fgrep is deprecated and replaced by grep -F. The latter is used
throughout the tree whereas this is the only usage of the former.
Signed-off-by: Rosen Penev <rosenp@gmail.com>
Now that we have separate files for each kernel version,
only the version/hash for the target kernel are available.
This cause a missing hash error (and wrong kernel version) for
bpf-headers when a testing kernel version is used for the current target.
Fix this error by manually including the kernel version/hash file for the
specific kernel version requested.
Signed-off-by: Ansuel Smith <ansuelsmth@gmail.com>
Add a package for util-linux' ipcs command, to show information about
System V inter-process communication facilities.
Signed-off-by: Stijn Tintel <stijn@linux-ipv6.be>
ZTE MF286 is an indoor LTE category 6 CPE router with simultaneous
dual-band 802.11ac plus 802.11n Wi-Fi radios and quad-port gigabit
Ethernet switch, FXS and external USB 2.0 port.
Hardware highlights:
- CPU: QCA9563 SoC at 775MHz,
- RAM: 128MB DDR2,
- NOR Flash: MX25L1606E 2MB SPI Flash, for U-boot only,
- NAND Flash: GD5F1G04UBYIG 128MB SPI NAND-Flash, for all other data,
- Wi-Fi 5GHz: QCA9882 2x2 MIMO 802.11ac radio,
- WI-Fi 2.4GHz: QCA9563 3x3 MIMO 802.11n radio,
- Switch: QCA8337v2 4-port gigabit Ethernet, with single SGMII CPU port,
- WWAN: MDM9230-based category 6 internal LTE modem in extended
mini-PCIE form factor, with 3 internal antennas and 2 external antenna
connections, single mini-SIM slot. Modem model identified as MF270,
- FXS: one external ATA port (handled entirely by modem part) with two
physical connections in parallel,
- USB: Single external USB 2.0 port,
- Switches: power switch, WPS, Wi-Fi and reset buttons,
- LEDs: Wi-Fi, Test (internal). Rest of LEDs (Phone, WWAN, Battery,
Signal state) handled entirely by modem. 4 link status LEDs handled by
the switch on the backside.
- Battery: 3Ah 1-cell Li-Ion replaceable battery, with charging and
monitoring handled by modem.
- Label MAC device: eth0
Console connection: connector X2 is the console port, with the following
pinout, starting from pin 1, which is the topmost pin when the board is
upright:
- VCC (3.3V). Do not use unless you need to source power for the
converer from it.
- TX
- RX
- GND
Default port configuration in U-boot as well as in stock firmware is
115200-8-N-1.
Installation:
Due to different flash layout from stock firmware, sysupgrade from
within stock firmware is impossible, despite it's based on QSDK which
itself is based on OpenWrt.
STEP 0: Stock firmware update:
As installing OpenWrt cuts you off from official firmware updates for
the modem part, it is recommended to update the stock firmware to latest
version before installation, to have built-in modem at the latest firmware
version.
STEP 1: gaining root shell:
Method 1:
This works if busybox has telnetd compiled in the binary.
If this does not work, try method 2.
Using well-known exploit to start telnetd on your router - works
only if Busybox on stock firmware has telnetd included:
- Open stock firmware web interface
- Navigate to "URL filtering" section by going to "Advanced settings",
then "Firewall" and finally "URL filter".
- Add an entry ending with "&&telnetd&&", for example
"http://hostname/&&telnetd&&".
- telnetd will immediately listen on port 4719.
- After connecting to telnetd use "admin/admin" as credentials.
Method 2:
This works if busybox does not have telnetd compiled in. Notably, this
is the case in DNA.fi firmware.
If this does not work, try method 3.
- Set IP of your computer to 192.168.1.22.
- Have a TFTP server running at that address
- Download MIPS build of busybox including telnetd, for example from:
https://busybox.net/downloads/binaries/1.21.1/busybox-mips
and put it in it's root directory. Rename it as "telnetd".
