Asus RT-AC1200 is a 2.4/5GHz dual band AC router,
based on MediaTek MT7628AN.
Specification:
* SoC: MT7628AN
* RAM: DDR2 64 MiB
* Flash: 16 MiB NOR (W25Q128BV)
* Wi-Fi:
* 2.4GHz: SoC Built-in
* 5GHz: MT7612EN
* Ethernet: 5x 100Mbps
* Switch: SoC built-in
* USB: 1x 2.0
Flash Layout:
0x0000000-0x0030000 : "bootloader"
0x0030000-0x0040000 : "nvram"
0x0040000-0x0050000 : "factory"
0x0050000-0x1000000 : "firmware"
MAC address:
LAN: factory 0x28
WAN: factory 0x22
2.4G: factory 0x4
5G: factory 0x8004
Installation via **recovery** mode:
1. Download the Asus recovery firmware (windows) tool from
http://dlcdnet.asus.com/pub/ASUS/LiveUpdate/Release/Wireless/Rescue.zip
2. Set your ethernet IP manually 192.168.1.5 / 255.255.255.0 with NO
gateway.
3. Plug in your ethernet to LAN port 1 on the router.
4. Load up the recovery software with the firmware file, but don't press
"Upload" yet.
5. Plug in the router to power WHILE HOLDING the reset button in. While
CONTINUING to hold the button, select "Upload" Continue to hold the
reset button in until it finishes and verifies!
6. If that doesn't work try pressing "Upload" first just before you do
step 5. At some point while holding reset the rescue tool will finally
detect and upload the firmware. That's when you can let go of the
reset button.
7. The router will reboot and not much will happen. Wait a minute or 2.
8. Power off and on the router again. Voila. Set everything your Ethernet
IP back to DHCP (automatically) and you're good to go.
Revert to stock firmware:
1. Install stock image via recovery mode.
Tested-by: Ivan Pavlov <AuthorReflex@gmail.com>
Signed-off-by: Ray Wang <raywang777@foxmail.com>
This adds support for the Renkforce WS-WN530HP3-A ceiling-
mountable Wireless Access Point, which is powered over PoE.
Hardware:
- SoC: Mediatek MT7621DAT
- RAM: 128MiB on SoC
- Flash: 16MiB GigaDevice GD25Q128C
- 2.4Ghz Wifi: Mediatek MT603EN
- 5GHz Wifi: MT613BEN
- Ethernet:
- 1x 1GBit WAN port, passive PoE capable
- 2x 1GBit LAN ports
LEDs: 1x Bi-Color LED (red/blue)
Buttons: 1x Reset Button, 1x Power Button
Installation:
Power on the access point and immedately press the reset
button for 10 seconds. Connect web-browser to 192.168.10.1
and upload sysupgrade image. Flash uploaded image and wait
about 2 minutes for reboot.
Signed-off-by: Birger Koblitz <mail@birger-koblitz.de>
Signed-off-by: Petr Štetiar <ynezz@true.cz> [fixed SoB]
AV1300 Gigabit Passthrough Powerline ac Wi-Fi Extender
Specifications
--------------
* SoC: MediaTek MT7621AT
* CPU: 880 MHz MIPS 1004KEc dual-core CPU
* RAM: 64 MiB DDR2 (Zentel A3R12E40DBF-8E)
* Flash: 8 MiB SPI NOR (GigaDevice GD25Q64CSIG)
* Ethernet: SoC built-in Switch 5x 1GbE
* Port 0: PLC (connected through AR8035-A)
* Port 1-3: LAN
* WLAN: 2x2 2.4GHz 300 Mbps + 2x2 5GHz 867 Mbps (MT7603EN + MT7613BEN)
* PLC: HomePlug AV2 (Qualcomm QCA7500)
* PLC Flash: 2MiB SPI NOR (GigaDevice GD25Q16CSIG)
* Buttons: Reset, LED, Pair, Wi-Fi
* LEDs: Power (green), PLC (green/amber), LAN (green), 2.4G (green),
5G (green)
* UART: J1 (57600 baud)
* Pinout: (3V3) (GND) (RX) (TX)
* Visually identify GND from connection to PCB ground plane
Installation
------------
Installation is possible from the OEM web interface. Make sure to install
the latest OEM firmware first, so that the PLC firmware is at the latest
version. However, please first check the OpenWRT Wiki page for
confirmation that your OEM firmware version is supported.
Signed-off-by: Joe Mullally <jwmullally@gmail.com>
Add support for the TP-Link EAP615-Wall, an AX1800 Wall Plate WiFi 6 AP.
The device is very similar to the TP-Link EAP235-Wall.
Hardware:
* SoC: MediaTek MT7621AT
* RAM: 128MiB
* Flash: 16MiB SPI-NOR
* Ethernet: 4x GbE
* Back: ETH0 (PoE-PD)
* Bottom: ETH1, ETH2, ETH3 (PoE passthrough)
* WiFi: MT7905DAN/MT7975DN 2.4/5 GHz 2T2R
* LEDS: 1x white
* Buttons: 1x LED, 1x reset
Stock firmware uses a random MAC address for ethernet. OpenWrt uses the
MAC address that is on the device label for ethernet and the wireless
interfaces. MAC address must not be incremented, as this will cause MAC
address conflicts in case you have two devices with consecutive MAC
addresses. Instead, different locally administered addresses will be
generated automatically, based on the MAC on the label.
Installation via stock firmware:
* Enable SSH in the TP-Link web interface
* SSH to the device
* Run `cliclientd stopcs`
* Upload the OpenWrt factory image via the TP-Link web interface
Installation via bootloader:
* Solder TTL header. Pinout: 1: TX, 2: RX, 3: GND, 4: VCC, with pin 1
closest to ETH1. Baud rate 115200
* Interrupt boot process by holding a key during boot
* Boot the OpenWrt initramfs:
# tftpboot 0x84000000 openwrt-ramips-mt7621-tplink_eap615-wall-v1-initramfs-kernel.bin
# bootm
* Copy openwrt-ramips-mt7621-tplink_eap615-wall-v1-squashfs-sysupgrade.bin
to /tmp and use sysupgrade to install it
Thanks to Sander Vanheule for his work on the EAP235-Wall, which made
adding support for the EAP615-Wall very easy.
Signed-off-by: Stijn Tintel <stijn@linux-ipv6.be>
Reviewed-by: Sander Vanheule <sander@svanheule.net>
Acked-by: Arınç ÜNAL <arinc.unal@arinc9.com>
Use correct indent in target/linux/ramips/image/mt7621.mk
to be consistent with the rest of the file.
Signed-off-by: Nick McKinney <nick@ndmckinney.net>
[rephrase commit message as Adrian suggested, fix a6004ns-m indent]
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
Add support for ipTIME A3002MESH.
Hardware:
- SoC: MediaTek MT7621AT (880MHz, Duel-Core)
- RAM: DDR3 128MB
- Flash: XMC XM25QH128AHIG (SPI-NOR 16MB)
- WiFi: MediaTek MT7615D (2.4GHz, 5GHz, DBDC)
- Ethernet: MediaTek MT7530 (WAN x1, LAN x2, SoC built-in)
- UART: [GND, RX, TX, 3.3V] (57600 8N1, J4)
MAC addresses:
| interface | MAC | source | comment
|-----------|-------------------|----------------|----------
| LAN | 70:XX:XX:5X:XX:X3 | |
| WAN | 70:XX:XX:5X:XX:X1 | u-boot 0x1fc40 |
| WLAN 2G | 72:XX:XX:4X:XX:X0 | |
| WLAN 5G | 70:XX:XX:5X:XX:X0 | factory 0x4 |
| | 70:XX:XX:5X:XX:X0 | u-boot 0x1fc20 | unknown
| | 70:XX:XX:5X:XX:X2 | factory 0x8004 | unknown
- WLAN 2G MAC address is not the same as stock firmware since OpenWrt
uses LAN MAC address with local bit sets.
