SOC: IPQ4019
CPU: Quad-core ARMv7 Processor [410fc075] revision 5 (ARMv7), cr=10c5387d
DRAM: 256 MB
NAND: 128 MiB Macronix MX30LF1G18AC
ETH: Qualcomm Atheros QCA8075 Gigabit Switch (4x LAN, 1x WAN)
USB: 1x 3.0 (via Synopsys DesignWare DWC3 controller in the SoC)
WLAN1: Qualcomm Atheros QCA4019 2.4GHz 802.11bgn 2x2:2
WLAN2: Qualcomm Atheros QCA9984 5GHz 802.11nac 4x4:4
INPUT: 1x WPS, 1x Reset
LEDS: Status, WIFI1, WIFI2, WAN (red & blue), 4x LAN
This board is very similar to the RT-ACRH13/RT-AC58U. It must be flashed
with an intermediary initramfs image, the jffs2 ubi volume deleted, and
then finally a sysupgrade with the final image performed.
Signed-off-by: Joshua Roys <roysjosh@gmail.com>
(added ALT0)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
GL.iNet's U-Boot checks for GPIO 40, not 43.
Changing this allows the RESET button to work as expected.
Signed-off-by: Enrico Mioso <mrkiko.rs@gmail.com>
CC: Daniel Golle <daniel@makrotopia.org>
CC: Li Zhang <li.zhang@gl-inet.com>
introduce nvmem pre-cal + mac-address cells for both Wifis
and ethernet on the EZVIZ CS-W3-WD1200G EUP. This is one of
the few devices in which the correct mac adress is already
at the right place for Wifi, so no separate nvmem cell is
needed.
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
This patch adds supports for the GL-B2200 router.
Specifications:
- SOC: Qualcomm IPQ4019 ARM Quad-Core
- RAM: 512 MiB
- Flash: 16 MiB NOR - SPI0
- EMMC: 8GB EMMC
- ETH: Qualcomm QCA8075
- WLAN1: Qualcomm Atheros QCA4019 2.4GHz 802.11b/g/n 2x2
- WLAN2: Qualcomm Atheros QCA4019 5GHz 802.11n/ac W2 2x2
- WLAN3: Qualcomm Atheros QCA9886 5GHz 802.11n/ac W2 2x2
- INPUT: Reset, WPS
- LED: Power, Internet
- UART1: On board pin header near to LED (3.3V, TX, RX, GND), 3.3V without pin - 115200 8N1
- UART2: On board with BLE module
- SPI1: On board socket for Zigbee module
Update firmware instructions:
Please update the firmware via U-Boot web UI (by default at 192.168.1.1, following instructions found at
https://docs.gl-inet.com/en/3/troubleshooting/debrick/).
Normal sysupgrade, either via CLI or LuCI, is not possible from stock firmware.
Please do use the *gl-b2200-squashfs-emmc.img file, gunzipping the produced *gl-b2200-squashfs-emmc.img.gz one first.
What's working:
- WiFi 2G, 5G
- WPA2/WPA3
Not tested:
- Bluetooth LE/Zigbee
Credits goes to the original authors of this patch.
V1->V2:
- updates *arm-boot-add-dts-files.patch correctly (sorry, my mistake)
- add uboot-envtools support
V2->V3:
- Li Zhang updated official patch to fix wrong MAC address on wlan0 (PCI) interface
V3->V4:
- wire up sysupgrade
Signed-off-by: Li Zhang <li.zhang@gl-inet.com>
[fix tab and trailing space, document what's working and what's not]
Signed-off-by: TruongSinh Tran-Nguyen <i@truongsinh.pro>
[rebase on top of master, address remaining comments]
Signed-off-by: Enrico Mioso <mrkiko.rs@gmail.com>
[remove redundant check in platform.sh]
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
LHGG-60ad is IPQ4019 + wil6210 based.
Specification:
- Qualcomm IPQ4019 (717 MHz)
- 256 MB of RAM (DDR3L)
- 16 MB (SPI NOR) of flash
- 1x Gbit ethernet, 802.3af/at POE IN connected through AR8035.
- WLAN: wil6210 802.11ad PCI card
- No USB or SD card ports
- UART disabled
- 8x LEDs
Biggest news is the wil6210 PCI card.
Integration for its configuration and detection has already been taken
care of when adding support for TP-Link Talon AD7200.
However, signal quality is much lower than with stock firmware, so
probably additional board-specific data has to be provided to the
driver and is still missing at the moment.
Signed-off-by: Robert Marko <robimarko@gmail.com>
Signed-off-by: Alexander Couzens <lynxis@fe80.eu>
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
[Fix Ethernet Interface]
Signed-off-by: Nick Hainke <vincent@systemli.org>
This patch adds support for the Teltonika RUTX10.
This device is an industrial DIN-rail router with 4 ethernet ports,
2.4G/5G dualband WiFi, Bluetooth, a USB 2.0 port and two GPIOs.
The RUTX series devices are very similiar so common parts of the DTS
are kept in a DTSI file. They are based on the QCA AP-DK01.1-C1 dev
board.
See https://teltonika-networks.com/product/rutx10 for more info.
Hardware:
SoC: Qualcomm IPQ4018
RAM: 256MB DDR3
SPI Flash 1: XTX XT25F128B (16MB, NOR)
SPI Flash 2: XTX XT26G02AWS (256MB, NAND)
Ethernet: Built-in IPQ4018 (SoC, QCA8075), 4x 10/100/1000 ports
WiFi 1: Qualcomm QCA4019 IEEE 802.11b/g/n
Wifi 2: Qualcomm QCA4019 IEEE 802.11a/n/ac
USB Hub: Genesys Logic GL852GT
Bluetooth: Qualcomm CSR8510 (A10U)
LED/GPIO controller: STM32F030 with custom firmware
Buttons: Reset button
Leds: Power (green, cannot be controlled)
WiFi 2.4G activity (green)
WiFi 5G activity (green)
MACs Details verified with the stock firmware:
eth0: Partition 0:CONFIG Offset: 0x0
eth1: = eth0 + 1
radio0 (2.4 GHz): = eth0 + 2
radio1 (5.0 GHz): = eth0 + 3
Label MAC address is from eth0.
The LED/GPIO controller needs a separate kernel driver to function.
The driver was extracted from the Teltonika GPL sources and can be
found at following feed: https://github.com/0xFelix/teltonika-rutx-openwrt
USB detection of the bluetooth interface is sometimes a bit flaky. When
not detected power cycle the device. When the bluetooth interface was
detected properly it can be used with bluez / bluetoothctl.
Flash instructions via stock web interface (sysupgrade based):
1. Set PC to fixed ip address 192.168.1.100
2. Push reset button and power on the device
3. Open u-boot HTTP recovery at http://192.168.1.1
4. Upload latest stock firmware and wait until the device is rebooted
5. Open stock web interface at http://192.168.1.1
6. Set some password so the web interface is happy
7. Go to firmware upgrade settings
8. Choose
openwrt-ipq40xx-generic-teltonika_rutx10-squashfs-nand-factory.ubi
9. Set 'Keep settings' to off
10. Click update, when warned that it is not a signed image proceed
Return to stock firmware:
1. Set PC to fixed ip address 192.168.1.100
2. Push reset button and power on the device
3. Open u-boot HTTP recovery at http://192.168.1.1
4. Upload latest stock firmware and wait until the device is rebooted
Note: The DTS expects OpenWrt to be running from the second rootfs
partition. u-boot on these devices hot-patches the DTS so running from the
first rootfs partition should also be possible. If you want to be save follow
the instructions above. u-boot HTTP recovery restores the device so that when
flashing OpenWrt from stock firmware it is flashed to the second rootfs
partition and the DTS matches.