- As previously, login to router's web UI and navigate to "URL
filtering"
- Using "Inspect" feature, extend "maxlength" property of the input
field named "addURLFilter", so it looks like this:
<input type="text" name="addURLFilter" id="addURLFilter" maxlength="332"
class="required form-control">
- Stay on the page - do not navigate anywhere
- Enter "http://aa&zte_debug.sh 192.168.1.22 telnetd" as a filter.
- Save the settings. This will download the telnetd binary over tftp and
execute it. You should be able to log in at port 23, using
"admin/admin" as credentials.
Method 3:
If the above doesn't work, use the serial console - it exposes root shell
directly without need for login. Some stock firmwares, notably one from
finnish DNA operator lack telnetd in their builds.
STEP 2: Backing up original software:
As the stock firmware may be customized by the carrier and is not
officially available in the Internet, IT IS IMPERATIVE to back up the
stock firmware, if you ever plan to returning to stock firmware.
Method 1: after booting OpenWrt initramfs image via TFTP:
PLEASE NOTE: YOU CANNOT DO THIS IF USING INTERMEDIATE FIRMWARE FOR INSTALLATION.
- Dump stock firmware located on stock kernel and ubi partitions:
ssh root@192.168.1.1: cat /dev/mtd4 > mtd4_kernel.bin
ssh root@192.168.1.1: cat /dev/mtd8 > mtd8_ubi.bin
And keep them in a safe place, should a restore be needed in future.
Method 2: using stock firmware:
- Connect an external USB drive formatted with FAT or ext4 to the USB
port.
- The drive will be auto-mounted to /var/usb_disk
- Check the flash layout of the device:
cat /proc/mtd
It should show the following:
mtd0: 00080000 00010000 "uboot"
mtd1: 00020000 00010000 "uboot-env"
mtd2: 00140000 00020000 "fota-flag"
mtd3: 00140000 00020000 "caldata"
mtd4: 00140000 00020000 "mac"
mtd5: 00600000 00020000 "cfg-param"
mtd6: 00140000 00020000 "oops"
mtd7: 00800000 00020000 "web"
mtd8: 00300000 00020000 "kernel"
mtd9: 01f00000 00020000 "rootfs"
mtd10: 01900000 00020000 "data"
mtd11: 03200000 00020000 "fota"
Differences might indicate that this is NOT a vanilla MF286 device but
one of its later derivatives.
- Copy over all MTD partitions, for example by executing the following:
for i in 0 1 2 3 4 5 6 7 8 9 10 11; do cat /dev/mtd$i > \
/var/usb_disk/mtd$i; done
- If the count of MTD partitions is different, this might indicate that
this is not a standard MF286 device, but one of its later derivatives.
- (optionally) rename the files according to MTD partition names from
/proc/mtd
- Unmount the filesystem:
umount /var/usb_disk; sync
and then remove the drive.
- Store the files in safe place if you ever plan to return to stock
firmware. This is especially important, because stock firmware for
this device is not available officially, and is usually customized by
the mobile providers.
STEP 3: Booting initramfs image:
Method 1: using serial console (RECOMMENDED):
- Have TFTP server running, exposing the OpenWrt initramfs image, and
set your computer's IP address as 192.168.1.22. This is the default
expected by U-boot. You may wish to change that, and alter later
commands accordingly.
- Connect the serial console if you haven't done so already,
- Interrupt boot sequence by pressing any key in U-boot when prompted
- Use the following commands to boot OpenWrt initramfs through TFTP:
setenv serverip 192.168.1.22
setenv ipaddr 192.168.1.1
tftpboot 0x81000000 openwrt-ath79-nand-zte_mf286-initramfs-kernel.bin
bootm 0x81000000
(Replace server IP and router IP as needed). There is no emergency
TFTP boot sequence triggered by buttons, contrary to MF283+.
