Commit Graph

982 Commits

Author SHA1 Message Date
张鹏
4ff7bdfeeb ath79: add support for Qxwlan E1700AC v2
E1700AC v2 based on Qualcomm/Atheros QCA9563 + QCA9880.

Specification:

 - 750/400/250 MHz (CPU/DDR/AHB)
 - 128 MB of RAM (DDR2)
 - 8/16 MB of FLASH (SPI NOR)
 - 3T3R 2.4 GHz
 - 3T3R 5 GHz
 - 2 x 10/1000M Mbps Ethernet (RJ45)
 - 1 x MiniPCI-e
 - 1 x SIM (3G/4G)
 - 1 x USB 2.0 Port
 - 5 x LED , 2 x Button(S8-Reset Buttun), 1 x power input
 - UART (J5) header on PCB (115200 8N1)

Flash instruction:

   1.Using tftp mode with UART connection and original LEDE image
      - Configure PC with static IP 192.168.1.10 and tftp server.
      - Rename "openwrt-ar71xx-generic-xxx-squashfs-sysupgrade.bin"
        to "firmware.bin" and place it in tftp server directory.
      - Connect PC with one of LAN ports, power up the router and press
        key "Enter" to access U-Boot CLI.
      - Use the following commands to update the device to LEDE:
        run lfw
      - After that the device will reboot and boot to LEDE.
      - Wait until all LEDs stops flashing and use the router.

   2.Using httpd mode with Web UI connection and original LEDE image
      - Configure PC with static IP 192.168.1.xxx(2-255) and tftp server.
      - Connect PC with one of LAN ports,press the reset button, power up
        the router and keep button pressed for around 6-7 seconds, until
        leds flashing.
      - Open your browser and enter 192.168.1.1,You will see the upgrade
        interface, select "openwrt-ar71xx-generic-xxx-squashfs-
        sysupgrade.bin" and click the upgrade button.
      - After that the device will reboot and boot to LEDE.
      - Wait until all LEDs stops flashing and use the router.

Signed-off-by: 张鹏 <sd20@qxwlan.com>
[cut out of bigger patch, keep swconfig, whitespace fixes]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-10-17 20:18:00 +02:00
张鹏
987d9028e1 ath79: add support for Qxwlan E558 v2
Qxwlan E558 v2 is based on Qualcomm QCA9558 + AR8327.

Specification:

 - 720/600/200 MHz (CPU/DDR/AHB)
 - 128 MB of RAM (DDR2)
 - 8/16 MB of FLASH (SPI NOR)
 - 2T2R 2.4 GHz (QCA9558)
 - 3x 10/100/1000 Mbps Ethernet (one port with PoE support)
 - 4x miniPCIe slot (USB 2.0 bus only)
 - 1x microSIM slot
 - 5x LED (4 driven by GPIO)
 - 1x button (reset)
 - 1x 3-pos switch
 - 1x DC jack for main power input (9-48 V)
 - UART (JP5) and LEDs (J8) headers on PCB

Flash instruction:

   1.Using tftp mode with UART connection and original LEDE image
      - Configure PC with static IP 192.168.1.10 and tftp server.
      - Rename "openwrt-ar71xx-generic-xxx-squashfs-sysupgrade.bin"
        to "firmware.bin" and place it in tftp server directory.
      - Connect PC with one of LAN ports, power up the router and press
        key "Enter" to access U-Boot CLI.
      - Use the following commands to update the device to LEDE:
        run lfw
      - After that the device will reboot and boot to LEDE.
      - Wait until all LEDs stops flashing and use the router.

   2.Using httpd mode with Web UI connection and original LEDE image
      - Configure PC with static IP 192.168.1.xxx(2-255) and tftp server.
      - Connect PC with one of LAN ports,press the reset button, power up
        the router and keep button pressed for around 6-7 seconds, until
        leds flashing.
      - Open your browser and enter 192.168.1.1,You will see the upgrade
        interface, select "openwrt-ar71xx-generic-xxx-squashfs-
        sysupgrade.bin" and click the upgrade button.
      - After that the device will reboot and boot to LEDE.
      - Wait until all LEDs stops flashing and use the router.

Signed-off-by: 张鹏 <sd20@qxwlan.com>
[cut out of bigger patch, keep swconfig, whitespace adjustments]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-10-17 20:17:59 +02:00
张鹏
27a7d071c0 ath79: add support for Qxwlan E750G v8
Qxwlan E750G v8 is based on Qualcomm QCA9344 + QCA9334.

Specification:

 - 560/450/225 MHz (CPU/DDR/AHB)
 - 128 MB of RAM (DDR2)
 - 8/16 MB of FLASH (SPI NOR)
 - 2T2R 2.4G GHz (AR9344)
 - 2x 10/100/1000 Mbps Ethernet (one port with PoE support)
 - 7x LED (6 driven by GPIO)
 - 1x button (reset)
 - 1x DC jack for main power input (9-48 V)
 - UART (J23) and LEDs (J2) headers on PCB

Flash instruction:

   1.Using tftp mode with UART connection and original LEDE image
      - Configure PC with static IP 192.168.1.10 and tftp server.
      - Rename "openwrt-ar71xx-generic-xxx-squashfs-sysupgrade.bin"
        to "firmware.bin" and place it in tftp server directory.
      - Connect PC with one of LAN ports, power up the router and press
        key "Enter" to access U-Boot CLI.
      - Use the following commands to update the device to LEDE:
        run lfw
      - After that the device will reboot and boot to LEDE.
      - Wait until all LEDs stops flashing and use the router.

   2.Using httpd mode with Web UI connection and original LEDE image
      - Configure PC with static IP 192.168.1.xxx(2-255) and tftp server.
      - Connect PC with one of LAN ports,press the reset button, power up
        the router and keep button pressed for around 6-7 seconds, until
        leds flashing.
      - Open your browser and enter 192.168.1.1,You will see the upgrade
        interface, select "openwrt-ar71xx-generic-xxx-squashfs-
        sysupgrade.bin" and click the upgrade button.
      - After that the device will reboot and boot to LEDE.
      - Wait until all LEDs stops flashing and use the router.

Signed-off-by: 张鹏 <sd20@qxwlan.com>
[cut out of bigger patch, keep swconfig]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-10-17 20:17:59 +02:00
Peng Zhang
5666ca913a ath79: add support for Qxwlan E750A v4
Qxwlan E750A v4 is based on Qualcomm QCA9344.

Specification:

 - 560/450/225 MHz (CPU/DDR/AHB)
 - 128 MB of RAM (DDR2)
 - 8/16 MB of FLASH (SPI NOR)
 - 2T2R 5G GHz (AR9344)
 - 2x 10/100 Mbps Ethernet (one port with PoE support)
 - 1x miniPCIe slot (USB 2.0 bus only)
 - 7x LED (6 driven by GPIO)
 - 1x button (reset)
 - 1x DC jack for main power input (9-48 V)
 - UART (J23) and LEDs (J2) headers on PCB

Flash instruction:

   1.Using tftp mode with UART connection and original LEDE image
      - Configure PC with static IP 192.168.1.10 and tftp server.
      - Rename "openwrt-ar71xx-generic-xxx-squashfs-sysupgrade.bin"
        to "firmware.bin" and place it in tftp server directory.
      - Connect PC with one of LAN ports, power up the router and press
        key "Enter" to access U-Boot CLI.
      - Use the following commands to update the device to LEDE:
        run lfw
      - After that the device will reboot and boot to LEDE.
      - Wait until all LEDs stops flashing and use the router.