Signed-off-by: Felix Matouschek <felix@matouschek.org>
This adds support for the MikroTik RouterBOARD RBD53iG-5HacD2HnD
(hAP ac³), a indoor dual band, dual-radio 802.11ac
wireless AP with external omnidirectional antennae, USB port, five
10/100/1000 Mbps Ethernet ports and PoE passthrough.
See https://mikrotik.com/product/hap_ac3 for more info.
Specifications:
- SoC: Qualcomm Atheros IPQ4019
- RAM: 256 MB
- Storage: 16 MB NOR + 128 MB NAND
- Wireless:
· Built-in IPQ4019 (SoC) 802.11b/g/n 2x2:2, 3 dBi antennae
· Built-in IPQ4019 (SoC) 802.11a/n/ac 2x2:2, 5.5 dBi antennae
- Ethernet: Built-in IPQ4019 (SoC, QCA8075) , 5x 1000/100/10 port,
passive PoE in, PoE passtrough on port 5
- 1x USB Type A port
Installation:
1. Boot the initramfs image via TFTP
2. Run "cat /proc/mtd" and look for "ubi" partition mtd device number, ex. "mtd1"
3. Use ubiformat to remove MikroTik specific UBI volumes
* Detach the UBI partition by running: "ubidetach -d 0"
* Format the partition by running: "ubiformat /dev/mtdN -y"
Replace mtdN with the correct mtd index from step 2.
3. Flash the sysupgrade image using "sysupgrade -n"
Signed-off-by: Robert Marko <robimarko@gmail.com>
Tested-by: Mark Birss <markbirss@gmail.com>
Tested-by: Michael Büchler <michael.buechler@posteo.net>
Tested-by: Alex Tomkins <tomkins@darkzone.net>
the Netgear EX6100v2 and EX6150v2 can utilize the nvmem
for the pre-calibration and mac-address for both WIFI
devices.
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
these flags have been creeping in from the QSDK.
All needed clocks should be accounted for, and
if a device is broken due to this. It should be
looked into.
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
This patch fixes a blunder of mine. The include needed
for LED_COLOR_ID_BLUE property is missing.
This caused the builds to fail with:
|Error: arch/arm/boot/dts/qcom-ipq4019-r619ac.dtsi:91.13-14 syntax error
|FATAL ERROR: Unable to parse input tree
Fixes: 12d33d388c ("ipq40xx: add support for P&W R619AC (aka G-DOCK 2.0)")
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
P&W R619AC is a IPQ4019 Dual-Band AC1200 router.
It is made by P&W (p2w-tech.com) known as P&W R619AC
but marketed and sold more popularly as G-DOCK 2.0.
Specification:
* SOC: Qualcomm Atheros IPQ4019 (717 MHz)
* RAM: 512 MiB
* Flash: 16 MiB (NOR) + 128 MiB (NAND)
* Ethernet: 5 x 10/100/1000 (4 x LAN, 1 x WAN)
* Wireless:
- 2.4 GHz b/g/n Qualcomm Atheros IPQ4019
- 5 GHz a/n/ac Qualcomm Atheros IPQ4019
* USB: 1 x USB 3.0
* LED: 4 x LAN, 1 x WAN, 2 x WiFi, 1 x Power (All Blue LED)
* Input: 1 x reset
* 1 x MicroSD card slot
* Serial console: 115200bps, pinheader J2 on PCB
* Power: DC 12V 2A
* 1 x Unpopulated mPCIe Slot (see below how to connect it)
* 1 x Unpopulated Sim Card Slot
Installation:
1. Access to tty console via UART serial
2. Enter failsafe mode and mount rootfs
<https://openwrt.org/docs/guide-user/troubleshooting/failsafe_and_factory_reset>
3. Edit inittab to enable shell on tty console
`sed -i 's/#ttyM/ttyM/' /etc/inittab`
4. Reboot and upload `-nand-factory.bin` to the router (using wget)
5. Use `sysupgrade` command to install
Another installation method is to hijack the upgrade server domain
of stock firmware, because it's using insecure http.
This commit is based on @LGA1150(at GitHub)'s work
<a4932c8d5a>
With some changes:
1. Added `qpic_bam` node in dts. I don't know much about this,
but I observed other dtses have this node.
2. Removed `ldo` node under `sd_0_pinmux`, because `ldo` cause SD card not
working. This fix is from
<51143b4c75>
3. Removed the 32MB NOR variant.
4. Removed `cd-gpios` in `sdhci` node, because it's reported that it makes
wlan2g led light up.
5. Added ethphy led config in dts.
6. Changed nand partition label from `rootfs` to `ubi`.
About the 128MiB variant: The stock bootloader sets size of nand to 64MiB.
But most of this devices have 128MiB nand. If you want to use all 128MiB,
you need to modify the `MIBIB` data of bootloader. More details can be
found on github:
<https://github.com/openwrt/openwrt/pull/3691#issuecomment-818770060>
For instructions on how to flash the MIBIB partition from u-boot console:
<https://github.com/openwrt/openwrt/pull/3691#issuecomment-819138232>
About the Mini PCIe slot: (from "ygleg")
"The REFCLK signals on the Mini PCIe slot is not connected on
this board out of the box. If you want to use the Mini PCIe slot
on the board, you need to (preferably) solder two 0402 resistors:
R436 (REFCLK+) and R444 (REFCLK-)..."
This and much more information is provoided in the github comment:
<https://github.com/openwrt/openwrt/pull/3691#issuecomment-968054670>
Signed-off-by: Richard Yu <yurichard3839@gmail.com>
Signed-off-by: DENG Qingfang <dqfext@gmail.com>
[Added comment about MIBIB+128 MiB variant. Added commit
message section about pcie slot. Renamed gpio-leds' subnodes
and added color, function+enum properties.]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
The Netgear SRS60 and SRR60 (sold together as SRK60) are two almost
identical AC3000 routers. The SRR60 has one port labeled as wan while
the SRS60 not. The RBR50 and RBS50 (sold together as RBK50) have a
different external shape but they have an USB 2.0 port on the back.
This patch has been tested only on SRS60 and RBR50, but should work
on SRR60 and RBS50.
Hardware
--------
SoC: Qualcomm IPQ4019 (717 MHz, 4 cores 4 threads)
RAM: 512MB DDR3
FLASH: 4GB EMMC
ETH:
- 3x 10/100/1000 Mbps Ethernet
- 1x 10/100/1000 Mbps Ethernet (WAN)
WIFI:
- 2.4GHz: 1x IPQ4019 (2x2:2)
- 5GHz: 1x IPQ4019 (2x2:2)
- 5GHz: 1x QCA9984 (4x4:4)
- 6 internal antennas
BTN:
- 1x Reset button
- 1x Sync button
- 1x ON/OFF button
LEDS:
- 8 leds controlled by TLC59208F (they can be switched on/off
independendently but the color can by changed by GPIOs)
- 1x Red led (Power)
- 1x Green led (Power)
UART:
- 115200-8-N-1
Everything works correctly.
