Specifications:
- Qualcomm QCA9531 + QCA9886
- dual band, antenna 2*3dBi
- Output power 50mW (17dBm)
- 1x 10/100 Mbps LAN RJ45
- 128 MB RAM / 16 MB FLASH (w25q128)
- 3 LEDs (red/green/blue)
incorporated in
"color wheel reset switch"
- UART 115200 8N1
Flashing instructions:
The U-boot bootloader contains a recovery HTTP server
to upload the firmware. Push the reset button while powering the
device on and keep it pressed for ~10 seconds. The device's LEDs will
blink several times and the recovery page will be at
http://192.168.1.1; use it to upload the sysupgrade image.
Alternatively, the original firmware is based on OpenWrt so a
sysupgrade image can be installed via the stock web GUI. Settings from
the original firmware will be saved and restored on the new one, so a
factory reset will be needed. To do so, once the new firmware is flashed,
enter into failsafe mode by pressing the reset button several times during
the boot process, until it starts flashing. Once in failsafe mode, perform
a factory reset as usual.
LED-Info:
The LEDs on the Comfast stock fw have a very proprietary behaviour,
corresponding to the user selected working mode (AP, ROUTER or REPEATER).
In the first two cases, only blue is used for status and LAN signaling. When
using the latter, blue is always off (except for sysupgrade), either red
signals bad rssi on master-link, or green good. Since the default working
mode of OpenWrt resembles that of a router/AP, the default behavior is
implemented accordingly.
MAC addresses (art partition):
location address (example) use in vendor firmware
0x0 xx:xx:xx:xx:xc:f8 -> eth0
0x6 xx:xx:xx:xx:xc:fa -> wlan5g (+2)
0x1002 xx:xx:xx:xx:xc:f9 -> not used
0x5006 xx:xx:xx:xx:xc:fb -> not used
--- xx:xx:xx:xx:xd:02 -> wlan2g (+10)
The same strange situation has already been observed and documented
for COMFAST CF-E560AC.
Signed-off-by: Roman Hampel <rhamp@arcor.de>
Co-developed-by: Joao Albuquerque <joaohccalbu@gmail.com>
Signed-off-by: Joao Albuquerque <joaohccalbu@gmail.com>
[adjust and extend commit message, rebase, minor DTS adjustments,
add correct MAC address for wmac, change RSSI LED names and behavior]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Specifications:
Qualcomm/Atheros QCA9531 + QCA9886
2x 10/100 Mbps Ethernet, with 48v PoE
2T2R 2.4 GHz, 802.11b/g/n
2T2R 5 GHz, 802.11a/n/ac
128MB RAM
16MB SPI Flash
4x LED (Always On Power, LAN, WAN, WLAN)
Flashing Instructions:
Original firmware is based on OpenWRT, so flashing the sysupgrade image on
the factory firmware is sufficient.
Tested: Reset button, WAN LED, LAN LED, Power LED (always on, not much
to test), WLAN LED (one LED only for 2 interfaces, by default it gets
assigned to the first interface), MAC addresses (match factory firmware).
My LAN factory MAC address ends in F2.
use stock_mac art_loc
lan :f2 0x0
wan :f3 0x1002
5g :f4 0x6
2g :f5 0x5006
Since MAC address flash locations do not really match their use in vendor
firmware (e.g. address from 5 GHz calibration data is assigned to 2.4 GHz
WiFi), just calculate the MAC addresses with an offset based on 0x0 address.
Signed-off-by: Chris Morgan <macromorgan@hotmail.com>
[add MAC address comment]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This adds support for the TP-Link TL-MR3420 v3, a later revision of the
v2 with an external gpiochip similar to TP-Link Archer C7 v4.
Specifications:
SOC: Qualcomm Atheros QCA9531
CPU: 650MHz
Flash: 4 MiB
RAM: 32 MiB
WLAN: Qualcomm Atheros QCA9531 bgn 2T2R 2.4 GHz
Ethernet: 5 ports (100M)
Flashing instructions:
- Flash factory image from OEM WebUI:
openwrt-ath79-tiny-tplink_tl-mr3420-v3-squashfs-factory.bin
- Sysupgrade from ath79 image:
openwrt-ath79-tiny-tplink_tl-mr3420-v3-squashfs-sysupgrade.bin
Signed-off-by: Lim Guo Wei <limguowei@gmail.com>
[remove SUPPORTED devices, some typo adjustments, fix WAN MAC
address, fix sorting in 01_leds]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This ports support for the TL-WA860RE v1 range extender from ar71xx
to ath79.
Specifications:
Board: AP123 / AR9341 rev. 3
Flash/RAM: 4/32 MiB
CPU: 535 MHz
WiFi: 2.4 GHz b/g/n
Ethernet: 1 port (100M)
Two external antennas
Flashing instructions:
Upload the factory image via the vendor firmware upgrade option.
Recovery:
Note that this device does not provide TFTP via ethernet like many
other TP-Link devices do. You will have to open the case if you
require recovery beyond failsafe.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Tested-by: Sebastian Knapp <sebastian4842@outlook.com>
This device seems to be identical to the TL-WDR4300, just with
different release date/region and TPLINK_HWID.
Support is added based on the ar71xx implementation.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This patch adds support for the Ubiquiti NanoBridge M (XM), a
802.11n wireless with a feed+dish form factor, with the same board
definition as the Bullet M (XM).
Specifications:
- Atheros AR7241 SoC
- 32 MB RAM
- 8 MB SPI flash
- 1x 10/100 Mbps Ethernet port, 24 Vdc PoE-in
- Power and LAN green LEDs
- 4x RSSI LEDs (red, orange, green, green)
- UART (115200 8N1)
Flashing via stock GUI:
- WARNING: flashing OpenWrt from AirOS v5.6 or newer will brick your
device! Read the wiki for more info.
- Downgrade to AirOS v5.5.x (latest available is 5.5.11) first.
- Upload the factory image via AirOS web GUI.
Flashing via TFTP:
- WARNING: flashing OpenWrt from AirOS v5.6 or newer will brick your
device! Read the wiki for more info.
- Downgrade to AirOS v5.5.x (latest available is 5.5.11) first.
- Use a pointy tool (e.g., pen cap, slotted screwdriver) to keep the
reset button pressed.
- Power on the device (keep reset button pressed).
- Keep pressing until LEDs flash alternatively LED1+LED3 =>
LED2+LED4 => LED1+LED3, etc.
- Release reset button.
- The device starts a TFTP server at 192.168.1.20.
- Set a static IP on the computer (e.g., 192.168.1.21/24).
- Upload via tftp the factory image:
$ tftp 192.168.1.20
tftp> bin
tftp> trace
tftp> put openwrt-ath79-generic-xxxxx-ubnt_nanobridge-m-squashfs-factory.bin
Signed-off-by: Roger Pueyo Centelles <roger.pueyo@guifi.net>
[rebase, fix includes in DTS, add label MAC address, add SOC and
fix sorting in generic-ubnt.mk]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Now that check-size uses IMAGE_SIZE by default, we can skip the argument from
image recipes to reduce redundancy.
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
[do not touch ar71xx]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Place DEVICE_VARS assignments at the top of the file or above Device/Default
to make them easier to find.
For ramips, remove redundant values already present in parent file.
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
[do not touch ar71xx, extend commit message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This adds support for the Ubiquiti Bullet M (AR7240).
Specifications:
- AR7240 SoC @ 400 MHz
- 32 MB RAM
- 8 MB SPI flash
- 1x 10/100 Mbps Ethernet, 24 Vdc PoE-in
- External antenna
- POWER/LAN green LEDs
- 4x RSSI LEDs (red, orange, green, green)
- UART (115200 8N1) on PCB
Flashing via WebUI:
Upload the factory image via the stock firmware web UI.
Attention: airOS firmware versions >= 5.6 have a new bootloader with
an incompatible partition table!
Please downgrade to <= 5.5 _before_ flashing OpenWrt!
Refer to the device's Wiki page for further information.
Flashing via TFTP:
Same procedure as other Ubiquiti M boards.
- Use a pointy tool (e.g., pen cap, paper clip) and keep the reset
button on the device or on the PoE supply pressed
- Power on the device via PoE (keep reset button pressed)
- Keep pressing until LEDs flash alternatively LED1+LED3 =>
LED2+LED4 => LED1+LED3, etc.
- Release reset button
- The device starts a TFTP server at 192.168.1.20
- Set a static IP on the computer (e.g., 192.168.1.21/24)
- Upload via tftp the factory image:
$ tftp 192.168.1.20
tftp> bin
tftp> trace
tftp> put openwrt-ath79-generic-xxxxx-ubnt_bullet-m-ar7240-squashfs-factory.bin
The "fixed-link" section of the device tree is needed to avoid errors like this:
Generic PHY mdio.0:1f:04: Master/Slave resolution failed, maybe conflicting manual settings?
With "fixed-link", the errors go away and eth0 comes up reliably.
Signed-off-by: Russell Senior <russell@personaltelco.net>
[fix SUPPORTED_DEVICES]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
TP-Link Archer D7 v1 is a dual-band AC1750 router + modem.
The router section is based on Qualcomm/Atheros QCA9558 + QCA9880.
The "DSL" section is based on BCM6318 but it's currently not supported.
The Archer D7b seems to differ from the Archer D7 only in the
partition table.
Router section - Specification:
775/650/258 MHz (CPU/DDR/AHB)
128 MB of RAM (DDR2)
16 MB of FLASH (SPI NOR)
3T3R 2.4 GHz
3T3R 5 GHz
4x 10/100/1000 Mbps Ethernet
7x LED, 2x button
UART header on PCB
Known issues:
- Broadband LED (missing GPIO - probably driven by the BCM6318)
- Internet LED (missing GPIO - probably driven by the BCM6318)
- WIFI LED (working only for one interface at a time, while in the
OEM firmware works for both wifi interfaces; thus, this patch does
not set a trigger by default)
- DSL not working (eth0)
UART connection
---------------
J1 HEADER (Qualcomm CPU)
. VCC
. GND
. RX
O TX
J41 HEADER (Broadcom CPU)
. VCC
. GND
. RX
O TX
The following instructions require a connection to the J1 UART header
and are tested for the Archer D7 v1.
For the Archer D7b v1, names should be changed accordingly.
Flash instructions under U-Boot, using UART
------------------------------------------
1. Press "tpl" to stop autobooting and obtain U-Boot CLI access.
2. Setup ip addresses for U-Boot and your tftp server.
3. Issue below commands:
tftpboot 0x81000000 openwrt-ath79-generic-tplink_archer-d7-v1-squashfs-sysupgrade.bin
erase 0x9f020000 +f90000
cp.b 0x81000000 0x9f020000 0xf90000
reset
Initramfs instructions under U-Boot for testing, using UART
----------------------------------------------------------
1. Press "tpl" to stop autobooting and obtain U-Boot CLI access.
2. Setup ip addresses for U-Boot and your tftp server.
3. Issue below commands:
tftpboot 0x81000000 openwrt-ath79-generic-tplink_archer-d7-v1-initramfs-kernel.bin
bootm 0x81000000
4. Here you can backup the original firmware and/or flash the sysupgrade openwrt if you want
Restore the original firmware
-----------------------------
0. Backup every partition using the OpenWrt web interface
1. Download the OEM firmware from the TP-Link website
2. Extract the bin file in a folder (eg. Archer_D7v1_1.6.0_0.9.1_up_boot(160216)_2016-02-16_15.55.48.bin)
3. Remove the U-Boot and the Broadcom image part from the file.
Issue the following command:
dd if="Archer_D7v1_1.6.0_0.9.1_up_boot(160216)_2016-02-16_15.55.48.bin" of="Archer_D7v1_1.6.0_0.9.1_up_boot(160216)_2016-02-16_15.55.48.bin.mod" skip=257 bs=512 count=31872
4. Double check the .mod file size. It must be 16318464 bytes.
5. Flash it using the OpenWrt web interface. Force the update if needed.
WARNING: Remember to NOT keep settings.