   2.Using httpd mode with Web UI connection and original LEDE image
      - Configure PC with static IP 192.168.1.xxx(2-255) and tftp server.
      - Connect PC with one of LAN ports,press the reset button, power up
        the router and keep button pressed for around 6-7 seconds, until
        leds flashing.
      - Open your browser and enter 192.168.1.1,You will see the upgrade
        interface, select "openwrt-ar71xx-generic-xxx-squashfs-
        sysupgrade.bin" and click the upgrade button.
      - After that the device will reboot and boot to LEDE.
      - Wait until all LEDs stops flashing and use the router.

Signed-off-by: Peng Zhang <sd20@qxwlan.com>
[cut out of bigger patch, alter use of DEVICE_VARIANT, merge case
in 01_leds, use lower case for v4]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-10-15 18:52:39 +02:00
Adrian Schmutzler
f2b952a657 ath79: drop redundant gpios on i2c
Since "sda-gpios" and "scl-gpios" are only available since kernel 4.19,
a few devices have redundantly defined "gpios" to also support older
kernels. Since we have nothing older than 4.19 now, we can remove
the redundant definitions.

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-10-09 22:45:36 +02:00
Roman Kuzmitskii
582ba9ddc7 ath79: rename ubnt,acb-isp to ubnt,aircube-isp
Use the full model name for this device to make it easier to
recognize for the users and in order to make it consistent with
the other devices.

While at it, fix sorting in 03_gpio_switches.

Signed-off-by: Roman Kuzmitskii <damex.pp@icloud.com>
[commit message facelift]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-10-06 15:13:27 +02:00
Adrian Schmutzler
e3af1666f4 ath79: rename TP-Link TL-WPA8630P v2 (EU) to v2.0 (EU)
Since we have a v2.1 (EU) with different partitioning now, rename
the v2.0 to make the difference visible to the user more directly.

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-10-04 15:44:05 +02:00
Joe Mullally
7422c7a6fa ath79: add support for TP-Link TL-WPA8630P (EU) v2.1
This adds support for the TP-Link TL-WPA8630P (EU) in its v2.1
version. The only unique aspect for the firmware compared to v2
layout is the partition layout.

Note that while the EU version has different partitioning for
v2.0 and v2.1, the v2.1 (AU) is supported by the v2-int image.

If you plan to use this device, make sure you have a look at
the Wiki page to check whether the device is supported and
which image needs to be taken.

Specifications
--------------

  - QCA9563 750MHz, 2.4GHz WiFi
  - QCA9888 5GHz WiFi
  - 8MiB SPI Flash
  - 128MiB RAM
  - 3 GBit Ports (QCA8337)
  - PLC (QCA7550)

Installation
------------

Installation is possible from the OEM web interface. Make sure to
install the latest OEM firmware first, so that the PLC firmware is
at the latest version. However, please also check the Wiki page
for hints according to altered partitioning between OEM firmware
revisions.

Notes
-----

The OEM firmware has 0x620000 to 0x680000 unassigned, so we leave
this empty as well. It is complicated enough already ...

Signed-off-by: Joe Mullally <jwmullally@gmail.com>
[improve partitions, use v2 DTSI, add entry in 02_network, rewrite
and extend commit message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-10-04 15:44:05 +02:00
Adrian Schmutzler
6f96a4d043 ath79: remove model name from LED labels
Currently, we request LED labels in OpenWrt to follow the scheme

  modelname:color:function

However, specifying the modelname at the beginning is actually
entirely useless for the devices we support in OpenWrt. On the
contrary, having this part actually introduces inconvenience in
several aspects:

  - We need to ensure/check consistency with the DTS compatible
  - We have various exceptions where not the model name is used,
    but the vendor name (like tp-link), which is hard to track
    and justify even for core-developers
  - Having model-based components will not allow to share
    identical LED definitions in DTSI files
  - The inconsistency in what's used for the model part complicates
    several scripts, e.g. board.d/01_leds or LED migrations from
    ar71xx where this was even more messy

Apart from our needs, upstream has deprecated the label property
entirely and introduced new properties to specify color and
function properties separately. However, the implementation does
not appear to be ready and probably won't become ready and/or
match our requirements in the foreseeable future.

However, the limitation of generic LEDs to color and function
properties follows the same idea pointed out above. Generic LEDs
will get names like "green:status" or "red:indicator" then, and
if a "devicename" is prepended, it will be the one of an internal
device, like "phy1:amber:status".

With this patch, we move into the same direction, and just drop
the boardname from the LED labels. This allows to consolidate
a few definitions in DTSI files (will be much more on ramips),
and to drop a few migrations compared to ar71xx that just changed
the boardname. But mainly, it will liberate us from a completely
useless subject to take care of for device support review and
maintenance.
To also drop the boardname from existing configurations, a simple
migration routine is added unconditionally.

Although this seems unfamiliar at first look, a quick check in kernel
for the arm/arm64 dts files revealed that while 1033 lines have
labels with three parts *:*:*, still 284 actually use a two-part
labelling *:*, and thus is also acceptable and not even rare there.

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-10-02 13:51:39 +02:00
Chuanhong Guo
86fdc8abed ath79: ar8216: make switch register access atomic
reg accesses on integrated ar8229 sometimes fails. As a result, phy read
got incorrect port status and wan link goes down and up mysteriously.
After comparing ar8216 with the old driver, these local_irq_save/restore
calls are the only meaningful differences I could find and it does fix
the issue.
The same changes were added in svn r26856 by Gabor Juhos:
ar71xx: ag71xx: make switch register access atomic

As I can't find the underlying problem either, this hack is broght
back to fix the unstable link issue.
This hack is only suitable for ath79 mdio and may easily break the
driver on other platform. Limit it to ath79-only as a target patch.

Fixes: FS#2216
Fixes: FS#3226
Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
2020-09-30 15:56:05 +08:00
David Bauer
a735eabc32 ath79: add WiFi migration for AR913x
This adds the automatic WiFi path migration for AR913x platforms.

Tested on: TP-Link TL-WA901ND v2

Signed-off-by: David Bauer <mail@david-bauer.net>
2020-09-28 16:23:03 +02:00
Piotr Dymacz
e9263123f9 ath79: add support for Hak5 WiFi Pineapple NANO
Hak5 WiFi Pineapple NANO is an "USB dongle" device dedicated for Wi-Fi
pentesters. This device is based on Atheros AR9331 and AR9271. Support
for it was first introduced in 950b278c81 (ar71xx). FCC ID: 2AB87-NANO.

Specifications:

- Atheros AR9331
- 400/400/200 MHz (CPU/DDR/AHB)
- 64 MB of RAM (DDR1)
- 16 MB of flash (SPI NOR)
- 1T1R 2.4 GHz Wi-Fi (AR9331)
- 1T1R 2.4 GHz Wi-Fi (AR9271L), with ext. PA and LNA (Qorvo RFFM4203)
- 2x RP-SMA antenna connectors
- 1x USB 2.0 to 10/100 Ethernet bridge (ASIX AX88772A)
- integrated 4-port USB 2.0 HUB: Alcor Micro AU6259:
  - 1x USB 2.0
  - 1x microSD card reader (Genesys Logic GL834L)
  - Atheros AR9271L
- 1x LED, 1x button
- UART (4-pin, 2 mm pitch) header on PCB
- USB 2.0 Type-A plug for power and AX88772A

Flash instruction:

You can use sysupgrade image directly in vendor firmware which is based
on OpenWrt/LEDE.

Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
2020-09-28 01:28:37 +02:00
Piotr Dymacz
b33ce8c535 ath79: add support for Hak5 Packet Squirrel
Hak5 Packet Squirrel is a pocket-sized device dedicated for pentesters
(MITM attacks). This device is based on Atheros AR9331 but it lacks
WiFi. Support for it was first introduced in 950b278c81 (ar71xx).

