Commit Graph

192 Commits

Author SHA1 Message Date
Mauri Sandberg
bc356de285 ath79: Add support for Buffalo WZR-HP-G300NH
This device is a wireless router working on 2.4GHz band based on
Qualcom/Atheros AR9132 rev 2 SoC and is accompanied by Atheros AR9103
wireless chip and Realtek RTL8366RB/S switches. Due to two different
switches being used also two different devices are provided.

  Specification:
  - 400 MHz CPU
  - 64 MB of RAM
  - 32 MB of FLASH (NOR)
  - 3x3:2 2.4 GHz 802.11bgn
  - 5x 10/100/1000 Mbps Ethernet
  - 4x LED, 3x button, On/Off slider, Auto/On/Off slider
  - 1x USB 2.0
  - bare UART header place on PCB

  Flash instruction:
  - NOTE: Pay attention to the switch variant and choose the image to
    flash accordingly. (dmesg / kernel logs can tell it)
  - Methods for flashing
    - Apply factory image in OEM firmware web-gui.
    - Sysupgrade on top of existing OpenWRT image
    - U-Boot TFPT recovery for both stock or OpenWRT images:
      The device U-boot contains a TFTP server that by default has
      an address 192.168.11.1 (MAC 02:AA:BB:CC:DD:1A). During the boot
      there is a time window, during which the device allows an image to
      be uploaded from a client with address 192.168.11.2. The image will
      be written on flash automatically.

      1) Have a computer with static IP address 192.168.11.2 and the
         router device switched off.
      2) Connect the LAN port next to the WAN port in the device and the
         computer using a network switch.
      3) Assign IP 192.168.11.1 the MAC address 02:AA:BB:CC:DD:1A
         arp -s 192.168.11.1 02:AA:BB:CC:DD:1A
      4) Initiate an upload using TFTP image variant
         curl -T <imagename> tftp://192.168.11.1
      5) Switch on the device. The image will be uploaded subsequently.
         You can keep an eye on the diag light on the device, it should
         keep on blinking for a while indicating the writing of the image.

  General notes:
  - In the stock firmware the MAC address is the same among all
    interfaces so it is left here that way too.

  Recovery:
  - TFTP method
  - U-boot serial console

  Differences to ar71xx platform
  - This device is split in two different targets now due to hardware
    being a bit different under the hood. Dynamic solution within the same
    image is left for later time.
  - GPIOs for a sliding On/Off switch, marked 'Movie engine' on the device
    cover, were the wrong way around and were renamed qos_on -> movie_off,
    qos_off -> movie_on. Associated key codes remained the same they were.

  The device tree source code is mostly based on musashino's work

Signed-off-by: Mauri Sandberg <sandberg@mailfence.com>
2021-03-22 09:23:10 +01:00
Walter Sonius
46c0634b50 ath79: fix lan port display order for sitecom wlr-7100
Physical port order watched from the back of the device is:
4 / 3 / 2 / 1 / WAN which also matches corresponding leds.
This patch corrects LuCI switch webpage LAN port order.

Signed-off-by: Walter Sonius <walterav1984@gmail.com>
[improve commit title, fix sorting in 02_network]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-03-21 22:45:20 +01:00
Adrian Schmutzler
85b1f4d8ca treewide: remove execute bit and shebang from board.d files
So far, board.d files were having execute bit set and contained a
shebang. However, they are just sourced in board_detect, with an
apparantly unnecessary check for execute permission beforehand.

Replace this check by one for existance and make the board.d files
"normal" files, as would be expected in /etc anyway.

Note:

This removes an apparantly unused '#!/bin/sh /etc/rc.common' in
target/linux/bcm47xx/base-files/etc/board.d/01_network

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-03-06 11:30:06 +01:00
David Bauer
2a26cb51fe ath79: enable Regulator support for target
Regulator support was enabled on all subtargets except for ath79-nand.
With Kernel 5.10, AT803x requires Regulator support, thus enabling on
the complete target, as ath79-nand requires AT803x.

While this is only required on Kernel 5.10, enable it also on 5.4. We
have no major size-constraint, so enabling it on 5.4 allows us to clean
up the occurences in the subtarget configuration.

Signed-off-by: David Bauer <mail@david-bauer.net>
2021-02-22 00:57:25 +01:00
David Bauer
d6b785d477 ath79: add kernel 5.10 support
This adds Kernel 5.10 support for the generic, nand and tiny subtargets.

The following patch is not contained, as it needs to be reworked:
platform/920-mikrotik-rb4xx.patch

Tested-on:
 - Siemens WS-AP3610
 - Enterasys WS-AP3710
 - Aerohive HiveAP 121
 - TP-Link TL-WA901 v2
 - TP-Link TL-WR741 v1

Signed-off-by: David Bauer <mail@david-bauer.net>
2021-02-20 01:26:33 +01:00
Martin Kennedy
e2db870398 ath79: fix chip used for Meraki MR12 caldata_extract
The original setup fails to trigger ART calibration data
extraction for the AR9287. Instead, it would only have extracted
calibration data for an internal WMAC chip which is not present on
this board.

Fixes: 55d2db0e8c ("ath79: add support for Meraki MR12")

Signed-off-by: Martin Kennedy <hurricos@gmail.com>
[commit title/message facelift]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-02-13 21:21:01 +01:00
Sebastian Schaper
dc4745da7a ath79: add support for D-Link DAP-3662 A1
Specifications:
 * QCA9557, 16 MiB Flash, 128 MiB RAM, 802.11n 2T2R
 * QCA9882, 802.11ac 2T2R
 * 2x Gigabit LAN (1x 802.11af PoE)
 * IP68 pole-mountable outdoor case

Installation:
 * Factory Web UI is at 192.168.0.50
   login with 'admin' and blank password, flash factory.bin
 * Recovery Web UI is at 192.168.0.50
   connect network cable, hold reset button during power-on and keep it
   pressed until uploading has started (only required when checksum is ok,
   e.g. for reverting back to oem firmware), flash factory.bin

After flashing factory.bin, additional free space can be reclaimed by
flashing sysupgrade.bin, since the factory image requires some padding
to be accepted for upgrading via OEM Web UI.

Both ethernet ports are set to LAN by default, matching the labelling on
the case. However, since both GMAC Interfaces eth0 and eth1 are connected
to the switch (QCA8337), the user may create an additional 'wan' interface
as desired and override the vlan id settings to map br-lan / wan to either
the PoE or non-PoE port, depending on the individual scenario of use.

So, the LAN and WAN ports would then be connected to different GMACs, e.g.

config interface 'lan'
	option ifname 'eth0.1'
	...

config interface 'wan'
	option ifname 'eth1.2'
	...

config switch_vlan
        option device 'switch0'
        option vlan '1'
        option ports '1 0t'

config switch_vlan
        option device 'switch0'
        option vlan '2'
        option ports '2 6t'

Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
[add configuration example]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-02-09 13:10:33 +01:00
Michael Pratt
f5f01bcacd ath79: use internal switch for EAP300 v2
Have the port use GMAC1 with internal switch
which fixes the issue of the ethernet LED not functioning
The LED is triggered by the internal switch, not a GPIO.

The GPIO for the ethernet LED was added in ath79
as it was defined in the ar71xx target
but it was not functioning in ath79 for a previously unknown reason.

It is unknown why that GPIO was defined as an LED in ar71xx.

Signed-off-by: Michael Pratt <mcpratt@pm.me>
[drop unrelated changes: model property and SPI max frequency]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-02-08 16:34:18 +01:00
Michael Pratt
88079bd616 ath79: make all eth ports LAN for Engenius APs
for:
 - ENH202 v1
 - ENS202EXT v1
 - EnstationAC v1
 - EWS511AP

For EWS511AP, have default behavior as static ip
to match the behavior of all other APs in ath79

These boards are sold as
Client Bridge or Point to Point or Access Point
so there is probably no benefit to have WAN by default
for one of the ports, to prevent user confusion.

Signed-off-by: Michael Pratt <mcpratt@pm.me>
2021-02-08 16:34:18 +01:00
Adrian Schmutzler
8a79161a82 ath79: wrap ucidef_add_switch in 02_network
Wrap line to be consistent with all other definitions.

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-02-05 21:57:19 +01:00
Martin Kennedy
55d2db0e8c ath79: add support for Meraki MR12
Port device support for Meraki MR12 from the ar71xx target to ath79.

Specifications:

  - SoC: AR7242-AH1A CPU
  - RAM: 64MiB (NANYA NT5DS32M16DS-5T)
  - NOR Flash: 16MiB (MXIC MX25L12845EMI-10G)
  - Ethernet: 1 x PoE Gigabit Ethernet Port (SoC MAC + AR8021-BL1E PHY)
  - Ethernet: 1 x 100Mbit port (SoC MAC+PHY)
  - Wi-Fi: Atheros AR9283-AL1A (2T2R, 11n)

Installation:

  1. Requires TFTP server at 192.168.1.101, w/ initramfs & sysupgrade .bins
  2. Open shell case
  3. Connect a USB->TTL cable to headers furthest from the RF shield
  4. Power on the router; connect to U-boot over 115200-baud connection
  5. Interrupt U-boot process to boot Openwrt by running:
       setenv bootcmd bootm 0xbf0a0000; saveenv;
       tftpboot 0c00000 <filename-of-initramfs-kernel>.bin;
       bootm 0c00000;
  6. Copy sysupgrade image to /tmp on MR12
  7. sysupgrade /tmp/<filename-of-sysupgrade>.bin

Notes:

  - kmod-owl-loader is still required to load the ART partition into the
    driver.

