Currently, the MT7530 DSA subdriver configures the MT7530 switch to provide
direct access to switch PHYs, meaning, the switch PHYs listen on the MDIO
bus the switch listens on. The PHY muxing feature makes use of this.
This is problematic as the PHY may be attached before the switch is
initialised, in which case, the PHY will fail to be attached.
Since commit 91374ba537bd ("net: dsa: mt7530: support OF-based registration
of switch MDIO bus") on mainline Linux, we can describe the switch PHYs on
the MDIO bus of the switch on the device tree.
When the PHY is described this way, the switch will be initialised first,
then the switch MDIO bus will be registered. Only after these steps, the
PHY will be attached.
Describe the switch PHYs on mt7621.dtsi and remove defining the switch PHY
on the SoC's mdio bus node. When the PHY muxing is in use, the interrupts
for the muxed PHY won't work, therefore delete the "interrupts" property on
the devices where the PHY muxing feature is in use.
Signed-off-by: Arınç ÜNAL <arinc.unal@arinc9.com>
Initial conversion to new LED color/function format
and drop label format where possible. The same label
is composed at runtime.
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
Device is the same as Xiaomi Mi Router 4A Gigabit, except of:
- 5G WiFi is MT7663
- addresses of leds, wifi and eth ports are slightly changed
Specs:
SoC: MT7621
CPU: 2 x 880 MHz
ROM: 16 MB
RAM: 128 MB
WLAN: MT7603, MT7663
MAC addresses:
WAN **** factory 0xe006 (label)
LAN *:f7 factory 0xe000
2.4 GHz *:f8 factory 0x0000+0x4 (mtd-eeprom+0x4)
5 GHz *:f9 factory 0x8000+0x4 (mtd-eeprom+0x4)
Installation:
Factory firmware is based on a custom OpenWrt 17.x.
Installation is the same as for Xiaomi Mi Router 4A Gigabit.
Probably the easiest way to install is to use the script from
this repository: https://github.com/acecilia/OpenWRTInvasion/pull/155
In a more advanced case, you can do everything yourself:
- gain access to the device through one of the exploits described
in the link above
- upload sysupgrade image to /tmp
- overwrite stock firmware:
# mtd -e OS1 -r write /tmp/sysupgrade.bin OS1
Recovery:
Recovery procedure is the same as for Xiaomi Mi Router 4A Gigabit.
Possible options can be found here:
https://openwrt.org/inbox/toh/xiaomi/xiaomi_mi_router_4a_gigabit_edition
One of the ways is to use another router with OpenWrt:
- connect both routers by their LAN ports
- download stock firmware from [1]
- place it inside /tmp/test.bin on the main router
- configure PXE/TFTP on the main router
- power off 4Av2, hold Reset button, power on
- as soon as image download via TFTP starts, Reset can be released
- blinking blue wan LED will indicate the end of the flashing process,
now router can be rebooted
[1] http://cdn.cnbj1.fds.api.mi-img.com/xiaoqiang/rom/r4av2/miwifi_r4av2_firmware_release_2.30.28.bin
Signed-off-by: Dmitry Sokolov <e323w@proton.me>
Mux the MT7530 switch's phy0/4 to the SoC's gmac1 on devices where RGMII2
pins are available. This achieves 2 Gbps total bandwidth to the CPU using
the second RGMII.
The ports called "wan" are muxed where possible. On a minority of devices,
this is not possible. Those cases:
mt7621_ampedwireless_ally-r1900k.dts: lan3
mt7621_ubnt_edgerouter-x.dts: eth0
mt7621_gnubee_gb-pc1.dts: ethblue
mt7621_linksys_re6500.dts: lan1
mt7621_netgear_wac104.dts: lan4
mt7621_tplink_eap235-wall-v1.dts: lan0
mt7621_tplink_eap615-wall-v1.dts: lan0
mt7621_ubnt_usw-flex.dts: lan1
The "wan" port is just what the vendor designated on the board/plastic
chasis of the device. On a technical level, there is no difference between
a lan and wan port on MT7621AT, MT7621DAT and MT7621ST SoCs. Prefer
connecting to WAN via the port described above for these devices to benefit
the feature brought with this patch.
mt7621_d-team_newifi-d2.dts cannot benefit this feature, although it looks
like it should, because the rgmii2 pins are wired to unused components.
Tested on a range of devices documented on the GitHub PR.
Link: https://github.com/openwrt/openwrt/pull/10238
Signed-off-by: Arınç ÜNAL <arinc.unal@arinc9.com>
Define nvmem-cells and convert mtd-mac-address to nvmem implementation.
The conversion is done with an automated script.
Signed-off-by: Ansuel Smith <ansuelsmth@gmail.com>
Reduce spi-max-frequency for Xiaomi MI Router 4AG model
Xiaomi MI Router 4AG MTD uses two flash chips (no specific on router versions when produced from factory) - GD25Q128C and W25Q128BV.
These flash chips are capable of high frequency, but due to poor board design or manufacture process.
We are seeing the following errors in the linux kernel bootup:
`spi-nor spi0.0: unrecognized JEDEC id bytes: cc 60 1c cc 60 1c
spi-nor: probe of spi0.0 failed with error -2`
This causes the partitions not to be detected
`VFS: Cannot open root device "(null)" or unknown-block(0,0): error -6`
Then creates a bootloop and a bricked router.
The solution to limit this race condition is to reduce the frequency from 80 mhz to 50 mhz.
Signed-off-by: David Bentham <db260179@gmail.com>
The Xiaomi Mi Router 4A Gigabit model has a race condition on bootup
causing the SQUASHFS data errors to appear and create a bootloop
scenario.
Adding the m25p,fast-read property resolves this issue.
Suggested-by: David Bentham <db260179@gmail.com>
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This device has previously been supported by the image
for Xiaomi Mi Router 3G v2. Since this is not obvious, the
4A is marketed as a new major revision and it also seems to
have a different bootloader, this will be both more tidy and
more helpful for the users.
Apart from that, note that there also is a 100M version of
the device that uses mt7628 platform, so a specifically named
image will also prevent confusion in this area.
Specifications:
- SoC: MediaTek MT7621
- Flash: 16 MiB NOR SPI
- RAM: 128 MiB DDR3
- Ethernet: 3x 10/100/1000 Mbps (switched, 2xLAN + WAN)
- WIFI0: MT7603E 2.4GHz 802.11b/g/n
- WIFI1: MT7612E 5GHz 802.11ac
- Antennas: 4x external (2 per radio), non-detachable
- LEDs: Programmable "power" LED (two-coloured, yellow/blue)
Non-programmable "internet" LED (shows WAN activity)
- Buttons: Reset
Installation:
Bootloader won't accept any serial input unless "boot_wait" u-boot
environment variable is changed to "on".
Vendor firmware won't accept any serial input until "uart_en" is
set to "1".
Using the https://github.com/acecilia/OpenWRTInvasion exploit you
can gain access to shell to enable these options:
To enable uart keyboard actions - 'nvram set uart_en=1'
To make uboot delay boot work - 'nvram set boot_wait=on'
Set boot delay to 5 - 'nvram set bootdelay=5'
Then run 'nvram commit' to make the changes permanent.
Once in the shell (following the OpenWRTInvasion instructions) you
can then run the following to flash OpenWrt and then reboot:
'cd /tmp; curl https://downloads.openwrt.org/...-sysupgrade.bin
--output firmware.bin; mtd -e OS1 -r write firmware.bin OS1'
Suggested-by: David Bentham <db260179@gmail.com>
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>