Installation
------------
These routers have a dual partition system. However this firmware works
only on boot partition 1 and the OEM web interface will always flash on
the partition currently not booted.
The following steps will use the SRS60 firmware, but you have to chose
the right firmware for your router.
There are 2 ways to install Openwrt the first time:
1) Using NMRPflash
1. Download nmrpflash (https://github.com/jclehner/nmrpflash)
2. Put the openwrt-ipq40xx-generic-netgear_srs60-squashfs-factory.img
file in the same folder of the nmrpflash executable
3. Connect your pc to the router using the port near the power button.
4. Run "nmrpflash -i XXX -f openwrt-ipq40xx-generic-netgear_srs60-squashfs-factory.img".
Replace XXX with your network interface (can be identified by
running "nmrpflash -L")
5. Power on the router and wait for the flash to complete. After about
a minute the router should boot directly to Openwrt. If nothing
happens try to reboot the router. If you have problems flashing
try to set "10.164.183.253" as your computer IP address
2) Without NMRPflash
The OEM web interface will always flash on the partition currently not
booted, so to flash OpenWrt for the first time you have to switch to
boot partition 2 and then flash the factory image directly from the OEM
web interface.
To switch on partition 2 you have to enable telnet first:
1. Go to http://192.168.1.250/debug.htm and check "Enable Telnet".
2. Connect through telent ("telnet 192.168.1.250") and login using
admin/password.
To read the current boot_part:
artmtd -r boot_part
To write the new boot_part:
artmtd -w boot_part 02
Then reboot the router and then check again the current booted
partition
Now that you are on boot partition 2 you can flash the factory Openwrt
image directly from the OEM web interface.
Restore OEM Firmware
--------------------
1. Download the stock firmware from official netgear support.
2. Follow the nmrpflash procedure like above, using the official
Netgear firmware (for example SRS60-V2.2.1.210.img)
nmrpflash -i XXX -f SRS60-V2.2.1.210.img
Notes
-----
1) You can check and edit the boot partition in the Uboot shell using
the UART connection.
"boot_partition_show" shows the current boot partition
"boot_partition_set 1" sets the current boot partition to 1
2) Router mac addresses:
LAN XX:XX:XX:XX:XX:69
WAN XX:XX:XX:XX:XX:6a
WIFI 2G XX:XX:XX:XX:XX:69
WIFI 5G XX:XX:XX:XX:XX:6b
WIFI 5G (2nd) XX:XX:XX:XX:XX:6c
LABEL XX:XX:XX:XX:XX:69
Signed-off-by: Davide Fioravanti <pantanastyle@gmail.com>
Signed-off-by: Robert Marko <robimarko@gmail.com>
[added 5.10 changes for 901-arm-boot-add-dts-files.patch, moved
sysupgrade mmc.sh to here and renamed it, various dtsi changes]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
MDIO drivers were moved into their own sub directory of networking drivers.
This has caused the AR40xx driver to probe before MDIO drivers and that wont
work as it depends on the MDIO bus to be up so it can be fetched.
Lets solve it by moving the AR40xx into MDIO folder so they get probed like
before.
Signed-off-by: Robert Marko <robert.marko@sartura.hr>
Set ethtool_ops->supported_coalesce_params to let
the core reject unsupported coalescing parameters.
This driver did not previously reject unsupported parameters.
This is a required ethtool op since kernel 5.7.
Signed-off-by: Robert Marko <robert.marko@sartura.hr>
In kernel v5.5 of_get_phy_mode had its API changed, so its now returning 0
or errors instead of phymode.
Phymode is now returning by passing a pointer to phy_interface_t where it
will be stored.
Signed-off-by: Robert Marko <robert.marko@sartura.hr>
This resolves incosnsitencies of the configured RX / TX flow control
modes between different boards or bootloaders.
Signed-off-by: David Bauer <mail@david-bauer.net>
The chip supports clock speeds up to 50 MHz, however it won't even read
the chip-id correctly at this frequency.
45 MHz however works reliable.
Signed-off-by: David Bauer <mail@david-bauer.net>
In the current state, nvmem cells are only detected on platform device.
To quickly fix the problem, we register the affected problematic driver
with the of_platform but that is more an hack than a real solution.
Backport from net-next the required patch so that nvmem can work also
with non-platform devices and rework our current patch.
Drop the mediatek and dsa workaround and rework the ath10k patches.
Rework every driver that use the of_get_mac_address api.
Signed-off-by: Ansuel Smith <ansuelsmth@gmail.com>
Define nvmem-cells and convert mtd-mac-address to nvmem implementation.
The conversion is done with an automated script.
Signed-off-by: Ansuel Smith <ansuelsmth@gmail.com>
When the AVM FRITZ!Repeater 1200 was introduced on Kernel 4.19, the
at803x PHY driver incorrectly set up the delays, not disabling delays
set by the bootloader.
The PHY was always operating with RX as well as TX delays enabled, but
with kernel 5.4 and later, the required TX delay is disabled, breaking
ethernet operation.
Correct the PHY mode, so the driver enables both delays.
Signed-off-by: David Bauer <mail@david-bauer.net>
The mx25l25635f supports clock speed up to 50Mhz.
Also remove obsolete "mx25l25635f" hack and rename
the matching device-tree flash node.
Signed-off-by: Dmitry Tunin <hanipouspilot@gmail.com>
[mention node rename as well. chip is very very likely
always the "f" revision for all NBG6617]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
This adds support for the Netgear WAC510 Insight Managed Smart Cloud
Wireless Access Point, an indoor dual-band, dual-radio 802.11ac
business-class wireless AP with integrated omnidirectional antennae
and two 10/100/1000 Mbps Ethernet ports.
For more information see:
<https://www.netgear.com/business/wifi/access-points/wac510>
Specifications:
SoC: Qualcomm IPQ4018 (DAKOTA) ARM Quad-Core
RAM: 256 MiB
Flash1: 2 MiB Winbond W25Q16JV SPI-NOR
Flash2: 128 MiB Winbond W25N01GVZEIG SPI-NAND
Ethernet: Built-in IPQ4018 (SoC, QCA8072 PHY), 2x 1000/100/10 port,
WAN port active IEEE 802.3af/at PoE in
Wireless1: Built-in IPQ4018 (SoC) 802.11b/g/n 2x2:2, 3 dBi antennae
Wireless2: Built-in IPQ4018 (SoC) 802.11a/n/ac 2x2:2, 4 dBi antennae
Input: (Optional) Barrel 12 V 2.5 A Power, Reset button SW1
LEDs: Power, Insight, WAN PoE, LAN, 2.4G WLAN, 5G WLAN
Serial: Header J2
1 - 3.3 Volt (Do NOT connect!)
2 - TX
3 - RX
4 - Ground
WARNING: The serial port needs a TTL/RS-232 3.3 volt level converter!
The Serial settings are 115200-8-N-1.
Installation via Stock Web Interface:
BTW: The default factory console/web interface login user/password are
admin/password.
In the web interface navigating to Management - Maintenance - Upgrade -
'Firmware Upgrade' will show you what is currently installed e.g.:
Manage Firmware
Current Firmware Version: V5.0.10.2
Backup Firmware Version: V1.2.5.11
Under 'Upgrade Options' choose Local (alternatively SFTP would be
available) then click/select 'Browse File' on the right side, choose
openwrt-ipq40xx-generic-netgear_wac510-squashfs-nand-factory.tar
and hit the Upgrade button below. After a minute or two your browser
should indicate completion printing 'Firmware update complete.' and
'Rebooting AP...'.