Installation:
1. Flash initramfs image. This can be done using stock web ui or TFTP
2. Connect to OpenWrt with an SSH connection to 192.168.1.1
3. Perform sysupgrade with sysupgrade image
Revert to stock firmware:
- Flash stock firmware via OEM TFTP Recovery mode
- Perform sysupgrade with stock image
TFTP Recovery method:
1. Unplug the router
2. Hold the reset button and plug in
3. Release when the power LED stops flashing and go off
4. Set your computer IP address manually to 192.168.0.x / 255.255.255.0
5. Flash image with TFTP client to 192.168.0.1
Signed-off-by: Yoonji Park <koreapyj@dcmys.kr>
[wrap/rephrase commit message]
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
The Ubiquiti EdgePoint R6 is identical to the EdgeRouter X SFP.
However, it fits well into outdoor environments due to its water-proven
case.
More specifications: 9715beb04c74 ("ramips: add support for Ubiquiti
EdgeRouter X-SFP")
Signed-off-by: Nick Hainke <vincent@systemli.org>
ipTIME AX2004M is an 802.11ax (Wi-Fi 6) router, based on MediaTek
MT7621A.
Specifications:
* SoC: MT7621A
* RAM: 256 MiB
* Flash: NAND 128 MiB
* Wi-Fi:
* MT7915D: 2.4/5 GHz (DBDC)
* Ethernet: 5x 1GbE
* Switch: SoC built-in
* USB: 1x 3.0
* UART: J4 (115200 baud)
* Pinout: [3V3] (TXD) (RXD) (GND)
MAC addresses:
| interface | MAC address | source | comment
|-----------|-------------------|----------------|---------
| LAN | 58:xx:xx:00:xx:9B | | [1]
| WAN | 58:xx:xx:00:xx:99 | |
| WLAN 2G | 58:xx:xx:00:xx:98 | factory 0x4 |
| WLAN 5G | 5A:xx:xx:40:xx:98 | |
| | 58:xx:xx:00:xx:98 | config ethaddr |
[1] Used in this patch as WLAN 5G MAC address with the local bit set
Load addresses:
* stock
* 0x80010000: FIT image
* 0x81001000: kernel image -> entry
* OpenWrt
* 0x80010000: FIT image
* 0x82000000: uncompressed kernel+relocate image
* 0x80001000: relocated kernel image -> entry
Notes:
* This device has a dual-boot partition scheme, but this firmware works
only on boot partition 1. The stock web interface will flash only on the
inactive boot partition, but the recovery web page will always flash on
boot partition 1.
Installation via recovery mode:
1. Press reset button, power up the device, wait >10s for CPU LED
to stop blinking.
2. Upload recovery image through the recovery web page at 192.168.0.1.
Revert to stock firmware:
1. Install stock image via recovery mode.
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
Commit f4a79148f8cb ("ramips: add support for ipTIME AX2004M") was
reverted due to KERNEL_LOADADDR leakage, and it seems the problem can be
mitigated by moving the variable definition into Device/Default. By this,
KERNEL_LOADADDR redefined in a device recipe will not be leaked into the
subsequent device recipes anymore and thus will remain as a per-device
variable.
Ref: cd6a6e3030ff ("Revert "ramips: add support for ipTIME AX2004M"")
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
Xiaomi Mi Router CR6606 is a Wi-Fi6 AX1800 Router with 4 GbE Ports.
Alongside the general model, it has three carrier customized models:
CR6606 (China Unicom), CR6608 (China Mobile), CR6609 (China Telecom)
Specifications:
- SoC: MediaTek MT7621AT
- RAM: 256MB DDR3 (ESMT M15T2G16128A)
- Flash: 128MB NAND (ESMT F59L1G81MB)
- Ethernet: 1000Base-T x4 (MT7530 SoC)
- WLAN: 2x2 2.4GHz 574Mbps + 2x2 5GHz 1201Mbps (MT7905DAN + MT7975DN)
- LEDs: System (Blue, Yellow), Internet (Blue, Yellow)
- Buttons: Reset, WPS
- UART: through-hole on PCB ([VCC 3.3v](RX)(GND)(TX) 115200, 8n1)
- Power: 12VDC, 1A
Jailbreak Notes:
1. Get shell access.
1.1. Get yourself a wireless router that runs OpenWrt already.
1.2. On the OpenWrt router:
1.2.1. Access its console.
1.2.2. Create and edit
/usr/lib/lua/luci/controller/admin/xqsystem.lua
with the following code (exclude backquotes and line no.):
```
1 module("luci.controller.admin.xqsystem", package.seeall)
2
3 function index()
4 local page = node("api")
5 page.target = firstchild()
6 page.title = ("")
7 page.order = 100
8 page.index = true
9 page = node("api","xqsystem")
10 page.target = firstchild()
11 page.title = ("")
12 page.order = 100
13 page.index = true
14 entry({"api", "xqsystem", "token"}, call("getToken"), (""),
103, 0x08)
15 end
16
17 local LuciHttp = require("luci.http")
18
19 function getToken()
20 local result = {}
21 result["code"] = 0
22 result["token"] = "; nvram set ssh_en=1; nvram commit; sed -i
's/channel=.*/channel=\"debug\"/g' /etc/init.d/dropbear; /etc/init.d/drop
bear start;"
23 LuciHttp.write_json(result)
24 end
```
1.2.3. Browse http://{OWRT_ADDR}/cgi-bin/luci/api/xqsystem/token
It should give you a respond like this:
{"code":0,"token":"; nvram set ssh_en=1; nvram commit; ..."}
If so, continue; Otherwise, check the file, reboot the rout-
er, try again.
1.2.4. Set wireless network interface's IP to 169.254.31.1, turn
off DHCP of wireless interface's zone.
1.2.5. Connect to the router wirelessly, manually set your access
device's IP to 169.254.31.3, make sure
http://169.254.31.1/cgi-bin/luci/api/xqsystem/token
still have a similar result as 1.2.3 shows.
1.3. On the Xiaomi CR660x:
1.3.1. Login to the web interface. Your would be directed to a
page with URL like this:
http://{ROUTER_ADDR}/cgi-bin/luci/;stok={STOK}/web/home#r-
outer
1.3.2. Browse this URL with {STOK} from 1.3.1, {WIFI_NAME}
{PASSWORD} be your OpenWrt router's SSID and password:
http://{MIROUTER_ADDR}/cgi-bin/luci/;stok={STOK}/api/misy-
stem/extendwifi_connect?ssid={WIFI_NAME}&password={PASSWO-
RD}
It should return 0.
1.3.3. Browse this URL with {STOK} from 1.3.1:
http://{MIROUTER_ADDR}/cgi-bin/luci/;stok={STOK}/api/xqsy-
stem/oneclick_get_remote_token?username=xxx&password=xxx&-
nonce=xxx
1.4. Before rebooting, you can now access your CR660x via SSH.
For CR6606, you can calculate your root password by this project:
https://github.com/wfjsw/xiaoqiang-root-password, or at
https://www.oxygen7.cn/miwifi.
The root password for carrier-specific models should be the admi-
nistration password or the default login password on the label.