  - The manner of storing MAC addresses is updated from ar71xx; it is
    at 0x66 of the 'config' partition, where it was discovered that the
    OEM firmware stores it. This is set as read-only. If you are
    migrating from ar71xx and used the method mentioned above to
    upgrade, use kmod-mtd-rw or UCI to add the MAC back in. One more
    method for doing this is described below.

  - Migrating directly from ar71xx has not been thoroughly tested, but
    one method has been used a couple of times with good success,
    migrating 18.06.2 to a full image produced as of this commit. Please
    note that these instructions are only for experienced users, and/or
    those still able to open their device up to flash it via the serial
    headers should anything go wrong.

    1) Install kmod-mtd-rw and uboot-envtools
    2) Run `insmod mtd-rw.ko i_want_a_brick=1`
    3) Modify /etc/fw_env.config to point to the u-boot-env partition.
       The file /etc/fw_env.config should contain:

       # MTD device   env offset  env size    sector size
       /dev/mtd1      0x00000     0x10000     0x10000

       See https://openwrt.org/docs/techref/bootloader/uboot.config
       for more details.

    4) Run `fw_printenv` to verify everything is correct, as per the
       link above.
    5) Run `fw_setenv bootcmd bootm 0xbf0a0000` to set a new boot address.
    6) Manually modify /lib/upgrade/common.sh's get_image function:
       Change ...

       cat "$from" 2>/dev/null | $cmd

       ... into ...

       (
         dd if=/dev/zero bs=1 count=$((0x66)) ; # Pad the first 102 bytes
         echo -ne '\x00\x18\x0a\x12\x34\x56'  ; # Add in MAC address
         dd if=/dev/zero bs=1 count=$((0x20000-0x66-0x6)) ; # Pad the rest
         cat "$from" 2>/dev/null
       ) | $cmd

       ... which, during the upgrade process, will pad the image by
       128K of zeroes-plus-MAC-address, in order for the ar71xx's
       firmware partition -- which starts at 0xbf080000 -- to be
       instead aligned with the ath79 firmware partition, which
       starts 128K later at 0xbf0a0000.

    7) Copy the sysupgrade image into /tmp, as above
    8) Run `sysupgrade -F /tmp/<sysupgrade>.bin`, then wait

    Again, this may BRICK YOUR DEVICE, so make *sure* to have your
    serial cable handy.

Signed-off-by: Martin Kennedy <hurricos@gmail.com>
[add LED migration and extend compat message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-02-05 16:56:08 +01:00
David Bauer
51f578efa5 ath79: add support for Ubiquiti UniFi AP Outdoor+
Hardware
--------
Atheros AR7241
16M SPI-NOR
64M DDR2
Atheros AR9283 2T2R b/g/n
2x Fast Ethernet (built-in)

Installation
------------

Transfer the Firmware update to the device using SCP.

Install using fwupdate.real -m <openwrt.bin> -d

Signed-off-by: David Bauer <mail@david-bauer.net>
2021-02-01 00:47:46 +01:00
Adrian Schmutzler
9b5e9b65cf ath79: remove generic profiles
On a platform with many very different devices, like found on ath79,
the generic profiles seem like remnants of the past that do not
have a real use anymore.

Remove them to have one thing less to maintain.

Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Acked-by: Paul Spooren <mail@aparcar.org>
2021-01-27 21:31:20 +01:00
Michael Pratt
96017a6013 ath79: add support for Senao Engenius EAP1200H
FCC ID: A8J-EAP1200H

Engenius EAP1200H is an indoor wireless access point with
1 Gb ethernet port, dual-band wireless,
internal antenna plates, and 802.3at PoE+

**Specification:**

  - QCA9557 SOC
  - QCA9882 WLAN	PCI card, 5 GHz, 2x2, 26dBm
  - AR8035-A PHY	RGMII GbE with PoE+ IN
  - 40 MHz clock
  - 16 MB FLASH		MX25L12845EMI-10G
  - 2x 64 MB RAM	NT5TU32M16FG
  - UART at J10		populated
  - 4 internal antenna plates (5 dbi, omni-directional)
  - 5 LEDs, 1 button (power, eth0, 2G, 5G, WPS) (reset)

**MAC addresses:**

  MAC addresses are labeled as ETH, 2.4G, and 5GHz
  Only one Vendor MAC address in flash

  eth0 ETH  *:a2 art 0x0
  phy1 2.4G *:a3 ---
  phy0 5GHz *:a4 ---

**Serial Access:**

  the RX line on the board for UART is shorted to ground by resistor R176
  therefore it must be removed to use the console
  but it is not necessary to remove to view boot log

  optionally, R175 can be replaced with a solder bridge short

  the resistors R175 and R176 are next to the UART RX pin at J10

**Installation:**

  2 ways to flash factory.bin from OEM:

  Method 1: Firmware upgrade page:

    OEM webpage at 192.168.1.1
    username and password "admin"
    Navigate to "Firmware Upgrade" page from left pane
    Click Browse and select the factory.bin image
    Upload and verify checksum
    Click Continue to confirm and wait 3 minutes

  Method 2: Serial to load Failsafe webpage:

    After connecting to serial console and rebooting...
    Interrupt uboot with any key pressed rapidly
    execute `run failsafe_boot` OR `bootm 0x9fd70000`
    wait a minute
    connect to ethernet and navigate to
    "192.168.1.1/index.htm"
    Select the factory.bin image and upload
    wait about 3 minutes

**Return to OEM:**

  If you have a serial cable, see Serial Failsafe instructions
  otherwise, uboot-env can be used to make uboot load the failsafe image

  *DISCLAIMER*
  The Failsafe image is unique to Engenius boards.
  If the failsafe image is missing or damaged this will brick the device
  DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt

  ssh into openwrt and run
  `fw_setenv rootfs_checksum 0`
  reboot, wait 3 minutes
  connect to ethernet and navigate to 192.168.1.1/index.htm
  select OEM firmware image from Engenius and click upgrade

**TFTP recovery:**

  Requires serial console, reset button does nothing

  rename initramfs to 'vmlinux-art-ramdisk'
  make available on TFTP server at 192.168.1.101
  power board, interrupt boot
  execute tftpboot and bootm 0x81000000

  NOTE: TFTP is not reliable due to bugged bootloader
  set MTU to 600 and try many times

**Format of OEM firmware image:**

  The OEM software of EAP1200H is a heavily modified version
  of Openwrt Kamikaze. One of the many modifications
  is to the sysupgrade program. Image verification is performed
  simply by the successful ungzip and untar of the supplied file
  and name check and header verification of the resulting contents.
  To form a factory.bin that is accepted by OEM Openwrt build,
  the kernel and rootfs must have specific names...

    openwrt-ar71xx-generic-eap1200h-uImage-lzma.bin
    openwrt-ar71xx-generic-eap1200h-root.squashfs

  and begin with the respective headers (uImage, squashfs).
  Then the files must be tarballed and gzipped.
  The resulting binary is actually a tar.gz file in disguise.
  This can be verified by using binwalk on the OEM firmware images,
  ungzipping then untaring.

  Newer EnGenius software requires more checks but their script
  includes a way to skip them, otherwise the tar must include
  a text file with the version and md5sums in a deprecated format.

  The OEM upgrade script is at /etc/fwupgrade.sh.

  OKLI kernel loader is required because the OEM software
  expects the kernel to be no greater than 1536k
  and the factory.bin upgrade procedure would otherwise
  overwrite part of the kernel when writing rootfs.

Note on PLL-data cells:

  The default PLL register values will not work
  because of the external AR8035 switch between
  the SOC and the ethernet port.

  For QCA955x series, the PLL registers for eth0 and eth1
  can be see in the DTSI as 0x28 and 0x48 respectively.
  Therefore the PLL registers can be read from uboot
  for each link speed after attempting tftpboot
  or another network action using that link speed
  with `md 0x18050028 1` and `md 0x18050048 1`.

  The clock delay required for RGMII can be applied
  at the PHY side, using the at803x driver `phy-mode`.
  Therefore the PLL registers for GMAC0
  do not need the bits for delay on the MAC side.
  This is possible due to fixes in at803x driver
  since Linux 5.1 and 5.3

Signed-off-by: Michael Pratt <mcpratt@pm.me>
2021-01-23 12:53:22 +01:00
Sven Eckelmann
0988e03f0e ath79: Add support for OpenMesh MR1750 v2
Device specifications:
======================

* Qualcomm/Atheros QCA9558 ver 1 rev 0
* 720/600/240 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 3T3R 2.4 GHz Wi-Fi (11n)
* 3T3R 5 GHz Wi-Fi (11ac)
* 6x GPIO-LEDs (2x wifi, 2x status, 1x lan, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default))
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 1x ethernet
  - AR8035 ethernet PHY (RGMII)
  - 10/100/1000 Mbps Ethernet
  - 802.3af POE
  - used as LAN interface
* 12-24V 1A DC
* internal antennas

Flashing instructions:
======================

Various methods can be used to install the actual image on the flash.
Two easy ones are:

ap51-flash
----------

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.

initramfs from TFTP
-------------------

The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):

   setenv serverip 192.168.1.21
   setenv ipaddr 192.168.1.1
   tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr

The actual sysupgrade image can then be transferred (on the LAN port) to the
device via

  scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/

On the device, the sysupgrade must then be started using

  sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin

Signed-off-by: Sven Eckelmann <sven@narfation.org>
[rebase, add LED migration]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-01-19 21:41:26 +01:00
Sven Eckelmann
ae7680dc4b ath79: Add support for OpenMesh MR1750 v1
Device specifications:
======================