Note that OpenWrt will use the WAN PoE port as actual WAN port
defaulting to DHCP client but NOT allowing LuCI access, use LAN port
defaulting to 192.168.1.1/24 to access LuCI.
Installation via TFTP Requiring Serial U-Boot Access:
Connect to the device's serial port and hit any key to stop autoboot.
Upload and boot the initramfs based OpenWrt image as follows:
(IPQ40xx) # setenv serverip 192.168.1.1
(IPQ40xx) # setenv ipaddr 192.168.1.2
(IPQ40xx) # tftpboot openwrt-ipq40xx-generic-netgear_wac510-initramfs-fit-uImage.itb
(IPQ40xx) # bootm
Note: This only runs OpenWrt from RAM and has not installed anything
to flash as of yet. One may permanently install OpenWrt as follows:
Check the MTD device number of the active partition:
root@OpenWrt:/# dmesg | grep 'set to be root filesystem'
[ 1.010084] mtd: device 9 (rootfs) set to be root filesystem
Upload the factory image ending with .ubi to /tmp (e.g. using scp or
tftp). Then flash the image as follows (substituting the 9 in mtd9
below with whatever number reported above):
root@OpenWrt:/# ubiformat /dev/mtd9 -f /tmp/openwrt-ipq40xx-generic-netgear_wac510-squashfs-nand-factory.ubi
And reboot.
Dual Image Configuration:
The default U-Boot boot command bootipq uses the U-Boot environment
variables primary/secondary to decide which image to boot. E.g.
primary=0, secondary=3800000 uses rootfs while primary=3800000,
secondary=0 uses rootfs_1.
Switching their values changes the active partition. E.g. from within
U-Boot:
(IPQ40xx) # setenv primary 0
(IPQ40xx) # setenv secondary 3800000
(IPQ40xx) # saveenv
Or from a OpenWrt userspace serial/SSH console:
fw_setenv primary 0
fw_setenv secondary 3800000
Note that if you install two copies of OpenWrt then each will have its
independent configuration not like when switching partitions on the
stock firmware.
BTW: The kernel log shows which boot partition is active:
[ 2.439050] ubi0: attached mtd9 (name "rootfs", size 56 MiB)
vs.
[ 2.978785] ubi0: attached mtd10 (name "rootfs_1", size 56 MiB)
Note: After 3 failed boot attempts it automatically switches partition.
Signed-off-by: Robert Marko <robimarko@gmail.com>
Signed-off-by: Marcel Ziswiler <marcel@ziswiler.com>
[squashed netgear-tar commit into main and rename netgear-tar for
now, until it is made generic.]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
The routerbootparts driver dynamically discovers the location of MikroTik
partitions, but it cannot determine their size (except by extending them
up to the start of the next discovered partition).
The hard_config partition has a default size of 0x1000 in the driver,
while it actually takes 0x2000 on the hAP-ac2. Set the correct size in
the hAP-ac2 DTS.
On most devices, this isn't a problem as the actual data fits in 0x1000
bytes. However, some devices have larger data that doesn't fit in 0x1000
bytes. In any case, all devices seen so far have enough space for a
0x2000 hard_config partition before the start of the dtb_config partition.
With the current 0x1000 size:
0x00000000e000-0x00000000f000 : "hard_config"
0x000000010000-0x000000017bbc : "dtb_config"
With this patch extending the size to 0x2000:
0x00000000e000-0x000000010000 : "hard_config"
0x000000010000-0x000000017bbc : "dtb_config"
Other ipq40xx boards may need the same fix but it needs testing.
References: https://forum.openwrt.org/t/support-for-mikrotik-hap-ac2/23333/324
Acked-by: Thibaut VARÈNE <hacks@slashdirt.org>
Signed-off-by: Baptiste Jonglez <git@bitsofnetworks.org>
This commit adds support for the MikroTik SXTsq 5 ac (RBSXTsqG-5acD),
an outdoor 802.11ac wireless CPE with one 10/100/1000 Mbps Ethernet
port.
Specifications:
- SoC: Qualcomm Atheros IPQ4018
- RAM: 256 MB
- Storage: 16 MB NOR
- Wireless: IPQ4018 (SoC) 802.11a/n/ac 2x2:2, 16 dBi antennae
- Ethernet: IPQ4018 (SoC) 1x 10/100/1000 port, 10-28 Vdc PoE in
- 1x Ethernet LED (green)
- 7x user-controllable LEDs
· 1x power (blue)
· 1x user (green)
· 5x rssi (green)
Note:
Serial UART is probably available on the board, but it has not been
tested.
Flashing:
Boot via TFTP the initramfs image. Then, upload a sysupgrade image
via SSH and flash it normally. More info at the "Common procedures
for MikroTik products" page https://openwrt.org/toh/mikrotik/common.
Signed-off-by: Roger Pueyo Centelles <roger.pueyo@guifi.net>
This adds support for the MikroTik RouterBOARD RBD52G-5HacD2HnD-TC
(hAP ac²), a indoor dual band, dual-radio 802.11ac
wireless AP with integrated omnidirectional antennae, USB port and five
10/100/1000 Mbps Ethernet ports.
See https://mikrotik.com/product/hap_ac2 for more info.
Specifications:
- SoC: Qualcomm Atheros IPQ4018
- RAM: 128 MB
- Storage: 16 MB NOR
- Wireless:
· Built-in IPQ4018 (SoC) 802.11b/g/n 2x2:2, 2.5 dBi antennae
· Built-in IPQ4018 (SoC) 802.11a/n/ac 2x2:2, 2.5 dBi antennae
- Ethernet: Built-in IPQ4018 (SoC, QCA8075) , 5x 1000/100/10 port,
passive PoE in
- 1x USB Type A port
Installation:
Boot the initramfs image via TFTP and then flash the sysupgrade
image using "sysupgrade -n"
Signed-off-by: Robert Marko <robimarko@gmail.com>
While rebasing into setting bits instead of magic values,
I accidentally forgot to actually set the force bit.
Without it using the pins as GPIO-s did not actually work.
Fixes: b5c93ed ("ipq40xx: add Qualcomm QCA807x driver")
Signed-off-by: Robert Marko <robert.marko@sartura.hr>
Both devices use u-boot env variables to boot OpenWrt from its flash
partition. Using u-boot envtools, it is possible to change the bootcmd
back to the stock firmware partition directly from OpenWrt without
attaching a serial cable or even physically accessing the device.
Signed-off-by: Jan Alexander <jan@nalx.net>
DTS files do not need to be executable. 644 is enough.
Fixes: 0fbdb51f76 ("ipq40xx: add Edgecore OAP-100 support")
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
[split by targets]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Since updating the MDIO driver, the probe will fail hard on any
PHY not present on the bus, while this was not the case prior.