It is also feasible to change the root password at the same time
by modifying the script from step 1.2.2.
You can treat OpenWrt Router however you like from this point as
long as you don't mind go through this again if you have to expl-
oit it again. If you do have to and left your OpenWrt router unt-
ouched, start from 1.3.
2. There's no official binary firmware available, and if you lose the
content of your flash, no one except Xiaomi can help you.
Dump these partitions in case you need them:
"Bootloader" "Nvram" "Bdata" "crash" "crash_log"
"firmware" "firmware1" "overlay" "obr"
Find the corespond block device from /proc/mtd
Read from read-only block device to avoid misoperation.
It's recommended to use /tmp/syslogbackup/ as destination, since files
would be available at http://{ROUTER_ADDR}/backup/log/YOUR_DUMP
Keep an eye on memory usage though.
3. Since UART access is locked ootb, you should get UART access by modify
uboot env. Otherwise, your router may become bricked.
Excute these in stock firmware shell:
a. nvram set boot_wait=on
b. nvram set bootdelay=3
c. nvram commit
Or in OpenWrt:
a. opkg update && opkg install kmod-mtd-rw
b. insmod mtd-rw i_want_a_brick=1
c. fw_setenv boot_wait on
d. fw_setenv bootdelay 3
e. rmmod mtd-rw
Migrate to OpenWrt:
1. Transfer squashfs-firmware.bin to the router.
2. nvram set flag_try_sys1_failed=0
3. nvram set flag_try_sys2_failed=1
4. nvram commit
5. mtd -r write /path/to/image/squashfs-firmware.bin firmware
Additional Info:
1. CR660x series routers has a different nand layout compared to other
Xiaomi nand devices.
2. This router has a relatively fresh uboot (2018.09) compared to other
Xiaomi devices, and it is capable of booting fit image firmware.
Unfortunately, no successful attempt of booting OpenWrt fit image
were made so far. The cause is still yet to be known. For now, we use
legacy image instead.
Signed-off-by: Raymond Wang <infiwang@pm.me>
The commit 04e91631e050 ("om-watchdog: add support for Teltonika RUT5xx
(ramips)") used the deprecated om-watchdog daemon to handle the GPIO-line
connected watchdog on the Teltonika RUT5xx.
But this daemon has massive problems since commit 30f61a34b4cf
("base-files: always use staged sysupgrade"). The process will always be
stopped on sysupgrades. If the sysupgrade takes slightly longer, the
watchdog is not triggered at the correct time and thus the sysupgrade will
interrupted hard by the watchdog sysupgrade. And this hard interrupt can
easily brick the device when there is no fallback (dual-boot, ...).
Signed-off-by: Sven Eckelmann <sven@narfation.org>
Commit f4a79148f8cb ("ramips: add support for ipTIME AX2004M") seems to
leak KERNEL_LOADADDR 0x82000000 to other devices, causing the to no
longer boot. The leak is visible in u-boot:
Using 'config-1' configuration
Trying 'kernel-1' kernel subimage
Description: MIPS OpenWrt Linux-5.10.92
Type: Kernel Image
Compression: lzma compressed
Data Start: 0x840000e4
Data Size: 10750165 Bytes = 10.3 MiB
Architecture: MIPS
OS: Linux
Load Address: 0x82000000
Entry Point: 0x82000000
Normally, it should look like this:
Using 'config-1' configuration
Trying 'kernel-1' kernel subimage
Description: MIPS OpenWrt Linux-5.10.92
Type: Kernel Image
Compression: lzma compressed
Data Start: 0xbfca00e4
Data Size: 2652547 Bytes = 2.5 MiB
Architecture: MIPS
OS: Linux
Load Address: 0x80001000
Entry Point: 0x80001000
Revert the commit to avoid more people soft-bricking their devices.
This reverts commit f4a79148f8cbb7dfbcddfb0c1128caec45a01596.
Signed-off-by: Stijn Tintel <stijn@linux-ipv6.be>
The Wavlink WL-WN535K1 is a "mesh" router with 2 gigabit ethernet ports
and one fast ethernet port. Mine is branded as Talius TAL-WMESH1.
It can be found in kits of 2 or 3 (WL-WN535K2 or WL-WN535K3).
The motherboard is labelled as WS-WN535G3-B-V1.2 so this image could
potentially work for WL-WN535G3R and WS-WN535G3R with little to none
effort, but it's untested.
Hardware
--------
SoC: Mediatek MT7620A
RAM: 64MB
FLASH: 8MB NOR (GigaDevice GD25Q64CS)
ETH:
- 2x 10/100/1000 Mbps Ethernet (RTL8211F)
- 1x 10/100 Mbps Ethernet (integrated in SOC)
WIFI:
- 2.4GHz: 1x (integrated in SOC) (2x2:2)
- 5GHz: 1x MT7612E (2x2:2)
- 4 internal antennas
BTN:
- 1x Reset button
- 1x Touchlink button (set to WPS)
- 1x ON/OFF switch
LEDS:
- 1x Red led (system status)
- 1x Blue led (system status)
- 3x Green leds (ethernet port status/act)
UART:
- 57600-8-N-1
Everything works correctly.
Currently there is no firmware update available. Because of this, in
order to restore the OEM firmware, you must firstly dump the OEM
firmware from your router before you flash the OpenWrt image.
Backup the OEM Firmware
-----------------------
The following steps are to be intended for users having little to none
experience in linux. Obviously there are many ways to backup the OEM
firmware, but probably this is the easiest way for this router.
Procedure tested on WN535K1_V1510_200916 firmware version.
1) Go to http://192.168.10.1/webcmd.shtml
2) Type the following line in the "Command" input box and then press enter:
mkdir /etc_ro/lighttpd/www/dev; dd if=/dev/mtd0ro of=/etc_ro/lighttpd/www/dev/mtd0ro
3) After few seconds in the textarea should appear this output:
16384+0 records in
16384+0 records out
If your output doesn't match mine, stop reading and ask for
help in the forum.
4) Open in another tab http://192.168.10.1/dev/mtd0ro to download the
content of the whole NOR. If the file size is 0 byte, stop reading
and ask for help in the forum.
5) Come back to the http://192.168.10.1/webcmd.shtml webpage and type:
rm /etc_ro/lighttpd/www/dev/mtd0ro;for i in 1 2 3 4 5; do dd if=/dev/mtd${i}ro of=/etc_ro/lighttpd/www/dev/mtd${i}ro; done
6) After few seconds, in the textarea should appear this output:
384+0 records in
384+0 records out
128+0 records in
128+0 records out
128+0 records in
128+0 records out
14720+0 records in
14720+0 records out
1024+0 records in
1024+0 records out
If your output doesn't match mine, stop reading and ask for
help in the forum.
7) Open the following links to download the partitions of the OEM FW:
http://192.168.10.1/dev/mtd1rohttp://192.168.10.1/dev/mtd2rohttp://192.168.10.1/dev/mtd3rohttp://192.168.10.1/dev/mtd4rohttp://192.168.10.1/dev/mtd5ro
If one (or more) of these files are 0 byte, stop reading and ask
for help in the forum.
8) Store these downloaded files in a safe place.
9) Reboot your router to remove any temporary file in ram.
Installation
------------
Flash the initramfs image in the OEM firmware interface
(http://192.168.10.1/update_mesh.shtml).
When Openwrt boots, flash the sysupgrade image otherwise you won't be
able to keep configuration between reboots.
Restore OEM Firmware
--------------------
Flash the "mtd4ro" file you previously backed-up directly from LUCI.