5b. (Alternative to 5.) Flash it using the U-Boot and UART connection.
Issue below commands in the U-Boot:
tftpboot 0x81000000 Archer_D7v1_1.6.0_0.9.1_up_boot(160216)_2016-02-16_15.55.48.bin.mod
erase 0x9f020000 +f90000
cp.b 0x81000000 0x9f020000 0xf90000
reset
Signed-off-by: Davide Fioravanti <pantanastyle@gmail.com>
[cosmetic DTS changes, remove TPLINK_HWREVADD := 0, do not use two
phyXtpt at once, add missing buttons, minor commit message adjustments]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
TP-Link Archer C60 v3 is a dual-band AC1350 router,
based on Qualcomm/Atheros QCA9561 + QCA9886.
It seems to be identical to the v2 revision, except that
it lacks a WPS LED and has different GPIO for amber WAN LED.
Specification:
- 775/650/258 MHz (CPU/DDR/AHB)
- 64 MB of RAM (DDR2)
- 8 MB of FLASH (SPI NOR)
- 3T3R 2.4 GHz
- 2T2R 5 GHz
- 5x 10/100 Mbps Ethernet
- 6x LED, 2x button
- UART header on PCB
Flash instruction (WebUI):
Download *-factory.bin image and upload it via the firmwary upgrade
function of the stock firmware WebUI.
Flash instruction (TFTP):
1. Set PC to fixed IP address 192.168.0.66
2. Download *-factory.bin image and rename it to tp_recovery.bin
3. Start a tftp server with the file tp_recovery.bin in its root
directory
4. Turn off the router
5. Press and hold reset button
6. Turn on router with the reset button pressed and wait ~15 seconds
7. Release the reset button and after a short time the firmware should
be transferred from the tftp server
8. Wait ~30 second to complete recovery
While TFTP works for OpenWrt images, my device didn't accept the
only available official firmware "Archer C60(EU)_V3.0_190115.bin".
In contrast to earlier revisions (v2), the v3 contains the (same)
MAC address twice, once in 0x1fa08 and again in 0x1fb08.
While the partition-table on the device refers to the latter, the
firmware image contains a different partition-table for that region:
name device firmware
factory-boot 0x00000-0x1fb00 0x00000-0x1fa00
default-mac 0x1fb00-0x1fd00 0x1fa00-0x1fc00
pin 0x1fd00-0x1fe00 0x1fc00-0x1fd00
product-info 0x1fe00-0x1ff00 0x1fd00-0x1ff00
device-id 0x1ff00-0x20000 0x1ff00-0x20000
While the MAC address is present twice, other data like the PIN isn't,
so with the partitioning from the firmware image the PIN on the device
would actually be outside of its partition.
Consequently, the patch uses the MAC location from the device (which
is the same as for the v2).
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Since there exists another variant of the Bullet M with AR7240 SoC
under the same name, this patch introduces the SoC into the device
name to be able to distinguish these variants.
Signed-off-by: Russell Senior <russell@personaltelco.net>
[add commit message, adjust model in DTS, fix 02_network and
SUPPORTED_DEVICES]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
* Prepare to support the AR7240 variant of ubiquiti bullet m, by
reorganizing the related dtsi files.
* Distribute SOC variable across ubnt-xm devices.
Signed-off-by: Russell Senior <russell@personaltelco.net>
So far, specifying "BOARD_NAME := routerboard" is required by the
upgrade code of Mikrotik NAND devices, as "sysupgrade-routerboard"
is hardcoded in platform_do_upgrade_mikrotik_nand().
This patch replaces the latter with a grep for the name like it
is already done in nand_upgrade_tar() in /lib/upgrade/nand.sh.
By that, BOARD_NAME is obsolete now for this device.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This commit creates the ath79/mikrotik subtarget in order to support
MikroTik devices based on Qualcomm Atheros MIPS SoCs.
MikroTik devices need a couple of specific features: the split MiNOR
firmware MTD format, which is not used by other devices, and the 4k
sector erase size on SPI NOR storage, which can not be added to the
ath79/generic and ath79/nand subtargets now.
Additionally, the commit moves the two MikroTik devices already in
the generic and nand subtargets to this new one.
Tested on the RB922 board and the wAP AC router.
Signed-off-by: Roger Pueyo Centelles <roger.pueyo@guifi.net>
Currently kmod-i2c-* will not get into images unless kmod-i2c-core is added to
DEVICE_PACKAGES as well. By changing the dependencies from "depends on" to
"select", we do not have the issue anymore.
Furthermore, we can remove most occurrences of the package from DEVICE_PACKAGES
and similar variables, as it is now pulled by dependent modules such as:
- kmod-hwmon-lm75
- kmod-i2c-gpio
- kmod-i2c-gpio-custom
- kmod-i2c-mux
- kmod-i2c-ralink
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
[do not touch ar71xx]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This adds support for the TP-Link TL-WR740N v5, a clone of the
v4 only with a different TPLINK_HWID. It was already supported
in ar71xx as well.
Specifications:
SOC: Atheros AR9331
CPU: 400MHz
Flash: 4 MiB
RAM: 32 MiB
WLAN: Atheros AR9330 bgn
Ethernet: 5 ports (100M)
Flashing instructions:
- Flash factory image from OEM WebUI:
openwrt-ath79-tiny-tplink_tl-wr740n-v5-squashfs-factory.bin
- Sysupgrade from ar71xx image:
openwrt-ath79-tiny-tplink_tl-wr740n-v5-squashfs-sysupgrade.bin
Signed-off-by: Jun Su <howard0su@gmail.com>
[commit title/message facelift]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
IMAGE_SIZE is widely used in many targets. Declare it in the default template to
clean up redundant code. This also prevents deriving IMAGE_SIZE unintentionally
from the previously defined device.
While at it, remove duplicate KERNEL_SIZE declaration.
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
This applies the common indent (one tab) for the wrapped lines of
domywifi_dw33d and glinet_gl-ar750s-nor-nand.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Sitecom WLR-8100 v1 002 (marketed as X8 AC1750) is a dual band wireless
router.
Specification:
- Qualcomm Atheros SoC QCA9558
- 128 MB of RAM (DDR2)
- 16 MB of FLASH (Macronix MX25L12845EMI-10G - SPI NOR)
- 5x 10/100/1000 Mbps Ethernet
- 3T3R 2.4 GHz (QCA9558 WMAC)
- 3T3R 5.8 Ghz (QCA9880-BR4A)
- 1x USB 3.0 (Etron EJ168A)
- 1x USB 2.0
- 9x LEDs
- 2x GPIO buttons
Everything working.
Installation and restore procedure tested
Installation
1. Connect to one of LAN (yellow) ethernet ports,
2. Open router configuration interface,
3. Go to Toolbox > Firmware,
4. Browse for OpenWrt factory image with dlf extension and hit Apply,
5. Wait few minutes, after the Power LED will stop blinking, the router
is ready for configuration.
Restore OEM FW (Linux only)
1. Download OEM FW from website (tested with WLR-8100v1002-firmware-v27.dlf)
2. Compile the FW for this router and locate the "mksenaofw" tool
in build_dir/host/firmware-utils/bin/ inside the OpenWrt buildroot
3. Execute "mksenaofw -d WLR-8100v1002-firmware-v27.dlf -o WLR-8100v1002-firmware-v27.dlf.out" where:
WLR-8100v1002-firmware-v27.dlf is the path to the input file
(use the downloaded file)
WLR-8100v1002-firmware-v27.dlf.out is the path to the output file
(you can use the filename you want)
4. Flash the new WLR-8100v1002-firmware-v27.dlf.out file. WARNING: Do not keep settings.
Additional notes.
The original firmware has the following button configuration:
- Press for 2s the 2.4GHz button: WPS for 2.4GHz
- Press for 2s the 5GHz button: WPS for 5GHz
- Press for 15s both 2.4GHz and 5GHz buttons: Reset
I am not able to replicate this behaviour, so I used the following configuration:
- Press the 2.4GHz button: RFKILL (disable/enable every wireless interfaces)
- Press the 5GHz button: Reset
Signed-off-by: Davide Fioravanti <pantanastyle@gmail.com>
This patch support Devolo Magic 2 WIFI, board devolo_dlan2-2400-ac.
This device is a plc wifi AC2400 router/extender with 2 Ethernet
ports, has a G.hn PLC and uses LCMP protocol from Home Grid Forum.
Hardware:
SoC: AR9344
CPU: 560 MHz
Flash: 16 MiB (W25Q128JVSIQ)
RAM: 128 MiB DDR2
Ethernet: 2xLAN 10/100/1000
PLC: 88LX5152 (MaxLinear G.hn)
PLC Flash: W25Q32JVSSIQ
PLC Uplink: 1Gbps MIMO
PLC Link: RGMII 1Gbps (WAN)
WiFi: Atheros AR9340 2.4GHz 802.11bgn
Atheros AR9882-BR4A 5GHz 802.11ac
Switch: QCA8337, Port0:CPU, Port2:PLC, Port3:LAN1, Port4:LAN2
Button: 3x Buttons (Reset, wifi and plc)
LED: 3x Leds (wifi, plc white, plc red)
GPIO Switch: 11-PLC Pairing (Active Low)
13-PLC Enable
21-WLAN power
MACs Details verified with the stock firmware:
Radio1: 2.4 GHz &wmac *:4c Art location: 0x1002
Radio0: 5.0 GHz &pcie *:4d Art location: 0x5006
Ethernet ðernet *:4e = 2.4 GHz + 2
PLC uplink --- *:4f = 2.4 GHz + 3
Label MAC address is from PLC uplink
OEM SSID: echo devolo-$(grep SerialNumber /dev/mtd1 | grep -o ...$)
OEM WiFi password: grep DlanSecurityID /dev/mtd1|tr -d -|cut -d'=' -f 2
Recommendations: Configure and link your PLC with OEM firmware
BEFORE you flash the device. PLC configuration/link should
remain in different memory and should work straight forward
after flashing.
Restrictions: PLC link detection to trigger plc red led is not
available. PLC G.hn chip is not compatible with open-plc-tools,
it uses LCMP protocol with AES-128 and requires different
software.
Notes: Pairing should be possible with gpio switch. Default
configuration will trigger wifi led with 2.4Ghz wifi traffic
and plc white led with wan traffic.
Flash instruction (TFTP):
1. Set PC to fixed ip address 192.168.0.100
2. Download the sysupgrade image and rename it to uploadfile
3. Start a tftp server with the image file in its root directory
4. Turn off the router
5. Press and hold Reset button
6. Turn on router with the reset button pressed and wait ~15 seconds
7. Release the reset button and after a short time
the firmware should be transferred from the tftp server
8. Allow 1-2 minutes for the first boot.
Signed-off-by: Manuel Giganto <mgigantoregistros@gmail.com>
This commit ports the device from ar71xx to the ath79 target and
modifies the partition layout.