Fixes commit 26b1f72381 ("ipq40xx: net: phy: ar40xx: remove PHY
handling")
Signed-off-by: David Bauer <mail@david-bauer.net>
Specifications:
SOC: Qualcomm IPQ4018 (DAKOTA) ARM Quad-Core
RAM: 256 MiB
FLASH1: 4 MiB NOR
FLASH2: 128 MiB NAND
ETH: Qualcomm QCA8075
WLAN1: Qualcomm Atheros QCA4018 2.4GHz 802.11b/g/n 2x2
WLAN2: Qualcomm Atheros QCA4018 5GHz 802.11n/ac W2 2x2
INPUT: Reset
LED: Power, Internet
UART1: On board pin header near to LED (3.3V, TX, RX, GND), 3.3V without pin - 115200 8N1
OTHER: On board with BLE module - by cp210x USB serial chip
On board hareware watchdog with GPIO0 high to turn on, and GPIO4 for watchdog feed
Install via uboot tftp or uboot web failsafe.
By uboot tftp:
(IPQ40xx) # tftpboot 0x84000000 openwrt-ipq40xx-generic-glinet_gl-ap1300-squashfs-nand-factory.ubi
(IPQ40xx) # run lf
By uboot web failsafe:
Push the reset button for 10 seconds util the power led flash faster,
then use broswer to access http://192.168.1.1
Afterwards upgrade can use sysupgrade image.
Signed-off-by: Dongming Han <handongming@gl-inet.com>
Lets use the generic upstream phy_print_status() instead of doing
something similar by hand.
Before:
ess_edma c080000.edma: eth1: GMAC Link is up with phy_speed=1000
After:
ess_edma c080000.edma eth1: Link is Up - 1Gbps/Full - flow control rx/tx
Signed-off-by: Robert Marko <robert.marko@sartura.hr>
Since we now have a proper PHY driver for QCA807x and AR803x has already
been supported properly there is no need for the driver to be poking
on PHY registers for ethtool ops.
So, lets simply use the generic
phy_ethtool_ksettings_get/phy_ethtool_ksettings_set functions.
This also has the advantage of properly populating stuff other than
speeds like, transceiver type, MDI-X etc.
ethtool before:
root@OpenWrt:/# ethtool eth1
Settings for eth1:
Supported ports: [ TP MII ]
Supported link modes: 10baseT/Half 10baseT/Full
100baseT/Half 100baseT/Full
1000baseT/Full
1000baseX/Full
Supported pause frame use: Symmetric Receive-only
Supports auto-negotiation: Yes
Supported FEC modes: Not reported
Advertised link modes: 10baseT/Half 10baseT/Full
100baseT/Half 100baseT/Full
1000baseT/Full
1000baseX/Full
Advertised pause frame use: Symmetric Receive-only
Advertised auto-negotiation: Yes
Advertised FEC modes: Not reported
Link partner advertised link modes: 10baseT/Half 10baseT/Full
100baseT/Half 100baseT/Full
1000baseT/Full
Link partner advertised pause frame use: No
Link partner advertised auto-negotiation: No
Link partner advertised FEC modes: Not reported
Speed: 1000Mb/s
Duplex: Full
Port: Twisted Pair
PHYAD: 4
Transceiver: internal
Auto-negotiation: on
MDI-X: Unknown
Supports Wake-on: d
Wake-on: d
Current message level: 0x00000000 (0)
Link detected: yes
ethtool after:
root@OpenWrt:/# ethtool eth1
Settings for eth1:
Supported ports: [ TP MII ]
Supported link modes: 10baseT/Half 10baseT/Full
100baseT/Half 100baseT/Full
1000baseT/Full
1000baseX/Full
Supported pause frame use: Symmetric Receive-only
Supports auto-negotiation: Yes
Supported FEC modes: Not reported
Advertised link modes: 10baseT/Half 10baseT/Full
100baseT/Half 100baseT/Full
1000baseT/Full
1000baseX/Full
Advertised pause frame use: Symmetric Receive-only
Advertised auto-negotiation: Yes
Advertised FEC modes: Not reported
Link partner advertised link modes: 10baseT/Half 10baseT/Full
100baseT/Half 100baseT/Full
1000baseT/Full
Link partner advertised pause frame use: Symmetric Receive-only
Link partner advertised auto-negotiation: Yes
Link partner advertised FEC modes: Not reported
Speed: 1000Mb/s
Duplex: Full
Port: Twisted Pair
PHYAD: 4
Transceiver: external
Auto-negotiation: on
MDI-X: off (auto)
Supports Wake-on: d
Wake-on: d
Current message level: 0x00000000 (0)
Link detected: yes
Signed-off-by: Robert Marko <robert.marko@sartura.hr>
Since the new PHY driver manages each PHY individually and therefore
registers each PHY that is marked with gpio-controller; DT property as a
GPIO controller we need to convert old DT bindings to account for this.
Only 2 boards use this so its not much of an issue.
Signed-off-by: Robert Marko <robert.marko@sartura.hr>
PHY needs to be soft reset before starting it from ethernet driver as
AR40xx calibration will leave it in unwanted state.
Signed-off-by: Robert Marko <robert.marko@sartura.hr>
Since we now have proper PHY driver for the QCA807x PHY-s, lets remove
PHY handling from AR40xx.
This removes PHY driver, PHY GPIO driver and PHY init code.
AR40xx still needs to handle PSGMII calibration as that requires R/W
from the switch, so I am unable to move it into PHY driver.
This also converted the AR40xx driver to use OF_MDIO to find the MDIO
bus as it now cant be set through the PHY driver.
So lets depend on OF_MDIO in KConfig.
Signed-off-by: Robert Marko <robert.marko@sartura.hr>
This adds driver for the Qualcomm QCA8072 and QCA8075 PHY-s.
They are 2 or 5 port IEEE 802.3 clause 22 compliant
10BASE-Te, 100BASE-TX and 1000BASE-T PHY-s.
They feature 2 SerDes, one for PSGMII or QSGMII connection with MAC,
while second one is SGMII for connection to MAC or fiber.
Both models have a combo port that supports 1000BASE-X and 100BASE-FX
fiber.
Each PHY inside of QCA807x series has 2 digitally controlled output only
pins that natively drive LED-s.
But some vendors used these to driver generic LED-s controlled by
user space, so lets enable registering each PHY as GPIO controller and
add driver for it.
This also adds the ability to specify DT properties so that 1000 Base-T
LED will also be lit up for 100 and 10 Base connections.
This is usually done by U-boot, but boards running mainline U-boot are
not configuring this yet.
These PHY-s are commonly used in Qualcomm IPQ40xx, IPQ60xx and IPQ807x
boards.
Signed-off-by: Robert Marko <robert.marko@sartura.hr>
With the reworked MDIO driver, EDMA will fail to get the MII BUS as it
used the MII BUS stored inside the MDIO structure private data.
This obviously does not work with the modernized driver, so lets switch
to using a purpose build of_mdio_find_bus() which will return the MII
BUS and only requires the MDIO node to be passed.
This is easy as we already have the node parsed.
Also, since we now require OF_MDIO add that as dependency.
Signed-off-by: Robert Marko <robert.marko@sartura.hr>
SOC: IPQ4018 / QCA Dakota
CPU: Quad-Core ARMv7 Processor rev 5 (v71) Cortex-A7
DRAM: 256 MiB
NOR: 32 MiB
ETH: Qualcomm Atheros QCA8075 (2 ports)
PLC: MaxLinear G.hn 88LX5152
WLAN1: Qualcomm Atheros QCA4018 2.4GHz 802.11bgn 2:2x2
WLAN2: Qualcomm Atheros QCA4018 5GHz 802.11a/n/ac 2:2x2
INPUT: RESET, WiFi, PLC Button
LEDS: red/white home, white WiFi
To modify a retail device to run OpenWRT firmware:
1) Setup a TFTP server on IP address 192.168.0.100 and copy the OpenWRT
initramfs (initramfs-fit-uImage.itb) to the TFTP root as 'uploadfile'.