Warning: Remember to not keep settings!
Warning2: Remember to force the flash.
Notes
-----
1) Router mac addresses:
LAN XX:XX:XX:XX:XX:E2 (factory @ 0x28)
WAN XX:XX:XX:XX:XX:E3 (factory @ 0x2e)
WIFI 2G XX:XX:XX:XX:XX:E4 (factory @ 0x04)
WIFI 5G XX:XX:XX:XX:XX:E5 (factory @ 0x8004)
LABEL XX:XX:XX:XX:XX:E5
2) The OEM firmware upgrade page accepts only files containing the
string "WN535K1" in the filename.
3) Additional notes 1,2,3 in the WS-WN583A6 commit are still valid
(92780d80ab)
Signed-off-by: Davide Fioravanti <pantanastyle@gmail.com>
[remove trailing whitespace]
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
If no argument is given to relocate-kernel, KERNEL_LOADADDR will be used
just as before.
This is a preparation for ramips support of ipTIME AX2004M.
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
When Joowin WR758AC V1 and V2 devices were added, they should have been
added with the primary manufacturer name which is COMFAST, since Joowin
is just an alternate vendor name on some coutries or stores.
Fix this by changing the the vendor name on the respective files and set
Joowin as ALT0 variants while ensuring compatibility for early users.
Also adjust the model names to better follow the naming rules.
As a side effect, fix mt76x8 network script which was left incorrectly
unsorted on the case block conditions.
Fixes: 766733e172 ("ramips: add support for Joowin WR758AC V1 and V2")
Signed-off-by: Rodrigo Araujo <araujo.rm@gmail.com>
ipTIME A6004NS-M is a 2.4/5GHz band AC1900 router, based on MediaTek MT7621A.
Specifications:
- SoC: MediaTek MT7621A (880MHz, Duel-Core)
- RAM: DDR3 256MB
- Flash: SPI NOR 16MB (Winbond W25Q128BV)
- WiFi: MediaTek MT7615E (2.4GHz, 5GHz)
- Ethernet: MediaTek MT7530 (WAN x1, LAN x4, SoC built-in Estimated)
- USB: USB 3.0 x1
- UART: [3.3V, TX, RX, GND] (57600 8N1)
Installation via web interface:
1. Flash initramfs image using OEM's Firmware Update page.
2. Connect to OpenWrt with an SSH connection to `192.168.1.1`.
3. Perform sysupgrade with sysupgrade image.
Revert to stock firmware:
1. Flash stock firmware via OEM's Recovery mode
How to use OEM's Recovery mode:
1. Power on the device and connect the shell through UART.
2. Connect to the shell and press the `t` key on the keyboard.
3. Set fixed IP with `192.168.0.2` with subnet mask `255.255.255.0`
4. Flash image via TFTP to `192.168.0.1`
Additional Notes:
1. The higher the 5Ghz Frequency, the lower the stability. It is recommended to use less than 5.775Ghz.
2. If the 5Ghz frequency is too high, 5Ghz may not work.
3. A6ns-M use shared dtsi file of A6004NS-M. (reference: /mt7621_iptime_a6004ns-m.dtsi).
Signed-off-by: SeongUk Moon <antegral@antegral.net>
[convert CRLF to LF]
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
HUMAX E2 (also known as HUMAX QUANTUM E2) is a 2.4/5GHz band AC router,
based on MediaTek MT7620A.
Specifications:
- SoC: MT7620A
- RAM: DDR2 64MB
- Flash: SPI NOR 8MB (MXIC MX25L6405D)
- WiFi:
- 2.4GHz: SoC internal
- 5GHz: MT7610E
- Ethernet: 1x 10/100Mbps
- Switch: SoC internal
- UART: J2 (57600 8N1)
- pinout: [3V3] (RXD) (GND) (TXD)
Installation and Recovery via TFTP:
1. Connect ethernet cable between Router port and PC Ethernet port.
2. Set your computer to a static IP **192.168.1.1**
3. Turn the device off and wait a few seconds. Hold the WPS button on front
of device and insert power.
4. Send a firmware image to **192.168.1.6** using TFTP.
You can use any TFTP client. (tftp, curl, Tftpd64...)
5. Wait until Power LED stop flashing. **DO NOT TURN OFF DEVICE!**
The device will be automatically rebooted.
Signed-off-by: Kyoungkyu Park <choryu.park@choryu.space>
Specifications:
- SoC: MT7621DAT (880MHz, 2 Cores)
- RAM: 128 MB
- Flash: 128 MB NAND
- Ethernet: 5x 1GiE MT7530
- WiFi: MT7603/MT7613
- USB: 1x USB 3.0
This is another MT7621 device, very similar to other Linksys EA7300
series devices.
Installation:
Upload the generated factory.bin image via the stock web firmware
updater.
Reverting to factory firmware:
Like other EA7300 devices, this device has an A/B router configuration
to prevent bricking. Hard-resetting this device three (3) times will
put the device in failsafe (default) mode. At this point, flash the
OEM image to itself and reboot. This puts the router back into the 'B'
image and allows for a firmware upgrade.
Troubleshooting:
If the firmware will not boot, first restore the factory as described
above. This will then allow the factory.bin update to be applied
properly.
Signed-off-by: Nick McKinney <nick@ndmckinney.net>
RAISECOM MSG1500 X.00 is a 2.4/5 GHz band 11ac (Wi-Fi 5) router.
Apart from the general model, there are two ISP customized models:
China Mobile and China Telecom.
Specifications:
- SoC: Mediatek MT7621AT
- RAM: 256MiB DDR3
- Flash: 128MiB NAND
- Ethernet: 5 * 10/100/1000Mbps: 4 * LAN + 1 * WAN
- Switch: MediaTek MT7530 (SoC)
- WLAN: 1 * MT7615DN Dual-Band 2.4GHz 2T2R (400Mbps) 5GHz 2T2R (867Mbps)
- USB: 1 * USB 2.0 port
- Button: 1 * RESET button, 1 * WPS button, 1 * WIFI button
- LED: blue color: POWER, WAN, WPS, 2.4G, 5G, LAN1, LAN2, LAN3, LAN4, USB
- UART: 1 * serial port header (4-pin)
- Power: DC 12V, 1A
- Switch: 1 * POWER switch
MAC addresses as verified by vendor firmware:
use address source
LAN C8:XX:XX:3A:XX:E7 Config "protest_lan_mac" ascii (label)
WAN C8:XX:XX:3A:XX:EA Config "protest_wan_mac" ascii
5G C8:XX:XX:3A:XX:E8 Factory "0x4" hex
2.4G CA:XX:XX:4A:XX:E8 [not on flash]
The increment of the 4th byte for the 2.4g address appears to vary.
Reported cases:
5g 2.4g increment
C8:XX:XX:90:XX:C3 CA:XX:XX:C0:XX:C3 0x30
C8:XX:XX:3A:XX:08 CA:XX:XX:4A:XX:08 0x10
C8:XX:XX:3A:XX:E8 CA:XX:XX:4A:XX:E8 0x10
Since increment is inconsistent and there is no obvious pattern
in swapping bytes, and the 2.4g address has local bit set anyway,
it seems safer to use the LAN address with flipped byte here in
order to prevent collisions between OpenWrt devices and OEM devices
for this interface. This way we at least use an address as base
that is definitely owned by the device at hand.
Notes:
1. The vendor firmware allows you to connect to the router by telnet.
(known version 1.0.0 can open telnet.)
There is no official binary firmware available.