1. Firmware is installed to nand flash.
2. Modify the uboot-env parameter to boot from the nand flash.
3. The kernel size is extended to 5M.
4.nor flash retains the oem firmware.
oem partition layout
dev: size erasesize name
mtd0: 00040000 00010000 "u-boot"
mtd1: 00010000 00010000 "u-boot-env"
mtd2: 00e30000 00010000 "rootfs"
mtd3: 00170000 00010000 "kernel"
mtd4: 00010000 00010000 "art"
mtd5: 00f90000 00010000 "firmware"
mtd6: 06000000 00020000 "rootfs_data"
mtd7: 02000000 00020000 "backup"
new partition layout
dev: size erasesize name
mtd0: 00040000 00010000 "u-boot"
mtd1: 00010000 00010000 "u-boot-env"
mtd2: 00fa0000 00010000 "oem-firmware"
mtd3: 00010000 00010000 "art"
mtd4: 00500000 00020000 "kernel"
mtd5: 05b00000 00020000 "ubi"
mtd6: 02000000 00020000 "oem-backup"
MAC address overview:
All mac addresses are stored in the art partition.
eth0: 0x0
eth1: 0x6
ath9k: 0xc
ath10k: 0x12
No valid addresses in 0x1002 and 0x5006. All addresses match the OEM
firmware.
Install from oem firmware.
Enable ssh service:
Connect to the router web, click professional, click system-startup,
and add dropbear in the local startup input box. Click
system-administration, delete ssh-key, and replace your ssh pub key.
Restart the router.
1.Upload openwrt firmware to the device
scp openwrt-snapshot-r11365-df60a0852c-ath79-nand-domywifi_dw33d-\
squashfs-factory.bin root@192.168.10.1:/tmp
2.modify uboot-env.
ssh login to the device:
fw_setenv bootcmd 'nboot 0x8050000 0;bootm || bootm 0x9fe80000'
Run the fw_printenv command to check if the settings are correct.
3.Write openwrt firmware.
ssh login to the device:
mtd -r write /tmp/openwrt-snapshot-r11365-df60a0852c-ath79-nand-\
domywifi_dw33d-squashfs-factory.bin /dev/mtd6
The device will restart automatically and the openwrt firmware
installation is complete.
Restore oem firmware.just erase the kernel partition and the ubi
partition.
ssh login to the device:
mtd erase /dev/mtd4
mtd -r erase /dev/mtd5
Reboot the device
Signed-off-by: WeiDong Jia <jwdsccd@gmail.com>
[alter flash instruction in commit message]
Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
This patch ports support for the MikroTik RouterBOARD 922UAGS-5HPacD
with a built-in 802.11ac High-Power radio (31dBm), which was already
available in the ar71xx target.
See https://mikrotik.com/product/RB922UAGS-5HPacD for more info.
Specifications:
- SoC: Qualcomm Atheros QCA9558 (720 MHz)
- RAM: 128 MB
- Storage: 128 MB NAND
- Wireless: external QCA9882 802.11a/ac 2x2:2
- Ethernet: 1x 1000/100/10 Mbps, integrated, via AR8031 PHY, passive PoE-in 24V
- SFP: 1x host
- USB: 1x 2.0 type A
- PCIe: 1x Mini slot (also contains USB 2.0 for 3G/LTE modems)
- SIM slot: 1x mini-SIM
Working:
- Board/system detection
- SPI and NAND storage
- PCIe
- USB type A host
- Wireless
- Ethernet
- LEDs (user, phy0)
- Reset button
- Sysupgrade to/from ar71xx
Not supported:
- RSSI LEDs
- SFP cage
Installation methods:
- Sysupgrade from ar71xx (it is advisable to use the -n option to
wipe any previous settings), or
- Boot the initramfs image via TFTP and then flash the sysupgrade
image using "sysupgrade -n"
Signed-off-by: Roger Pueyo Centelles <roger.pueyo@guifi.net>
Specification:
- 550/400/200 MHz (CPU/DDR/AHB)
- 128 MB of RAM (DDR2)
- 16 MB of FLASH (SPI NOR)
- 4x 10/100 Mbps Ethernet, with passive PoE support on LAN1
- 2T2R 2,4 GHz (AR9344)
- built-in 4G/3G module (example: Quectel EC-25EU)
- internal microSD slot (spi-mmc, buggy and disabled for now)
- RS232 on D-Sub9 port (Cypress ACM via USB, /dev/ttyACM0)
- RS422/RS485 (AR934x high speed UART, /dev/ttyATH1)
- analog 0-24V input (MCP3221)
- various digital inputs and outputs incl. a relay
- 11x LED (4 are driven by AR9344, 7 by 74HC595)
- 2x miniSIM slot (can be swapped via GPIO)
- 2x RP-SMA/F (Wi-Fi), 3x SMA/F (2x WWAN, GPS)
- 1x button (reset)
- DC jack for main power input (9-30 V)
- debugging UART available on PCB edge connector
Serial console (/dev/ttyS0) pinout:
- RX: pin1 (square) on top side of the main PCB (AR9344 is on top)
- TX: pin1 (square) on bottom side
Flash instruction:
Vendor firmware is based on OpenWrt CC release. Use the "factory" image
directly in GUI (make sure to uncheck "keep settings") or in U-Boot web
based recovery. To avoid any problems, make sure to first update vendor
firmware to latest version - "factory" image was successfully tested on
device running "RUT9XX_R_00.06.051" firmware and U-Boot "3.0.2".
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
This adds support for the various clones of the TL-WA830RE recently
supported in fb99ac6807 ("ath79: add support for TP-Link TL-WA830RE v1"):
- tplink,tl-wa701nd-v1
- tplink,tl-wa730re-v1
- tplink,tl-wa801nd-v1
- tplink,tl-wa830re-v1 (already supported)
- tplink,tl-wa901nd-v1
Since these devices are 100%-clones in ar71xx, this patch adds all
of them without run-testing (as this has been done for TL-WA830RE v1).
Specifications:
- SOC: Atheros AR7240
- CPU: 400MHz
- Flash: 4 MiB (Spansion S25FL032P)
- RAM: 32 MiB (Zentel A3S56D40FTP-G5)
- WLAN: Atheros AR9280 bgn 2x2
- Ethernet: 1 port (100M)
Flash instructions:
- install from u-boot with tftp (requires serial access)
> setenv ipaddr a.b.c.d
> setenv serverip e.f.g.h
> tftpboot 0x80000000 \
openwrt-ath79-tiny-tplink_tl-waxxxxx-v1-squashfs-factory.bin
> erase 0x9f020000 +0x3c0000
> cp.b 0x80000000 0x9f020000 0x3c0000
> bootm 0x9f020000
- flash factory image from OEM WebUI
- sysupgrade from ar71xx image
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
With the wrong blocksize, the rootfs was not positioned on the boundary
of a block, thus breaking the mtdsplit driver.
Signed-off-by: David Bauer <mail@david-bauer.net>
This adds support for the Ubiquiti Picostation M (XM), which has the
same board/LEDs as the Bullet M XM, but different case and antennas.
Specifications:
- AR7241 SoC @ 400 MHz
- 32 MB RAM
- 8 MB SPI flash
- 1x 10/100 Mbps Ethernet, 24 Vdc PoE-in
- External antenna: 5 dBi (USA), 2 dBi (EU)
- POWER/LAN green LEDs
- 4x RSSI LEDs (red, orange, green, green)
- UART (115200 8N1) on PCB
Flashing via WebUI:
Upload the factory image via the stock firmware web UI.
Attention: airOS firmware versions >= 5.6 have a new bootloader with
an incompatible partition table!
Please downgrade to <= 5.5 _before_ flashing OpenWrt!
Refer to the device's Wiki page for further information.
Flashing via TFTP:
Same procedure as other NanoStation M boards.
- Use a pointy tool (e.g., pen cap, paper clip) and keep the reset
button on the device or on the PoE supply pressed
- Power on the device via PoE (keep reset button pressed)
- Keep pressing until LEDs flash alternatively LED1+LED3 =>
LED2+LED4 => LED1+LED3, etc.
- Release reset button
- The device starts a TFTP server at 192.168.1.20
- Set a static IP on the computer (e.g., 192.168.1.21/24)
- Upload via tftp the factory image:
$ tftp 192.168.1.20
tftp> bin
tftp> trace
tftp> put openwrt-ath79-generic-xxxxx-ubnt_picostation-m-squashfs-factory.bin
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This adds support for the Ubiquiti Nanostation Loco M (XM), which
has the same board/LEDs as the Bullet M XM, but different case and
antennas.
Specifications:
- AR7241 SoC @ 400 MHz
- 32 MB RAM
- 8 MB SPI flash
- 1x 10/100 Mbps Ethernet, 24 Vdc PoE-in
- NS Loco M2: built-in antenna: 8 dBi; AR9287
- NS Loco M5: built-in antenna: 13 dBi; 2T2R 5 GHz radio
- POWER/LAN green LEDs
- 4x RSSI LEDs (red, orange, green, green)
- UART (115200 8N1) on PCB
Flashing via WebUI:
Upload the factory image via the stock firmware web UI.
Note that only certain firmware versions accept unsigned
images. Refer to the device's Wiki page for further information.
Flashing via TFTP:
Same procedure as other NanoStation M boards.
- Use a pointy tool (e.g., pen cap, paper clip) and keep the reset
button on the device or on the PoE supply pressed
- Power on the device via PoE (keep reset button pressed)
- Keep pressing until LEDs flash alternatively LED1+LED3 =>
LED2+LED4 => LED1+LED3, etc.
- Release reset button
- The device starts a TFTP server at 192.168.1.20
- Set a static IP on the computer (e.g., 192.168.1.21/24)
- Upload via tftp the factory image:
$ tftp 192.168.1.20
tftp> bin
tftp> trace
tftp> put openwrt-ath79-generic-xxxxx-ubnt_nanostation-loco-m-squashfs-factory.bin
Tested on NanoStation Loco M2.
Signed-off-by: Sven Roederer <freifunk@it-solutions.geroedel.de>
Co-developed-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Several devices with tplink-safeloader contain default values (0x0)
for TPLINK_HWID and TPLINK_HWREV in their device definitions.
Move those to common tplink-safeloader definition so they do not
have to be repeated each time.
While at it, set default value for tplink-v1 and tplink-v2 as well.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Hardware
--------
SoC: Atheros AR7161
RAM: Samsung K4H511638D-UCCC
2x 64M DDR1
SPI: Micron M25P128 (16M)
WiFi: Atheros AR9160 bgn
Atheros AR9160 an
ETH: Broadcom BCM5481
LED: Power (Green/Red)
ETH (Green / Blue / Yellow)
(PHY-controlled)
WiFi 5 (Green / Blue)
WiFi 2 (Green / Blue)
BTN: Reset
Serial: Cisco-Style RJ45 - 115200 8N1
Installation
------------
1. Download the OpenWrt initramfs-image. Place it into a TFTP server
root directory and rename it to 1401A8C0.img. Configure the TFTP
server to listen at 192.168.1.66/24.
2. Connect the TFTP server to the access point.
3. Connect to the serial console of the access point. Attach power and
interrupt the boot procedure when prompted (bootdelay is 1 second).
4. Configure the U-Boot environment for booting OpenWrt from Ram and
flash:
$ setenv boot_openwrt 'setenv bootargs; bootm 0xbf080000'
$ setenv ramboot_openwrt 'setenv serverip 192.168.1.66;
tftpboot; bootm'
$ saveenv
5. Load OpenWrt into memory:
$ run ramboot_openwrt
Wait for the image to boot.
6. Transfer the OpenWrt sysupgrade image to the device. Write the image
to flash using sysupgrade:
$ sysupgrade -n /path/to/openwrt-sysuograde.bin
Signed-off-by: David Bauer <mail@david-bauer.net>
The TL-WR940N v6 is similar to v3/v4, it just has different
LEDs and MAC address assignment.
Specification:
- 750 MHz CPU
- 32 MB of RAM
- 4 MB of FLASH
- 2.4 GHz WiFi
- 4x 10/100 Mbps Ethernet
The use of LEDs is based on ar71xx, so blue LED is used for WAN
and orange LED for diag (boot/failsafe/etc.).