* Qualcomm/Atheros QCA9558 ver 1 rev 0
* 720/600/240 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 3T3R 2.4 GHz Wi-Fi (11n)
* 3T3R 5 GHz Wi-Fi (11ac)
* 6x GPIO-LEDs (2x wifi, 2x status, 1x lan, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default))
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 1x ethernet
  - AR8035 ethernet PHY (RGMII)
  - 10/100/1000 Mbps Ethernet
  - 802.3af POE
  - used as LAN interface
* 12-24V 1A DC
* internal antennas

Flashing instructions:
======================

Various methods can be used to install the actual image on the flash.
Two easy ones are:

ap51-flash
----------

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.

initramfs from TFTP
-------------------

The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):

   setenv serverip 192.168.1.21
   setenv ipaddr 192.168.1.1
   tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr

The actual sysupgrade image can then be transferred (on the LAN port) to the
device via

  scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/

On the device, the sysupgrade must then be started using

  sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin

Signed-off-by: Sven Eckelmann <sven@narfation.org>
[rebase, apply shared DTSI/device node, add LED migration]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-01-19 21:41:26 +01:00
Sven Eckelmann
31172e53f9 ath79: Add support for OpenMesh MR900 v2
Device specifications:
======================

* Qualcomm/Atheros QCA9558 ver 1 rev 0
* 720/600/240 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 3T3R 2.4 GHz Wi-Fi
* 3T3R 5 GHz Wi-Fi
* 6x GPIO-LEDs (2x wifi, 2x status, 1x lan, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default))
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 1x ethernet
  - AR8035 ethernet PHY (RGMII)
  - 10/100/1000 Mbps Ethernet
  - 802.3af POE
  - used as LAN interface
* 12-24V 1A DC
* internal antennas

Flashing instructions:
======================

Various methods can be used to install the actual image on the flash.
Two easy ones are:

ap51-flash
----------

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.

initramfs from TFTP
-------------------

The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):

   setenv serverip 192.168.1.21
   setenv ipaddr 192.168.1.1
   tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr

The actual sysupgrade image can then be transferred (on the LAN port) to the
device via

  scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/

On the device, the sysupgrade must then be started using

  sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin

Signed-off-by: Sven Eckelmann <sven@narfation.org>
[rebase, add LED migration]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-01-19 15:39:36 +01:00
Sven Eckelmann
e06c9eec5d ath79: Add support for OpenMesh MR900 v1
Device specifications:
======================

* Qualcomm/Atheros QCA9558 ver 1 rev 0
* 720/600/240 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 3T3R 2.4 GHz Wi-Fi
* 3T3R 5 GHz Wi-Fi
* 6x GPIO-LEDs (2x wifi, 2x status, 1x lan, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default))
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 1x ethernet
  - AR8035 ethernet PHY (RGMII)
  - 10/100/1000 Mbps Ethernet
  - 802.3af POE
  - used as LAN interface
* 12-24V 1A DC
* internal antennas

Flashing instructions:
======================

Various methods can be used to install the actual image on the flash.
Two easy ones are:

ap51-flash
----------

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.

initramfs from TFTP
-------------------

The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):

   setenv serverip 192.168.1.21
   setenv ipaddr 192.168.1.1
   tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr

The actual sysupgrade image can then be transferred (on the LAN port) to the
device via

  scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/

On the device, the sysupgrade must then be started using

  sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin

Signed-off-by: Sven Eckelmann <sven@narfation.org>
[rebase, add LED migration]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-01-19 15:39:36 +01:00
Sven Eckelmann
d9a3af46d8 ath79: Add support for OpenMesh MR600 v2
Device specifications:
======================

* Qualcomm/Atheros AR9344 rev 2
* 560/450/225 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2T2R 2.4 GHz Wi-Fi
* 2T2R 5 GHz Wi-Fi
* 8x GPIO-LEDs (6x wifi, 1x wps, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default))
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 1x ethernet
  - AR8035 ethernet PHY (RGMII)
  - 10/100/1000 Mbps Ethernet
  - 802.3af POE
  - used as LAN interface
* 12-24V 1A DC
* internal antennas

Flashing instructions:
======================

Various methods can be used to install the actual image on the flash.
Two easy ones are:

ap51-flash
----------

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.

initramfs from TFTP
-------------------

The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):

   setenv serverip 192.168.1.21
   setenv ipaddr 192.168.1.1
   tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr

The actual sysupgrade image can then be transferred (on the LAN port) to the
device via

  scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/

On the device, the sysupgrade must then be started using

  sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin

Signed-off-by: Sven Eckelmann <sven@narfation.org>
[rebase, add LED migration]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-01-19 15:39:36 +01:00
Sven Eckelmann
4b35999588 ath79: Add support for OpenMesh MR600 v1
Device specifications:
======================

* Qualcomm/Atheros AR9344 rev 2
* 560/450/225 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2T2R 2.4 GHz Wi-Fi
* 2T2R 5 GHz Wi-Fi
* 4x GPIO-LEDs (2x wifi, 1x wps, 1x power)
* 1x GPIO-button (reset)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 1x ethernet
  - AR8035 ethernet PHY (RGMII)
  - 10/100/1000 Mbps Ethernet
  - 802.3af POE
  - used as LAN interface
* 12-24V 1A DC
* internal antennas

Flashing instructions:
======================

Various methods can be used to install the actual image on the flash.
Two easy ones are:

ap51-flash
----------

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.

initramfs from TFTP
-------------------

The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):

   setenv serverip 192.168.1.21
   setenv ipaddr 192.168.1.1
   tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr

The actual sysupgrade image can then be transferred (on the LAN port) to the
device via

  scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/

On the device, the sysupgrade must then be started using

  sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin

Signed-off-by: Sven Eckelmann <sven@narfation.org>
[rebase, make WLAN LEDs consistent, add LED migration]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-01-19 15:39:36 +01:00
Russell Senior
591a4c9ed3 ath79: Add support for Ubiquiti Bullet AC
CPU:         Atheros AR9342 rev 3 SoC
RAM:         64 MB DDR2
Flash:       16 MB NOR SPI
WLAN 2.4GHz: Atheros AR9342 v3 (ath9k)
WLAN 5.0GHz: QCA988X
Ports:       1x GbE

Flashing procedure is identical to other ubnt devices.
https://openwrt.org/toh/ubiquiti/common

Flashing through factory firmware
1. Ensure firmware version v8.7.0 is installed.
   Up/downgrade to this exact version.
2. Patch fwupdate.real binary using
   `hexdump -Cv /bin/ubntbox | sed 's/14 40 fe 27/00 00 00 00/g' | \
    hexdump -R > /tmp/fwupdate.real`
3. Make the patched fwupdate.real binary executable using
   `chmod +x /tmp/fwupdate.real`
4. Copy the squashfs factory image to /tmp on the device
5. Flash OpenWrt using `/tmp/fwupdate.real -m <squashfs-factory image>`
6. Wait for the device to reboot
(copied from Ubiquiti NanoBeam AC and modified)

Flashing from serial console
1. Connect serial console (115200 baud)
2. Connect ethernet to a network with a TFTP server, through a
   passive PoE injector.
3. Press a key to obtain a u-boot prompt
4. Set your TFTP server's ip address, with:
   setenv serverip <tftp-server-address>
5. Set the Bullet AC's ip address, with:
   setenv ipaddr <bullet-ac-address>
6. Set the boot file, with:
   setenv bootfile <name-of-initramfs-binary-on-tftp-server>
7. Fetch the binary with tftp:
   tftpboot
8. Boot the initramfs binary:
   bootm
9. From the initramfs, fetch the sysupgrade binary, and flash it with
   sysupgrade.

The Bullet AC is identified as a 2WA board by Ubiquiti. As such, the UBNT_TYPE
must match from the "Flashing through factory firmware" install instructions
to work.

Phy0 is QCA988X which can tune either band (2.4 or 5GHz). Phy1 is AR9342,
on which 5GHz is disabled.  It isn't currently known whether phy1 is
routed to the N connector at all.

Signed-off-by: Russell Senior <russell@personaltelco.net>
2021-01-15 18:32:38 +01:00
Michael Pratt
0070650df4 ath79: move small-flash Engenius boards to tiny
This moves some of the Engenius boards from generic to tiny:

 - EAP350 v1
 - ECB350 v1
 - ENH202 v1

For these, factory.bin builds are already failing on master
branch because of the unique situation for these boards:

 - 8 MB flash
 - an extra "failsafe" image for recovery
 - TFTP does not work (barely possible with 600 MTU)
 - bootloader loads image from a longer flash offset
 - 1 eraseblock each needed for OKLI kernel loader and fake rootfs
 - using mtd-concat to make use of remaining space...

The manual alternative would be removing the failsafe partition.
However this comes with the risk of extremely difficult recovery
if a flash ever fails because TFTP on the bootloader is bugged.
Signed-off-by: Michael Pratt <mcpratt@pm.me>
[improve commit message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-01-07 19:51:50 +01:00
Sebastian Schaper
d7d87cedcf ath79: Fix 02_network setup for D-Link DAP-2660 A1
The device is a one-port, but was set up as two-port by the
default case in 02_network. Fix it.

Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
[commit title/message facelift]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-01-04 01:09:32 +01:00
Sebastian Schaper
8ae2ee99c6 ath79: add support for D-Link DAP-3320 A1
Specifications:
 * QCA9533, 16 MiB Flash, 64 MiB RAM, 802.11n 2T2R
 * 10/100 Ethernet Port, 802.11af PoE
 * IP55 pole-mountable outdoor case

Installation:
 * Factory Web UI is at 192.168.0.50
   login with 'admin' and blank password, flash factory.bin
 * Recovery Web UI is at 192.168.0.50
   connect network cable, hold reset button during power-on and keep it
   pressed until uploading has started (only required when checksum is ok,
   e.g. for reverting back to oem firmware), flash factory.bin

After flashing factory.bin, additional free space can be reclaimed by
flashing sysupgrade.bin, since the factory image requires some padding
to be accepted for upgrading via OEM Web UI.

Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
2021-01-04 01:09:32 +01:00
Sebastian Schaper
5b58710fad ath79: add support for D-Link DAP-2680 A1
Specifications:
 * QCA9558, 16 MiB Flash, 256 MiB RAM, 802.11n 3T3R
 * QCA9984, 802.11ac Wave 2 3T3R
 * Gigabit LAN Port (AR8035), 802.11at PoE

Installation:
 * Factory Web UI is at 192.168.0.50
   login with 'admin' and blank password, flash factory.bin
 * Recovery Web UI is at 192.168.0.50
   connect network cable, hold reset button during power-on and keep it
   pressed until uploading has started (only required when checksum is ok,
   e.g. for reverting back to oem firmware), flash factory.bin

After flashing factory.bin, additional free space can be reclaimed by
flashing sysupgrade.bin, since the factory image requires some padding
to be accepted for upgrading via OEM Web UI.

Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
2021-01-04 01:09:32 +01:00
Sebastian Schaper
b077accb9c ath79: add support for D-Link DAP-2230 A1
Specifications:
 * QCA9533, 16 MiB Flash, 64 MiB RAM, 802.11n 2T2R
 * 10/100 Ethernet Port, 802.11af PoE

Installation:
 * Factory Web UI is at 192.168.0.50
   login with 'admin' and blank password, flash factory.bin
 * Recovery Web UI is at 192.168.0.50
   connect network cable, hold reset button during power-on and keep it
   pressed until uploading has started (only required when checksum is ok,
   e.g. for reverting back to oem firmware), flash factory.bin

After flashing factory.bin, additional free space can be reclaimed by
flashing sysupgrade.bin, since the factory image requires some padding
to be accepted for upgrading via OEM Web UI.

Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
2021-01-04 01:09:32 +01:00
Sven Eckelmann
80713657b2 ath79: Add support for OpenMesh OM5P
Device specifications:
======================

* Qualcomm/Atheros AR9344 rev 2
* 560/450/225 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 2T2R 5 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
  - eth0
    + builtin switch port 1
    + used as LAN interface
  - eth1
    + 18-24V passive POE (mode B)
    + used as WAN interface
* 12-24V 1A DC
* internal antennas

WAN/LAN LEDs appear to be wrong in ar71xx and have been swapped here.

Flashing instructions:
======================

Various methods can be used to install the actual image on the flash.
Two easy ones are:

ap51-flash
----------

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.

initramfs from TFTP
-------------------

The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):

   setenv serverip 192.168.1.21
   setenv ipaddr 192.168.1.1
   tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr

The actual sysupgrade image can then be transferred (on the LAN port) to the
device via

  scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/

On the device, the sysupgrade must then be started using

  sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin

Signed-off-by: Sven Eckelmann <sven@narfation.org>
[add LED swap comment]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-12-30 23:32:07 +01:00
Sven Eckelmann
ff9e48e75c ath79: Add support for OpenMesh OM2P v2
Device specifications:
======================

* Qualcomm/Atheros AR9330 rev 1
* 400/400/200 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 1T1R 2.4 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
  - eth0
    + builtin switch port 1
    + used as LAN interface
  - eth1
    + 18-24V passive POE (mode B)
    + used as WAN interface
* 12-24V 1A DC
* external antenna

Flashing instructions:
======================

Various methods can be used to install the actual image on the flash.
Two easy ones are:

ap51-flash
----------

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.

initramfs from TFTP
-------------------

The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):

   setenv serverip 192.168.1.21
   setenv ipaddr 192.168.1.1
   tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr

The actual sysupgrade image can then be transferred (on the LAN port) to
the device via

  scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/

On the device, the sysupgrade must then be started using

  sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin

Signed-off-by: Sven Eckelmann <sven@narfation.org>
2020-12-30 23:32:07 +01:00
Sven Eckelmann
eb3a5ddba0 ath79: Add support for OpenMesh OM2P-LC
Device specifications:
======================

* Qualcomm/Atheros AR9330 rev 1
* 400/400/200 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 1T1R 2.4 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
  - eth0
    + builtin switch port 1
    + used as LAN interface
  - eth1
    + 18-24V passive POE (mode B)
    + used as WAN interface
* 12-24V 1A DC
* internal antennas

Flashing instructions:
======================

Various methods can be used to install the actual image on the flash.
Two easy ones are:

ap51-flash
----------

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.

initramfs from TFTP
-------------------

The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):

   setenv serverip 192.168.1.21
   setenv ipaddr 192.168.1.1
   tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr

The actual sysupgrade image can then be transferred (on the LAN port) to
the device via

  scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/

On the device, the sysupgrade must then be started using

  sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin

Signed-off-by: Sven Eckelmann <sven@narfation.org>
2020-12-30 23:32:07 +01:00
Sven Eckelmann
75900a25ed ath79: add support for OpenMesh OM2P-HS v3
Device specifications:
======================

* Qualcomm/Atheros AR9341 rev 1
* 535/400/200 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 2T2R 2.4 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
  - eth0
    + 802.3af POE
    + builtin switch port 1
    + used as LAN interface
  - eth1
    + 18-24V passive POE (mode B)
    + used as WAN interface
* 12-24V 1A DC
* internal antennas

Flashing instructions:
======================

Various methods can be used to install the actual image on the flash.
Two easy ones are:

ap51-flash
----------

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.

initramfs from TFTP
-------------------

The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):

   setenv serverip 192.168.1.21
   setenv ipaddr 192.168.1.1
   tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr

The actual sysupgrade image can then be transferred (on the LAN port) to
the device via

  scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/

On the device, the sysupgrade must then be started using

  sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin

Signed-off-by: Sven Eckelmann <sven@narfation.org>
2020-12-29 00:03:26 +01:00
Sven Eckelmann
f096accce2 ath79: add support for OpenMesh OM2P-HS v2
Device specifications:
======================

* Qualcomm/Atheros AR9341 rev 1
* 535/400/200 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 2T2R 2.4 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
  - eth0
    + 802.3af POE
    + builtin switch port 1
    + used as LAN interface
  - eth1
    + 18-24V passive POE (mode B)
    + used as WAN interface
* 12-24V 1A DC
* internal antennas

Flashing instructions:
======================

Various methods can be used to install the actual image on the flash.
Two easy ones are:

ap51-flash
----------

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.

initramfs from TFTP
-------------------

The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):

   setenv serverip 192.168.1.21
   setenv ipaddr 192.168.1.1
   tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr

The actual sysupgrade image can then be transferred (on the LAN port) to
the device via

  scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/

On the device, the sysupgrade must then be started using

  sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin

Signed-off-by: Sven Eckelmann <sven@narfation.org>
2020-12-29 00:03:26 +01:00
Sven Eckelmann
a462412977 ath79: add support for OpenMesh OM2P-HS v1
Device specifications:
======================

* Qualcomm/Atheros AR9341 rev 1
* 535/400/200 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 2T2R 2.4 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
  - eth0
    + 802.3af POE
    + builtin switch port 1
    + used as LAN interface
  - eth1
    + 18-24V passive POE (mode B)
    + used as WAN interface
* 12-24V 1A DC
* internal antennas

Flashing instructions:
======================

Various methods can be used to install the actual image on the flash.
Two easy ones are:

ap51-flash
----------

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.

initramfs from TFTP
-------------------

The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):

   setenv serverip 192.168.1.21
   setenv ipaddr 192.168.1.1
   tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr

The actual sysupgrade image can then be transferred (on the LAN port) to
the device via

  scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/

On the device, the sysupgrade must then be started using

  sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin

Signed-off-by: Sven Eckelmann <sven@narfation.org>
[drop redundant status from eth1]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-12-29 00:03:26 +01:00
Sven Eckelmann
d0a9cf662e ath79: increase openmesh sysupgrade copy block size
The upgrade script for the openmesh sysupgrade procedure used always an 1
byte block size. This made it easier to seek the correct position in the CE
image and to make sure the right amount of data was copied. But this also
meant that the reading/writing of data required an excessive amount of
syscalls and copy operations.

A 5.4MB big sysupgrade image on an OM2P-HS v3 needed roughly 120s for the
write operation (170s in total) during the sysupgrade.

But it is possible to reduce this overhead slightly:

* index access to read the file size can be done in single 8 byte chunk
  (while doing the seek with byte granularity) because each size entry is
  example 8 bytes long
* the fwupgrade.cfg can be read as one block (while seeking to its position
  using its actual byte offset) because it should be rather small and fit
  into the RAM easily
* the kernel can be read in 1KB blocks (while seking to its positions using
  its actual byte offset) because the the size of the kernel is always a
  multiple of the NOR flash block size (64KB and 256KB)

This results in a sysupgrade write time of roughly 90s (140s in total).