Specifications:

- Atheros AR9331
- 400/400/200 MHz (CPU/DDR/AHB)
- 64 MB of RAM (DDR2)
- 16 MB of flash (SPI NOR)
- 2x RJ45 10/100 Mbps Ethernet (AR9331)
- 1x USB 2.0
- 1x RGB LED, 1x button, 1x 4-way mechanical switch
- 1x Micro USB Type-B for main power input

Flash instruction:

You can use sysupgrade image directly in vendor firmware which is based
on OpenWrt/LEDE.

Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
2020-09-28 01:28:37 +02:00
Piotr Dymacz
a2f3a58607 ath79: add support for Hak5 LAN Turtle
Hak5 LAN Turtle is an "USB Ethernet Adapter" shaped device dedicated for
sysadmins and pentesters. This device is based on Atheros AR9331 but it
lacks WiFi. Support for it was first introduced in 950b278c81 (ar71xx).

Two different versions of this device exist and it's up to the user to
install required drivers (generic image supports only common features):

- LAN Turtle 3G with Quectel UG96 3G modem
- LAN Turtle SD with microSD card reader (Alcorlink AU6435R)

Specifications:

- Atheros AR9331
- 400/400/200 MHz (CPU/DDR/AHB)
- 64 MB of RAM (DDR2)
- 16 MB of flash (SPI NOR)
- 1x RJ45 10/100 Mbps Ethernet (AR9331)
- 1x USB 2.0 to 10/100 Ethernet bridge (Realtek RTL8152B)
- 2x LED (power, system), 1x button (inside, on the PCB)
- USB 2.0 Type-A plug for power and RTL8152B

Flash instruction:

You can use sysupgrade image directly in vendor firmware which is based
on OpenWrt/LEDE.

Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
2020-09-28 01:28:37 +02:00
Piotr Dymacz
70a57d48db ath79: add support for ALFA Network N5Q
ALFA Network N5Q is a successor of previous model, the N5 (outdoor
CPE/AP, based on Atheros AR7240 + AR9280). New version is based on
Atheros AR9344.

Support for this device was first introduced in 4b0eebe9df (ar71xx
target) but users are advised to migrate from ar71xx target without
preserving settings as ath79 support includes some changes in network
and LED default configuration. They were aligned with vendor firmware
and recently added N2Q model (both Ethernet ports as LAN, labelled as
LAN1 and LAN2).

Specifications:

- Atheros AR9344
- 550/400/200 MHz (CPU/DDR/AHB)
- 64 MB of RAM (DDR2)
- 16 MB of flash (SPI NOR)
- 2x 10/100 Mbps Ethernet, with passive PoE support (24 V)
- 2T2R 5 GHz Wi-Fi, with ext. PA (RFPA5542) and LNA, up to 27 dBm
- 2x IPEX/U.FL or MMCX antenna connectors (for PCBA version)
- 8x LED (7 are driven by GPIO)
- 1x button (reset)
- external h/w watchdog (EM6324QYSP5B, enabled by default)
- header for optional 802.3at/af PoE module
- DC jack for main power input (optional, not installed by default)
- UART (4-pin, 2.54 mm pitch) header on PCB
- LEDs (2x 5-pin, 2.54 mm pitch) header on PCB

Flash instruction:

You can use sysupgrade image directly in vendor firmware which is based
on OpenWrt/LEDE. Alternatively, you can use web recovery mode in U-Boot:

1. Configure PC with static IP 192.168.1.2/24.
2. Connect PC with one of RJ45 ports, press the reset button, power up
   device, wait for first blink of all LEDs (indicates network setup),
   then keep button for 3 following blinks and release it.
3. Open 192.168.1.1 address in your browser and upload sysupgrade image.

Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
2020-09-28 01:28:37 +02:00
Piotr Dymacz
6492ea7d9e ath79: add support for ALFA Network N2Q
ALFA Network N2Q is an outdoor N300 AP/CPE based on Qualcomm/Atheros
QCA9531 v2. This model is a successor of the old N2 which was based
on Atheros AR7240. FCC ID: 2AB8795311.

Specifications:

- Qualcomm/Atheros QCA9531 v2
- 650/400/200 MHz (CPU/DDR/AHB)
- 128 MB of RAM (DDR2)
- 16 MB of flash (SPI NOR)
- 2T2R 2.4 GHz Wi-Fi with ext. PA (Skyworks SE2623L) and LNA
- 2x 10/100 Mbps Ethernet with passive PoE input in one port (24 V)
- PoE pass through in second port (controlled by GPIO)
- support for optional 802.3af/at PoE module
- 1x mini PCIe slot (PCIe bus, extra 4.2 V for high power cards)
- 2x IPEX/U.FL connectors on PCB
- 1x USB 2.0 mini Type-B (power controlled by GPIO)
- 8x LED (7 of them are driven by GPIO)
- 1x button (reset)
- external h/w watchdog (EM6324QYSP5B, enabled by default)
- UART (4-pin, 2.54 mm pitch) header on PCB
- LEDs (2x 5-pin, 2.54 mm pitch) header on PCB

Flash instruction:

You can use sysupgrade image directly in vendor firmware which is based
on LEDE/OpenWrt. Alternatively, you can use web recovery mode in U-Boot:

1. Configure PC with static IP 192.168.1.2/24.
2. Connect PC with one of RJ45 ports, press the reset button, power up
   device, wait for first blink of all LEDs (indicates network setup),
   then keep button for 3 following blinks and release it.
3. Open 192.168.1.1 address in your browser and upload sysupgrade image.

Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
2020-09-28 01:28:37 +02:00
Piotr Dymacz
9bcf98ed85 ath79: add support for ALFA Network R36A
ALFA Network R36A is a successor of the previous model, the R36 (Ralink
RT3050F based). New version is based on Qualcomm/Atheros QCA9531 v2, FCC
ID: 2AB879531.

Support for this device was first introduced in af8f0629df (ar71xx
target). When updating from previous release (and/or ar71xx target),
user should only adjust the WAN LED trigger type (netdev in ar71xx,
switch port in ath79).

Specifications:

- Qualcomm/Atheros QCA9531 v2
- 650/400/200 MHz (CPU/DDR/AHB)
- 128 MB (R36AH/-U2) or 64 MB (R36A) of RAM (DDR2)
- 16 MB of flash (SPI NOR)
- 2x 10/100 Mbps Ethernet
- Passive PoE input support (12~36 V) in RJ45 near DC jack
- 2T2R 2.4 GHz Wi-Fi with Qorvo RFFM8228P FEM
- 2x IPEX/U.FL connectors on PCB
- 1x USB 2.0 Type-A
- 1x USB 2.0 mini Type-B in R36AH-U2 version
- USB power is controlled by GPIO
- 6/7x LED (5/6 of them are driven by GPIO)
- 2x button (reset, wifi/wps)
- external h/w watchdog (EM6324QYSP5B, enabled by default)
- DC jack with lock, for main power input (12 V)
- UART (4-pin, 2.54 mm pitch) header on PCB

Optional/additional features in R36A series (R36A was the first model):
- for R36AH:    USB 2.0 hub*
- for R36AH-U2: USB 2.0 hub*, 1x USB 2.0 mini Type-B, one more LED

*) there are at least three different USB 2.0 hub in R36AH/-U2 variants:
- Terminus-Tech FE 1.1
- Genesys Logic GL852G
- Genesys Logic GL850G (used in latests revision)

Flash instruction:

You can use sysupgrade image directly in vendor firmware which is based
on LEDE/OpenWrt. Alternatively, you can use web recovery mode in U-Boot:

1. Configure PC with static IP 192.168.1.2/24.
2. Connect PC with one of RJ45 ports, press the reset button, power up
   device, wait for first blink of all LEDs (indicates network setup),
   then keep button for 3 following blinks and release it.
3. Open 192.168.1.1 address in your browser and upload sysupgrade image.

Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
2020-09-28 01:28:37 +02:00
Piotr Dymacz
cf42660dce ath79: add support for Samsung WAM250
Samsung WAM250 is a dual-band (selectable, not simultaneous) wireless
hub, dedicated for Samsung Shape Wireless Audio System. The device is
based on Atheros AR9344 (FCC ID: A3LWAM250). Support for this device
was first introduced in e58e49bdbe (ar71xx target).

Specifications:

- Atheros AR9344
- 560/450/225 MHz (CPU/DDR/AHB)
- 64 MB of RAM (DDR2)
- 16 MB of flash (SPI NOR)
- 2x 10/100 Mbps Ethernet
- 2T2R 2.4/5 GHz Wi-Fi, with ext. PA (SE2598L, SE5003L) and LNA
- 1x USB 2.0
- 4x LED (all are driven by GPIO)
- 2x button (reset, wps/speaker add)
- DC jack for main power input (14 V)
- UART header on PCB (J4, RX: 3, TX: 5)

Flash instruction:

This device uses dual-image (switched between upgrades) with a common
jffs2 config partition. Fortunately, there is a way to disable this mode
so that more flash space can be used by OpenWrt image.

You can easily access this device over telnet, using root/root
credentials (the same also work for serial console access).

1. Make sure that your device uses second (bootpart=2) image using
   command: "fw_printenv bootpart".
2. If your device uses first image (bootpart=1), perform upgrade to the
   latest vendor firmware (after the update, device should boot from
   second partition) using web gui (default login: admin/1234567890).
3. Rename "sysupgrade" image to "firmware.bin", download it (you can use
   wget, tftp or ftpget) to "/tmp" and issue below commands:

   mtd_debug erase /dev/mtd3 0 $(wc -c /tmp/firmware.bin | awk -F' ' '{print $1}')
   mtd_debug write /dev/mtd3 0 $(wc -c /tmp/firmware.bin)
   fw_setenv bootpart
   fw_setenv bootcmd "bootm 0x9f070000"
   reboot

Revert to vendor firmware instruction:

1. Download vendor firmware to "/tmp" device and issue below commands:

   fw_setenv bootpart 1
   sysupgrade -n -F SS_BHUB_v2.2.05.bin

Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
2020-09-28 01:28:37 +02:00
Piotr Dymacz
f777bca95d ath79: image: don't combine kmod-usb2 with kmod-usb-chipidea2
Include of kmod-usb-chipidea2 is enough to support USB host mode in
devices with Atheros AR9331 WiSOC.

Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
2020-09-28 01:28:37 +02:00
Piotr Dymacz
c65c306d33 ath79: add support for Wallys DR531
Wallys DR531 is based on Qualcomm Atheros QCA9531 v2. Support for this
device was first introduced in e767980eb8 (ar71xx target).

Specifications:

- Qualcomm/Atheros QCA9531 v2
- 550/400/200 MHz (CPU/DDR/AHB)
- 2x 10/100 Mbps Ethernet
- 64 MB of RAM (DDR2)
- 8 MB of flash (SPI NOR)
- 2T2R 2.4 GHz Wi-Fi, with external PA (SE2576L), up to 30 dBm
- 2x MMCX connectors (optional IPEX/U.FL)
- mini PCIe connector (PCIe/USB buses and mini SIM slot)
- 7x LED, 1x button, 1x optional buzzer
- UART, JTAG and LED headers on PCB

Flash instruction (do it under U-Boot, using UART):

  tftpb 0x80060000 openwrt-ath79-...-dr531-squashfs-sysupgrade.bin
  erase 0x9f050000 +$filesize
  cp.b $fileaddr 0x9f050000 $filesize
  setenv bootcmd "bootm 0x9f050000"
  saveenv && reset

Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
2020-09-28 01:28:37 +02:00
Piotr Dymacz
66abd58196 ath79: add support for ALFA Network AP121FE
The AP121FE is a slightly modified version of already supported AP121F
model (added to ar71xx in 0c6165d21a and to ath79 in 334bbc5198).

The differences in compare to AP121F:

- no micro SD card reader
- USB data lines are included in Type-A plug
- USB bus switched to device/peripheral mode (permanently, in bootstrap)

Other than that, specifications are the same:

- Atheros AR9331
- 400/400/200 MHz (CPU/DDR/AHB)
- 64 MB of RAM (DDR1)
- 16 MB of flash (SPI NOR)
- 1x 10/100 Mbps Ethernet
- 1T1R 2.4 GHz Wi-Fi, up to 15 dBm
- 1x IPEX/U.FL connector, internal PCB antenna
- 3x LED, 1x button, 1x switch
- 4-pin UART header on PCB (2 mm pitch)
- USB 2.0 Type-A plug (power and data)

Flash instruction (under U-Boot web recovery mode):

1. Configure PC with static IP 192.168.1.2/24.
2. Connect PC with RJ45 port, press the reset button, power up device,
   wait for first blink of all LEDs (indicates network setup), then keep
   button for 3 following blinks and release it.
3. Open 192.168.1.1 address in your browser and upload sysupgrade image.

Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
2020-09-28 01:28:37 +02:00
Piotr Dymacz
7f96cbd2a1 ath79: enable usbgadget feature
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
2020-09-28 01:28:37 +02:00
Piotr Dymacz
b329bb9456 ath79: increase SPI clock and enable fast-read on AP121F
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
2020-09-28 01:28:37 +02:00
Adrian Schmutzler
96023cd4ba ath79: fix LED labels for PowerCloud CAP324
The order of function and color in the labels in inverted for the
LAN LEDs. Fix it.

Fixes: 915966d861 ("ath79: Port PowerCloud Systems CAP324 support")

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-09-27 15:58:14 +02:00
Adrian Schmutzler
d232a8ac7d ath79: fix rssi-low LED for My Net Range Extender
The LED color was missing in 01_leds.

Fixes: 745dee11ac ("ath79: add support for WD My Net Wi-Fi Range
Extender")

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-09-27 15:58:14 +02:00
Adrian Schmutzler
41cc7edc15 ath79: move dts-v1 statement to ath79.dtsi
The "/dts-v1/;" identifier is supposed to be present once at the
top of a device tree file after the includes have been processed.

In ath79, we therefore requested to have in the DTS files so far,
and omit it in the DTSI files. However, essentially the syntax of
the parent ath79.dtsi file already determines the DTS version, so
putting it into the DTS files is just a useless repetition.

Consequently, this patch puts the dts-v1 statement into the parent
ath79.dtsi, which is (indirectly) included by all DTS files. All
other occurences are removed.
Since the dts-v1 statement needs to be before any other definitions,
this also moves the includes to make sure the ath79.dtsi or its
descendants are always included first.

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-09-25 23:26:34 +02:00
Adrian Schmutzler
3ca2d31c54 ath79: move ath79-clk.h include to ath79.dtsi
ath79.dtsi uses ATH79_CLK_MDIO, so the include

  <dt-bindings/clock/ath79-clk.h>

needs to be moved there.

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-09-25 23:24:09 +02:00
Adrian Schmutzler
b284333b3a ath79: move engenius_loader_okli recipe before devices
Move engenius_loader_okli image recipe in front of all Engenius
devices, so adding new device entries will not have them sorted
before the shared recipe.