Flash instruction (WebUI):
Download *-factory.bin image and upload it via the firmwary upgrade
function of the stock firmware WebUI.
Flash instruction (TFTP):
1. Set PC to fixed ip address 192.168.0.66
2. Download *-factory.bin image and rename it to
wr940nv6_tp_recovery.bin
3. Start a tftp server with the image file in its root directory
4. Turn off the router
5. Press and hold Reset button
6. Turn on router with the reset button pressed and wait ~15 seconds
7. Release the reset button and after a short time
the firmware should be transferred from the tftp server
8. Wait ~30 second to complete recovery.
Thanks to Manuel Kock for reviewing and testing this patch.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Tested-by: Manuel Kock <github.web@manu.li>
This adds the ar71xx board name to the SUPPORTED_DEVICES on ath79,
so forceless sysupgrade on this device becomes possible.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This ports support for the TL-WA830RE v1 range extender from ar71xx to
ath79.
Specifications:
- SOC: Atheros AR7240
- CPU: 400MHz
- Flash: 4 MiB (Spansion S25FL032P)
- RAM: 32 MiB (Zentel A3S56D40FTP-G5)
- WLAN: Atheros AR9280 bgn 2x2
- Ethernet: 1 port (100M)
Flash instructions:
- install from u-boot with tftp (requires serial access)
> setenv ipaddr a.b.c.d
> setenv serverip e.f.g.h
> tftpboot 0x80000000 \
openwrt-ath79-tiny-tplink_tl-wa830re-v1-squashfs-factory.bin
> erase 0x9f020000 +0x3c0000
> cp.b 0x80000000 0x9f020000 0x3c0000
> bootm 0x9f020000
- flash factory image from OEM WebUI
- sysupgrade from ar71xx image
The device seems to be a clone of the following devices not yet
added to ath79:
- tl-wa701nd-v1
- tl-wa730re-v1
- tl-wa801nd-v1
- tl-wa901nd-v1
Signed-off-by: Christian Buschau <christian.buschau@mailbox.org>
[make use of ar7240_tplink.dtsi, add note about clones]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This commit adds support for the COMFAST CF-E560AC, an ap143 based
in-wall access point.
Specifications:
- SoC: Qualcomm Atheros QCA9531
- RAM: 128 MB DDR2 (Winbond W971GG6SB-25)
- Storage: 16 MB NOR (Winbond 25Q128JVSO)
- WAN: 1x 10/100 PoE ethernet (48v)
- LAN: 4x 10/100 ethernet
- WLAN1: QCA9531 - 802.11b/g/n - 2x SKY85303-21 FEM
- WLAN2: QCA9886 - 802.11ac/n/a - 2x SKY85735-11 FEM
- USB: one external USB2.0 port
- UART: 3.3v, 2.54mm headers already populated on board
- LED: 7x external
- Button: 1x external
- Boot: U-Boot 1.1.4 (pepe2k/u-boot_mod)
MAC addressing:
- stock
LAN *:40 (label)
WAN *:41
5G *:42
2.4G *:4a
- flash (art partition)
0x0 *:40 (label)
0x6 *:42
0x1002 *:41
0x5006 *:43
This device contains valid MAC addresses in art 0x0, 0x6, 0x1002 and
0x5006, however the vendor firmware only reads from art:0x0 for the LAN
interface and then increments in 02_network. They also jump 8 addresses
for the second wifi interface (2.4 GHz). This behavior has been duplicated
in the DTS and ath10k hotplug to align addresses with the vendor firmware
v2.6.0.
Recovery instructions:
This device contains built-in u-boot tftp recovery.
1. Configure PC with static IP 192.168.1.10/24 and tftp server.
2. Place desired image at /firmware_auto.bin at tftp root.
3. Connect device to PC, and power on.
4. Device will fetch flash from tftp, flash and reboot into new image.
Signed-off-by: August Huber <auh@google.com>
[move jtag_disable_pins, remove unnecessary statuses in DTS, remove
duplicate entry in 11-ath10k-caldata, remove hub_port0 label in DTS]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Adapt Netgear WNDR3700v2 device identification string to ath79 naming
scheme by changing from 'wndr3700v2' to 'wndr3700-v2' (affects config,
makefile, init scripts and device tree definition).
Signed-off-by: Michal Cieslakiewicz <michal.cieslakiewicz@wp.pl>
This adds a shared definition Device/tplink-v2 to common-tp-link.mk.
Though currently only one device in ath79 uses it, putting it in
the common file seems more organized. The definitions are based
on the implementation in ramips target, where a lot of devices
is using tplink-v2-* commands already.
The '-V "ver. 2.0"' suffix for Archer D50 v1 can be removed because
it's default in Build/tplink-v2-image anyway.
While at it, add TPLINK_HWREVADD and TPLINK_HVERSION to DEVICE_VARS,
which seems to have been overlooked when adding Archer D50 v1.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This renames Device/tplink-loader-okli to Device/tplink-safeloader-okli
since the latter more accurately describes the combination of
tplink-safeloader and loader-okli use there. The old version might
be confused with other uses of the okli loader.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
As we have tplink-v2-header and tplink-v2-image recipes as well,
this patch renames the Device/tplink definition to Device/tplink-v1,
as it's using the tplink-v1-* commands. This should provide easier
distinction in the future.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This commit adds support for the NanoStation Loco M2/M5 XW devices
on the ath79 target (support was long ago available on ar71xx).
Specifications:
- AR9342 SoC @ 535 MHz
- 64 MB RAM
- 8 MB SPI flash
- 1x 10/100 Mbps Ethernet, 24 Vdc PoE-in
- AR8032 switch
- 2T2R 5 GHz radio, 22 dBm
- 13 dBi built-in antenna
- POWER/LAN green LEDs
- 4x RSSI LEDs (red, orange, green, green)
- UART (115200 8N1) on PCB
Flashing via TFTP:
- Use a pointy tool (e.g., pen cap, paper clip) and keep the reset
button on the device or on the PoE supply pressed
- Power on the device via PoE (keep reset button pressed)
- Keep pressing until LEDs flash alternatively LED1+LED3 =>
LED2+LED4 => LED1+LED3, etc.
- Release reset button
- The device starts a TFTP server at 192.168.1.20
- Set a static IP on the computer (e.g., 192.168.1.21/24)
- Upload via tftp the factory image:
$ tftp 192.168.1.20
tftp> bin
tftp> trace
tftp> put openwrt-ath79-generic-xxxxx-ubnt_nanostation-loco-m-xw-squashfs-factory.bin
Signed-off-by: Roger Pueyo Centelles <roger.pueyo@guifi.net>
This ports the GL.iNet 6408/6416 from ar71xx.
The GL-Connect GL.iNet v1 routers are basically a TP-Link TL-WR710N with
more DRAM/Flash and console/GPIO header in the same small form-factor.
Specifications:
- SoC: Atheros AR9331
- CPU: 400 MHz
- Flash: 8/16 MiB
- RAM: 64 MiB
- WiFi: 2.4 GHz b/g/n (SoC)
- Ethernet: 2x 100M ports (LAN/WAN)
- USB: 1x 2.0
The difference between 6408 and 6416 is just the flash size. It looks like
only the 16 MiB version has been advertised, while the 6408 is a modified
version. There are also 1-port versions sold by third parties.
Installation:
Install the sysupgrade image via stock firmware GUI or upload it via uboot
(web-based). The device will be available at 192.168.1.1.
Attention: In ar71xx, the same board name is used for both flash versions.
So, please make sure you flash the correct ath79 image when upgrading.
This has been device-tested on a GL.iNet 6416.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Based on a script for comparison, this fixes (hopefully) all errors
in SUPPORTED_DEVICES for ar71xx->ath79 upgrade.
Devices where old string is removed as the device does not exist
in ar71xx:
- dlink_dir-859-a1
- tplink_archer-a7-v5
- tplink_cpe510-v3
Devices where string is changed because it did not match the board
name in ar71xx:
- tplink_tl-mr3220-v1
- tplink_tl-mr3420-v1
- tplink_tl-wr2543-v1
- tplink_tl-wr741nd-v4
- tplink_tl-wr841-v7
- ubnt_unifiac-mesh
- ubnt_unifiac-mesh-pro
- ubnt_unifiac-pro
For this device, the correct string could not be found, but we could
not determine the correct one. Thus, the string is removed for now:
- tplink_tl-wr740n-v4
The script for checking this is quite simple (note that newer
entries, i.e. ath79->ath79 upgrade, are displayed as missing):
newpath=target/linux/ath79/image/
oldpath=target/linux/ar71xx/base-files/lib/ar71xx.sh
for s in $(grep -roh "SUPPORTED_DEVICES.*" $newpath | sed 's/SUPPORTED_DEVICES *.= *//'); do
found="Missing"
grep -q -r "\"$s\"" $oldpath && found="Found"
echo "$s: $found."
done
The errors might be filtered by appending 'grep "Missing"' to the script.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
In certain cases, the uncompressed initramfs image will overwrite
the lzma-loader, which is currently only 10 MB away from kernel image
start. To prevent this, change LZMA_TEXT_START to 24 MB, so loader
and compressed image have 8 MB at the end of RAM and uncompressed
image has 24 MB available.
This is only enabled for ath79 at the moment, as there we can be sure
that all devices have 32+ MB RAM and TARGET_INITRAMFS_COMPRESSION_LZMA
is not enabled there.
Despite, since lzma-loader is currently build specifically for ath79
anyway, there is no need to re-specify LOADADDR and LZMA_TEXT_START
in image/Makefile, so the values are set directly in
image/lzma-loader/Makefile and the overwrite in image/Makefile is
removed.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Tested-by: Koen Vandeputte <koen.vandeputte@ncentric.com>
This commit adds support for the MikroTik RouterBOARD wAP G-5HacT2HnD
(wAP AC), a small weatherproof dual band, dual-radio 802.11ac
wireless AP with integrated omnidirectional anntennae and one
10/100/1000 Mbps Ethernet port.
See https://mikrotik.com/product/RBwAPG-5HacT2HnD for more info.
Specifications:
- SoC: Qualcomm Atheros QCA9556
- RAM: 64 MB
- Storage: 16 MB NOR
- Wireless:
· Atheros AR9550 (SoC) 802.11b/g/n 2x2:2, 2 dBi antennae
· Qualcomm QCA9880 802.11a/n/ac 3x3:3, 2 dBi antennae
- Ethernet: Atheros AG71xx (SoC, AR8033), 1x 1000/100/10 port,
passive PoE in
Working:
- Board/system detection
- Sysupgrade
- Serial console
- Ethernet
- 2.4 GHz radio
- 5 GHz radio and LED
- Reset button
Not working/Unsupported:
- 2.4 GHz LED
- AP/CAP LED
- ZT2046Q SPI temperature and voltage sensor
This adds the basic features for supporting MikroTik devices:
- a common recipe for mikrotik images in common-mikrotik.mk
- support for minor (MikroTik NOR) split firmware (only for
generic subtarget so far)
Acknowledgments: Robert Marko <robimarko@gmail.com>
Andrew Cameron <apcameron@softhome.net>
Koen Vandeputte <koen.vandeputte@ncentric.com>
Chuanhong Guo <gch981213@gmail.com>
Signed-off-by: Roger Pueyo Centelles <roger.pueyo@guifi.net>
Co-developed-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Tested-by: Koen Vandeputte <koen.vandeputte@ncentric.com>
TP-Link TL-WA850RE v2 is a wall-plug N300 Wi-Fi range extender,
based on Qualcomm/Atheros QCA9533 v2.
