As kernel size increased it start to fail to load squishfs image,
using lzma-loader fixed it.
wevo_11acnas is almost same device as w2914ns-v2 except ram size,
so I expect same thing would've happen in that device too.
Signed-off-by: Seo Suchan <abnoeh@mail.com>
Reviewed-by: Sungbo Eo <mans0n@gorani.run>
(cherry picked from commit ca6954e2dc)
The TP-Link EAP235-Wall is a wall-mounted, PoE-powered AC1200 access
point with four gigabit ethernet ports.
When connecting to the device's serial port, it is strongly advised to
use an isolated UART adapter. This prevents linking different power
domains created by the PoE power supply, which may damage your devices.
The device's U-Boot supports saving modified environments with
`saveenv`. However, there is no u-boot-env partition, and saving
modifications will cause the partition table to be overwritten. This is
not an issue for running OpenWrt, but will prevent the vendor FW from
functioning properly.
Device specifications:
* SoC: MT7621DAT
* RAM: 128MiB
* Flash: 16MiB SPI-NOR
* Wireless 2.4GHz (MT7603EN): b/g/n, 2x2
* Wireless 5GHz (MT7613BEN): a/n/ac, 2x2
* Ethernet: 4× GbE
* Back side: ETH0, PoE PD port
* Bottom side: ETH1, ETH2, ETH3
* Single white device LED
* LED button, reset button (available for failsafe)
* PoE pass-through on port ETH3 (enabled with GPIO)
Datasheet of the flash chip specifies a maximum frequency of 33MHz, but
that didn't work. 20MHz gives no errors with reading (flash dump) or
writing (sysupgrade).
Device mac addresses:
Stock firmware uses the same MAC address for ethernet (on device label)
and 2.4GHz wireless. The 5GHz wireless address is incremented by one.
This address is stored in the 'info' ('default-mac') partition at an
offset of 8 bytes.
From OEM ifconfig:
eth a4:2b:b0:...:88
ra0 a4:2b:b0:...:88
rai0 a4:2b:b0:...:89
Flashing instructions:
* Enable SSH in the web interface, and SSH into the target device
* run `cliclientd stopcs`, this should return "success"
* upload the factory image via the web interface
Debricking:
U-boot can be interrupted during boot, serial console is 57600 baud, 8n1
This allows installing a sysupgrade image, or fixing the device in
another way.
* Access serial header from the side of the board, close to ETH3,
pin-out is (1:TX, 2:RX, 3:GND, 4:3.3V), with pin 1 closest to ETH3.
* Interrupt bootloader by holding '4' during boot, which drops the
bootloader into its shell
* Change default 'serverip' and 'ipaddr' variables (optional)
* Download initramfs with `tftpboot`, and boot image with `bootm`
# tftpboot 84000000 openwrt-initramfs.bin
# bootm
Revert to stock:
Using the tplink-safeloader utility from the firmware-utils package,
TP-Link's firmware image can be converted to an OpenWrt-compatible
sysupgrade image:
$ ./staging_dir/host/bin/tplink-safeloader -B EAP235-WALL-V1 \
-z EAP235-WALLv1_XXX_up_signed.bin -o eap235-sysupgrade.bin
This can then be flashed using the OpenWrt sysupgrade interface. The
image will appear to be incompatible and must be force flashed, without
keeping the current configuration.
Known issues:
- DFS support is incomplete (known issue with MT7613)
- MT7613 radio may stop responding when idling, reboot required.
This was an issue with the ddc75ff704 version of mt76, but appears to
have improved/disappeared with bc3963764d.
Error notice example:
[ 7099.554067] mt7615e 0000:02:00.0: Message 73 (seq 1) timeout
Hardware was kindly provided for porting by Stijn Segers.
Tested-by: Stijn Segers <foss@volatilesystems.org>
Signed-off-by: Sander Vanheule <sander@svanheule.net>
(cherry picked from commit 1e75909a35)
Similarly to the Archer C2 v1, the Archer C20 v1 will brick when one
tries to flash an OpenWrt factory image through the TP-Link web UI.
The wiki page contains an explicit warning about this [1].
Disable the factory image altogether since it serves no purpose.