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-09-25 20:07:16 +02:00
Adrian Schmutzler
0cfdc7d446 target: update SPDX license names
SPDX moved from GPL-2.0 to GPL-2.0-only and from GPL-2.0+ to
GPL-2.0-or-later. Reflect that in the SPDX license headers.

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-09-22 20:58:26 +02:00
Paul Spooren
e8f61bf50d ath79: remove DTS from ATH79 target name
The legacy ar71xx target is removed and multiple targets use DTS now, so
there is no need to point that out for ATH79 specifically.

Signed-off-by: Paul Spooren <mail@aparcar.org>
2020-09-22 20:29:24 +02:00
Roger Pueyo Centelles
e6b42386ba ath79/mikrotik: fix soft_config location for SXT 5n
The soft_config partition for these devices lays between 0xe000 and
0xf000 (as correctly detected by the RouterBoard platform driver),
before the bootloader2 partition which starts at 0x10000.

This commit correctly sorts the partitions, fixing the parsing error.

Fixes: FS#3314

Signed-off-by: Roger Pueyo Centelles <roger.pueyo@guifi.net>
Reviewed-by: Thibaut VARÈNE <hacks@slashdirt.org>
2020-09-17 23:52:03 +02:00
David Bauer
b7da0d2944 ath79: add support for Ubiquiti UniFi AP Pro
This adds support for the Ubiquiti UniFi AP Pro to the ath79 target. The
device was previously supported on the now removed ar71xx target.

SoC   Atheros AR9344
WiFi  Atheros AR9344 & Atheros AR9280
ETH   Atheros AR8327
RAM   128M DDR2
FLASH 16M SPI-NOR

Installation
------------

Follow the Ubiquiti TFTP recovery procedure for this device.

1. Hold down the reset button while connecting power for 10 seconds.
2. Transfer the factory image via TFTP to the AP (192.168.1.20)
3. Wait 2 minutes for the AP to write the firmware to flash. The device
   will automatically reboot to OpenWrt.

Signed-off-by: David Bauer <mail@david-bauer.net>
2020-09-17 18:07:39 +02:00
Adrian Schmutzler
947bfc62d0 ath79: fix button types for WZR-HP-AG300H and WZR-600DHP
Router and Movie "keys" are actually switches for both devices
according to the manual. This has been properly implemented in ar71xx,
but overlooked when porting to ath79.

Fixes: 480bf28273 ("ath79: add support for Buffalo WZR-HP-AG300H")

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-09-16 17:34:35 +02:00
Adrian Schmutzler
25f2f66eea ath79: add support for Buffalo WZR-600DHP
The hardware of this device seems to be identical to WZR-HP-AG300H.
It was already implemented as a clone in ar71xx.

Specification:
- 680 MHz CPU (Qualcomm Atheros AR7161)
- 128 MiB RAM
- 32 MiB Flash
- WiFi 5 GHz a/n
- WiFi 2.4 GHz b/g/n
- 5x 1000Base-T Ethernet
- 1x USB 2.0

Installation of OpenWRT from vendor firmware:
- Connect to the Web-interface at http://192.168.11.1
- Go to “Administration” → “Firmware Upgrade”
- Upload the OpenWrt factory image

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-09-16 17:32:12 +02:00
Adrian Schmutzler
c68105c3b4 ath79: use common device definition for Buffalo devices
The Buffalo devices in ath79 share their image generation code,
so let's create a shared Device definition for them.

Since most of them use BUFFALO_HWVER := 3, this is moved as
default to the shared definition as well.

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-09-16 17:31:03 +02:00
Adrian Schmutzler
a99614a44f ath79: consistently use "info" label for default-mac partition
The tp-link safeloader devices typically contain a partition
"default-mac" which stores the MAC addresses. It is followed by other
partitions containing device info, like

  {"default-mac", 0x610000, 0x00020},
  {"pin", 0x610100, 0x00020},
  {"product-info", 0x611100, 0x01000},

In DTS, we typically assign a 0x10000 sized partition for these,
which is mostly labelled "mac" or "info". In rarer cases, the
partitions have been enclosed in a larger "tplink" or "config"
partition.

However, when comparing different devices, the implementation appears
relatively arbitrary at the moment.
Thus, this PR aims at harmonizing these partitions by always using
the name "info" for the DTS partition containing "default-mac".
"info" is preferred over "mac" as we never just have "default-mac"
alone, but always some other device-info partitions as well.

While at it, this also establishes a similar partitioning for the
few devices where the "info" partitions are part of a bigger
unspecific "config" partition or similar.

Besides the harmonization itself, this also allows to merge a few
cases in 11-ath10k-caldata.

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-09-16 17:28:48 +02:00
Sander Vanheule
c9f51a9ad6 ath79: support for TP-Link EAP225-Wall v2
TP-Link EAP225-Wall v2 is an AC1200 (802.11ac Wave-2) wall plate access
point. UART access and debricking require fine soldering.

The device was kindly provided for porting by Stijn Segers.

Device specifications:
* SoC: QCA9561 @ 775MHz
* RAM: 128MiB DDR2
* Flash: 16MiB SPI-NOR (GD25Q127CSIG)
* Wireless 2.4GHz (SoC): b/g/n, 2x2
* Wireless 5Ghz (QCA9886): a/n/ac, 2x2 MU-MIMO
* Ethernet (SoC): 4× 100Mbps
  * Eth0 (back): 802.3af/at PoE in
  * Eth1, Eth2 (bottom)
  * Eth3 (bottom): PoE out (can be toggled by GPIO)
* One status LED
* Two buttons (both work as failsafe)
  * LED button, implemented as KEY_BRIGHTNESS_TOGGLE
  * Reset button

Flashing instructions, requires recent firmware (tested on 1.20.0):
* ssh into target device and run `cliclientd stopcs`
* Upgrade with factory image via web interface

Debricking:
* Serial port can be soldered on PCB J4 (1: TXD, 2: RXD, 3: GND, 4: VCC)
    * Bridge unpopulated resistors R162 (TXD) and R165 (RXD)
      Do NOT bridge R164
    * Use 3.3V, 115200 baud, 8n1
* Interrupt bootloader by holding CTRL+B during boot
* tftp initramfs to flash via sysupgrade or LuCI web interface

MAC addresses:
MAC address (as on device label) is stored in device info partition at
an offset of 8 bytes. ath9k device has same address as ethernet, ath10k
uses address incremented by 1.
From OEM ifconfig:
    br0       Link encap:Ethernet  HWaddr 50:...:04
    eth0      Link encap:Ethernet  HWaddr 50:...:04
    wifi0     Link encap:UNSPEC  HWaddr 50-...-04-...
    wifi1     Link encap:UNSPEC  HWaddr 50-...-05-...

Signed-off-by: Sander Vanheule <sander@svanheule.net>
[fix IMAGE_SIZE]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-09-12 19:37:24 +02:00
Zhong Jianxin
53df30f02b ath79: add support for Mercury MW4530R v1
Mercury MW4530R is a TP-Link TL-WDR4310 clone.

Specification:

* SOC: Atheros AR9344 (560 MHz)
* RAM: 128 MiB
* Flash: 8192 KiB
* Ethernet: 5 x 10/100/1000 (4 x LAN, 1 x WAN) (AR8327)
* Wireless:
  - 2.4 GHz b/g/n (internal)
  - 5 GHz a/n (AR9580)
* USB: yes, 1 x USB 2.0

Installation:

Flash factory image via OEM web interface.

Signed-off-by: Zhong Jianxin <azuwis@gmail.com>
2020-09-12 18:47:26 +02:00
Sander Vanheule
9dd4ba3d7e ath79: add support for TP-Link EAP245-v3
TP-Link EAP245 v3 is an AC1750 (802.11ac Wave-2) ceiling mount access
point. UART access (for debricking) requires non-trivial soldering.