This could be reduced even further when also using larger chunks for the
rootfs. But the squashfs rootfs image is at the moment always

  (256KB or 64KB) * block + 4 bytes

long. It would be expected that the time for the sysupgrade write could be
reduced to roughly 30s (80s in total) when busybox's dd would support
the iflag count_bytes.

Reported-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Signed-off-by: Sven Eckelmann <sven@narfation.org>
2020-12-28 19:37:24 +01:00
Sven Eckelmann
5b37b52e69 ath79: Add support for OpenMesh OM2P-HS v4
Device specifications:
======================

* Qualcomm/Atheros QCA9533 v2
* 650/600/217 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 2T2R 2.4 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
  - eth0
    + 24V passive POE (mode B)
    + used as WAN interface
  - eth1
    + 802.3af POE
    + builtin switch port 1
    + used as LAN interface
* 12-24V 1A DC
* internal antennas

Flashing instructions:
======================

Various methods can be used to install the actual image on the flash.
Two easy ones are:

ap51-flash
----------

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.

initramfs from TFTP
-------------------

The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):

   setenv serverip 192.168.1.21
   setenv ipaddr 192.168.1.1
   tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr

The actual sysupgrade image can then be transferred (on the LAN port) to
the device via

  scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/

On the device, the sysupgrade must then be started using

  sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin

Signed-off-by: Sven Eckelmann <sven@narfation.org>
2020-12-28 19:37:24 +01:00
Sven Eckelmann
dd1d95cb03 ath79: Add support for OpenMesh OM2P v4
Device specifications:
======================

* Qualcomm/Atheros QCA9533 v2
* 650/600/217 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 1T1R 2.4 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
  - eth0
    + Label: Ethernet 1
    + 24V passive POE (mode B)
  - eth1
    + Label: Ethernet 2
    + 802.3af POE
    + builtin switch port 1
* 12-24V 1A DC
* external antenna

Flashing instructions:
======================

Various methods can be used to install the actual image on the flash.
Two easy ones are:

ap51-flash
----------

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.

initramfs from TFTP
-------------------

The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):

   setenv serverip 192.168.1.21
   setenv ipaddr 192.168.1.1
   tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr

The actual sysupgrade image can then be transferred (on the LAN port) to
the device via

  scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/

On the device, the sysupgrade must then be started using

  sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin

Signed-off-by: Sven Eckelmann <sven@narfation.org>
[wrap two very long lines, fix typo in comment]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-12-28 19:37:24 +01:00
Michael Pratt
33d26a9a40 ath79: add support for Senao Engenius EAP350 v1
FCC ID: U2M-EAP350

Engenius EAP350 is a wireless access point with 1 gigabit PoE ethernet port,
2.4 GHz wireless, external ethernet switch, and 2 internal antennas.

Specification:

  - AR7242 SOC
  - AR9283 WLAN			(2.4 GHz, 2x2, PCIe on-board)
  - AR8035-A switch		(GbE with 802.3af PoE)
  - 40 MHz reference clock
  - 8 MB FLASH			MX25L6406E
  - 32 MB RAM			EM6AA160TSA-5G
  - UART at J2			(populated)
  - 3 LEDs, 1 button		(power, eth, 2.4 GHz) (reset)
  - 2 internal antennas

MAC addresses:

  MAC address is labeled as "MAC"
  Only 1 address on label and in flash
  The OEM software reports these MACs for the ifconfig

  eth0	MAC	*:0c	art 0x0
  phy0	---	*:0d	---

Installation:

  2 ways to flash factory.bin from OEM:

  - if you get Failsafe Mode from failed flash:
      only use it to flash Original firmware from Engenius
      or risk kernel loop or halt which requires serial cable

  Method 1: Firmware upgrade page:

    OEM webpage at 192.168.10.1
    username and password "admin"
    Navigate to "Upgrade Firmware" page from left pane
    Click Browse and select the factory.bin image
    Upload and verify checksum
    Click Continue to confirm and wait 3 minutes

  Method 2: Serial to load Failsafe webpage:

    After connecting to serial console and rebooting...
    Interrupt uboot with any key pressed rapidly
    execute `run failsafe_boot` OR `bootm 0x9f670000`
    wait a minute
    connect to ethernet and navigate to
    "192.168.1.1/index.htm"
    Select the factory.bin image and upload
    wait about 3 minutes

Return to OEM:

  If you have a serial cable, see Serial Failsafe instructions
  otherwise, uboot-env can be used to make uboot load the failsafe image

  *DISCLAIMER*
  The Failsafe image is unique to Engenius boards.
  If the failsafe image is missing or damaged this will not work
  DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt

  ssh into openwrt and run
  `fw_setenv rootfs_checksum 0`
  reboot, wait 3 minutes
  connect to ethernet and navigate to 192.168.1.1/index.htm
  select OEM firmware image from Engenius and click upgrade

Format of OEM firmware image:

  The OEM software of EAP350 is a heavily modified version
  of Openwrt Kamikaze. One of the many modifications
  is to the sysupgrade program. Image verification is performed
  simply by the successful ungzip and untar of the supplied file
  and name check and header verification of the resulting contents.
  To form a factory.bin that is accepted by OEM Openwrt build,
  the kernel and rootfs must have specific names...

    openwrt-senao-eap350-uImage-lzma.bin
    openwrt-senao-eap350-root.squashfs

  and begin with the respective headers (uImage, squashfs).
  Then the files must be tarballed and gzipped.
  The resulting binary is actually a tar.gz file in disguise.
  This can be verified by using binwalk on the OEM firmware images,
  ungzipping then untaring.

  The OEM upgrade script is at /etc/fwupgrade.sh

  Later models in the EAP series likely have a different platform
  and the upgrade and image verification process differs.

  OKLI kernel loader is required because the OEM software
  expects the kernel to be no greater than 1024k
  and the factory.bin upgrade procedure would
  overwrite part of the kernel when writing rootfs.

Note on PLL-data cells:

  The default PLL register values will not work
  because of the external AR8035-A switch between
  the SOC and the ethernet PHY chips.

  For AR724x series, the PLL register for GMAC0
  can be seen in the DTSI as 0x2c.
  Therefore the PLL register can be read from uboot
  for each link speed after attempting tftpboot
  or another network action using that link speed
  with `md 0x1805002c 1`.

  uboot did not have a good value for 1 GBps
  so it was taken from other similar DTS file.

Tested from master, all link speeds functional

Signed-off-by: Michael Pratt <mcpratt@pm.me>
2020-12-25 10:38:13 +01:00
Michael Pratt
6c98edaae2 ath79: add support for Senao Engenius EAP600
FCC ID: A8J-EAP600

Engenius EAP600 is a wireless access point with 1 gigabit ethernet port,
dual-band wireless, external ethernet switch, 4 internal antennas
and 802.3af PoE.

Specification:

  - AR9344 SOC			(5 GHz, 2x2, WMAC)
  - AR9382 WLAN			(2.4 GHz, 2x2, PCIe on-board)
  - AR8035-A switch		(GbE with 802.3af PoE)
  - 40 MHz reference clock
  - 16 MB FLASH			MX25L12845EMI-10G
  - 2x 64 MB RAM		NT5TU32M16DG
  - UART at H1			(populated)
  - 5 LEDs, 1 button		(power, eth, 2.4 GHz, 5 GHz, wps) (reset)
  - 4 internal antennas

MAC addresses:

  MAC addresses are labeled MAC1 and MAC2
  The MAC address in flash is not on the label
  The OEM software reports these MACs for the ifconfig

  eth0	MAC 1	*:5e	---
  phy1	MAC 2	*:5f	---	(2.4 GHz)
  phy0	-----	*:60	art 0x0	(5 GHz)

Installation:

  2 ways to flash factory.bin from OEM:

  - if you get Failsafe Mode from failed flash:
      only use it to flash Original firmware from Engenius
      or risk kernel loop or halt which requires serial cable

  Method 1: Firmware upgrade page:

    OEM webpage at 192.168.1.1
    username and password "admin"
    Navigate to "Upgrade Firmware" page from left pane
    Click Browse and select the factory.bin image
    Upload and verify checksum
    Click Continue to confirm and wait 3 minutes

  Method 2: Serial to load Failsafe webpage:

    After connecting to serial console and rebooting...
    Interrupt uboot with any key pressed rapidly
    execute `run failsafe_boot` OR `bootm 0x9fdf0000`
    wait a minute
    connect to ethernet and navigate to
    "192.168.1.1/index.htm"
    Select the factory.bin image and upload
    wait about 3 minutes

Return to OEM:

  If you have a serial cable, see Serial Failsafe instructions
  otherwise, uboot-env can be used to make uboot load the failsafe image

  *DISCLAIMER*
  The Failsafe image is unique to Engenius boards.
  If the failsafe image is missing or damaged this will not work
  DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt

  ssh into openwrt and run
  `fw_setenv rootfs_checksum 0`
  reboot, wait 3 minutes
  connect to ethernet and navigate to 192.168.1.1/index.htm
  select OEM firmware image from Engenius and click upgrade

Format of OEM firmware image:

  The OEM software of EAP600 is a heavily modified version
  of Openwrt Kamikaze. One of the many modifications
  is to the sysupgrade program. Image verification is performed
  simply by the successful ungzip and untar of the supplied file
  and name check and header verification of the resulting contents.
  To form a factory.bin that is accepted by OEM Openwrt build,
  the kernel and rootfs must have specific names...

    openwrt-senao-eap600-uImage-lzma.bin
    openwrt-senao-eap600-root.squashfs

  and begin with the respective headers (uImage, squashfs).
  Then the files must be tarballed and gzipped.
  The resulting binary is actually a tar.gz file in disguise.
  This can be verified by using binwalk on the OEM firmware images,
  ungzipping then untaring.