2) Power on the device while pressing the recessed reset button next to
the Ethernet ports. This causes the bootloader to retrieve and start
the initramfs.
3) Once the initramfs is booted, the device will come up with IP
192.168.1.1. You can then connect through SSH (allow some time for
the first connection).
4) On the device shell, run 'fw_printenv' to show the U-boot environment.
Backup this information since it contains device unique factory data.
5) Change the boot command to support booting OpenWRT:
# fw_setenv bootcmd 'sf probe && sf read 0x84000000 0x180000 0x400000 && bootm'
6) Change directory to /tmp, download the sysupgrade (e.g. through wget)
and install it with sysupgrade. The device will reboot into OpenWRT.
Notice that there is currently no support for booting the G.hn chip.
This requires userland software we lack the rights to share right now.
Signed-off-by: Stefan Schake <stefan.schake@devolo.de>
Device specifications:
* QCA IPQ4019
* 256 MB of RAM
* 32 MB of SPI NOR flash (w25q256)
- 2x 15 MB available; but one of the 15 MB regions is the recovery image
* 2T2R 2.4 GHz
- QCA4019 hw1.0 (SoC)
- requires special BDF in QCA4019/hw1.0/board-2.bin with
bus=ahb,bmi-chip-id=0,bmi-board-id=20,variant=PlasmaCloud-PA2200
* 2T2R 5 GHz (channel 36-64)
- QCA9888 hw2.0 (PCI)
- requires special BDF in QCA9888/hw2.0/board-2.bin
bus=pci,bmi-chip-id=0,bmi-board-id=16,variant=PlasmaCloud-PA2200
* 2T2R 5 GHz (channel 100-165)
- QCA4019 hw1.0 (SoC)
- requires special BDF in QCA4019/hw1.0/board-2.bin with
bus=ahb,bmi-chip-id=0,bmi-board-id=21,variant=PlasmaCloud-PA2200
* GPIO-LEDs for 2.4GHz, 5GHz-SoC and 5GHz-PCIE
* GPIO-LEDs for power (orange) and status (blue)
* 1x GPIO-button (reset)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x gigabit ethernet
- phy@mdio3:
+ Label: Ethernet 1
+ gmac0 (ethaddr) in original firmware
+ used as LAN interface
- phy@mdio4:
+ Label: Ethernet 2
+ gmac1 (eth1addr) in original firmware
+ 802.3at POE+
+ used as WAN interface
* 12V 2A DC
Flashing instructions:
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the factory image to the u-boot when the device boots up.
Signed-off-by: Marek Lindner <marek.lindner@kaiwoo.ai>
[sven@narfation.org: prepare commit message, rebase, use all LEDs, switch
to dualboot_datachk upgrade script, use eth1 as designated WAN interface]
Signed-off-by: Sven Eckelmann <sven@narfation.org>
Device specifications:
* QCA IPQ4018
* 256 MB of RAM
* 32 MB of SPI NOR flash (w25q256)
- 2x 15 MB available; but one of the 15 MB regions is the recovery image
* 2T2R 2.4 GHz
- QCA4019 hw1.0 (SoC)
- requires special BDF in QCA4019/hw1.0/board-2.bin with
bus=ahb,bmi-chip-id=0,bmi-board-id=16,variant=PlasmaCloud-PA1200
* 2T2R 5 GHz
- QCA4019 hw1.0 (SoC)
- requires special BDF in QCA4019/hw1.0/board-2.bin with
bus=ahb,bmi-chip-id=0,bmi-board-id=17,variant=PlasmaCloud-PA1200
* 3x GPIO-LEDs for status (cyan, purple, yellow)
* 1x GPIO-button (reset)
* 1x USB (xHCI)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x gigabit ethernet
- phy@mdio4:
+ Label: Ethernet 1
+ gmac0 (ethaddr) in original firmware
+ used as LAN interface
- phy@mdio3:
+ Label: Ethernet 2
+ gmac1 (eth1addr) in original firmware
+ 802.3af/at POE(+)
+ used as WAN interface
* 12V/24V 1A DC
Flashing instructions:
The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the factory image to the u-boot when the device boots up.
Signed-off-by: Marek Lindner <marek.lindner@kaiwoo.ai>
[sven@narfation.org: prepare commit message, rebase, use all LEDs, switch
to dualboot_datachk upgrade script, use eth1 as designated WAN interface]
Signed-off-by: Sven Eckelmann <sven@narfation.org>
This reverts the usage of the S-Tag for separating LAN and WAN port on
the embedded switch. Many users complained about not being able to
manage C-Tag addition / removal on the switch as well as degraded
performance.
Fixes: commit 9da2b56760 ("ipq40xx: fix ethernet vlan double tagging")
Signed-off-by: David Bauer <mail@david-bauer.net>
The ASUS MAP-AC2200 suffers from a lower transmit/receive
signal power as compared to the stock firmware.
Upon investigation, it was discovered that stock firmware from
the GPL_MAP-AC2200_3.0.0.4.384.46249-g97d05bb.tar archive.
set the following GPIOs in "release/src/router/rc/init.c".
GPIO 44 and 46 have to be set to output high
GPIO 45 and 47 have to be set to output low
Here are some results, after activating the relevant
gpios through cmdline:
<https://forum.openwrt.org/t/asus-map-ac2200-low-transmit-receive-signal-5ghz/69005/12>
THX @ slh
Fixes: 9ad3967f14 ("ipq40xx: add support for ASUS Lyra")
Signed-off-by: Yushi Nishida <kyro2man@gmx.net>
[slightly rewritten commit, added missing <>)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
The OpenMesh related files were not updated since a while and the new
coding style requirements weren't integrated. This can cause problems
for new devices when an author uses these files as starting point.
* use SPDX-License-Identifiers instead of full license texts
* drop linux,default-trigger with value default-off for LEDs
* led nodes with label "abc:xyz" should have name "xyz_abc"
* led DT labels for "xyz_abc" should be "led_xyz_abc"
* "m25p80@0" flash node should be renamed to "flash@0"
* drop unnecessary empty lines
Signed-off-by: Sven Eckelmann <sven@narfation.org>
[minor commit title and message adjustments]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This re-enables offloading features disabled by
commit 9da2b56760 ("ipq40xx: fix ethernet vlan double tagging").
Single-PHY devices use port-based VLANs on the switch, therefore no
S-TAG magic is involved here. Re-enabling these features restores
throughput back to 950 Mbit/s.
Reported-by: Jannis Pinter <jannis@pinterjann.is>
Signed-off-by: David Bauer <mail@david-bauer.net>
The target uses 5.4 as default kernel since 03/2020.
Kernel 4.19 support is not really maintained anymore, it does not
seem to be needed, and removing it will make upcoming driver
updates easier. Thus, remove it.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Upstream provides DTS(I) files for IPQ4019/AP-DK04.1, but we overwrite
them with local versions so far.
Remove the local files and use patches to be closer to upstream.
We already do the same for IPQ40xx/AP-DK01.1-C1.