Specifications:
* SoC: QCA9563 (CPU/DDR/AHB @ 775/650/258 MHz)
* RAM: 128MiB
* Flash: 16MiB SPI-NOR
* Wireless 2.4GHz (SoC): b/g/n 3x3
* Wireless 5GHz (QCA9982): a/n/ac 3x3 with MU-MIMO
* Ethernet (QCA8337N switch): 2× 1GbE, ETH1 (802.3at PoE) and ETH2
* Green and amber status LEDs
* Reset switch (GPIO, available for failsafe)

Flashing instructions:
All recent firmware versions (latest is 2.20.0), can disable firmware
signature verification and use a padded firmware file to flash OpenWrt:
* ssh into target device and run `cliclientd stopcs`
* upload factory image via web interface

The stopcs-method is supported from firmware version 2.3.0. Earlier
versions need to be upgraded to a newer stock version before flashing
OpenWrt.

Factory images for these devices are RSA signed by TP-Link. While the
signature verification can be disabled, the factory image still needs to
have a (fake) 1024 bit signature added to pass file checks.

Debricking instructions:
You can recover using u-boot via the serial port:
* Serial port is available from J3 (1:TX, 2:RX, 3:GND, 4:3.3V)
* Bridge R237 to connect RX, located next to J3
* Bridge R225 to connect TX, located inside can on back-side of board
* Serial port is 115200 baud, 8n1, interrupt u-boot by holding ctrl+B
* Upload initramfs with tftp and upgrade via OpenWrt

Device mac addresses:
Stock firmware has the same mac address for 2.4GHz wireless and
ethernet, 5GHz is incremented by one. The base mac address is stored in
the 'default-mac' partition (offset 0x90000) at an offset of 8 bytes.
ART blobs contain no mac addresses.
From OEM ifconfig:
    ath0      Link encap:Ethernet  HWaddr 74:..:E2
    ath10     Link encap:Ethernet  HWaddr 74:..:E3
    br0       Link encap:Ethernet  HWaddr 74:..:E2
    eth0      Link encap:Ethernet  HWaddr 74:..:E2

Signed-off-by: Sander Vanheule <sander@svanheule.net>
Tested-by: Stijn Tintel <stijn@linux-ipv6.be>
2020-09-09 20:42:10 +03:00
Sander Vanheule
b71668f96a ath79: enable elf mtd splitter
Enabled the ELF firmware partition splitter 4.19 and 5.4 in preparation
for the TP-Link EAP245v3 device support.

Signed-off-by: Sander Vanheule <sander@svanheule.net>
2020-09-09 20:41:50 +03:00
Adrian Schmutzler
8938711223 ath79: drop Build/loader-kernel-cmdline
This is the same as  loader-kernel since the KERNEL_CMDLINE
parameter has been removed in [1] and not used at all anyway.

Remove it.

[1] f77db1a590 ("ath79: cleanup image build code")

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Acked-by: Paul Spooren <mail@aparcar.org>
2020-09-06 19:43:08 +02:00
Michael Pratt
22caf30a65 ath79: add support for Senao Engenius ENH202 v1
FCC ID: U2M-ENH200

Engenius ENH202 is an outdoor wireless access point with 2 10/100 ports,
built-in ethernet switch, internal antenna plates and proprietery PoE.

Specification:

  - Qualcomm/Atheros AR7240 rev 2
  - 40 MHz reference clock
  - 8 MB FLASH                  ST25P64V6P (aka ST M25P64)
  - 32 MB RAM
  - UART at J3                  (populated)
  - 2x 10/100 Mbps Ethernet     (built-in switch at gmac1)
  - 2.4 GHz, 2x2, 29dBm         (Atheros AR9280 rev 2)
  - internal antenna plates     (10 dbi, semi-directional)
  - 5 LEDs, 1 button            (LAN, WAN, RSSI) (Reset)

Known Issues:

  - Sysupgrade from ar71xx no longer possible
  - Power LED not controllable, or unknown gpio

MAC addresses:

  eth0/eth1  *:11   art 0x0/0x6
  wlan       *:10   art 0x120c

  The device label lists both addresses, WLAN MAC and ETH MAC,
  in that order.

  Since 0x0 and 0x6 have the same content, it cannot be
  determined which is eth0 and eth1, so we chose 0x0 for both.

Installation:

  2 ways to flash factory.bin from OEM:

  - Connect ethernet directly to board (the non POE port)
      this is LAN for all images
  - if you get Failsafe Mode from failed flash:
      only use it to flash Original firmware from Engenius
      or risk kernel loop or halt which requires serial cable

  Method 1: Firmware upgrade page:

    OEM webpage at 192.168.1.1
    username and password "admin"
    In upper right select Reset
    "Restore to factory default settings"
    Wait for reboot and login again
    Navigate to "Firmware Upgrade" page from left pane
    Click Browse and select the factory.bin image
    Upload and verify checksum
    Click Continue to confirm and wait 3 minutes

  Method 2: Serial to load Failsafe webpage:

    After connecting to serial console and rebooting...
    Interrupt boot with any key pressed rapidly
    execute `run failsafe_boot` OR `bootm 0x9f670000`
    wait a minute
    connect to ethernet and navigate to
    "192.168.1.1/index.htm"
    Select the factory.bin image and upload
    wait about 3 minutes

Return to OEM:

  If you have a serial cable, see Serial Failsafe instructions

  *DISCLAIMER*
  The Failsafe image is unique to Engenius boards.
  If the failsafe image is missing or damaged this will not work
  DO NOT downgrade to ar71xx this way, can cause kernel loop or halt

  The easiest way to return to the OEM software is the Failsafe image
  If you dont have a serial cable, you can ssh into openwrt and run

  `mtd -r erase fakeroot`

  Wait 3 minutes
  connect to ethernet and navigate to 192.168.1.1/index.htm
  select OEM firmware image from Engenius and click upgrade

Format of OEM firmware image:

  The OEM software of ENH202 is a heavily modified version
  of Openwrt Kamikaze bleeding-edge. One of the many modifications
  is to the sysupgrade program. Image verification is performed
  simply by the successful ungzip and untar of the supplied file
  and name check and header verification of the resulting contents.
  To form a factory.bin that is accepted by OEM Openwrt build,
  the kernel and rootfs must have specific names...

    openwrt-senao-enh202-uImage-lzma.bin
    openwrt-senao-enh202-root.squashfs

  and begin with the respective headers (uImage, squashfs).
  Then the files must be tarballed and gzipped.
  The resulting binary is actually a tar.gz file in disguise.
  This can be verified by using binwalk on the OEM firmware images,
  ungzipping then untaring, and by swapping headers to see
  what the OEM upgrade utility accepts and rejects.

  OKLI kernel loader is required because the OEM firmware
  expects the kernel to be no greater than 1024k
  and the factory.bin upgrade procedure would otherwise
  overwrite part of the kernel when writing rootfs.

Note on built-in switch:

  ENH202 is originally configured to be an access point,
  but with two ethernet ports, both WAN and LAN is possible.

  the POE port is gmac0 which is preferred to be
  the port for WAN because it gives link status
  where swconfig does not.

Signed-off-by: Michael Pratt <mpratt51@gmail.com>
[assign label_mac in 02_network, use ucidef_set_interface_wan,
use common device definition, some reordering]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-08-31 17:41:21 +02:00
Michael Pratt
6decbf3186 ath79: add support for Senao Engenius ENS202EXT v1
Engenius ENS202EXT v1 is an outdoor wireless access point with 2 10/100 ports,
with built-in ethernet switch, detachable antennas and proprietery PoE.