- When OpenWrt initramfs finishes booting, proceed to actual
installation.
Method 2: using initramfs image as temporary boot kernel
This exploits the fact, that kernel and rootfs MTD devices are
consecutive on NAND flash, so from within stock image, an initramfs can
be written to this area and booted by U-boot on next reboot, because it
uses "nboot" command which isn't limited by kernel partition size.
- Download the initramfs-kernel.bin image
- Split the image into two parts on 3MB partition size boundary, which
is the size of kernel partition. Pad the output of second file to
eraseblock size:
dd if=openwrt-ath79-nand-zte_mf286-initramfs-kernel.bin \
bs=128k count=24 \
of=openwrt-ath79-zte_mf286-intermediate-kernel.bin
dd if=openwrt-ath79-nand-zte_mf286-initramfs-kernel.bin \
bs=128k skip=24 conv=sync \
of=openwrt-ath79-zte_mf286-intermediate-rootfs.bin
- Copy over /usr/bin/flash_eraseall and /usr/bin/nandwrite utilities to
/tmp. This is CRITICAL for installation, as erasing rootfs will cut
you off from those tools on flash!
- After backing up the previous MTD contents, write the images to the
respective MTD devices:
/tmp/flash_eraseall /dev/<kernel-mtd>
/tmp/nandwrite /dev/<kernel-mtd> \
/var/usb_disk/openwrt-ath79-zte_mf286-intermediate-kernel.bin
/tmp/flash_eraseall /dev/<kernel-mtd>
/tmp/nandwrite /dev/<rootfs-mtd> \
/var/usb_disk/openwrt-ath79-zte_mf286-intermediate-rootfs.bin
- Ensure that no bad blocks were present on the devices while writing.
If they were present, you may need to vary the split between
kernel and rootfs parts, so U-boot reads a valid uImage after skipping
the bad blocks. If it fails, you will be left with method 3 (below).
- If write is OK, reboot the device, it will reboot to OpenWrt
initramfs:
reboot -f
- After rebooting, SSH into the device and use sysupgrade to perform
proper installation.
Method 3: using built-in TFTP recovery (LAST RESORT):
- With that method, ensure you have complete backup of system's NAND
flash first. It involves deliberately erasing the kernel.
- Download "-initramfs-kernel.bin" image for the device.
- Prepare the recovery image by prepending 8MB of zeroes to the image,
and name it root_uImage:
dd if=/dev/zero of=padding.bin bs=8M count=1
cat padding.bin openwrt-ath79-nand-zte_mf286-initramfs-kernel.bin >
root_uImage
- Set up a TFTP server at 192.0.0.1/8. Router will use random address
from that range.
- Put the previously generated "root_uImage" into TFTP server root
directory.
- Deliberately erase "kernel" partition" using stock firmware after
taking backup. THIS IS POINT OF NO RETURN.
- Restart the device. U-boot will attempt flashing the recovery
initramfs image, which will let you perform actual installation using
sysupgrade. This might take a considerable time, sometimes the router
doesn't establish Ethernet link properly right after booting. Be
patient.
- After U-boot finishes flashing, the LEDs of switch ports will all
light up. At this moment, perform power-on reset, and wait for OpenWrt
initramfs to finish booting. Then proceed to actual installation.
STEP 4: Actual installation:
- scp the sysupgrade image to the device:
scp openwrt-ath79-nand-zte_mf286-squashfs-sysupgrade.bin \
root@192.168.1.1:/tmp/
- ssh into the device and execute sysupgrade:
sysupgrade -n /tmp/openwrt-ath79-nand-zte_mf286-squashfs-sysupgrade.bin
- Wait for router to reboot to full OpenWrt.