Backup the important partitions data:
"Bootloader", "Config", "Factory", and "firmware".
Note that with the vendor firmware the memory is detected only 128MiB
and the last 512KiB in NAND flash is not used.
2. The POWER LED is default on after press POWER switch.
The WAN and LAN1 - 4 LEDs are wired to ethernet switch.
The WPS LED is controlled by MT7615DN's GPIO.
Currently there is no proper way to configure it.
3. At the time of adding support the wireless config needs to be set up
by editing the wireless config file:
* Setting the country code is mandatory, otherwise the router loses
connectivity at the next reboot. This is mandatory and can be done
from luci. After setting the country code the router boots correctly.
A reset with the reset button will fix the issue and the user has to
reconfigure.
* This is minor since the 5g interface does not come up online although
it is not set as disabled. 2 options here:
1- Either run the "wifi" command. Can be added from LuCI in system -
startup - local startup and just add wifi above "exit 0".
2- Or add the serialize option in the wireless config file as shown
below. This one would work and bring both interfaces automatically
at every boot:
config wifi-device 'radio0'
option serialize '1'
config wifi-device 'radio1'
option serialize '1'
Flash instructions using initramfs image:
1. Press POWER switch to power down if the router is running.
2. Connect PC to one of LAN ports, and set
static IP address to "10.10.10.2", netmask to "255.255.255.0",
and gateway to "10.10.10.1" manually on the PC.
3. Push and hold the WIFI button, and then power up the router.
After about 10s (or you can call the recovery page, see "4" below)
you can release the WIFI button.
There is no clear indication when the router
is entering or has entered into "RAISECOM Router Recovery Mode".
4. Call the recovery page for the router at "http://10.10.10.1".
Keep an eye on the "WARNING!! tip" of the recovery page.
Click "Choose File" to select initramfs image, then click "Upload".
5. If image is uploaded successfully, you will see the page display
"Device is upgrading the firmware... %".
Keep an eye on the "WARNING!! tip" of the recovery page.
When the page display "Upgrade Successfully",
you can set IP address as "automatically obtain".
6. After the rebooting (PC should automatically obtain an IP address),
open the SSH connection, then download the sysupgrade image
to the router and perform sysupgrade with it.
Flash back to vendor firmware:
See "Flash instructions 1 - 5" above.
The only difference is that in step 4
you should select the vendor firmware which you backup.
Signed-off-by: Liangkuan Yang <ylk951207@gmail.com>
This commit adds support for Joowin (aka Comfast) WR758AC V1 and V2
devices.
Both have the same wall AP/repeater form factor and differ only
in the 5Ghz chipset (V1 has MT7662, V2 has MT7663).
OpenWrt developers forum page:
https://forum.openwrt.org/t/87355
Specifications:
- CPU: MediaTek MT7628AN (580MHz)
- Flash: 8MB
- RAM: 64MB DDR2
- 2.4 GHz: 802.11b/g/n (MT7603)
- 5 GHz: 802.11ac (V1 has MT7662, V2 has MT7663)
- Antennas: 4x external single band antennas
- LAN: 1x 10/100M
- LED: Wifi 3x blue. Programmable
- Button: WPS
MAC addresses as verified by OEM firmware:
use address source
LAN *:83 factory 0xe000
2g *:85 factory 0x4
5g *:86 factory 0x8004
How to install:
1- Setup a TFTP server on a machine with IP address 192.168.1.10/24
2- Name the image as `firmware_auto.bin` and place it on the root of the
TFTP server
3- Connect the device via Ethernet, it should pick and flash the image
Signed-off-by: Rodrigo Araujo <araujo.rm@gmail.com>
RT-AC57U and RT-AC1200GU are the same models sold in different countries.
The purpose of this commit is to allow users to easily find the
corresponding firmware through the model number on the device label.
More specifications: 14e0e4f138e3 ("ramips: add support for ASUS RT-AC57U")
Signed-off-by: Shiji Yang <yangshiji66@qq.com>
[reword commit title/message]
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
ipTIME T5004 is a 5-port Gigabit Ethernet router, based on MediaTek MT7621A.
Specifications:
* SoC: MT7621AT
* RAM: 128 MiB
* Flash: NAND 128 MiB
* Ethernet: 5x 1GbE
* Switch: SoC built-in
* UART: J4 (57600 baud)
* Pinout: [3V3] (TXD) (RXD) (GND)
Installation via web interface:
1. Flash **initramfs** image through the stock web interface.
2. Boot into OpenWrt and perform sysupgrade with sysupgrade image.
Revert to stock firmware via recovery mode:
1. Press reset button, power up the device, wait >15s for CPU LED
to stop blinking.
2. Upload stock image to TFTP server at 192.168.0.1.
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
ipTIME A3004T is a 2.4/5GHz band router, based on Mediatek MT7621.
Specifications:
- SoC: MT7621 (880MHz)
- RAM: DDR3 256M
- Flash: NAND 128MB (Macronix NAND 128MiB 3,3V 8-bit)
- WiFi:
- 2.4GHz: MT7615E
- 5GHz : MT7615E
- Ethernet:
- 4x LAN
- 1x WAN
- USB: 1 * USB3.0 port
- UART:
- 3.3V, TX, RX, GND / 57600 8N1
Installation via web interface:
1. Flash initramfs image using OEM's Recovery mode
2. Boot into OpenWrt and perform sysupgrade with sysupgrade image.
Revert to stock firmware:
- Flash stock firmware via OEM's Recovery mode
How to use OEM's Recovery mode:
1. Power up with holding down the reset key until CPU LED stop blinking.
2. Set fixed ip with `192.168.0.2` with subnet mask `255.255.255.0`
3. Flash image via tftp to `192.168.0.1`
Additional Notes:
This router shares one MT7915E chip for both 2.4Ghz/5Ghz.
radio0 will not working on 5Ghz as it's not connected to the antenna.
Signed-off-by: WonJung Kim <git@won-jung.kim>
(added led dt-bindings)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
WeVO AIR DUO is a 1-bay NAS & 802.11ac (Wi-Fi 5) router, based on
MediaTek MT7620A.
Specifications:
* SoC: MT7620A
* RAM: 64 MiB
* Flash: SPI NOR 16 MiB
* USB & SATA bridge controller: JMicron JMS567
* SATA 6Gb/s: 2.5" drive slot
* USB 3.0: Micro-B
* USB 2.0: connected to SoC
* Wi-Fi:
* 2.4 GHz: SoC built-in
* 5 GHz: MT7612EN
* Ethernet: 5x 1GbE
* Switch: MT7530WU
* UART: 4-pin 1.27 mm pitch through-hole (57600 baud)
* Pinout: (3V3)|(RXD) (TXD) (GND)
Notes:
* The drive is accessible through the external USB port only when the
router is turned off.
Installation via web interface:
1. Flash **initramfs** image through the stock web interface.
The image filename should have ".upload" extension.
2. Boot into OpenWrt and perform sysupgrade with sysupgrade image.
Revert to stock firmware:
1. Perform sysupgrade with stock image.
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
Jboot devices have problem with >2MB kernelsize. The only way to avoid
this problem is use small loader.
This patch switch all mt7620 Jboot devices to lzma OKLI loader.
Suggested-by: Szabolcs Hubai <szab.hu@gmail.com>
Co-authored-by: Michael Pratt <mcpratt@pm.me>
Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com>
HUMAX E10 (also known as HUMAX QUANTUM E10) is a 2.4/5GHz band AC router,
based on MediaTek MT7621A.