  The OEM upgrade script is at /etc/fwupgrade.sh

  Later models in the EAP series likely have a different platform
  and the upgrade and image verification process differs.

  OKLI kernel loader is required because the OEM software
  expects the kernel to be no greater than 1536k
  and the factory.bin upgrade procedure would
  overwrite part of the kernel when writing rootfs.

Note on PLL-data cells:

  The default PLL register values will not work
  because of the external AR8035-A switch between
  the SOC and the ethernet PHY chips.

  For AR934x series, the PLL register for GMAC0
  can be seen in the DTSI as 0x2c.
  Therefore the PLL register can be read from uboot
  for each link speed after attempting tftpboot
  or another network action using that link speed
  with `md 0x1805002c 1`.

  Unfortunately uboot did not have the best values
  so they were taken from other similar DTS files.

Tested from master, all link speeds functional

Signed-off-by: Michael Pratt <mcpratt@pm.me>
2020-12-25 10:38:13 +01:00
Michael Pratt
4a55ef639d ath79: add support for Senao Engenius ECB600
FCC ID: A8J-ECB600

Engenius ECB600 is a wireless access point with 1 gigabit PoE ethernet port,
dual-band wireless, external ethernet switch, and 4 external antennas.

Specification:

  - AR9344 SOC			(5 GHz, 2x2, WMAC)
  - AR9382 WLAN			(2.4 GHz, 2x2, PCIe on-board)
  - AR8035-A switch		(GbE with 802.3af PoE)
  - 40 MHz reference clock
  - 16 MB FLASH			MX25L12845EMI-10G
  - 2x 64 MB RAM		NT5TU32M16DG
  - UART at H1			(populated)
  - 4 LEDs, 1 button		(power, eth, 2.4 GHz, 5 GHz) (reset)
  - 4 external antennas

MAC addresses:

  MAC addresses are labeled MAC1 and MAC2
  The MAC address in flash is not on the label
  The OEM software reports these MACs for the ifconfig

  phy1	MAC 1	*:52	---	(2.4 GHz)
  phy0	MAC 2	*:53	---	(5 GHz)
  eth0	-----	*:54	art 0x0

Installation:

  2 ways to flash factory.bin from OEM:

  - if you get Failsafe Mode from failed flash:
      only use it to flash Original firmware from Engenius
      or risk kernel loop or halt which requires serial cable

  Method 1: Firmware upgrade page:

    OEM webpage at 192.168.1.1
    username and password "admin"
    Navigate to "Upgrade Firmware" page from left pane
    Click Browse and select the factory.bin image
    Upload and verify checksum
    Click Continue to confirm and wait 3 minutes

  Method 2: Serial to load Failsafe webpage:

    After connecting to serial console and rebooting...
    Interrupt uboot with any key pressed rapidly
    execute `run failsafe_boot` OR `bootm 0x9fdf0000`
    wait a minute
    connect to ethernet and navigate to
    "192.168.1.1/index.htm"
    Select the factory.bin image and upload
    wait about 3 minutes

Return to OEM:

  If you have a serial cable, see Serial Failsafe instructions
  otherwise, uboot-env can be used to make uboot load the failsafe image

  *DISCLAIMER*
  The Failsafe image is unique to Engenius boards.
  If the failsafe image is missing or damaged this will not work
  DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt

  ssh into openwrt and run
  `fw_setenv rootfs_checksum 0`
  reboot, wait 3 minutes
  connect to ethernet and navigate to 192.168.1.1/index.htm
  select OEM firmware image from Engenius and click upgrade

Format of OEM firmware image:

  The OEM software of ECB600 is a heavily modified version
  of Openwrt Kamikaze. One of the many modifications
  is to the sysupgrade program. Image verification is performed
  simply by the successful ungzip and untar of the supplied file
  and name check and header verification of the resulting contents.
  To form a factory.bin that is accepted by OEM Openwrt build,
  the kernel and rootfs must have specific names...

    openwrt-senao-ecb600-uImage-lzma.bin
    openwrt-senao-ecb600-root.squashfs

  and begin with the respective headers (uImage, squashfs).
  Then the files must be tarballed and gzipped.
  The resulting binary is actually a tar.gz file in disguise.
  This can be verified by using binwalk on the OEM firmware images,
  ungzipping then untaring.

  The OEM upgrade script is at /etc/fwupgrade.sh

  Later models in the ECB series likely have a different platform
  and the upgrade and image verification process differs.

  OKLI kernel loader is required because the OEM software
  expects the kernel to be no greater than 1536k
  and the factory.bin upgrade procedure would
  overwrite part of the kernel when writing rootfs.

Note on PLL-data cells:

  The default PLL register values will not work
  because of the external AR8035-A switch between
  the SOC and the ethernet PHY chips.

  For AR934x series, the PLL register for GMAC0
  can be seen in the DTSI as 0x2c.
  Therefore the PLL register can be read from uboot
  for each link speed after attempting tftpboot
  or another network action using that link speed
  with `md 0x1805002c 1`.

  Unfortunately uboot did not have the best values
  so they were taken from other similar DTS files.

Tested from master, all link speeds functional

Signed-off-by: Michael Pratt <mcpratt@pm.me>
2020-12-25 10:38:13 +01:00
Michael Pratt
fe2f53f21c ath79: add support for Senao Engenius EnStationAC v1
FCC ID: A8J-ENSTAC

Engenius EnStationAC v1 is an outdoor wireless access point/bridge with
2 gigabit ethernet ports on 2 external ethernet switches,
5 GHz only wireless, internal antenna plates, and proprietery PoE.

Specification:

  - QCA9557 SOC
  - QCA9882 WLAN		(PCI card, 5 GHz, 2x2, 26dBm)
  - AR8035-A switch		(RGMII GbE with PoE+ IN)
  - AR8031 switch		(SGMII GbE with PoE OUT)
  - 40 MHz reference clock
  - 16 MB FLASH			MX25L12845EMI-10G
  - 2x 64 MB RAM		NT5TU32M16FG
  - UART at J10			(unpopulated)
  - internal antenna plates	(19 dbi, directional)
  - 7 LEDs, 1 button		(power, eth, wlan, RSSI) (reset)

MAC addresses:

  MAC addresses are labeled as ETH and 5GHz
  Vendor MAC addresses in flash are duplicate

  eth0	ETH	*:d3	art 0x0/0x6
  eth1	----	*:d4	---
  phy0	5GHz	*:d5	---

Installation:

  2 ways to flash factory.bin from OEM:

  - if you get Failsafe Mode from failed flash:
      only use it to flash Original firmware from Engenius
      or risk kernel loop or halt which requires serial cable

  Method 1: Firmware upgrade page:

    OEM webpage at 192.168.1.1
    username and password "admin"
    Navigate to "Firmware" page from left pane
    Click Browse and select the factory.bin image
    Upload and verify checksum
    Click Continue to confirm and wait 3 minutes

  Method 2: Serial to load Failsafe webpage:

    After connecting to serial console and rebooting...
    Interrupt uboot with any key pressed rapidly
    execute `run failsafe_boot` OR `bootm 0x9fd70000`
    wait a minute
    connect to ethernet and navigate to
    "192.168.1.1/index.htm"
    Select the factory.bin image and upload
    wait about 3 minutes

Return to OEM:

  If you have a serial cable, see Serial Failsafe instructions
  otherwise, uboot-env can be used to make uboot load the failsafe image

  *DISCLAIMER*
  The Failsafe image is unique to Engenius boards.
  If the failsafe image is missing or damaged this will not work
  DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt

  ssh into openwrt and run
  `fw_setenv rootfs_checksum 0`
  reboot, wait 3 minutes
  connect to ethernet and navigate to 192.168.1.1/index.htm
  select OEM firmware image from Engenius and click upgrade

TFTP recovery:

  rename initramfs to 'vmlinux-art-ramdisk'
  make available on TFTP server at 192.168.1.101
  power board
  hold or press reset button repeatedly

  NOTE: for some Engenius boards TFTP is not reliable
  try setting MTU to 600 and try many times

Format of OEM firmware image:

  The OEM software of EnStationAC is a heavily modified version
  of Openwrt Altitude Adjustment 12.09. One of the many modifications
  is to the sysupgrade program. Image verification is performed
  simply by the successful ungzip and untar of the supplied file
  and name check and header verification of the resulting contents.
  To form a factory.bin that is accepted by OEM Openwrt build,
  the kernel and rootfs must have specific names...

    openwrt-ar71xx-enstationac-uImage-lzma.bin
    openwrt-ar71xx-enstationac-root.squashfs

  and begin with the respective headers (uImage, squashfs).
  Then the files must be tarballed and gzipped.
  The resulting binary is actually a tar.gz file in disguise.
  This can be verified by using binwalk on the OEM firmware images,
  ungzipping then untaring.

  Newer EnGenius software requires more checks but their script
  includes a way to skip them, otherwise the tar must include
  a text file with the version and md5sums in a deprecated format.

  The OEM upgrade script is at /etc/fwupgrade.sh.

  OKLI kernel loader is required because the OEM software
  expects the kernel to be no greater than 1536k
  and the factory.bin upgrade procedure would otherwise
  overwrite part of the kernel when writing rootfs.

Note on PLL-data cells:

  The default PLL register values will not work
  because of the external AR8033 switch between
  the SOC and the ethernet PHY chips.