FCC ID:	A8J-ENS202

Specification:

  - Qualcomm/Atheros AR9341 v1
  - 535/400/200/40 MHz          (CPU/DDR/AHB/REF)
  - 64 MB of RAM
  - 16 MB of FLASH              MX25L12835F(MI-10G)
  - UART (J1) header on PCB     (unpopulated)
  - 2x 10/100 Mbps Ethernet     (built-in switch Atheros AR8229)
  - 2.4 GHz, up to 27dBm        (Atheros AR9340)
  - 2x external, detachable antennas
  - 7x LED (5 programmable in ath79), 1x GPIO button (Reset)

Known Issues:

  - Sysupgrade from ar71xx no longer possible
  - Ethernet LEDs stay on solid when connected, not programmable

MAC addresses:

  eth0/eth1  *:7b   art 0x0/0x6
  wlan       *:7a   art 0x1002

  The device label lists both addresses, WLAN MAC and ETH MAC,
  in that order.

  Since 0x0 and 0x6 have the same content, it cannot be
  determined which is eth0 and eth1, so we chose 0x0 for both.

Installation:

  2 ways to flash factory.bin from OEM:

  - Connect ethernet directly to board (the non POE port)
      this is LAN for all images
  - if you get Failsafe Mode from failed flash:
      only use it to flash Original firmware from Engenius
      or risk kernel loop which requires serial cable

  Method 1: Firmware upgrade page:

    OEM webpage at 192.168.1.1
    username and password "admin"
    In upper right select Reset
    "Restore to factory default settings"
    Wait for reboot and login again
    Navigate to "Firmware Upgrade" page from left pane
    Click Browse and select the factory.bin image
    Upload and verify checksum
    Click Continue to confirm and wait 3 minutes

  Method 2: Serial to load Failsafe webpage:

    After connecting to serial console and rebooting...
    Interrupt boot with any key pressed rapidly
    execute `run failsafe_boot` OR `bootm 0x9fdf0000`
    wait a minute
    connect to ethernet and navigate to
    "192.168.1.1/index.htm"
    Select the factory.bin image and upload
    wait about 3 minutes

  *If you are unable to get network/LuCI after flashing*
  You must perform another factory reset:

    After waiting 3 minutes or when Power LED stop blinking:

    Hold Reset button for 15 seconds while powered on
    or until Power LED blinks very fast

    release and wait 2 minutes

Return to OEM:

  If you have a serial cable, see Serial Failsafe instructions

  *DISCLAIMER*
  The Failsafe image is unique to this model.
  The following directions are unique to this model.
  DO NOT downgrade to ar71xx this way, can cause kernel loop

  The easiest way to return to the OEM software is the Failsafe image
  If you dont have a serial cable, you can ssh into openwrt and run

  `mtd -r erase fakeroot`

  Wait 3 minutes
  connect to ethernet and navigate to 192.168.1.1/index.htm
  select OEM firmware image from Engenius and click upgrade

TFTP Recovery:

  For some reason, TFTP is not reliable on this board.
  Takes many attempts, many timeouts before it fully transfers.

  Starting with an initramfs.bin:

  Connect to ethernet
  set IP address and TFTP server to 192.168.1.101
  set up infinite ping to 192.168.1.1
  rename the initramfs.bin to "vmlinux-art-ramdisk" and host on TFTP server
  disconnect power to the board
  hold reset button while powering on board for 8 seconds

  Wait a minute, power LED should blink eventually if successful
  and a minute after that the pings should get replies
  You have now loaded a temporary Openwrt with default settings temporarily.
  You can use that image to sysupgrade another image to overwrite flash.

Format of OEM firmware image:

  The OEM software of ENS202EXT is a heavily modified version
  of Openwrt Kamikaze bleeding-edge. One of the many modifications
  is to the sysupgrade program. Image verification is performed
  simply by the successful ungzip and untar of the supplied file
  and name check and header verification of the resulting contents.
  To form a factory.bin that is accepted by OEM Openwrt build,
  the kernel and rootfs must have specific names...

    openwrt-senao-ens202ext-uImage-lzma.bin
    openwrt-senao-ens202ext-root.squashfs

  and begin with the respective headers (uImage, squashfs).
  Then the files must be tarballed and gzipped.
  The resulting binary is actually a tar.gz file in disguise.
  This can be verified by using binwalk on the OEM firmware images,
  ungzipping then untaring, and by swapping headers to see
  what the OEM upgrade utility accepts and rejects.

Note on the factory.bin:

  The newest kernel is too large to be in the kernel partition

  the new ath79 kernel is beyond   1592k
  Even ath79-tiny is               1580k

  Checksum fails at boot because the bootloader (modified uboot)
  expects kernel to be 1536k. If the kernel is larger, it gets
  overwritten when rootfs is flashed, causing a broken image.
  The mtdparts variable is part of the build and saving a new
  uboot environment will not persist after flashing.
  OEM version might interact with uboot or with the custom
  OEM partition at 0x9f050000.

  Failed checksums at boot cause failsafe image to launch,
  allowing any image to be flashed again.

  HOWEVER: one should not install older Openwrt from failsafe
  because it can cause rootfs to be unmountable,
  causing kernel loop after successful checksum.
  The only way to rescue after that is with a serial cable.

  For these reasons, a fake kernel (OKLI kernel loader)
  and fake squashfs rootfs is implemented to take care of
  the OEM firmware image verification and checksums at boot.
  The OEM only verifies the checksum of the first image
  of each partition respectively, which is the loader
  and the fake squashfs. This completely frees
  the "firmware" partition from all checks.

  virtual_flash is implemented to make use of the wasted space.
  this leaves only 2 erase blocks actually wasted.

  The loader and fakeroot partitions must remain intact, otherwise
  the next boot will fail, redirecting to the Failsafe image.

  Because the partition table required is so different
  than the OEM partition table and ar71xx partition table,
  sysupgrades are not possible until one switches to ath79 kernel.

Note on sysupgrade.tgz:

  To make things even more complicated, another change is needed to
  fix an issue where network does not work after flashing from either
  OEM software or Failsafe image, which implants the OEM (Openwrt Kamikaze)
  configuration into the jffs2 /overlay when writing rootfs from factory.bin.

  The upgrade script has this:

    mtd -j "/tmp/_sys/sysupgrade.tgz" write "${rootfs}" "rootfs"

  However, it also accepts scripts before and after:

    before_local="/etc/before-upgradelocal.sh"
    after_local="/etc/after-upgradelocal.sh"
    before="before-upgrade.sh"
    after="after-upgrade.sh"

  Thus, we can solve the issue by making the .tgz an empty file
  by making a before-upgrade.sh in the factory.bin

Note on built-in switch:

  There is two ports on the board, POE through the power supply brick,
  the other is on the board. For whatever reason, in the ar71xx target,
  both ports were on the built-in switch on eth1. In order to make use
  of a port for WAN or a different LAN, one has to set up VLANs.

  In ath79, eth0 and eth1 is defined in the DTS so that the
  built-in switch is seen as eth0, but only for 1 port
  the other port is on eth1 without a built-in switch.

  eth0: switch0
    CPU is port 0
    board port is port 1

  eth1: POE port on the power brick

  Since there is two physical ports,
  it can be configured as a full router,
  with LAN for both wired and wireless.

  According to the Datasheet, the port that is not on the switch
  is connected to gmac0. It is preferred that gmac0 is chosen as WAN
  over a port on an internal switch, so that link status can pass
  to the kernel immediately which is more important for WAN connections.