Specifications:
- SoC: MT7621A
- RAM: DDR3 128MB
- Flash: SPI NOR 16MB (MXIC MX25L12805D)
- WiFi:
- 2.4GHz: MT7615
- 5GHz: MT7615
- Ethernet: 2x 10/100/1000Mbps
- Switch: SoC internal
- USB: 1x USB 2.0 Type-A
- UART: J1 (57600 8N1)
- pinout: [3V3] (RXD) (GND) (TXD)
Installation via web interface:
- Flash **factory** image through the stock web interface.
Recovery procedure:
1. Connect ethernet cable between Router **LAN** port and PC Ethernet port.
2. Set your computer to a static IP **192.168.1.1**
3. Turn the device off and wait a few seconds. Hold the WPS button on front
of device and insert power.
4. Send a firmware image to **192.168.1.6** using TFTP.
You can use any TFTP client. (tftp, curl, Tftpd64...)
- It can accept both images which is
HUMAX stock firmware dump (0x70000-0x1000000) image
and OpenWRT **sysupgrade** image.
Signed-off-by: Kyoungkyu Park <choryu.park@choryu.space>
[remove trailing whitespace]
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
Zbtlink ZBT-WG1602 is a Wi-Fi router intendent to use with WWAN
(UMTS/LTE/3G/4G) modems. The router board offsers a couple of miniPCIe
slots with USB and SIM only and another one pure miniPCIe slot as well
as five Gigabit Ethernet ports (4xLAN + WAN).
Specification:
* SoC: MT7621A
* RAM: 256/512 MiB
* Flash: 16/32 MiB (SPI NOR)
* external watchdog (looks like Torexsemi XC6131B)
* Eth: 10/100/1000 Mbps Ethernet x5 ports (4xLAN + WAN)
* WLAN 2GHz: MT7603EN (.11n, MIMO 2x2)
* WLAN 5GHz: MT7612EN (.11ac, MIMO 2x2)
* WLAN Ants: detachable x2, shared by 2GHz & 5GHz radios
* miniPCIe: 2x slots with USB&SIM + 1x slot with regular PCIe bus
* WWAN Ants: detachable x4
* External storage: microSD (SDXC) slot
* USB: 2.0 Type-A port
* LED: 11 (5 per Eth phy, 3 SoC controlled, 2 WLAN 2/5 controlled, 1
power indicator)
* Button: 1 (reset)
* UART: console (115200 baud)
* Power: DC jack (12 V / 2.5 A)
Additional HW information:
* SoC USB port #1 is shared by internal miniPCIe slot and external
Type-A USB port, USB D+/D- lines are toggled between ports using a
GPIO controlled DPDT switch.
* Power of the USB enabled miniPCIe slots can be individually controlled
using dedicated GPIO lines.
* Vendor firmware feeds the external watchdog with 1s pulses. GPIO
watchdog driver is able to either generate a 1us pulses or toggle the
output line. 1us is not enough for the external watchod timer, so
the line toggling driver mode is utilized.
Installation:
Vendor's firmware is OpenWrt (LEDE) based, so the sysupgrade image can
be directly used to install OpenWrt. Firmware must be upgraded using the
'force' and 'do not save configuration' command line options (or
correspondig web interface checkboxes) since the vendor firmware is from
the pre-DSA era.
Signed-off-by: Sergey Ryazanov <ryazanov.s.a@gmail.com>
ipTIME A3004NS-dual is a 2.4/5GHz band router, based on Mediatek MT7621.
Specifications:
- SoC: MT7621 (880MHz)
- RAM: DDR3 256M
- Flash: SPI NOR 16MB
- WiFi:
- 2.4GHz: MT7602E
- 5GHz : MT7612E
- Ethernet:
- 4x LAN
- 1x WAN
- USB: 1 * USB3.0 port
- UART:
- 3.3V, TX, RX, GND / 57600 8N1
Installation via web interface:
- 1. Flash Initramfs image using OEM Firmware's web GUI
- 2. Boot into OpenWrt and perform Sysupgrade with sysupgrade image.
Revert to stock firmware:
- 1. Boot into OpenWrt and perform Sysupgrade with OEM Stock Firmware image.
Signed-off-by: Yuchan Seo <hexagonwin@disroot.org>
Reviewed-by: Sungbo Eo <mans0n@gorani.run>
This commit adds support for the Wavlink WL-WN576A2 wall-plug wireles
repeater / router. It is also sold under the name SilverCrest SWV 733 B1.
Device specs:
- CPU: MediaTek MT7628AN
- Flash: 8MB
- RAM: 64MB
- Bootloader: U-Boot
- Ethernet: 1x 10/100 Mbps
- 2.4 GHz: b/g/n SoC
- 5 GHz: a/n/ac MT7610EN
- Buttons: WPS, reset, sliding switch (ap/repeater)
- LEDs: 5x wifi status, 1x LAN/WAN, 1x WPS
Flashing:
U-Boot launches a TFTP client if WPS button is held during boot.
- Server IP: 192.168.10.100
- Firmware file name: firmware.bin
Device will reboot automatically. First boot takes about 90s.
Coelner (waenger@gmail.com) is the original author, but I have made some
fixes. He does not wish to sign off using his real name.
Signed-off-by: Thomas Aldrian <dev.aldrian@gmail.com>
Specifications:
- SoC: MediaTek MT7621AT
- RAM: 256 MB (DDR3)
- Flash: 32 MB SPI NOR 44MHz
- Switch: 1 WAN, 4 LAN (Gigabit)
- LEDs: 1 WAN, 4 LAN (controlled by PHY)
- USB Ports: 1 x USB2, 1 x USB3
- WLAN: 1 x 2.4, 5 GHz 866Mbps (MT7612E)
- Button: 1 button (reset)
- UART Serial: UART1 as console : 57600 baud
- Power: 12VDC, 1A
Installation:
Update openWRT firmware using internal GNUBEE uboot:
https://github.com/gnubee-git/GnuBee-MT7621-uboot
By HTTP: Initial uboot address is http://10.10.10.123, your address
needs to be 10.10.10.x, and mask 255.255.255.0.
By TFTP: Uboot is in client mode, the address of the firmware must
be tftp://10.10.10.3/uboot.bin
Recovery:
Manufacturer provides MTK OpenWrt 14.07 source code, compile then
flash it by uboot.
HLK-7621A is a stamp hole package module for embedded development,
users have to design IO boards to use it.
MAC addresses:
- u-boot-env contains a placeholder address:
> mtd_get_mac_ascii u-boot-env ethaddr
03:17:73🆎cd:ef
- phy0 gets a valid-looking address:
> cat /sys/class/ieee80211/phy0/macaddress
f8:62:aa:**:**:a8
- Calibration data for &pcie2 contains a valid address, however the
zeros in the right half look like it's not real:
8c:88:2b:00:00:1b
- Since it's an evaluation board and there is no solid information
about the MAC address assignment, the ethernet MAC address is left random.
Signed-off-by: Chen Yijun <cyjason@bupt.edu.cn>
[add keys and pcie nodes to properly support evaluation board]
Signed-off-by: Sergio Paracuellos <sergio.paracuellos@gmail.com>
[remove ethernet address, wrap lines properly]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This commit adds support for Xiaomi MiWiFi 3C device.
Xiaomi MiWifi 3C has almost the same system architecture
as the Xiaomi Mi WiFi Nano, which is already officially
supported by OpenWrt.
The differences are:
- Numbers of antennas (4 instead of 2). The antenna management
is done via the µC. There is no configuration needed in the
software code.