Short specification:
- 550/391/195 MHz (CPU/DDR/AHB)
- 1x 10/100 Mbps Ethernet
- 32 MB of RAM (DDR1)
- 4 MB of FLASH
- 2T2R 2.4 GHz
- 2x internal antennas (embedded on PCB)
- 9x LED (all can be turned off with GPIO15), 2x button
- UART (J3) header on PCB
Flash instruction: use "factory" image directly in vendor GUI.
Warning: this device does not include any kind of recovery mechanism
in the bootloader and disassembling process is not trivial.
You can access vendor firmware over serial line using:
- login: root
- password: sohoadmin
Stock firmware uses label MAC address for WiFi and same with local
bit set for ethernet. Since this is difficult to reproduce with
the toolset of OpenWrt, we just keep both ethernet and WiFi to
the same address here.
This is the first tiny device with tplink-safeloader in ath79.
Firmware partition is only 3648k and thus even smaller than for
the tplink-4m(lzma) devices.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This ports support for the TL-WA850RE v1 range extender from ar71xx
to ath79.
Specifications:
Board: AP123 / AR9341 rev. 3
Flash/RAM: 4/32 MiB
CPU: 535 MHz
WiFi: 2.4 GHz b/g/n
Ethernet: 1 port (100M)
Flashing instructions:
Upload the factory image via the vendor firmware upgrade option.
Recovery:
Note that this device does not provide TFTP via ethernet like many
other TP-Link devices do. You will have to open the case if you
require recovery beyond failsafe.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
TPLINK_BOARD_NAME has been renamed to TPLINK_BOARD_ID a long time
ago (7d6c63d875: "build: rename TPLINK_BOARD_NAME to
TPLINK_BOARD_ID" for ar71xx), and before introducing ath79 target
at all.
TPLINK_BOARD_NAME seems to have been introduced into ath79 target
only by mistake. It has never been used. Remove it.
Fixes: 53c474abbd ("ath79: add new OF only target for QCA MIPS silicon")
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This device is an LTE router supported in ar71xx so far.
As per original commit, hardware specifications (v1.0 EU):
- SoC: QCA9531
- Flash: Winbond W25Q64FV (8MiB)
- RAM: EtronTech EM6AB160TSE-5G (64MiB)
- Wireless: SoC platform only (2.4GHz b/g/n, 2x internal antenna)
- Ethernet: 2NIC (3x100M + 1x100M)
- WWAN: TP-LINK LTE MODULE (2x external detachable antenna)
- Power: DC 12V 1A
Flashing instructions:
You can flash via tftp recovery (serve factory image as /mr6400_tp_recovery.bin
on 192.168.0.66/24, connect to any ethernet port and power on device while
holding the reset button). Flashing via OEM web interface does not work.
Known issues:
- LTE module does not always come up during boot (showing USB enumeration errors). Similar behavior has been reported at least from one user for ar71xx, too. Turning USB off and on again will serve as a workaround.
- eth0 (LAN) always shows carrier as 1 even if no cable is plugged in (this works "correctly" on ar71xx)
Signed-off-by: Enrico Mioso <mrkiko.rs@gmail.com>
[several adjustments]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Tested-by: Filip Moc <lede@moc6.cz>
Kernel partition increase to 4 MiBs for Netgear WNDR3700v4 and WNDR4300
routers breaks sysupgrade image compatibility with ar71xx builds.
Therefore, SUPPORTED_DEVICES variable has to be removed for both devices
from target makefile.
Reported-by: DENG Qingfang <dengqf6@mail2.sysu.edu.cn>
Signed-off-by: Michal Cieslakiewicz <michal.cieslakiewicz@wp.pl>
This patch introduces support for Netgear WNDR4500v3. Router
is very similar to WNDR4300v2 and is based on the same PCB.
Information gathered from various Internet sources (including
https://patchwork.ozlabs.org/patch/809227/) shows following
differences to WNDR4300v2:
* two USB 2.0 ports with separate LEDs
* USB LEDs soldered to secondary pads
* WPS and RFKILL buttons soldered to secondary pads
* described as N900 device with 3x3:3 MIMO for 2.4GHz radio
* power supply requirement is DC 12V 2.5A
* vendor HW ID suffix differs in one digit
* bigger chassis
Signed-off-by: Michal Cieslakiewicz <michal.cieslakiewicz@wp.pl>
This patch introduces support for Netgear WNDR4300v2.
Specification
=============
* Description: Netgear WNDR4300 v2
* Loader: U-boot
* SOC: Qualcomm Atheros QCA9563 (775 MHz)
* RAM: 128 MiB
* Flash: 2 MiB SPI-NOR + 128 MiB SPI-NAND
- NOR: U-boot binary: 256 KiB
- NOR: U-boot environment: 64 KiB
- NOR: ART Backup: 64 KiB
- NOR: Config: 64 KiB
- NOR: Traffic Meter: 64 KiB
- NOR: POT: 64 KiB
- NOR: Reserved: 1408 KiB
- NOR: ART: 64 KiB
- NAND: Firmware: 25600 KiB (see notes for OpenWrt)
- NAND: Language: 2048 KiB
- NAND: mtdoops Crash Dump: 128 KiB
- NAND: Reserved: 103296 KiB
* Ethernet: 5 x 10/100/1000 (4 x LAN, 1 x WAN) (AR8337)
* Wireless:
- 2.4 GHz b/g/n (internal)
- 5 GHz a/n (AR9580)
* USB: yes, 1 x USB 2.0
* Buttons:
- Reset
- WiFi (rfkill)
- WPS
* LEDs:
- Power (amber/green)
- WAN (amber/green)
- WLAN 2G (green)
- WLAN 5G (blue)
- 4 x LAN (amber/green)
- USB (green)
- WPS (green)
* UART: 4-pin connector JP1, 3.3V (Vcc, TX, RX, GND), 115200 8N1
* Power supply: DC 12V 1.5A
* MAC addresses: LAN=WLAN2G on case label, WAN +1, WLAN5G +2
Important Notes
===============
0. NOR Flash (2 MiB) is not touched by OpenWrt installation.
1. NAND Flash (128 MiB) layout under OpenWrt is changed as follows:
all space is split between 4 MiB kernel and 124 MiB UBI areas;
vendor partitions (language and mtdoops) are removed; kernel space
size can be further expanded if needed; maximum image size is set
to 25600k for compatibility reasons and can also be increased.
2. CPU clock is 775 MHz, not 750 MHz.
3. 5 GHz wireless radio chip is Atheros AR9580-AR1A with bogus PCI
device ID 0xabcd. For ath9k driver to load successfully, this is
overriden in DTS with correct value for this chip, 0x0033.
4. RFKILL button is wired to AR9580 pin 9 which is normally disabled
by chip definition in ath9k code (0x0000F4FF gpio mask). Therefore
'qca,gpio-mask=<0xf6ff>' hack must be used for button to work
properly.
5. USB port is always on, no GPIO for 5V power control has been
identified.
Installation
============
* TFTP recovery
* TFTP via U-boot prompt
* sysupgrade
* Web interface
Test build configuration
========================
CONFIG_TARGET_ath79=y
CONFIG_TARGET_ath79_nand=y
CONFIG_TARGET_ath79_nand_DEVICE_netgear_wndr4300-v2=y
CONFIG_ALL_KMODS=y
CONFIG_DEVEL=y
CONFIG_CCACHE=y
CONFIG_COLLECT_KERNEL_DEBUG=y
CONFIG_IMAGEOPT=y
Signed-off-by: Michal Cieslakiewicz <michal.cieslakiewicz@wp.pl>
This commit adds support for the D-Link DIR-505, previously supported in
ar71xx.
Hardware
--------
SoC: Atheros AR9330
FLASH: 8M SPI-NOR
RAM: 64M
WIFI: 1T1R 1SS Atheros AR9330
LED: Power green, Status red
BTN: WPS, Reset
Installation
------------
Currently, installation is only possible by sysupgrading from an earlier
OpenWrt version, U-Boot TFTP or a modded U-Boot. I do not have the
original bootloader from D-Link on my device anymore, so i cannot test
the factory image.
Signed-off-by: David Bauer <mail@david-bauer.net>
The present U-Boot for GL-AR750S has a limit of 2 MB for kernel size.
While sysupgrade can manage kernels up to the present limit of 4 MB,
directly flashing a factory.img with a kernel size greater than 2 MB
through U-Boot will result in an unbootable device.
This commit uses the newly-introduced check-kernel-size build
operation to prevent the output of factory.img when the kernel
exceeds 2 MB in size, yet permits output of sysupgrade.img
as long as the kernel is within KERNEL_SIZE := 4096k
Cc: Chuanhong Guo <gch981213@gmail.com>
Signed-off-by: Jeff Kletsky <git-commits@allycomm.com>
The memory hacks got removed from ath10k with 1e27bef ("mac80211: remove
ath10k_pci memory hacks"). As this device has low amount of RAM, switch
to ath-10k-ct small buffers variant, to avoid the OOM Reaper.
Signed-off-by: Tomasz Maciej Nowak <tomek_n@o2.pl>
The Ubiquiti ToughSwitch 5XP is a 5-port PoE Gigabit switch with a single
Fast-Ethernet management port. It supports both 24V passive PoE out on all
five ports.
Flash: 8 MB
RAM: 64 MB
SoC: AR7242
Switch: ar8327
USB: 1x USB 2.0
Ethernet: 5x GbE, 1x FE
Installation of the firmware is possible either via serial + tftpboot or
the factory firmware update function via webinterface.
By default the single Fast-Ethernet port labeled "MGMT" is configured
as the WAN port. Thus access to the device is only possible via the
five switch ports.
Serial: 3v3 115200 8n1
The serial header is located in the lower left corner of the switches PCB:
```
|
|
|
| o
| o RX
| o TX
| o GND
|
|
++ +-++-+ ++ ++ +
+--+ ++ +--++--++--+
```
Signed-off-by: Tobias Schramm <tobleminer@gmail.com>
[remove ubnt,sw compatible - fix spelling - wrap commit message -
remove superfluous phy-mode property]
Signed-off-by: David Bauer <mail@david-bauer.net>
Flash: 8 MB
RAM: 64 MB
SoC: AR7242
Switch: bcm53128
USB: 1x USB 2.0
Ethernet: 8x GbE, 1x FE
The Ubiquiti ToughSwitch 8XP is a 8-port PoE Gigabit switch with a single
Fast-Ethernet management port. It supports both 24V passive PoE and 48V
802.11af/at PoE out on all eight ports.
By default the single Fast-Ethernet port labeled "MGMT" is configured as the
WAN port. Thus access to the device is only possible via the eight switch
ports.
Installation of the firware is possible either via serial + tftpboot or
the factory firmware update function via webinterface.
Serial: 3v3 115200 8n1
The serial header is located in the lower left corner of the switches PCB:
|
|
|
| o
| o RX
| o TX
| o GND
|
|
++ +-++-+ ++ ++ +
+--+ ++ +--++--++--+
Signed-off-by: Tobias Schramm <tobleminer@gmail.com>
[fix whitespace issue]
Signed-off-by: David Bauer <mail@david-bauer.net>
SW devices are Ubiquit ToughSwitch and EdgeSwitch series devices.
Hardware-wise they are very similar to the XM device series.
Signed-off-by: Tobias Schramm <tobleminer@gmail.com>
u-boot splits nand factory firmware at 2M offset, flash the first
part as kernel into spi nor and the other part as ubi into nand
flash. With previous commit increasing kernel size to 4M, generated
factory firmware is broken because ubi is at 4M offset.
This commit reduces kernel size definition to 2M in image Makefile,
producing proper factory image. Partition size in dts is kept
unchanged so that sysupgrade to a firmware with 2M+ kernel still
works.