STEP 5: WAN connection establishment
Since the router is equipped with LTE modem as its main WAN interface, it
might be useful to connect to the Internet right away after
installation. To do so, please put the following entries in
/etc/config/network, replacing the specific configuration entries with
one needed for your ISP:
config interface 'wan'
option proto 'qmi'
option device '/dev/cdc-wdm0'
option auth '<auth>' # As required, usually 'none'
option pincode '<pin>' # If required by SIM
option apn '<apn>' # As required by ISP
option pdptype '<pdp>' # Typically 'ipv4', or 'ipv4v6' or 'ipv6'
For example, the following works for most polish ISPs
config interface 'wan'
option proto 'qmi'
option device '/dev/cdc-wdm0'
option auth 'none'
option apn 'internet'
option pdptype 'ipv4'
If you have build with LuCI, installing luci-proto-qmi helps with this
task.
Restoring the stock firmware:
Preparation:
If you took your backup using stock firmware, you will need to
reassemble the partitions into images to be restored onto the flash. The
layout might differ from ISP to ISP, this example is based on generic stock
firmware.
The only partitions you really care about are "web", "kernel", and
"rootfs". For easy padding and possibly restoring configuration, you can
concatenate most of them into images written into "ubi" meta-partition
in OpenWrt. To do so, execute something like:
cat mtd5_cfg-param.bin mtd6-oops.bin mtd7-web.bin mtd9-rootfs.bin > \
mtd8-ubi_restore.bin
You can skip the "fota" partition altogether,
it is used only for stock firmware update purposes and can be overwritten
safely anyway. The same is true for "data" partition which on my device
was found to be unused at all. Restoring mtd5_cfg-param.bin will restore
the stock firmware configuration you had before.
Method 1: Using initramfs:
- Boot to initramfs as in step 3:
- Completely detach ubi0 partition using ubidetach /dev/ubi0_0
- Look up the kernel and ubi partitions in /proc/mtd
- Copy over the stock kernel image using scp to /tmp
- Erase kernel and restore stock kernel:
(scp mtd4_kernel.bin root@192.168.1.1:/tmp/)
mtd write <kernel_mtd> mtd4_kernel.bin
rm mtd4_kernel.bin
- Copy over the stock partition backups one-by-one using scp to /tmp, and
restore them individually. Otherwise you might run out of space in
tmpfs:
(scp mtd3_ubiconcat0.bin root@192.168.1.1:/tmp/)
mtd write <ubiconcat0_mtd> mtd3_ubiconcat0.bin
rm mtd3_ubiconcat0.bin
(scp mtd5_ubiconcat1.bin root@192.168.1.1:/tmp/)
mtd write <ubiconcat1_mtd> mtd5_ubiconcat1.bin
rm mtd5_ubiconcat1.bin
- If the write was correct, force a device reboot with
reboot -f
Method 2: Using live OpenWrt system (NOT RECOMMENDED):
- Prepare a USB flash drive contatining MTD backup files
- Ensure you have kmod-usb-storage and filesystem driver installed for
your drive
- Mount your flash drive
mkdir /tmp/usb
mount /dev/sda1 /tmp/usb
- Remount your UBI volume at /overlay to R/O
mount -o remount,ro /overlay
- Write back the kernel and ubi partitions from USB drive
cd /tmp/usb
mtd write mtd4_kernel.bin /dev/<kernel_mtd>
mtd write mtd8_ubi.bin /dev/<kernel_ubi>
- If everything went well, force a device reboot with
reboot -f
Last image may be truncated a bit due to lack of space in RAM, but this will happen over "fota"
MTD partition which may be safely erased after reboot anyway.
Method 3: using built-in TFTP recovery (LAST RESORT):
- Assemble a recovery rootfs image from backup of stock partitions by
concatenating "web", "kernel", "rootfs" images dumped from the device,
as "root_uImage"
- Use it in place of "root_uImage" recovery initramfs image as in the
TFTP pre-installation method.