- LAN port assignments are different. LAN1 and WAN are
interchanged.
OpenWrt Wiki: https://openwrt.org/toh/xiaomi/mir3c
OpenWrt developers forum page:
https://forum.openwrt.org/t/support-for-xiaomi-mi-3c
Specifications:
- CPU: MediaTek MT7628AN (575MHz)
- Flash: 16MB
- RAM: 64MB DDR2
- 2.4 GHz: IEEE 802.11b/g/n with Integrated LNA and PA
- Antennas: 4x external single band antennas
- WAN: 1x 10/100M
- LAN: 2x 10/100M
- LED: 1x amber/blue/red. Programmable
- Button: Reset
MAC addresses as verified by OEM firmware:
use address source
LAN *:92 factory 0x28
WAN *:92 factory 0x28
2g *:93 factory 0x4
OEM firmware uses VLAN's to create the network interface for WAN and LAN.
Bootloader info:
The stock bootloader uses a "Dual ROM Partition System".
OS1 is a deep copy of OS2.
The bootloader start OS2 by default.
To force start OS1 it is needed to set "flag_try_sys2_failed=1".
How to install:
1- Use OpenWRTInvasion to gain telnet, ssh and ftp access.
https://github.com/acecilia/OpenWRTInvasion
(IP: 192.168.31.1 - Username: root - Password: root)
2- Connect to router using telnet or ssh.
3- Backup all partitions. Use command "dd if=/dev/mtd0 of=/tmp/mtd0".
Copy /tmp/mtd0 to computer using ftp.
4- Copy openwrt-ramips-mt76x8-xiaomi_miwifi-3c-squashfs-sysupgrade.bin
to /tmp in router using ftp.
5- Enable UART access and change start image for OS1.
```
nvram set uart_en=1
nvram set flag_last_success=1
nvram set boot_wait=on
nvram set flag_try_sys2_failed=1
nvram commit
```
6- Installing Openwrt on OS1 and free OS2.
```
mtd erase OS1
mtd erase OS2
mtd -r write /tmp/openwrt-ramips-mt76x8-xiaomi_miwifi-3c-squashfs-sysupgrade.bin OS1
```
Limitations: For the first install the image size needs to be less
than 7733248 bits.
Thanks for all community and especially for this device:
minax007, earth08, S.Farid
Signed-off-by: Eduardo Santos <edu.2000.kill@gmail.com>
[wrap lines, remove whitespace errors, add mediatek,mtd-eeprom to
&wmac, convert to nvmem]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Specs (same as in v1):
- MT7628AN (575 MHz)
- 64MB RAM
- 8MB of flash (SPI NOR)
- 1x 10/100Mbps Ethernet (MT7628AN built-in switch with vlan)
- 1x 2.4GHz wifi (MT7628AN)
- 1x 5Ghz wifi (MT7612E)
- 4x LEDs (5 GPIO-controlled)
- 1x reset button
- 1x WPS button
The only and important difference between v1 & v3 is in flash memory
layout, so pls don't interchange these 2 builds!
Installation through web-ui (on OEM factory firmware):
1. Visit http://tplinkrepeater.net or the configured IP address of
your RE305 v3 (default 192.168.0.254).
2. Log in with the password you've set during initial setup of the
RE305 (there is no default password).
3. Go to Settings -> System Tools -> Firmware upgrade
4. Click Browse and select the OpenWRT image with factory.bin suffix
(not sysupgrade.bin)
5. A window with a progress bar will appear. Wait until it completes.
6. The RE305 will reboot into OpenWRT and serve DHCP requests on the
ethernet port.
7. Connect an RJ45 cable from the RE305 to your computer and access
LuCI at http://192.168.1.1/ to configure (or use ssh).
Disassembly:
Just unscrew 4 screws in the corners & take off the back cover.
Serial is exposed to the right side of the main board (in the middle)
and marked with TX/RX/3V3/GND, but the holes are filled with solder.
Installation through serial:
1. connect trough serial (1n8, baudrate=57600)
2. setup the TFTP server and connect it via ethernet
(ipaddr=192.168.0.254 of device, serverip=192.168.0.184 - your pc)
3. boot from a initramfs image first (choose 1 in the bootloader
options)
4. test it a bit with that, then proceed to run sysupgrade build
MAC addresses as verified by OEM firmware:
use OpenWrt address reference
LAN eth0 *:d2 label
2g wlan0 *:d1 label - 1
5g wlan1 *:d0 label - 2
The label MAC address can be found in config 0x2008.
Signed-off-by: Michal Kozuch <servitkar@gmail.com>
[redistribute WLAN node properties between DTS/DTSI, remove
compatible on DTSI, fix indent/wrapping, split out firmware-utils
change]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
ELECOM WRC-X3200GST3 uses the same header/footer as WRC-GS/GST devices
in ramips/mt7621 subtarget, so move "Build/elecom-wrc-gs-factory" to
image-commands.mk to use from mediatek/mt7622 subtarget.
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
This firmware should only be used for mobile devices (e.g. laptops), where
AP mode functionality is typically not used. This firmware supports a lot
of power saving offload functionality at the expense of AP mode support.
Signed-off-by: Felix Fietkau <nbd@nbd.name>
Netgear Nighthawk AC2100 is another name of the Netgear R6700v2.
Signed-off-by: Dale Hui <strokes-races0b@icloud.com>
[adjust commit message/title]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
With the various variants of Netgear R**** devices, make it more
obvious which image should be used for the R7200.
Signed-off-by: Dale Hui <strokes-races0b@icloud.com>
[provide proper commit message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Hardware
--------
MediaTek MT7621AT
16M SPI-NOR Macronix MX25L12835FMI
Microchip PD69104B1 4-Channel PoE-PSE controller
TI TPS2373 PoE-PD controller
PoE-Controller
--------------
By default, the PoE outputs do not work with OpenWrt. To make them output
power, install the "poemgr" package from the packages feed.
This package can control the PD69104B1 PSE controller.
Installation
------------
1. Connect to the booted device at 192.168.1.20 using username/password
"ubnt" via SSH.
2. Add the uboot-envtools configuration file /etc/fw_env.config with the
following content
$ echo "/dev/mtd1 0x0 0x1000 0x10000 1" > /etc/fw_env.config
3. Update the bootloader environment.
$ fw_setenv boot_openwrt "fdt addr \$(fdtcontroladdr);
fdt rm /signature; bootubnt"
$ fw_setenv bootcmd "run boot_openwrt"
4. Transfer the OpenWrt sysupgrade image to the device using SCP.
5. Check the mtd partition number for bs / kernel0 / kernel1
$ cat /proc/mtd
6. Set the bootselect flag to boot from kernel0
$ dd if=/dev/zero bs=1 count=1 of=/dev/mtdblock4
7. Write the OpenWrt sysupgrade image to both kernel0 as well as kernel1
$ dd if=openwrt.bin of=/dev/mtdblock6
$ dd if=openwrt.bin of=/dev/mtdblock7
8. Reboot the device. It should boot into OpenWrt.
Restore to UniFi
----------------
To restore the vendor firmware, follow the Ubiquiti UniFi TFTP
recovery guide for access points. The process is the same for
the Flex switch.
Signed-off-by: David Bauer <mail@david-bauer.net>
I-O DATA WN-DX2033GR is a 2.4/5 GHz band 11ac (Wi-Fi 5) router, based on
MT7621A.