  For QCA955x series, the PLL registers for eth0 and eth1
  can be see in the DTSI as 0x28 and 0x48 respectively.
  Therefore the PLL registers can be read from uboot
  for each link speed after attempting tftpboot
  or another network action using that link speed
  with `md 0x18050028 1` and `md 0x18050048 1`.

  For eth0 at 1000 speed, the value returned was
  ae000000 but that didn't work, so following
  the logical pattern from the rest of the values,
  the guessed value of a3000000 works better.

  later discovered that delay can be placed on the PHY end only
  with phy-mode as 'rgmii-id' and set register to 0x82...

Tested from master, all link speeds functional

Signed-off-by: Michael Pratt <mcpratt@pm.me>
[fixed SoB to match From:]
Signed-off-by: Petr Štetiar <ynezz@true.cz>
2020-12-22 19:11:50 +01:00
Sebastian Schaper
8ec997d006 ath79: add support for D-Link DAP-2660 A1
Specifications:
 * QCA9557, 16 MiB Flash, 128 MiB RAM, 802.11n 2T2R
 * QCA9882, 802.11ac 2T2R
 * Gigabit LAN Port (AR8035), 802.11af PoE

Installation:
 * Factory Web UI is at 192.168.0.50
   login with 'admin' and blank password, flash factory.bin
 * Recovery Web UI is at 192.168.0.50
   connect network cable, hold reset button during power-on and keep it
   pressed until uploading has started (only required when checksum is ok,
   e.g. for reverting back to oem firmware), flash factory.bin

After flashing factory.bin, additional free space can be reclaimed by
flashing sysupgrade.bin, since the factory image requires some padding
to be accepted for upgrading via OEM Web UI.

Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
2020-12-22 19:11:50 +01:00
Roman Kuzmitskii
491ae3357e ath79: add support for Ubiquiti airCube AC
The Ubiquiti Network airCube AC is a cube shaped device supporting
2.4 GHz and 5 GHz with internal 2x2 MIMO antennas.
It can be powered with either one of:
 - 24v power supply with 3.0mm x 1.0mm barrel plug
 - 24v passive PoE on first LAN port
There are four 10/100/1000 Mbps ports (1 * WAN + 3 * LAN).
First LAN port have optional PoE passthrough to the WAN port.

SoC:       Qualcomm / Atheros AR9342
RAM:       64 MB DDR2
Flash:     16 MB SPI NOR
Ethernet:  4x 10/100/1000 Mbps (1 WAN + 3 LAN)
LEDS:      1x via a SPI controller (not yet supported)
Buttons:   1x Reset
Serial:    1x (only RX and TX); 115200 baud, 8N1

Missing features:
 - LED control is not supported

Physical to internal switch port mapping:
 - physical port #1 (poe in) = switchport 2
 - physical port #2 = switchport 3
 - physical port #3 = switchport 5
 - physical port #4 (wan/poe out) = switchport 4

Factory update is tested and is the same as for Ubiquiti AirCube ISP
hence the shared configuration between that devices.

Signed-off-by: Roman Kuzmitskii <damex.pp@icloud.com>
2020-12-22 19:11:50 +01:00
Sven Eckelmann
17e5920490 ath79: Add support for Plasma Cloud PA300E
Device specifications:

* Qualcomm/Atheros QCA9533 v2
* 650/600/217 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash (mx25l12805d)
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 2T2R 2.4 GHz Wi-Fi
* multi-color LED (controlled via red/green/blue GPIOs)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
  - eth0
    + Label: Ethernet 1
    + 24V passive POE (mode B)
    + used as WAN interface
  - eth1
    + Label: Ethernet 2
    + 802.3af POE
    + builtin switch port 2
    + used as LAN interface
* 12-24V 1A DC
* external antennas

Flashing instructions:

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the factory image to the u-boot when the device boots up.

Signed-off-by: Sven Eckelmann <sven@narfation.org>
2020-12-22 19:11:50 +01:00
Sven Eckelmann
5fc28ef479 ath79: Add support for Plasma Cloud PA300
Device specifications:

* Qualcomm/Atheros QCA9533 v2
* 650/600/217 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash (mx25l12805d)
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 2T2R 2.4 GHz Wi-Fi
* multi-color LED (controlled via red/green/blue GPIOs)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
  - eth0
    + Label: Ethernet 1
    + 24V passive POE (mode B)
    + used as WAN interface
  - eth1
    + Label: Ethernet 2
    + 802.3af POE
    + builtin switch port 2
    + used as LAN interface
* 12-24V 1A DC
* internal antennas

Flashing instructions:

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the factory image to the u-boot when the device boots up.

Signed-off-by: Sven Eckelmann <sven@narfation.org>
2020-12-22 19:11:50 +01:00
Michael Pratt
7073ebf0f9 ath79: add support for Senao Engenius ECB350 v1
FCC ID: A8J-ECB350

Engenius ECB350 v1 is an indoor wireless access point with a gigabit ethernet port,
2.4 GHz wireless, external antennas, and PoE.

**Specification:**

  - AR7242 SOC
  - AR9283 WLAN			2.4 GHz (2x2), PCIe on-board
  - AR8035-A switch		RGMII, GbE with 802.3af PoE
  - 40 MHz reference clock
  - 8 MB FLASH			25L6406EM2I-12G
  - 32 MB RAM
  - UART at J2			(populated)
  - 2 external antennas
  - 3 LEDs, 1 button		(power, lan, wlan) (reset)

**MAC addresses:**

  MACs are labeled as WLAN and WAN
  vendor MAC addresses in flash are duplicate

  phy0	WLAN	*:b8	---
  eth0	WAN	*:b9	art 0x0/0x6

**Installation:**

  - if you get Failsafe Mode from failed flash:
      only use it to flash Original firmware from Engenius
      or risk kernel loop or halt which requires serial cable

  Method 1: Firmware upgrade page:

  OEM webpage at 192.168.1.1
  username and password "admin"
  Navigate to "Firmware" page from left pane
  Click Browse and select the factory.bin image
  Upload and verify checksum
  Click Continue to confirm and wait 3 minutes

  Method 2: Serial to load Failsafe webpage:

  After connecting to serial console and rebooting...
  Interrupt uboot with any key pressed rapidly
  execute `run failsafe_boot` OR `bootm 0x9f670000`
  wait a minute
  connect to ethernet and navigate to
  "192.168.1.1/index.htm"
  Select the factory.bin image and upload
  wait about 3 minutes

**Return to OEM:**

  If you have a serial cable, see Serial Failsafe instructions
  otherwise, uboot-env can be used to make uboot load the failsafe image

  *DISCLAIMER*
  The Failsafe image is unique to Engenius boards.
  If the failsafe image is missing or damaged this will not work
  DO NOT downgrade to ar71xx this way, it can cause kernel loop or halt

  ssh into openwrt and run
  `fw_setenv rootfs_checksum 0`
  reboot, wait 3 minutes
  connect to ethernet and navigate to 192.168.1.1/index.htm
  select OEM firmware image from Engenius and click upgrade

**TFTP recovery** (unstable / not reliable):

  rename initramfs to 'vmlinux-art-ramdisk'
  make available on TFTP server at 192.168.1.101
  power board while holding or pressing reset button repeatedly

  NOTE: for some Engenius boards TFTP is not reliable
  try setting MTU to 600 and try many times

**Format of OEM firmware image:**

  The OEM software of ECB350 v1 is a heavily modified version
  of Openwrt Kamikaze. One of the many modifications
  is to the sysupgrade program. Image verification is performed
  by the successful ungzip and untar of the supplied file
  and name check and header verification of the resulting contents.
  To form a factory.bin that is accepted by OEM Openwrt build,
  the kernel and rootfs must have specific names
  and begin with the respective headers (uImage, squashfs).
  Then the files must be tarballed and gzipped.
  The resulting binary is actually a tar.gz file in disguise.
  This can be verified by using binwalk on the OEM firmware images,
  ungzipping then untaring.

  The OEM upgrade script is at /etc/fwupgrade.sh.

  OKLI kernel loader is required because the OEM software
  expects the kernel size to be no greater than 1536k
  and otherwise the factory.bin upgrade procedure would
  overwrite part of the kernel when writing rootfs.
  The factory upgrade script follows the original mtd partitions.

**Note on PLL-data cells:**

  The default PLL register values will not work
  because of the AR8035 switch between
  the SOC and the ethernet port.

  For AR724x series, the PLL register for GMAC0
  can be seen in the DTSI as 0x2c.
  Therefore the PLL register can be read from u-boot
  for each link speed after attempting tftpboot
  or another network action using that link speed
  with `md 0x1805002c 1`

  However the registers that u-boot sets are not ideal and sometimes wrong...
  the at803x driver supports setting the RGMII clock/data delay on the PHY side.
  This way the pll-data register only needs to handle invert and phase.

  for this board no extra adjustements are needed on the MAC side
  all link speeds functional

Signed-off-by: Michael Pratt <mcpratt@pm.me>
2020-12-22 19:11:50 +01:00
Chen Minqiang
a1b5a43fc4 ath79: add support for GL.iNet GL-USB150
Add support for the ar71xx supported GL.iNet GL-USB150 to ath79.

GL.iNet GL-USB150 is an USB dongle WiFi router, based on Atheros AR9331.

Specification:

- 400/400/200 MHz (CPU/DDR/AHB)
- 64 MB of RAM (DDR2)
- 16 MB of FLASH (SPI NOR)
- Realtek RTL8152B USB to Ethernet bridge (connected with AR9331 PHY4)
- 1T1R 2.4 GHz
- 2x LED, 1x button
- UART header on PCB

Flash instruction:

Vendor software is based on openwrt so you can flash the sysupgrade
image via the vendor GUI or using command line sysupgrade utility.
Make sure to not save configuration over reflash as uci settings
differ between versions.