Quirks and known issues
- Kernel partition size is increased to 4MB compared to stock 3MB, to
accomodate future kernel updates - at this moment OpenWrt 5.10 kernel
image is at 2.5MB which is dangerously close to the limit. This has no
effect on booting the system - but keep that in mind when reassembling
an image to restore stock firmware.
- uqmi seems to be unable to change APN manually, so please use the one
you used before in stock firmware first. If you need to change it,
please use protocok '3g' to establish connection once, or use the
following command to change APN (and optionally IP type) manually:
echo -ne 'AT+CGDCONT=1,"IP","<apn>' > /dev/ttyUSB0
- The only usable LED as a "system LED" is the green debug LED hidden
inside the case. All other LEDs are controlled by modem, on which the
router part has some influence only on Wi-Fi LED.
- Wi-Fi LED currently doesn't work while under OpenWrt, despite having
correct GPIO mapping. All other LEDs are controlled by modem,
including this one in stock firmware. GPIO19, mapped there only acts
as a gate, while the actual signal source seems to be 5GHz Wi-Fi
radio, however it seems it is not the LED exposed by ath10k as
ath10k-phy0.
- GPIO5 used for modem reset is a suicide switch, causing a hardware
reset of whole board, not only the modem. It is attached to
gpio-restart driver, to restart the modem on reboot as well, to ensure
QMI connectivity after reboot, which tends to fail otherwise.
- Modem, as in MF283+, exposes root shell over ADB - while not needed
for OpenWrt operation at all - have fun lurking around.
- MAC address shift for 5GHz Wi-Fi used in stock firmware is
0x320000000000, which is impossible to encode in the device tree, so I
took the liberty of using MAC address increment of 1 for it, to ensure
different BSSID for both Wi-Fi interfaces.
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
ZTE MF286D is a LTE router with four gigabit ethernet ports
and integrated QMI mPCIE modem.
Hardware specification:
- CPU: IPQ4019
- RAM: 256MB
- Flash: NAND 128MB + NOR 2MB
- WLAN1: Qualcomm Atheros QCA4019 2.4GHz 802.11bgn 2x2:2
- WLAN2: Qualcomm Atheros QCA4019 5GHz 802.11anac 2x2:2
- LTE: mPCIe cat 12 card (Modem chipset MDM9250)
- LAN: 4 Gigabit Ports
- USB: 1x USB2.0 (regular port). 1x USB3.0 (mpcie - used by the modem)
- Serial console: X8 connector 115200 8n1
Known issues:
- Many LEDs are driven by the modem. Only internal LEDs and wifi LEDs
are driven by cpu.
- Wifi LED is triggered by phy0tpt only
- No VoIP support
- LAN1/WAN port is configured as WAN
- ZTE gives only one MAC per device. Use +1/+2/+3 increment for WAN
and WLAN0/1
Opening the case:
1. Take of battery lid (no battery support for this model, battery cage
is dummy).
2. Unscrew screw placed behind battery lid.
3. Take off back cover. It attached with multiple plastic clamps.
4. Unscrew four more screws hidden behind back case.
5. Remove front panel from blue chassis. There are more plastic
clamps.
6. Unscrew two boards, which secures the PCB in the chassis.
7. Extract board from blue chassis.
Console connection (X8 connector):
1. Parameters: 115200 8N1
2. Pin description: (from closest pin to X8 descriptor to farthest)
- VCC (3.3V)
- TX
- RX
- GND
Install Instructions:
Serial + initramfs:
1. Place OpenWrt initramfs image for the device on a TFTP in
the server's root. This example uses Server IP: 192.168.1.3
2. Connect serial console (115200,8n1) to X8 connector.
3. Connect TFTP server to RJ-45 port.
4. Stop in u-Boot and run u-Boot commands:
setenv serverip 192.168.1.3
setenv ipaddr 192.168.1.72
set fdt_high 0x85000000
tftp openwrt-ipq40xx-generic-zte_mf286d-initramfs-fit-zImage.itb
bootm $loadaddr
5. Please make backup of original partitions, if you think about revert
to stock.