Specification:
- SoC : MediaTek MT7621A
- RAM : DDR3 128 MiB
- Flash : Raw NAND 128 MiB (Macronix MX30LF1G18AC-TI)
- WLAN : 2.4/5 GHz
- 2.4 GHz : 2T2R, MediaTek MT7603E
- 5 GHz : 4T4R, MediaTek MT7615
- Ethernet : 5x 10/100/1000 Mbps
- Switch : MediaTek MT7530 (SoC)
- LEDs/Keys : 2x/3x (2x buttons, 1x slide-switch)
- UART : through-hole on PCB
- J5: 3.3V, TX, RX, NC, GND from triangle mark
- 57600n8
- Power : 12 VDC, 1 A
Flash instruction using initramfs image:
1. Boot WN-DX2033GR normally
2. Access to "http://192.168.0.1/" and open firmware update page
("ファームウェア")
3. Select the OpenWrt initramfs image and click update ("更新") button
to perform firmware update
4. On the initramfs image, download the sysupgrade.bin image to the
device and perform sysupgrade with it
5. Wait ~120 seconds to complete flashing
Notes:
- The hardware of WN-DX2033GR and WN-AX2033GR are almost the same, and
it is certified under the same radio-wave related regulations in Japan
- The last 0x80000 (512 KiB) in NAND flash is not used on stock firmware
- stock firmware requires "customized uImage header" (called as "combo
image") by MSTC (MitraStar Technology Corp.), but U-Boot doesn't
- uImage magic ( 0x0 - 0x3 ) : 0x434F4D42 ("COMB")
- header crc32 ( 0x4 - 0x7 ) : with "data length" and "data crc32"
- image name (0x20 - 0x37) : model ID and firmware versions
- data length (0x38 - 0x3b) : kernel + rootfs
- data crc32 (0x3c - 0x3f) : kernel + rootfs
- There are 2x important flags in the flash:
- bootnum : select os partition for booting (persist, 0x4)
- 0x01: firmware
- 0x02: firmware_2
- debugflag : allow interrupt kernel loader, it's named as "Z-LOADER"
(Factory, 0xFE75)
- 0x00: disable debug
- 0x01: enable debug
MAC addresses:
LAN : 50:41:B9:xx:xx:90 (Factory, 0xE000 (hex) / Ubootenv, ethaddr (text))
WAN : 50:41:B9:xx:xx:92 (Factory, 0xE006 (hex))
2.4 GHz : 50:41:B9:xx:xx:90 (Factory, 0x4 (hex))
5 GHz : 50:41:B9:xx:xx:91 (Factory, 0x8004 (hex))
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
Add additional header information required for newer
bootloaders found on DIR-2660-A1 & A2.
Also remove the MTD splitter compatible from the second firmware
partition, as OpenWrt only supports handling of the first one.
Signed-off-by: Alan Luck <luckyhome2008@gmail.com>
[rephrase commit message, remove removal of read-only flags]
Signed-off-by: David Bauer <mail@david-bauer.net>
Sitecom WLR-4100 v1 002 (marked as X4 N300) is a wireless router
Specification:
SoC: MT7620A
RAM: 64 MB DDR2
Flash: MX25L6405D SPI NOR 8 MB
WIFI: 2.4 GHz integrated
Ethernet: 5x 10/100/1000 Mbps QCA8337
USB: 1x 2.0
LEDS: 2x GPIO controlled, 5x switch
Buttons: 1x GPIO controlled
UART: row of 4 unpopulated holes near USB port, starting count from
white triangle on PCB:
VCC 3.3V
GND
TX
RX
baud: 115200, parity: none, flow control: none
Installation
Connect to one of LAN (yellow) ethernet ports,
Open router configuration interface,
Go to Toolbox > Firmware,
Browse for OpenWrt factory image with dlf extension and hit Apply,
Wait few minutes, after the Power LED will stop blinking, the router is
ready for configuration.
Known issues
Some USB 2.0 devices work at full speed mode 1.1 only
MAC addresses
factory partition only contains one (binary) MAC address in 0x4.
u-boot-env contains four (ascii) MAC addresses, of which two appear
to be valid.
factory 0x4 **:**:**:**:b9:84 binary
u-boot-env ethaddr **:**:**:**:b9:84 ascii
u-boot-env wanaddr **:**:**:**:b9:85 ascii
u-boot-env wlanaddr 00:AA:BB:CC:DD:12 ascii
u-boot-env iNICaddr 00:AA:BB:CC:DD:22 ascii
The factory firmware only assigns ethaddr. Thus, we take the
binary value which we can use directly in DTS.
Additional information
OEM firmware shell password is: SitecomSenao
useful for creating backup of original firmware.
There is also another revision of this device (v1 001), based on RT3352 SoC
Signed-off-by: Andrea Poletti <polex73@yahoo.it>
[remove config DT label, convert to nvmem, remove MAC address
setup from u-boot-env, add MAC address info to commit message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The Device/seama shared definition requires BLOCKSIZE, so it should
have a default value for this variable.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This patch adds support for D-Link DAP-1325-A1 (Range Extender Wi-Fi N300)
Specifications:
- SoC: 580Mhz MT7628NN
- RAM: 64MB, DDR2 SDRAM
- Storage: 8MB, SPI (W25Q64JVSSIQ)
- Ethernet: 1x 10/100 LAN port
- WIFI: 2.4 GHz 802.11bgn
- LED: Status (2x to provide 3 colors), Wi-Fi Signal Strength (4x)
- Buttons: Reset, WPS
- UART: Serial console (57600, 8n1)
Row of 4 holes near LAN port, starting from square hole:
3.3V, TX,RX,GND
- FCC ID: fccid.io/KA2AP1325A1/
Installation:
Failsafe UI
Firmware can be uploaded with Failsafe UI web page:
- turn device off
- press and hold reset button
- turn device on
- keep holding reset until red wifi strength led turns on (ab. 10sec)
- connect to device through LAN port
PC must be configured with static ip (192.168.0.x)
- connect to 192.168.0.50
- select image to be flashed and upload.
Device will reboot after successful update
Serial port/TFTP server
- Connect through serial connectors on PCB (e.g. with teraterm)
- Set up a TFTP server, and connect through LAN with static IP
- Put image file in the root of the server
- Boot the device and select '2' at U-Boot startup
- Set device IP, server IP and image file name
- Start upload and flash
Signed-off-by: Giovanni Cascione <ing.cascione@gmail.com>
[fix whitespaces in DTS, convert to nvmem, add mtd-eeprom]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Specifications:
* SOC: MT7620A + MT7610E
* ROM: 16 MiB spi flash (W25Q128FVSG)
* RAM: 128 MiB DDR2 (W971GG6KB-25)
* WAN: 10/100M *1
* LAN: 10/100M *4
* USB: Type-A USB2.0 *1
* SD: MicroSD *1
* Button: Reset *1
* Antennas: 2.4 GHz *2 + 5 GHz *1
* TTL Baudrate: 57600
* U-Boot Recovery: IP: 10.10.10.123, Server: 10.10.10.3
Installation:
* Web UI Update
1. Open http://192.168.10.1/upgrade.html in the browser.
2. Rename firmware to a short name like firmware.bin and then upload it.
3. Fill in the password column with the following content:
password | mtd -x mIp2osnRG3qZGdIlQPh1 -r write /tmp/firmware.bin firmware
* TFTP + U-Boot
1. Connect device with a TTL cable.
2. Press "2" when booting to select "Load system code then write to Flash via TFTP".
3. Upload firmware by tftpd64, it will boot when write instruction is executed.
Signed-off-by: Shiji Yang <yangshiji66@qq.com>