Fixes: b496a2294c ("ath79: GL-AR750S: provide NAND support; increase kernel to 4 MB")
Reported-by: Jeff Kletsky <git-commits@allycomm.com>
Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
This move the slightly different target-specific implementations of
mktplinkfw from the targets to include/image-commands.mk and renames
it to tplink-v1-image. Having a common version will increase
consistency between implementation and will complete the
tplink build command already present in the new location.
Due to the slight differences of the original implementations, this
also does some adjustments to the device build commands/variables.
This also moves rootfs_align as this is required as dependency.
Tested on:
- TL-WDR4300 v1 (ath79, factory)
- TL-WDR4900 v1 (mpc85xx, sysupgrade)
- RE210 v1 (ramips, see Tested-by)
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Tested-by: Christoph Krapp <achterin@googlemail.com>
Both devices are available in 64M and 128M RAM configurations but there
is no visial indication which configuration one might get.
So just to be sure we properly support both configurations switch to
kmod-atk10k-ct-smallbuffers.
Signed-off-by: Christoph Krapp <achterin@googlemail.com>
This adds a "factory" image for the aircube-isp devices. Note that the
firmware can't be uploaded without prior special preparation. For the
most recent instructions on how to do that, visit the OpenWRT wiki page
of the Ubiquiti airCube ISP for details:
https://openwrt.org/toh/ubiquiti/ubiquiti_aircube_isp
Current procedure:
With the original firmware 2.5.0 it is possible to upload and execute a
script via the configuration. To do that download and unpack the
original configuration, adapt uhttpd config to execute another lua
handler (placed in the config directory) and pack and upload it again.
The lua handler can call a script that mounts an overlayfs and modifies
the "fwupdate.real" binary so that an unsigned image is accepted. The
overlayfs is necessary because a security system (called tomoyo) doesn't
allow binaries in other locations than /sbin/fwupdate.real (and maybe
some more) to access the flash when executed via network.
A big thanks to Torvald Menningen (Snap) from the OpenWRT forum for
finding out how to patch the binary so that it accepts an unsigned
image.
The current step-by-step procedure is:
- Use a version 2.5.0 of the original firmware. This is important
because a binary file will be modified.
- Download a configuration.
- Unpack it (it's just a tar gz file without an ending).
- Add the following to uhttpd:
``````
config 'uhttpd' 'other'
list listen_http 0.0.0.0:8080
list listen_http [::]:8080
option 'home' '/tmp/persistent/config/patch/www'
option lua_prefix '/lua'
option lua_handler '/tmp/persistent/config/patch/handler.lua'
``````
- Create a `patch` subfolder.
- Create a `patch/www` subfolder.
- Create a `patch/handler.lua` with the following content:
``````
function handle_request(env)
uhttpd.send("Status: 200 OK\r\n")
uhttpd.send("Content-Type: text/plain\r\n\r\n")
local command = "/bin/sh /tmp/persistent/config/patch/patch.sh 2>&1"
local proc = assert(io.popen(command))
for line in proc:lines() do
uhttpd.send(line.."\r\n")
end
proc:close()
end
``````
- Create a `patch/patch.sh` with the following content:
``````
#!/bin/sh -x
set -e
set -u
set -x
UBNTBOX_PATCHED="/tmp/fwupdate.real"
MD5FILE="/tmp/patchmd5"
cat <<EOF > ${MD5FILE}
c33235322da5baca5a7b237c09bc8df1 /sbin/fwupdate.real
EOF
# check md5 of files that will be patched
if ! md5sum -c ${MD5FILE}
then
echo "******** Error when checking files. Refuse to do anything. ********"
exit 0
fi
# prepare some overlay functionality
LOWERDIR="/tmp/lower_root"
mkdir -p ${LOWERDIR}
mount -t squashfs -oro /dev/mtdblock3 ${LOWERDIR}
overlay_some_path()
{
PATH_TO_OVERLAY=$1
ALIAS=$2
UPPERDIR="/tmp/over_${ALIAS}"
WORKDIR="/tmp/over_${ALIAS}_work"
mkdir -p ${UPPERDIR}
mkdir -p ${WORKDIR}
mount -t overlay -o lowerdir=${LOWERDIR}${PATH_TO_OVERLAY},upperdir=${UPPERDIR},workdir=${WORKDIR} overlay ${PATH_TO_OVERLAY}
}
# patch the ubntbox binary.
overlay_some_path "/sbin" "sbin"
echo -en '\x10' | dd of=/sbin/fwupdate.real conv=notrunc bs=1 count=1 seek=24598
echo "******** Done ********"
``````
- Repack the configuration.
- Upload it via the normal web interface.
- Wait about a minute. The webserver should restart.
- Now there is a second web server at port 8080 which can call the lua
script. Visit the page with a web browser. Link is for example
http://192.168.1.1:8080/lua
- You should see the output of the script with a "*** Done ***" at the
end. Note that the patches are not permanent. If you restart the
router you have to re-visit the link (but not re-upload the config).
- Now you can upload an unsigned binary via the normal web interface.
Signed-off-by: Christian Mauderer <oss@c-mauderer.de>
The factory image for the dlink_dir-615-e4 is getting too big which makes
the full ath79 tiny build fail, deactivate it by default.
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
This harmonizes the line wrapping in image Makefile device
definitions, as those are frequently copy-pasted and are a common
subject of review comments. Having the treatment unifying should
reduce the cases where adjustment is necessary afterwards.
Harmonization is achieved by consistently (read "strictly")
applying certain rules:
- Never put more than 80 characters into one line
- Fill lines up (do not break after 40 chars because of ...)
- Use one tab for indent after wrapping by "\"
- Only break after pipe "|" for IMAGE variables
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Specifications:
- FCC ID: KA2IR615E3
- SoC: MIPS32 24K 400 MHz Atheros AR7240
- RAM: 32 MiB DDR SDRAM ESMT M13S2561616A-5T
- Flash: 4 MiB NOR SPI Macronix MX25L3208E
- Wireless: AR9287 2.4 GHz 802.11n 2T2R, 2x RP-SMA connectors
- Ethernet: 5x 100BASE-TX Fast Ethernet
- LEDs: 9x GPIO, 1x ath9k
- Buttons: 2x tactile switches
- UART: 3.3 V, 115200 8n1
- USB: simple hardware modification required, 1x USB 1.1 Full Speed
Partitioning notes:
Vendor firmware (based on CameoAP99) defines two additional partitions:
"mac" @0x3b0000, size 0x10000 and "lp" @0x3c0000, size 0x30000.
The "mac" partition stores LAN MAC address and hardware board name.
However, the vendor firmware uses addresses from "nvram" partition, and
the board name is used only for informational purposes in the Web
interface (included in the pages' header), not affecting the firmware
image check.
The "lp" partition is supposed to contain a "language pack" (which can
be used to add an additional language support to the Web interface) and
is flashed separately, using the vendor firmware upgrade page.
Since these partitions are absolutely useless for OpenWrt and
overwriting them doesn't prevent downgrading to obsolete vendor
firmware, this patch appends the valueable space to "firmware".
Installation instructions:
- Upgrade from OpenWrt ar71xx with "sysupgrade -f -n"
or
- Upload as a firmware update via the vendor Web-interface
or
- Connect UART and use "loady" to upload and run OpenWrt initramfs
image, then sysupgrade from it (TFTP client doesn't work)
or
- Before powering up hold "reset" button and keep it pressed for about
15 seconds after, then access fail safe Web server on 192.168.0.1 (the
old uIP TCP/IP protocol stack is not compatible with modern Linux, the
kernel, so you'll need to use some other OS to do this). Can be
performed without a Web-browser too:
curl http://192.168.0.1/cgi/index \
-F Send=@openwrt-ath79-tiny-dlink_dir-615-e4-squashfs-factory.bin
Signed-off-by: Paul Fertser <fercerpav@gmail.com>
TP-Link TL-WR902AC v1 is a pocket-size, dual-band (AC750), successor of
TL-MR3020 (both devices use very similar enclosure, in same size). New
device is based on Qualcomm QCA9531 v2 + QCA9887. FCC ID: TE7WR902AC.
Specification:
- 650/391/216 MHz (CPU/DDR/AHB)
- 1x 10/100 Mbps Ethernet
- 1x USB 2.0 (GPIO-controlled power)
- 64 MB of RAM (DDR2)
- 8 MB of FLASH
- 2T2R 2.4 GHz (QCA9531)
- 1T1R 5 GHz (QCA9887)
- 5x LED (GPIO-controlled), 2x button, 1x 3-pos switch
- UART pads on PCB (TP1 -> TX, TP2 -> RX, TP3 -> GND, TP4 -> 3V3, jumper
resitors are missing on TX/RX lines)
- 1x micro USB (for power only)
Flash instructions:
Use "factory" image under vendor GUI.
Recovery instructions:
This device contains tftp recovery mode inside U-Boot. You can use it to
flash OpenWrt (use "factory" image) or vendor firmware.
1. Configure PC with static IP 192.168.0.66/24 and tftp server.
2. Rename "openwrt-ath79-generic-tplink_tl-wr902ac-v1-squashfs-factory.bin"
to "wr902acv1_un_tp_recovery.bin" and place it in tftp server dir.
3. Connect PC with LAN port, press the reset button, power up the router
and keep button pressed until WPS LED lights up.
4. Router will download file from server, write it to flash and reboot.
MAC Address summary:
- wlan1 (2.4GHz Wi-Fi): Label MAC
- wlan0 (5GHz Wi-Fi): Offset -1 from label
- eth0 (Wired): Offset +1 from label
Root access over serial line in vendor firmware: root/sohoadmin.
Based on support in ar71xx target by: Piotr Dymacz <pepe2k@gmail.com>
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
[remove size-cells from gpio-export]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The TL-WDR4300 v1 sold in Israel has a different TPLINK_HWID.
Thanks to Josh4300 for testing on device.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The variables UBNT_BOARD and UBNT_VERSION are defined in the parent
Device/ubnt definition and then overwritten for most of the derived
platform definitions (e.g. Device/ubnt-wa).
Since this mixed use of inheritance and overwriting can be misleading,
this moves the variables to the platform-based definitions.
While at it, reorder the definitions to have order consistent, too.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Hardware:
* SoC: Atheros AR9342-BL1A
* RAM: 64MB DDR2 (Winbond W9751G6KB-25)
* Flash: 16MB SPI NOR (Macronix MX25L12835FZ2I-10G)
* Ethernet: 1x 10/100/1000 Mbps (Atheros AR8035-A) with 24V PoE support
* Wifi 2.4GHz: Atheros AR9340 v2
* WiFi 5GHz: Ubiquiti U-AME-G1-BR4A (rebranded QCA988X v2)
* LEDs: 1x Power, 1x Ethernet
* Buttons: 1x Reset
* UART: 1x TTL 115200n8, 3.3V RX TX GND, 3.3V pin closest to RJ45 port
The LEDs do not seem to be connected to any GPIO, so there is currently
no way to control them.
Installation via U-Boot, TFTP and serial console:
* Configure your TFTP server with IP 192.168.1.254
* Connect serial console and power up the device
* Hit any key to stop autoboot
* tftpboot 0x81000000 openwrt-ath79-generic-ubnt_litebeam-ac-gen2-initramfs-kernel.bin
* bootm 0x81000000
* copy openwrt-ath79-generic-ubnt_litebeam-ac-gen2-squashfs-sysupgrade.bin
to /tmp
* sysupgrade /tmp/openwrt-ath79-generic-ubnt_litebeam-ac-gen2-squashfs-sysupgrade.bin
Signed-off-by: Stijn Tintel <stijn@linux-ipv6.be>
Acked-by: Petr Štetiar <ynezz@true.cz>
Acked-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The sysupgrade image contains OpenWrt specific metadata. Having this
metadata in the factory images makes no sense. Drop IMAGE/factory.bin
from Device/ubnt-wa and use the default from Device/ubnt instead.