6. Login via ssh or serial and remove stock partitions:
ubiattach -m 9
ubirmvol /dev/ubi0 -N ubi_rootfs
ubirmvol /dev/ubi0 -N ubi_rootfs_data
7. Install image via "sysupgrade -n".
Signed-off-by: Pawel Dembicki <paweldembicki@gmail.com>
(cosmetic changes to the commit message)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
Kalle Valo ath10k-firmware repository no longer provides the
legacy board.bin files for the qca99x0 chips. Instead he
copied over the codeaurora version and add more board files.
In the future, this board-2.bin should find its way to
linux-firmware.git, which would allow us to remove the
extra download code completely.
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
this should have been removed together with linux 5.4 APM821XX
support. Currently, this didn't hurt or broke something. But it
will in the next stable kernel release.
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
The SDK does not ship the generic platform files. Use relative path for
GENERIC_PLATFORM_DIR to make it work. This points it at the files from
the feed directory instead of the base SDK path
Signed-off-by: Felix Fietkau <nbd@nbd.name>
All devices which used this package migrated to the kernel GPIO-line
watchdog driver and configure it over their DT.
Signed-off-by: Sven Eckelmann <sven@narfation.org>
This solves issue with DDR training on Turris Omnia.
Log:
******** DRAM initialization Failed (res 0x1) ********
DDR3 Training Sequence - FAILED
ERROR ### Please RESET the board ###
Signed-off-by: Josef Schlehofer <pepe.schlehofer@gmail.com>
Now that we can have both legacy and nft iptables variants
installed at the same time, install the legacy symlinks
Signed-off-by: Etienne Champetier <champetier.etienne@gmail.com>
As nftables is now the default, ip(6)tables-nft gets higher priority
The removed symlinks ("$(CP)" line) will now be installed by the
ALTERNATIVES mechanism
Signed-off-by: Etienne Champetier <champetier.etienne@gmail.com>
according to iptables-nft man page,
"These tools use the libxtables framework extensions and hook to the nf_tables
kernel subsystem using the nft_compat module."
This means that to work, iptables-nft needs the same modules as
iptables legacy except the ip(6)table-{filter,mangle,nat,raw}
ip_tables, ip6tables.
When those modules are loaded iptables-nft-save output contains
"# Warning: iptables-legacy tables present, use iptables-legacy-save to see them"
But as long as it's empty it should not be a problem.
To have nft properly display the rules created by ip(6)tables-nft we need
all iptables targets and matches to be built as extension and not built-in
(/usr/lib/iptables/libip(6)t_*.so)
When switching a package to iptables-nft, you need to keep the
iptables-mod-* dependencies
This patch does minimal changes:
- remove the direct iptables-nft -> iptables dependency
- and more important add nft-compat dependency
The rule
iptables-nft -A OUTPUT -d 8.8.8.8 -m comment --comment "aaa" -j REJECT
becomes
table ip filter {
chain OUTPUT {
type filter hook output priority filter; policy accept;
ip daddr 8.8.8.8 # xt_comment counter packets 0 bytes 0 # xt_REJECT
}
}
Signed-off-by: Etienne Champetier <champetier.etienne@gmail.com>
Add option to compile kmod-vrf, support for Virtual Routing and
Forwarding (Lite).
This module depends on NET_L3_MASTER_DEV, which is a boolean kernel
option, so we need to create a configuration option also for this, and
make kmod-vrf depend on it.