Technically, this changes the compatible from "qcom,ipq4019" to
"qcom,ipq4019-dk04.1-c1", but it has never been implemented correctly
beforehand anyway.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This adds several stylistic and functional improvements of the recently
added Edgecore ECW5211, especially:
* Drop the local BDFs as those are already in the upstream under different names
* Add SPDX tag to DTS
* Add label MAC address
* Move LED trigger to DTS
* Remove unnecessary status="okay"
* Disable unused SS USB phy as the USB port only supports USB 2.0
* Make uboot-env partition writable
* Remove qcom,poll_required_dynamic property as the driver does not use it
* Tidy up the device recipe
Fixes: 4488b260a0 ("ipq40xx: add Edgecore ECW5211 support")
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
Acked-by: Robert Marko <robert.marko@sartura.hr>
Like in the previous patches for ath79 and ramips, this will remove
the "devicename" from LED labels in ipq40xx.
The devicename is removed in DTS files and 01_leds, and a migration
script is added. While at it, also harmonize capitalization of
wlan2G/wlan5G vs. wlan2g/wlan5g.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The "/dts-v1/;" identifier is supposed to be present once at the
top of a device tree file after the includes have been processed.
Therefore, adding it to a DTS _and_ a DTSI file is actually wrong,
as it will be present twice then (though the compiler does not
complain about it).
In ipq40xx, the dts-v1 statement is already included in
qcom-ipq4019.dtsi, so we don't have to add it anywhere at all.
However, based on the conditions stated above, this requires
qcom-ipq4019.dtsi to be included as the first file in any DTS(I).
Consequently, this patch removes all cases of dts-v1 for the
ipq40xx target, and moves the includes accordingly where necessary.
While at it, remove a few obviously unneeded includes on the way.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
.dts:226.17-230.4: Warning (spi_bus_reg): /soc/spi@78b6000/spi@1:
SPI bus unit address format error, expected "0"
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
The Linksys MR8300 is based on QCA4019 and QCA9888
and provides three, independent radios.
NAND provides two, alternate kernel/firmware images
with fail-over provided by the OEM U-Boot.
Hardware Highlights:
SoC: IPQ4019 at 717 MHz (4 CPUs)
RAM: 512MB RAM
SoC: Qualcomm IPQ4019 at 717 MHz (4 CPUs)
RAM: 512M DDR3
FLASH: 256 MB NAND (Winbond W29N02GV, 8-bit parallel)
ETH: Qualcomm QCA8075 (4x GigE LAN, 1x GigE Internet Ethernet Jacks)
BTN: Reset and WPS
USB: USB3.0, single port on rear with LED
SERIAL: Serial pads internal (unpopulated)
LED: Four status lights on top + USB LED
WIFI1: 2x2:2 QCA4019 2.4 GHz radio on ch. 1-14
WIFI2: 2x2:2 QCA4019 5 GHz radio on ch. 36-64
WIFI3: 2x2:2 QCA9888 5 GHz radio on ch. 100-165
Support is based on the already supported EA8300.
Key differences:
EA8300 has 256MB RAM where MR8300 has 512MB RAM.
MR8300 has a revised top panel LED setup.
Installation:
"Factory" images may be installed directly through the OEM GUI using
URL: https://ip-of-router/fwupdate.html (Typically 192.168.1.1)
Signed-off-by: Hans Geiblinger <cybrnook2002@yahoo.com>
[copied Hardware-highlights from EA8300. Fixed alphabetical order.
fixed commit subject, removed bogus unit-address of keys,
fixed author (used Signed-off-By to From:) ]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
Luma Home WRTQ-329ACN, also known as Luma WiFi System, is a dual-band
wireless access point.
Specification
SoC: Qualcomm Atheros IPQ4018
RAM: 256 MB DDR3
Flash: 2 MB SPI NOR
128 MB SPI NAND
WIFI: 2.4 GHz 2T2R integrated
5 GHz 2T2R integrated
Ethernet: 2x 10/100/1000 Mbps QCA8075
USB: 1x 2.0
Bluetooth: 1x 4.0 CSR8510 A10, connected to USB bus
LEDS: 16x multicolor LEDs ring, controlled by MSP430G2403 MCU
Buttons: 1x GPIO controlled
EEPROM: 16 Kbit, compatible with AT24C16
UART: row of 4 holes marked on PCB as J19, starting count from the side
of J19 marking on PCB
1. GND, 2. RX, 3. TX, 4. 3.3V
baud: 115200, parity: none, flow control: none
The device supports OTA or USB flash drive updates, unfotunately they
are signed. Until the signing key is known, the UART access is mandatory
for installation. The difficult part is disassembling the casing, there
are a lot of latches holding it together.
Teardown
Prepare three thin, but sturdy, prying tools. Place the device with back
of it facing upwards. Start with the wall having a small notch. Insert
first tool, until You'll feel resistance and keep it there. Repeat the
procedure for neighbouring walls. With applying a pressure, one edge of
the back cover should pop up. Now carefully slide one of the tools to
free the rest of the latches.
There's no need to solder pins to the UART holes, You can use hook clips,
but wiring them outside the casing, will ease debuging and recovery if
problems occur.
Installation
1. Prepare TFTP server with OpenWrt initramfs image.
2. Connect to UART port (don't connect the voltage pin).
3. Connect to LAN port.
4. Power on the device, carefully observe the console output and when
asked quickly enter the failsafe mode.
5. Invoke 'mount_root'.
6. After the overlayfs is mounted run:
fw_setenv bootdelay 3
This will allow to access U-Boot shell.
7. Reboot the device and when prompted to stop autoboot, hit any key.
8. Adjust "ipaddr" and "serverip" addresses in U-Boot environment, use
'setenv' to do that, then run following commands:
tftpboot 0x84000000 <openwrt_initramfs_image_name>
bootm 0x84000000
and wait till OpenWrt boots.
9. In OpenWrt command line run following commands:
fw_setenv openwrt "setenv mtdids nand1=spi_nand; setenv mtdparts mtdparts=spi_nand:-(ubi); ubi part ubi; ubi read 0x84000000 kernel; bootm 0x84000000"
fw_setenv bootcmd "run openwrt"
10. Transfer OpenWrt sysupgrade image to /tmp directory and flash it
with:
ubirmvol /dev/ubi0 -N ubi_rootfs
sysupgrade -v -n /tmp/<openwrt_sysupgrade_image_name>
11. After flashing, the access point will reboot to OpenWrt, then it's
ready for configuration.
Reverting to OEM firmware
1. Execute installation guide steps: 1, 2, 3, 7, 8.
2. In OpenWrt command line run following commands:
ubirmvol /dev/ubi0 -N rootfs_data
ubirmvol /dev/ubi0 -N rootfs
ubirmvol /dev/ubi0 -N kernel
ubirename /dev/ubi0 kernel1 kernel ubi_rootfs1 ubi_rootfs
ubimkvol /dev/ubi0 -S 34 -N kernel1
ubimkvol /dev/ubi0 -S 320 -N ubi_rootfs1
ubimkvol /dev/ubi0 -S 264 -N rootfs_data
fw_setenv bootcmd bootipq
3. Reboot.
Known issues
The LEDs ring doesn't have any dedicated driver or application to control
it, the only available option atm is to manipulate it with 'i2cset'
command. The default action after applying power to device is spinning
blue light. This light will stay active at all time. To disable it
install 'i2c-tools' with opkg and run:
i2cset -y 2 0x48 3 1 0 0 i
The light will stay off until next cold boot.