Signed-off-by: Stijn Tintel <stijn@linux-ipv6.be>
Acked-by: Petr Štetiar <ynezz@true.cz>
Acked-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This patch is based on #1689 and adds support for TP-Link Archer
C6 v2 (US) and A6 (US/TW).
The hardware is the same as EU and RU variant, except for GPIOs
(LEDS/Buttons), flash(chip/partitions) and UART being available
on the board.
- SOC: Qualcomm QCA9563 @ 775MHz
- Flash: GigaDevice GD25Q127CS1G (16MiB)
- RAM: Zentel A3R1GE40JBF (128 MiB DDR2)
- Ethernet: Qualcomm QCA8337N: 4x 1Gbps LAN + 1x 1Gbps WAN
- Wireless:
- 2.4GHz (bgn) QCA9563 integrated (3x3)
- 5GHz (ac) Qualcomm QCA9886 (2x2)
- Button: 1x power, 1x reset, 1x wps
- LED: 6x LEDs: power, wlan2g, wlan5g, lan, wan, wps
- UART: 115200, 8n1 (header available on board)
Known issues:
- Wireless: 5GHz is known to have lower RSSI signal, it affects speed and range.
Flash instructions:
Upload openwrt-ath79-generic-tplink_archer-c6-v2-us-squashfs-factory.bin
via the router Web interface.
Flash instruction using tftp recovery:
1. Connect the computer to one of the LAN ports of the router
2. Set the computer IP to 192.168.0.66
3. Start a tftp server with the OpenWrt factory image in the
tftp root directory renamed to ArcherA6v2_tp_recovery.bin.
4. Connect power cable to router, press and hold the
reset button and turn the router on
5. Keep the reset button pressed until the WPS LED lights up
6. Wait ~150 seconds to complete flashing
Flash partitioning: I've followed #1689 for defining the partition layout
for this patch. The partition named as "tplink" @ 0xfd0000 is marked
as read only as it is where some config for stock firmware are stored.
On stock firmware those stock partitions starts at 0xfd9400 however
I had not been able to make it functional starting on the same address as
on stock fw, so it has been partitioned following #1689 and not the stock
partition layout for this specific partition. Due to that firmware/rootfs
partition lenght is 0xf80000 and not 0xf89400 as stock.
According to the GPL code, the EU/RU/JP variant does have different GPIO pins
assignment to LEDs and buttons, also the flash memory layout is different.
GPL Source Code: https://static.tp-link.com/resources/gpl/gpl-A6v2_us.tar.gz
Signed-off-by: Anderson Vulczak <andi@andi.com.br>
[wrap commit message, remove soft_ver change for C6 v2 EU, move LED aliases
to DTS files, remove dts-v1 in DTSI, node/property reorder in DTSI]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
YunCore XD4200 ('XD4200_W6.0' marking on PCB) is Qualcomm/Atheros based
(QCA9563, QCA9886, QCA8334) dual-band, Wave-2 AC1200 ceiling AP with PoE
(802.3at) support. A782 model ('T750_V5.1' marking on PCB) is a smaller
version of the XD4200, with similar specification but lower TX power.
Specification:
- QCA9563 (775 MHz)
- 128 MB of RAM (DDR2)
- 16 MB of FLASH (SPI NOR)
- 2x 10/100/1000 Mbps Ethernet (QCA8334), with 802.3at PoE support (WAN)
- Wi-Fi 2.4 GHz:
- XD4200: 2T2R (QCA9563), with ext. PA (SKY65174-21) and LNA
- A782: 2T2R (QCA9563), with ext. FEM (SKY85329-11)
- Wi-Fi 5 GHz:
- XD4200: 2T2R (QCA9886), with ext. FEM (SKY85728-11)
- A782: 2T2R (QCA9886), with ext. FEM (SKY85735-11)
- LEDs:
- XD4200: 5x (2x driven by SOC, 1x driven by AC radio, 2x Ethernet)
- A782: 3x (1x RGB, driven by SOC and radio, 2x Ethernet)
- 1x button (reset)
- 1x UART (4-pin, 2.54 mm pitch) header on PCB
- 1x DC jack (12 V)
Flash instructions:
If your device comes with generic QSDK based firmware, you can login
over telnet (login: root, empty password, default IP: 192.168.188.253),
issue first (important!) 'fw_setenv' command and then perform regular
upgrade, using 'sysupgrade -n -F ...' (you can use 'wget' to download
image to the device, SSH server is not available):
fw_setenv bootcmd "bootm 0x9f050000 || bootm 0x9fe80000"
sysupgrade -n -F openwrt-...-yuncore_...-squashfs-sysupgrade.bin
In case your device runs firmware with YunCore custom GUI, you can use
U-Boot recovery mode:
1. Set a static IP 192.168.0.141/24 on PC and start TFTP server with
'tftp' image renamed to 'upgrade.bin'
2. Power the device with reset button pressed and release it after 5-7
seconds, recovery mode should start downloading image from server
(unfortunately, there is no visible indication that recovery got
enabled - in case of problems check TFTP server logs)
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
YunCore QCA9k based devices released in 2019 require a custom TFTP image
for U-Boot built-in recovery mode (triggered with reset button). Image
has to be prepended with 'YUNCORE' keyword followed by U-Boot CLI
commands which will be executed later. Images without the custom header
will be ignored by U-Boot.
To be able to support both the vendor firmware (QSDK) and OpenWrt flash
layouts, used here commands change the 'bootcmd' before flashing image.
This commit adds generic helper script for YunCore devices with 16 MB of
flash and enables TFTP image generation for A770 model.
Signed-off-by: Vincent Wiemann <vincent.wiemann@ironai.com>
[pepe2k@gmail.com: commit description reworded, recipe renamed]
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
Ath10k packages were removed from ar71xx in master in commit
34113999ef ("ar71xx: Remove ath10k packages from archer-c7-v1 (fixes
FS#1743)") but ath79 in master and the 19.07 branch still suffer from
the issue.
Signed-off-by: Stijn Segers <foss@volatilesystems.org>
[commit description facelift]
Signed-off-by: Petr Štetiar <ynezz@true.cz>
This adds support for a popular low-cost 5GHz N based AP
Specifications:
- SoC: Atheros AR9344
- RAM: 64MB
- Storage: 8 MB SPI NOR
- Wireless: 5GHz 300 Mbps, 2x RP-SMA connector, 27 dBm TX power
- Ethernet: 1x 10/100 Mbps with 24V POE IN, 1x 10/100 Mbps
Installation:
Flash factory image through stock firmware WEB UI
or through TFTP
To get to TFTP recovery just hold reset button while powering on for
around 4-5 seconds and release.
Rename factory image to recovery.bin
Stock TFTP server IP:192.168.0.100
Stock device TFTP adress:192.168.0.254
Signed-off-by: Andrew Cameron <apcameron@softhome.net>
This adds support for a popular low-cost 5GHz N based AP
Specifications:
- SoC: Atheros AR9344
- RAM: 64MB
- Storage: 8 MB SPI NOR
- Wireless: 5GHz 300 Mbps, 2x RP-SMA connector, 27 dBm TX power
- Ethernet: 1x 10/100 Mbps with 24V POE IN, 1x 10/100 Mbps
Installation:
Flash factory image through stock firmware WEB UI
or through TFTP
To get to TFTP recovery just hold reset button while powering on for
around 4-5 seconds and release.
Rename factory image to recovery.bin
Stock TFTP server IP:192.168.0.100
Stock device TFTP adress:192.168.0.254
Signed-off-by: Andrew Cameron <apcameron@softhome.net>
ar71xx has just one board name "wndr3700" for WNDR3700 V1/V2,
WNDR3800 and WNDR3800CH, whereas ath79 provides separate images for
the boards. So, update SUPPORTED_DEVICES to store the correct
ar71xx board names.
Fixes: FS#2510
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Some Ubiquiti devices had the RSSI LEDs configured in 01_leds but
were missing the rssileds package, while others that don't have
RSSI LEDS had the package included.
This commit includes the rssileds package only for those devices
that need it.
Tested on a NanoStation M XW.
Signed-off-by: Roger Pueyo Centelles <roger.pueyo@guifi.net>
The GL.iNet GL-AR750S has been supported by the ar71xx and ath79
platforms with access to its 16 MB NOR flash, but not its 128 MB
SPI NAND flash.
This commit provides support for the NAND through the upstream
SPI-NAND framework.
At this time, the OEM U-Boot appears to only support loading the
kernel from NOR. This configuration is preserved as this time,
with the glinet,gl-ar750s-nand name reserved for a potential,
future, NAND-only boot.
The family of GL-AR750S devices on the ath79 platform now includes:
* glinet,gl-ar750m-nor-nand "nand" target
* glinet,gl-ar750m-nor "nand" target (NAND-aware)
NB: This commit increases the kernel size from 2 MB to 4 MB
"Force-less" sysupgrade is presently supported from the current
versions of following NOR-based firmwre images to the version of
glinet,gl-ar750s-nor firmware produced by this commit:
* glinet,gl-ar750s -- OpenWrt 19.07 ar71xx
* glinet,gl-ar750s -- OpenWrt 19.07 ath79
Users who have sucessfully upgraded to glinet,gl-ar750m-nor may then
flash glinet,gl-ar750m-nor-nand with sysupgrade to transtion to the
NAND-based variant.
Other upgrades to these images, including directly to the NAND-based
glinet,gl-ar750s-nor-nand firmware, can be accomplished through U-Boot.
NB: See "ath79: restrict GL-AR750S kernel build-size to 2 MB" which
enables flashing of NAND factory.img with the current GL-iNet U-Boot,
"U-Boot 1.1.4-gcf378d80-dirty (Aug 16 2018 - 07:51:15)"
The GL-AR750S OEM U-Boot allows upload and flashing of either NOR
firmware (sysupgrade.bin) or NAND firmware (factory.img) through its
HTTP-based GUI. Serial connectivity is not required.
The glinet,gl-ar750s-nor and glinet,gl-ar750s-nor-nand images
generated after this commit flash each other directly.
This commit changes the control of the USB VBUS to gpio-hog from
regulator-fixed introduced by commit 0f6b944c92. This reduces the
compressed kernel size by ~14 kB, with no apparent loss of
functionality. No other ath79-nand boards are using regulator-fixed
at this time.
Note: mtd_get_mac_binary art 0x5006 does not return the proper MAC
and the GL.iNet source indicates that only the 0x0 offset is valid
The ar71xx targets are unmodified.
Cc: Alexander Wördekemper <alexwoerde@web.de>
Signed-off-by: Jeff Kletsky <git-commits@allycomm.com>
The GL.iNet GL-AR300M series of devices includes variants without NAND
and only the 16 MB NOR flash. These include the GL-AR300M16 and the
GL-AR300M-Lite (already with its own board name).
This board-name addition provides disambiguation from the NAND-bearing
GL-AR300M devices, both for OpenWrt code and for end users.
Kernel and firmware support for NAND and UBI will add ~320 kB to the
overall firmware size at this time. This NOR-only option continues to
provide more compact firmware for both the GL-AR300M16 as well as
those who wish to use it as an alternate or primary, NOR-resident
firmware on the GL-AR300M.
The ar71xx targets are unmodified.
Installation
------------
Install through OEM U-Boot (HTTP-based) or `sysupgrade --force` when
booted from NOR and running OEM or OpenWrt, NOR-based firmware.