Signed-off-by: Marek Behún <kabel@kernel.org>
The sizes of the ipk changed on MIPS 24Kc like this:
13281 uboot-envtools_2021.01-54_mips_24kc.ipk
13308 uboot-envtools_2022.01-1_mips_24kc.ipk
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
The sizes of the ipk changed on MIPS 24Kc like this:
11248 libcap_2.51-1_mips_24kc.ipk
14461 libcap_2.63-1_mips_24kc.ipk
18864 libcap-bin_2.51-1_mips_24kc.ipk
20576 libcap-bin_2.63-1_mips_24kc.ipk
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
This release fixes two security mount(8) and umount(8) issues:
CVE-2021-3996
Improper UID check in libmount allows an unprivileged user to unmount FUSE
filesystems of users with similar UID.
CVE-2021-3995
This issue is related to parsing the /proc/self/mountinfo file allows an
unprivileged user to unmount other user's filesystems that are either
world-writable themselves or mounted in a world-writable directory.
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
The man page of the raw tool does not build because the disk-utils/raw.8
file is missing. It looks like it should be in the tar.xz file we
download, but it is missing.
We do not package the raw tool, so this is not a problem.
This fixes the following build error:
No rule to make target 'disk-utils/raw.8', needed by 'all-am'. Stop.
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
The sizes of the ipk changed on MIPS 24Kc like this:
289764 strace_5.14-1_mips_24kc.ipk
310899 strace_5.16-1_mips_24kc.ipk
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
795f420 cmis: Rename CMIS parsing functions
369b43a cmis: Initialize CMIS memory map
da16288 cmis: Use memory map during parsing
6acaeb9 cmis: Consolidate code between IOCTL and netlink paths
d7d15f7 sff-8636: Rename SFF-8636 parsing functions
4230597 sff-8636: Initialize SFF-8636 memory map
b74c040 sff-8636: Use memory map during parsing
799572f sff-8636: Consolidate code between IOCTL and netlink paths
9fdf45c sff-8079: Split SFF-8079 parsing function
2ccda25 netlink: eeprom: Export a function to request an EEPROM page
86792db cmis: Request specific pages for parsing in netlink path
6e2b32a sff-8636: Request specific pages for parsing in netlink path
c2170d4 sff-8079: Request specific pages for parsing in netlink path
9538f38 netlink: eeprom: Defer page requests to individual parsers
664586e Merge branch 'review/next/module-mem-map' into master
50fdaec ethtool: Set mask correctly for dumping advertised FEC modes
c5e7133 cable-test: Fix premature process termination
73091cd sff-8636: Use an SFF-8636 specific define for maximum number of channels
837c166 sff-common: Move OFFSET_TO_U16_PTR() to common header file
8658852 cmis: Initialize Page 02h in memory map
27b42a9 cmis: Initialize Banked Page 11h in memory map
340d88e cmis: Parse and print diagnostic information
eae6a99 cmis: Print Module State and Fault Cause
82012f2 cmis: Print Module-Level Controls
d7b1007 sff-8636: Print Power set and Power override bits
429f2fc Merge branch 'review/cmis-diag' into master
32457a9 monitor: do not show duplicate options in help text
c01963e Release version 5.16.
The sizes of the ipk changed on MIPS 24Kc like this:
34317 ethtool_5.15-1_mips_24kc.ipk
34311 ethtool_5.16-1_mips_24kc.ipk
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
This fixes the following security problems:
* Zeroize several intermediate variables used to calculate the expected
value when verifying a MAC or AEAD tag. This hardens the library in
case the value leaks through a memory disclosure vulnerability. For
example, a memory disclosure vulnerability could have allowed a
man-in-the-middle to inject fake ciphertext into a DTLS connection.