Additional information
After completing 5. step from installation guide, one can disable asking
for root password on OEM firmware by running:
sed -e 's/root❌/root::/' -i /etc/passwd
This is useful for investigating the OEM firmware. One can look
at the communication between the stock firmware and the vendor's
cloud servers or as a way of making a backup of both flash chips.
The root password seems to be constant across all sold devices.
This is output of 'led_ctl' from OEM firmware to illustrate
possibilities of LEDs ring:
Usage: led_ctl [status | upgrade | force_upgrade | version]
led_ctl solid COLOR <brightness>
led_ctl single COLOR INDEX <brightness 0 - 15>
led_ctl spinning COLOR <period 1 - 16 (lower = faster)>
led_ctl fill COLOR <period 1 - 16 (lower = faster)>
( default is 5 )
led_ctl flashing COLOR <on dur 1 - 128> <off dur 1 - 128>
(default is 34) ( default is 34 )
led_ctl pulsing COLOR
COLOR: red, green, blue, yellow, purple, cyan, white
Signed-off-by: Tomasz Maciej Nowak <tomek_n@o2.pl>
[squash "ipq-wifi: add BDFs for Luma Home WRTQ-329ACN" into commit,
changed ubi volumes for easier integration, slightly reworded
commit message, changed ubi volume layout to use standard names all
around]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
SPDX moved from GPL-2.0 to GPL-2.0-only and from GPL-2.0+ to
GPL-2.0-or-later. Reflect that in the SPDX license headers.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The ethernet ports on the AVM FRITZRepeater 3000 are not separated
between LAN and WAN in the stock firmware. OpenWrt currently abstracts
port 4 as eth0 and port 5 as eth1, bridging them in the kernel.
This patch adjusts the GMAC port bitmasks and default bitmask for ar40xx
to bridge them on the switch, avoiding traffic on both ports to pass
thru the CPU.
Signed-off-by: David Bauer <mail@david-bauer.net>
flashing the unit
* first update to latest edcore FW as per the PDF instructions
* boot the initramfs
- tftpboot 0x88000000 openwrt-ipq40xx-generic-edgecore_oap100-initramfs-fit-uImage.itb; bootm
* inside the initramfs call the following commiands
- ubiattach -p /dev/mtd0
- ubirmvol /dev/ubi0 -n0
- ubirmvol /dev/ubi0 -n1
- ubirmvol /dev/ubi0 -n2
* scp the sysupgrade image to the board and call
- sysupgrade -n openwrt-ipq40xx-generic-edgecore_oap100-squashfs-nand-sysupgrade.bin
Signed-off-by: John Crispin <john@phrozen.org>
This patch adds support for the Edgecore ECW5211 indoor AP.
Specification:
- SoC: Qualcomm Atheros IPQ4018 ARMv7-A 4x Cortex A-7
- RAM: 256MB DDR3
- NOR Flash: 16MB SPI NOR
- NAND Flash: 128MB MX35LFxGE4AB SPI-NAND
- Ethernet: 2 x 1G via Q8075 PHY connected to ethernet adapter via PSGMII (802.3af POE IN on eth0)
- USB: 1 x USB 3.0 SuperSpeed
- WLAN: Built-in IPQ4018 (2x2 802.11bng, 2x2 802.11 acn)
- CC2540 BLE connected to USB 2.0 port
- Atmel AT97SC3205T I2C TPM
Signed-off-by: Robert Marko <robert.marko@sartura.hr>
Buffalo WTR-M2133HP is a Tri-Band router based on IPQ4019.
Specification
-------------
- SoC: Qualcomm IPQ4019
- RAM: 512MiB
- Flash Memory: NAND 128MiB (MXIC MX30LF1G18AC)
- Wi-Fi: Qualcomm IPQ4019 (2.4GHz, 1ch - 13ch)
- Wi-Fi: Qualcomm IPQ4019 (5GHz, 36ch - 64ch)
- Wi-Fi: Qualcomm QCA9984 (2T2R, 5GHz, 100ch - 140ch)
- Ethernet: 4x 10/100/1000 Mbps (1x WAN, 3x LAN)
- LED: 4x white LED, 4x orange LED, 1x blue LED
- USB: 1x USB 3.0 port
- Input: 2x tactile switch, 2x slide switch (2x SP3T)
- Serial console: 115200bps, pinheader JP5 on PCB
- Power: DC 12V 2A
Flash instruction
-----------------
1. Set up a TFTP server (IP address: 192.168.11.10)
2. Rename "initramfs-fit-uImage.itb" to "WTR-M2133HP-initramfs.uImage"
and put it into the TFTP server directory.
3. Connect the TFTP server and WTR-M2133HP.
4. Hold down the AOSS button, then power on the router.
5. After booting OpenWrt initramfs image, connect to the router by SSH.
6. Transfer "squashfs-nand-factory.ubi" to the router.
7. Execute the following commands.
# ubidetach -p /dev/mtd15
# ubiformat /dev/mtd15 -f /tmp/openwrt-ipq40xx-generic-buffalo_wtr-m2133hp-squashfs-nand-factory.ubi
# fw_setenv bootcmd bootipq
8. Perform reboot.
Recover to stock firmware
-------------------------
1. Execute the following command.
# fw_setenv bootcmd bootbf
2. Reboot and wait several minutes.
Signed-off-by: Yanase Yuki <dev@zpc.sakura.ne.jp>
Specifications:
SOC: Qualcomm IPQ4029 (DAKOTA) ARM Quad-Core
RAM: 512 MiB
FLASH1: 16 MiB NOR - SPI0
FLASH2: 8 GiB eMMC
ETH: Qualcomm QCA8075
WLAN1: Qualcomm Atheros QCA4029 2.4GHz 802.11b/g/n 2x2
WLAN2: Qualcomm Atheros QCA4029 5GHz 802.11n/ac W2 2x2
INPUT: Reset, WPS
LED: Power, Mesh, WLAN
UART1: On board pin header near to LED (3.3V, TX, RX, GND), 3.3V without pin - 115200 8N1
UART2: On board with BLE module
SPI1: On board socket for Zigbee module
Install via tftp
- NB: need to flash transition image firstly
Firstly install transition image:
(IPQ40xx) # tftpboot 0x84000000 s1300-factory-to-openwrt.img
(IPQ40xx) # sf probe && imgaddr=0x84000000 && source :script
Secondly install openwrt sysupgrade bin:
(IPQ40xx) # run lf
Revert to factory image:
(IPQ40xx) # tftpboot 0x84000000 s1300-openwrt-to-factory.img
(IPQ40xx) # sf probe && imgaddr=0x84000000 && source :script
The kernel and rootfs of factory firmware are on eMMC, and openwrt
firmware is on NOR flash. The transition image includes U-boot
and partition table, which decides where to load kernel and rootfs.
After you firstly install openwrt image, you can switch between
factory and openwrt firmware by flashing transition image.
Signed-off-by: Dongming Han <handongming@gl-inet.com>
The DTS files in files-4.19 and files-5.4 are exactly identical
except for one file (qcom-ipq4018-emr3500.dts), which is only
present for 5.4.
Since there is no point in maintaining all these identical files
twice, this patch moves them to the "files" directory.
If there ever was a new kernel with substantial DTS changes, a
new folder would need to be introduced anyway and could easily be
done.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>