As one of the intentions is disambiguation from NAND-bearing units,
users who have flashed this firmware onto a device with NAND would
need to use U-Boot or `sysupgrade --force` to flash firmware that
again supports NAND.
There are no additional SUPPORTED_DEVICES as it is not possible to
determine if a device does or does not have NAND based on
either the OEM's or OpenWrt's board names prior to this patch.
Signed-off-by: Jeff Kletsky <git-commits@allycomm.com>
The GL.iNet GL-AR300M has been supported by the ar71xx and ath79
platforms with access to its 16 MB NOR flash, but not its 128 MB
SPI NAND flash.
This commit provides support for the NAND through the upstream
SPI-NAND framework. Devices with both NOR and NAND flash can support
independent firmware on each, with U-Boot able to boot from either.
The OEM U-Boot will fall back to the NOR firmware after three
"unsuccessful" boots.
The family of GL-AR300M devices on the ath79 platform now includes:
* glinet,gl-ar300m-lite "generic" target, NOR-only board
* glinet,gl-ar300m-nand "nand" target
* glinet,gl-ar300m-nor "nand" target (NAND-aware)
NB: This commit increases the kernel size from 2 MB to 4 MB
"Force-less" sysupgrade is presently supported from the current
versions of following NOR-based firmwre images to the version of
glinet,gl-ar300m-nor firmware produced by this commit:
* gl-ar300m -- OEM v3 NOR ar71xx (openwrt-ar300m16-*.bin)
* gl-ar300m -- OpenWrt 18.06 ar71xx
* gl-ar300m -- OpenWrt 19.07 ar71xx
Other upgrades to these images should be performed through U-Boot.
The GL-AR300M OEM U-Boot allows upload and flashing of either NOR
firmware (sysupgrade.bin) or NAND firmware (factory.img) through its
HTTP-based GUI. Serial connectivity is not required.
The glinet,gl-ar300m-nand and glinet,gl-ar300m-nor images generated
after this commit should safely flash each other using sysupgrade.
The boot counter is implemented by the OEM using u-boot-env. At this
time, it does not appear that the switch on the side of the unit can
be used to select NOR vs. NAND boot and the fail-over is only from
NAND to NOR. To save flash wear, it is only reset when running the
glinet,gl-ar300m-nand firmware.
NAND-specific base-files are used to remove impact on existing
generic and tiny targets.
As there is now no "generic" build appropriate for the GL-AR300M16,
(or for users of the GL-AR300M that do not need access to NAND)
it will be introduced in a subsequent commit.
Note: `mtd_get_mac_binary art 0x6` does not return the proper MAC
and the GL.iNet source indicates that only the 0x0 offset is valid
The ar71xx targets are unmodified.
Signed-off-by: Jeff Kletsky <git-commits@allycomm.com>
In ar71xx, the board name for the TL-WR1043ND v3 is equal to v2:
tl-wr1043nd-v2
Fix SUPPORTED_DEVICES for v3 in ath79 accordingly.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
TP-Link's TL-WR941 is sold with detachable antennas
internationally (ND version), but with fixed antennas in China
(N version). While hardware and images are similar for both
variants of v2 and v4, they are different for v6.
Having both explicitly will make it easier for user to identify
the correct image, and most importantly will raise awareness
that N and ND are not necessarily always the same as for
TL-WR841 series.
With an image selection webpage, using ALT0_MODEL as in this
patch will provide the option to list versions for N and ND
separately.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This adds support for a popular low-cost 2.4GHz N based AP
Specifications:
SoC: Qualcomm Atheros QCA9533 (650MHz)
RAM: 64MB
Storage: 8 MB SPI NOR
Wireless: 2.4GHz N based built into SoC 2x2
Ethernet: 2x 100/10 Mbps, integrated into SoC
Installation:
Flash factory image through stock firmware WEB UI
or through TFTP
To get to TFTP recovery just hold reset button while powering on for
around 4-5 seconds and release.
Rename factory image to recovery.bin
Stock TFTP server IP:192.168.0.100
Stock device TFTP adress:192.168.0.254
This also applies some minor changes to the common DTSI:
- use &wmac for label-mac-device, as this one is actually set up in
common DTSI
- move ð0 to parent DTSI
- fix several leading spaces, added/removed newlines
Signed-off-by: Andrew Cameron <apcameron@softhome.net>
[DTS style fixes/improvements, updated commit message/title]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
TP-Link WBS210 v2 is an outdoor wireless CPE for 2.4 GHz with
two Ethernet ports based on Atheros AR9344
The device is the same as TP-Link CPE220 v2, but with higher TX power (27 dBm
instead of 12 dBm) and two antenna connectors instead of built-in antennas.
Specifications:
- SoC: Atheros AR9344
- RAM: 64MB
- Storage: 8 MB SPI NOR
- Wireless: 2.4GHz 300 Mbps, 2x RP-SMA connector, 27 dBm TX power
- Ethernet: 1x 10/100 Mbps with 24V POE IN, 1x 10/100 Mbps
Installation:
Flash factory image through stock firmware WEB UI
or through TFTP
To get to TFTP recovery just hold reset button while powering on for
around 4-5 seconds and release.
Rename factory image to recovery.bin
Stock TFTP server IP: 192.168.0.100
Stock device TFTP adress: 192.168.0.254
The TP-Link WBS devices use the same GPIOs as the CPE devices,
except for the link4 LED. For this one, WBS devices use "2", while
CPE devices use "16". (Tested on WBS210 v2)
Signed-off-by: Bernhard Geier <freifunk@geierb.de>
[added comment about GPIO]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
There are two recent commits stating to add support for Netgear
WNDR4300, where the second one seems to be just leftover from
an earlier patch having been rebased.
Since the first patch already provides support in the most recent
state, just revert the second one.
This reverts commit cd87272eb2.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Specifications:
- QCA9558 Soc
- 720/800 (CPU/DDR)
- 1x 10/100/1000 Mbps WAN Ethernet
- 4x 10/100/1000 Mbps LAN Ethernet
- 64 MB RAM (DDR2)
- 8 MB FLASH
- QCA9558 2.4 GHz 802.11bgn
- 1x USB 2.0
Flash instruction
WebUI:
Download *-factory.bin image, rename to tp_firmware.bin and upload
it via the firmwary upgrade function of the stock firmware WebUI.
Tftp:
Rename OpenWRT or original firmware to wr1045v2_tp_recovery.bin and
Change your computer ip in 192.168.0.66 and subnet mask in 255.255.255.0.
Router will obtain IP 192.168.0.86 for a few seconds while loading,
when reset button pressed at power On.
Signed-off-by: Rasim Kalimullin <neutrino.vm@gmail.com>
[rebased onto base-files split]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This fixes several issues introduced with ZyXEL NBG6716 support:
- Inhomogeneous indent
- Wrong ath10k MAC patching function
- Wrong brackets for pad-to in nand.mk
- Add missing DEVICE_MODEL
- Remove k2t.sh include (copy/paste leftover)
Fixes: 99835e0999 ("ath79: add support for ZyXEL NBG6716")
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This patch adds ath79 support for Netgear WNR2200.
Router was previously supported by ar71xx target only (8 MiB variant).
Netgear WNR2200 has two flash versions - 8MiB sold in EU, US etc. and
16 MiB for Russia and China markets. Apart from flash size both variants
share the same hardware specification.
Specification
=============
* Description: Netgear WNR2200
* Loader: U-boot
* SOC: Atheros AR7241 (360 MHz)
* RAM: 64 MiB
* Flash: 8 MiB or 16 MiB (SPI NOR)
- U-boot binary: 256 KiB
- U-boot environment: 64 KiB
- Firmware: 7808 KiB or 16000 KiB
- ART: 64 KiB
* Ethernet: 4 x 10/100 LAN + 1 x 10/100 WAN
* Wireless: 2.4 GHz b/g/n (Atheros AR9287)
* USB: yes, 1 x USB 2.0
* Buttons:
- Reset
- WiFi (rfkill)
- WPS
* LEDs:
- Power (amber/green)
- WAN (amber/green)
- WLAN (blue)
- 4 x LAN (amber/green)
- WPS (green)
* UART: 4-pin connector JP1, 3.3V (Vcc, TX, RX, GND), 115200 8N1
* Power supply: DC 12V 1.5A
* MAC addresses: LAN on case label, WAN +1, WLAN +2
Installation
============
* TFTP recovery
* TFTP via U-boot prompt
* sysupgrade
* Web interface
Test build configuration
========================
CONFIG_TARGET_ath79=y
CONFIG_TARGET_ath79_generic=y
CONFIG_TARGET_ath79_generic_DEVICE_netgear_wnr2200-8m=y
CONFIG_ALL_KMODS=y
CONFIG_DEVEL=y
CONFIG_CCACHE=y
CONFIG_COLLECT_KERNEL_DEBUG=y
CONFIG_IMAGEOPT=y
CONFIG_KERNEL_DEBUG_INFO=y
CONFIG_KERNEL_DEBUG_KERNEL=y
Signed-off-by: Michal Cieslakiewicz <michal.cieslakiewicz@wp.pl>
This commit adds support for the Aerohive HiveAP-121. It was previously
already supported in the ar71xx subtarget.
The following is copied from the commit which added ar71xx support:
Specification:
- SoC: Atheros AR9344-BC2A at 560MHz
- WiFi 1: 2.4GHz Atheros AR9340? - SoC
- WiFi 2: 5.0GHz Atheros AR9382-AL1A
- Memory: 128MB from 2x Nanya NT5TU32M16DG-AC
- SPI: 1MB Macronix MX25L8006E
- NAND: 128MB Hynix H27U1G8F2BTR-BC
- Ethernet: Atheros AR8035-A
- USB: 1x 2.0
- TPM: Atmel SC3204
Flashing:
1. Hook into UART (9600 baud) and enter U-Boot. You may need to enter
a password of administrator or AhNf?d@ta06 if prompted.
2. Once in U-Boot, download and flash LEDE factory image over tftp:
dhcp;
setenv serverip tftp-server-ip;
tftpboot 0x81000000 lede-ar71xx-nand-hiveap-121-squashfs-factory.bin;
nand erase 0x800000 0x800000;
nand write 0x81000000 0x800000 0x800000;
reset;
Signed-off-by: David Bauer <mail@david-bauer.net>
This fixes the remaining IMAGE_SIZE issues in ath79 target.
All devices in target have been checked, so together with
previous patches this target should be "clean" afterwards.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
So far, IMAGE_SIZE is set as follows:
tplink-4m* 3904k 0x3d0000
tplink-8m* 7936k 0x7c0000
tplink-16m* 15872k 0xf80000
However, based on the size of firmware partitions in DTS it should
be:
tplink-4m* 3904k 0x3d0000
tplink-8m* 8000k 0x7d0000
tplink-16m* 16192k 0xfd0000
All (!) 8m*/16m* devices actually follow the latter scheme, which
is also consistent in terms of left free space for other
partitions. Thus, fix it.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This addresses IMAGE_SIZE inconsistencies in generic_ubnt.mk by:
1. (cosmetical) Move IMAGE_SIZE out of top definition ("ubnt"),
since despite two all subdefinition have different values.
2. (change) Fix IMAGE_SIZE for ubnt-xm and ubnt-bz (7552k->7488k).
3. (cosmetical) Move IMAGE_SIZE of ubnt-wa devices to parent node
since all have same size (it is defined in parent DTSI ...).
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Factory image generated for Netgear WNR1000 v2 has incorrect device
and hardware ID information in header due to missing makefile
variables. This fix adds them to device section.
Signed-off-by: Michal Cieslakiewicz <michal.cieslakiewicz@wp.pl>