labelling in ath79. This will
help to reduce the amount of user-space code and might be
beneficial when code is copy/pasted in the future.

Affected are only devices from Ubiquiti, where the XM board is
already using "art" in ath79.

Acked-by: Piotr Dymacz <pepe2k@gmail.com>
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2019-11-27 22:54:36 +01:00