Signed-off-by: Chen Minqiang <ptpt52@gmail.com>
2020-12-22 19:11:50 +01:00
Michael Pratt
73bdbb3d20 ath79: enable factory.bin and adjust profile of ECB1750
factory.bin was not tested for ECB1750...
but it was tested on it's sister board ECB1200

The product ID for the header can be verified by inspecting
the header of OEM images, or in the u-boot environment.

Also:

  - the LAN LED is controlled directly by the AR8035 switch
  - the labelled (first increment) MAC for both is ethaddr (eth0)
  - list packages in alphabetical order
  - use default sysupgrade.bin recipe

Signed-off-by: Michael Pratt <mcpratt@pm.me>
2020-12-22 19:11:50 +01:00
Michael Pratt
f244143609 ath79: add support for Senao Engenius ECB1200
FCC ID: A8J-ECB1200

Engenius ECB1200 is an indoor wireless access point with a GbE port,
2.4 GHz and 5 GHz wireless, external antennas, and 802.3af PoE.

**Specification:**

  - QCA9557 SOC			MIPS, 2.4 GHz (2x2)
  - QCA9882 WLAN		PCIe card, 5 GHz (2x2)
  - AR8035-A switch		RGMII, GbE with 802.3af PoE, 25 MHz clock
  - 40 MHz reference clock
  - 16 MB FLASH			25L12845EMI-10G
  - 2x 64 MB RAM		1538ZFZ V59C1512164QEJ25
  - UART at JP1			(unpopulated, RX shorted to ground)
  - 4 external antennas
  - 4 LEDs, 1 button		(power, eth, wifi2g, wifi5g) (reset)

**MAC addresses:**

  MAC Addresses are labeled as ETH and 5GHZ
  U-boot environment has the vendor MAC addresses
  MAC addresses in ART do not match vendor

  eth0	ETH	*:5c	u-boot-env ethaddr
  phy0	5GHZ	*:5d	u-boot-env athaddr
  ----	----	????	art 0x0/0x6

**Installation:**

  Method 1: Firmware upgrade page:

  OEM webpage at 192.168.1.1
  username and password "admin"
  Navigate to "Firmware" page from left pane
  Click Browse and select the factory.bin image
  Upload and verify checksum
  Click Continue to confirm and wait 3 minutes

  Method 2: Serial to load Failsafe webpage:

  After connecting to serial console and rebooting...
  Interrupt uboot with any key pressed rapidly

  (see TFTP recovery)
  perform a sysupgrade

**Serial Access:**

  the RX line on the board for UART is shorted to ground by resistor R176
  therefore it must be removed to use the console
  but it is not necessary to remove to view boot log
  optionally, R175 can be replaced with a solder bridge short

  the resistors R175 and R176 are next to the UART pinout at JP1

**Return to OEM:**

  If you have a serial cable, see Serial Failsafe instructions

  Unlike most Engenius boards, this does not have a 'failsafe' image
  the only way to return to OEM is TFTP or serial access to u-boot

**TFTP recovery:**

  Unlike most Engenius boards, TFTP is reliable here

  rename initramfs-kernel.bin to 'ap.bin'
  make the file available on a TFTP server at 192.168.1.10
  power board while holding or pressing reset button repeatedly

  or with serial access:
  run `tftpboot` or `run factory_boot` with initramfs-kernel.bin
  then `bootm` with the load address

**Format of OEM firmware image:**

  The OEM software of ECB1200 is a heavily modified version
  of Openwrt Altitude Adjustment 12.09.

  This Engenius board, like ECB1750, uses a proprietary header
  with a unique Product ID. The header for factory.bin is
  generated by the mksenaofw program included in openwrt.

**Note on PLL-data cells:**

  The default PLL register values will not work
  because of the AR8035 switch between
  the SOC and the ethernet port.

  For QCA955x series, the PLL registers for eth0 and eth1
  can be see in the DTSI as 0x28 and 0x48 respectively.
  Therefore the PLL registers can be read from uboot
  for each link speed after attempting tftpboot
  or another network action using that link speed
  with `md 0x18050028 1` and `md 0x18050048 1`.

  However the registers that u-boot sets are not ideal and sometimes wrong...
  the at803x driver supports setting the RGMII clock/data delay on the PHY side.
  This way the pll-data register only needs to handle invert and phase.

  for this board clock invert is needed on the MAC side
  all link speeds functional

Signed-off-by: Michael Pratt <mcpratt@pm.me>
2020-12-22 19:11:50 +01:00
Tomasz Maciej Nowak
0d96d36841 ath79: add support for AirTight C-75
AirTight Networks (later renamed to Mojo Networks) C-75 is a dual-band
access point, also sold by WatchGuard under name AP320.

Specification
SoC: Qualcomm Atheros QCA9550
RAM: 128 MiB DDR2
Flash: 2x 16 MiB SPI NOR
WIFI: 2.4 GHz 3T3R integrated
      5 GHz 3T3R QCA9890 oversized Mini PCIe card
Ethernet: 2x 10/100/1000 Mbps QCA8334
          port labeled LAN1 is PoE capable (802.3at)
USB: 1x 2.0
LEDs: 7x which two are GPIO controlled, four switch controlled, one
      controlled by wireless driver
Buttons: 1x GPIO controlled
Serial: RJ-45 port, Cisco pinout
        baud: 115200, parity: none, flow control: none
JTAG: Yes, pins marked J1 on PCB

Installation
1. Prepare TFTP server with OpenWrt initramfs-kernel image.
2. Connect to one of LAN ports.
3. Connect to serial port.
4. Power on the device and when prompted to stop autoboot, hit any key.
5. Adjust "ipaddr" and "serverip" addresses in U-Boot environment, use
   'setenv' to do that, then run following commands:
    tftpboot 0x81000000 <openwrt_initramfs-kernel_image_name>
    bootm 0x81000000
6. Wait about 1 minute for OpenWrt to boot.
7. Transfer OpenWrt sysupgrade image to /tmp directory and flash it
   with:
    sysupgrade -n /tmp/<openwrt_sysupgrade_image_name>
8. After flashing, the access point will reboot to OpenWrt. Wait few
   minutes, until the Power LED stops blinking, then it's ready for
   configuration.

Known issues
Green power LED does not work.

Additional information
The U-Boot fails to initialise ethernet ports correctly when a UART
adapter is attached to UART pins (marked J3 on PCB).

Cc: Vladimir Georgievsky <vladimir.georgievsky@yahoo.com>
Signed-off-by: Tomasz Maciej Nowak <tmn505@gmail.com>
2020-12-19 19:42:00 +01:00
Martin Blumenstingl
b403a6e124 ath79: add support for the Belkin F9K1115 v2 (AC1750 DB Wi-Fi)
This device has (almost?) identical hardware to the F9J1108 v2 but uses
a different firmware magic and model number.

Specifications:

SoC: QCA9558
CPU: 720 MHz
Flash: 16 MiB NOR
RAM: 128 MiB
WiFi 2.4 GHz: QCA9558-AT4A 3x3 MIMO 802.11b/g/n
WiFi 5 GHz: QCA9880-2R4E 3x3 MIMO 802.11a/n/ac
Ethernet: 4x LAN and 1x WAN (all 1Gbit/s ports)
USB: 1 x USB 2.0 (lower), 1 x USB 3.0 (upper)

MAC addresses based on OEM firmware:

Interface   Address   Location
---------   -------   --------
lan         *:5A      sometimes in 0x6
wan         *:5B      0x0
2.4Ghz      *:5A      0x1002
5Ghz        As per mini PCIe EEPROM

Flashing instructions:

The factory.bin can be flashed via the Belkin web UI or via the uboot
HTTP upgrade page (which is by default listening on 192.168.2.1). Once
the factory.bin has been written, sysupgrade.bin will work as usual.

Signed-off-by: Martin Blumenstingl <martin.blumenstingl@googlemail.com>
2020-12-14 16:59:49 +01:00
Damien Mascord
b9971db7c3 ath79: add support for Belkin F9J1108v2 (AC1750 DB Wi-Fi)
This device is the non-US build of the F9K1115 v2, with a different
firmware magic.

Specifications:

SoC: QCA9558
CPU: 720 MHz
Flash: 16 MiB NOR
RAM: 128 MiB
WiFi 2.4 GHz: QCA9558-AT4A 3x3 MIMO 802.11b/g/n
WiFi 5 GHz: QCA9880-2R4E 3x3 MIMO 802.11a/n/ac
Ethernet: 4x LAN and 1x WAN (all 1gbps)
USB: 1 x USB 2.0 (lower), 1 x USB 3.0 (upper)

MAC addresses based on OEM firmware:

Interface   Address   Location
---------   -------   --------
lan         *:5A      sometimes in 0x6
wan         *:5B      0x0
2.4Ghz      *:5A      0x1002
5Ghz        As per mini PCIe EEPROM

Flashing instructions:

The factory.bin can be flashed via the Belkin web UI or via the uboot
http upgrade page.
Once the factory.bin has been written, sysupgrade.bin will work as usual.

Signed-off-by: Damien Mascord <tusker@tusker.org>
Acked-by: Martin Blumenstingl <martin.blumenstingl@googlemail.com>
[wrap commit message/code, adjust label-mac-device, whitespace fixes,
merge block in 02_network]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2020-12-07 14:22:00 +01:00