* Fix a double-free that happened after mbedtls_ssl_set_session() or
mbedtls_ssl_get_session() failed with MBEDTLS_ERR_SSL_ALLOC_FAILED
(out of memory). After that, calling mbedtls_ssl_session_free()
and mbedtls_ssl_free() would cause an internal session buffer to
be free()'d twice. CVE-2021-44732
The sizes of the ipk changed on MIPS 24Kc like this:
182454 libmbedtls12_2.16.11-2_mips_24kc.ipk
182742 libmbedtls12_2.16.12-1_mips_24kc.ipk
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
This is a minor corrective release over GDB 11.1, fixing the following issues:
* PR sim/28302 (gdb fails to build with glibc 2.34)
* PR build/28318 (std::thread support configure check does not use CXX_DIALECT)
* PR gdb/28405 (arm-none-eabi: internal-error: ptid_t remote_target::select_thread_for_ambiguous_stop_reply(const target_waitstatus*): Assertion `first_resumed_thread != nullptr' failed)
* PR tui/28483 ([gdb/tui] breakpoint creation not displayed)
* PR build/28555 (uclibc compile failure since commit 4655f8509fd44e6efabefa373650d9982ff37fd6)
* PR rust/28637 (Rust characters will be encoded using DW_ATE_UTF)
* PR gdb/28758 (GDB 11 doesn't work correctly on binaries with a SHT_RELR (.relr.dyn) section)
* PR gdb/28785 (Support SHT_RELR (.relr.dyn) section)
The sizes of the ipk changed on mips 24Kc like this:
2285775 gdb_11.1-3_mips_24kc.ipk
2287441 gdb_11.2-4_mips_24kc.ipk
191828 gdbserver_11.1-3_mips_24kc.ipk
191811 gdbserver_11.2-4_mips_24kc.ipk
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Add the most recent supported firmware file for Intel Wi-Fi 6E AX210
wireless chip. The API version 67 is not yet supported by the driver.
Additional PNVM file is required since API version 62.
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
Just use 'start' action which will have the desired effect instead of
trying to introduce a 'start_file' action which didn't work that way
because procd jshn magic would have to wrap around it.
Fixes: 88baf6ce2c ("ubox: only start log to file when filesystem has been mounted")
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
From: Peter Lundkvist <peter.lundkvist@gmail.com>
This fixes the make_syscall_h.sh script to recognize both
__NR_Linux, used by mips, and __NR_SYSCALL_BASE and
__ARM_NR_BASE used by arm.
Run-tested on arm (ipq806x) and mips (ath79), both with glibc.
Compile-tested and checked resulting syscall_names.h file wuth
glibc: aarch64, powerpc, x86_64, i486
musl: arm, mips
Fixes: FS#4194, FS#4195
Signed-off-by: Peter Lundkvist <peter.lundkvist@gmail.com>
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
If log_file is on an filesystem mounted using /etc/config/fstab we have
to wait for that to happen before starting the logread process.
Inhibit the start of the file-writer process and use a mount trigger to
fire it up once the filesystem actually becomes available.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Allow init scripts to trigger free-form actions by exposing
procd_add_action_mount_trigger.
Clean up mount trigger wrappers while at it to reduce code duplication.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
The arc700 target is not booting up since some time, see here:
https://github.com/foss-for-synopsys-dwc-arc-processors/toolchain/issues/400
It looks like there is a problem in the toolchain when using glibc.
Currently no one is working on fixing this problem, remove the target
instead. This target also does not have many users we are aware of.
If someone wants to have this target back, feel free to add a fixed
version of this target again.
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
Acked-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Acked-by: Stijn Tintel <stijn@linux-ipv6.be>
bpftool will enabled libbfd and libopcodes which gets picked up by perf
as libraries to link against. Add those missing dependencies when either
of these packages are enabled.
Signed-off-by: Florian Fainelli <f.fainelli@gmail.com>
nf-nathelper-extra and nf-conntrack-netlink had iptables related
dependencies, yet, when looking for the respective kernel symbols and
checking it's dependencies it was confirmed that iptables wasn't
required and that these were either it's own moodule or tool independent
(nftables or iptables).
Correct these and make sure no unneeded extras are pulled in.
Signed-off-by: Tiago Gaspar <tiagogaspar8@gmail.com>
Add U-Boot env settings to allow accessing the environment using
fw_printenv and fw_setenv tools on the UniElec U7623 board.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>