Signed-off-by: Michael Pratt <mpratt51@gmail.com>
[apply sorting in 01_leds, make factory recipe more generic, create common
device node, move label-mac to 02_network, add MAC addresses to commit
message, remove kmod-leds-gpio, use gzip directly]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-08-31 17:41:21 +02:00
Roger Pueyo Centelles
781d4bfb39 ath79: mikrotik: fix network setup for lhg-hb platform
This network setup for MikroTik devices based on the LHG-HB platform
avoids using the integrated switch and connects the single Ethernet
port directly. This way, link speed (10/100 Mbps) is properly repor-
ted by eth0.

Fixes: FS#3309

Signed-off-by: Roger Pueyo Centelles <roger.pueyo@guifi.net>
2020-08-31 17:41:21 +02:00
Sven Wegener
0348a02c7c ath79: use correct MAC address for TP-Link TL-WPA8630 v2
The base address is used for the LAN and 2G WLAN interfaces.
5G WLAN interface is +1 and the PLC interface uses +2.

Signed-off-by: Sven Wegener <sven.wegener@stealer.net>
[improve commit title, fix assignment in 11-ath10k-caldata]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-08-31 17:41:21 +02:00
Martin Kennedy
af9dee336d ath79: add support for Meraki MR16
Port device support for Meraki MR16 from the ar71xx target to ath79.

Specifications:

  * AR7161 CPU, 16 MiB Flash, 64 MiB RAM
  * One PoE-capable Gigabit Ethernet Port
  * AR9220 / AR9223 (2x2 11an / 11n) WLAN

Installation:

  * Requires TFTP server at 192.168.1.101, w/ initramfs & sysupgrade .bins
  * Open shell case and connect a USB to TTL cable to upper serial headers
  * Power on the router; connect to U-boot over 115200-baud connection
  * Interrupt U-boot process to boot Openwrt by running:
       setenv bootcmd bootm 0xbf0a0000; saveenv;
       tftpboot 0c00000 <filename-of-initramfs-kernel>.bin;
       bootm 0c00000;
  * Copy sysupgrade image to /tmp on MR16
  * sysupgrade /tmp/<filename-of-sysupgrade>.bin

Notes:

  - There are two separate ARTs in the partition (offset 0x1000/0x5000 and
    0x11000/0x15000) in the OEM device. I suspect this is an OEM artifact;
    possibly used to configure the radios for different regions,
    circumstances or RF frontends. Since the ar71xx target uses the
    second offsets, use that second set (0x11000 and 0x15000) for the ART.

  - kmod-owl-loader is still required to load the ART partition into the
    driver.

  - The manner of storing MAC addresses is updated from ar71xx; it is
    at 0x66 of the 'config' partition, where it was discovered that the
    OEM firmware stores it. This is set as read-only. If you are
    migrating from ar71xx and used the method mentioned above to
    upgrade, use kmod-mtd-rw or UCI to add the MAC back in. One more
    method for doing this is described below.

  - Migrating directly from ar71xx has not been thoroughly tested, but
    one method has been used a couple of times with good success,
    migrating 18.06.2 to a full image produced as of this commit. Please
    note that these instructions are only for experienced users, and/or
    those still able to open their device up to flash it via the serial
    headers should anything go wrong.

    1) Install kmod-mtd-rw and uboot-envtools
    2) Run `insmod mtd-rw.ko i_want_a_brick=1`
    3) Modify /etc/fw_env.config to point to the u-boot-env partition.
       The file /etc/fw_env.config should contain:

       # MTD device   env offset  env size    sector size
       /dev/mtd1      0x00000     0x10000     0x10000

       See https://openwrt.org/docs/techref/bootloader/uboot.config
       for more details.

    4) Run `fw_printenv` to verify everything is correct, as per the
       link above.
    5) Run `fw_setenv bootcmd bootm 0xbf0a0000` to set a new boot address.
    6) Manually modify /lib/upgrade/common.sh's get_image function:
       Change ...

       cat "$from" 2>/dev/null | $cmd

       ... into ...

       (
         dd if=/dev/zero bs=1 count=$((0x66)) ; # Pad the first 102 bytes
         echo -ne '\x00\x18\x0a\x12\x34\x56'  ; # Add in MAC address
         dd if=/dev/zero bs=1 count=$((0x20000-0x66-0x6)) ; # Pad the rest
         cat "$from" 2>/dev/null | $cmd
       )

       ... which, during the upgrade process, will pad the image by
       128K of zeroes-plus-MAC-address, in order for the ar71xx's
       firmware partition -- which starts at 0xbf080000 -- to be
       instead aligned with the ath79 firmware partition, which
       starts 128K later at 0xbf0a0000.

    7) Copy the sysupgrade image into /tmp, as above
    8) Run `sysupgrade -F /tmp/<sysupgrade>.bin`, then wait

    Again, this may BRICK YOUR DEVICE, so make *sure* to have your
    serial cable handy.

Addenda:

  - The MR12 should be able to be migrated in a nearly identical manner as
    it shares much of its hardware with the MR16.

  - Thank-you Chris B for copious help with this port.

Signed-off-by: Martin Kennedy <hurricos@gmail.com>
[fix typo in compat message, drop art DT label,
move 05_fix-compat-version to subtarget]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-08-31 17:41:21 +02:00
Adrian Schmutzler
d7fb7ac278 ath79: increase kernel partition for ar9344 TP-Link CPE/WBS
The kernel has become too big again for the ar9344-based TP-Link
CPE/WBS devices which still have no firmware-partition splitter.

Current buildbots produce a kernel size of about 2469 kiB, while
the partition is only 2048 kiB (0x200000). Therefore, increase it
to 0x300000 to provide enough room for this and, hopefully, the
next kernel.

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-08-30 22:20:37 +02:00
Adrian Schmutzler
18fbb9aa21 ath79: fix ethernet setup for some qca953x devices
On Comfast CF-E130N v2 and Mikrotik LHG HB board, the config
found in DTS appears to be strange:

- eth0 has "syscon","simple-mfd" set although it's not enabled
- eth1 is enabled redundantly (already "okay" in qca953x.dtsi)
- phy-handle is set for eth1 in DTS although it has a fixed-link
  in qca953x.dtsi

This seems like a copy-paste gone wrong. Remove the named options.

Run-tested on MikroTik LHG 2.

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-08-25 20:54:24 +02:00
Adrian Schmutzler
cc501ab021 kernel: set WATCHDOG_CORE dependency in kmod-hwmon-sch5627
For many target we have added CONFIG_WATCHDOG_CORE=y to the target
config due to the following error:

 Package kmod-hwmon-sch5627 is missing dependencies for the following
 libraries:
 watchdog.ko

However, actually the proper way appears to be setting the
dependency for the kmod-hwmon-sch5627 package, as the error message
demands.

Do this in this patch and remove the target config entries added
due to this issue.

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-08-24 14:09:11 +02:00
Joe Mullally
685d2513b5 ath79: fix/improve LED control for TL-WPA8630 v1/v2
The TL-WPA8630 v1 and v2 have the same LED Control GPIO configuration
according to the TP-Link GPL sources. Set the GPIO to output to make
it work and set to Active Low. It defaults to LEDs on at bootup.

To turn all LEDs off:
  echo 0 > /sys/class/gpio/tp-link\:led\:control/value
To turn all LEDs on:
  echo 1 > /sys/class/gpio/tp-link\:led\:control/value

Change the "LED" button from BTN_0 to KEY_LIGHTS_TOGGLE to match other
devices and the button guide, and to reduce the number of unintuitive
"BTN_X" inputs.

Fixes: ab74def0db ("ath79: add support for TP-Link TL-WPA8630P v2")

Signed-off-by: Joe Mullally <jwmullally@gmail.com>
[shorten commit title, minor commit message adjustments]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-08-22 15:13:15 +02:00