[1] https://openwrt.org/toh/tp-link/tp-link_archer_c20_v1#installation
Signed-off-by: Stijn Segers <foss@volatilesystems.org>
(cherry picked from commit 0265cba40a)
Initial commit 8375623a06 ("ramips: add support for TP-Link Archer
C2") contains detailed installation instructions, which do not mention
a factory image. From what I can see, no support to install OpenWrt
through the vendor web interface has been added since. The factory
image is also conspicuously absent from the device page in the wiki.
Yet, it is available for download.
I bricked my Archer C2 loading the factory image through the web UI.
Serial showed this error during bootloop:
Uncompressing Kernel Image ... LZMA ERROR 1 - must RESET board to recover
This patch disables the undocumented factory image so users won't get
tricked into thinking easy web UI flashing actually works.
Signed-off-by: Stijn Segers <foss@volatilesystems.org>
Specifications:
- SoC: MediaTek MT7621AT
- RAM: 128 MB (DDR3)
- Flash: 16 MB (SPI NOR)
- WiFi: MediaTek MT7603E, MediaTek MT7612E
- Switch: 1 WAN, 4 LAN (Gigabit)
- Ports: 1 USB 3.0
- Buttons: Reset, WPS
- LEDs: Power, System, Wan, Lan 1-4, WiFi 2.4G, WiFi 5G, WPS, USB
- Power: DC 12V 1A tip positive
UART Serial:
115200 baud
Located on unpopulated 4 pin header near J4:
J4
[o] Rx
[o] Tx
[o] GND
[ ] Vcc - Do not connect
Installation:
Download and flash the manufacturer's built OpenWRT image available at
http://www.cudytech.com/openwrt_software_download
Install the new OpenWRT image via luci (System -> Backup/Flash firmware)
Be sure to NOT keep settings. The force upgrade may need to be checked
due to differences in router naming conventions.
Recovery:
- Loads only signed manufacture firmware due to bootloader RSA verification
- serve tftp-recovery image as /recovery.bin on 192.168.1.88/24
- connect to any lan ethernet port
- power on the device while holding the reset button
- wait at least 8 seconds before releasing reset button for image to
download
- See http://www.cudytech.com/newsinfo/547425.html
MAC addresses as verified by OEM firmware:
use address source
LAN *:f0 label
WAN *:f1 label + 1
2g *:f0 label
5g *:f2 label + 2
The label MAC address is found in bdinfo 0xde00.
Signed-off-by: Andrew Pikler <andrew.pikler@gmail.com>
While the latest version of 19.07 release is usable,
the current master is unbootable on the device in a normal way.
"Normal way" installations includes:
- sysupgrade (e.g. from 19.07)
- RESET button recovery with Ron Curry's (Wingspinner) UBoot image
(10.10.10.3 + "Kernal.bin")
- RESET button recovery with original U-Boot
(10.10.10.254 + "kernel")
One could flash and boot the latest master sysupgrade image successfully
with serial access to the device. But a sysupgrade from this state still
breaks the U-Boot and soft-bricks the device.
Signed-off-by: Szabolcs Hubai <szab.hu@gmail.com>
UniElec U7621-01 is a router platform board, the smaller model of
the U7621-06.
The device has the following specifications:
- MT7621AT (880 MHz)
- 256 of RAM (DDR3)
- 16 MB of FLASH (SPI NOR)
- 5x 1 Gbps Ethernet (MT7621 built-in switch)
- 1x 2.4Ghz MT7603E
- 1x 5Ghz MT7612
- 1x miniPCIe slots (PCIe bus only)
- 1x miniSIM slot
- 1x USB 2.0 (uses the usb 3.0 driver)
- 8x LEDs (1x GPIO-controlled)
- 1x reset button
- 1x UART header (4-pins)
- 1x GPIO header (30-pins)
- 1x DC jack for main power (12 V)
The following has been tested and is working:
- Ethernet switch
- 1x 2.4Ghz MT7603E (wifi)
- 1x 5Ghz MT7612 (wifi)
- miniPCIe slots (tested with Wi-Fi cards and LTE modem cards)
- miniSIM slot (works with normal size simcard)
- sysupgrade
- reset button
Installation:
This board has no locked down bootloader. The seller can be asked to
install openwrt v18.06, so upgrades are standard sysupgrade method.
Recovery:
This board contains a Chinese, closed-source bootloader called Breed
(Boot and Recovery Environment for Embedded Devices). Breed supports web
recovery and to enter it, you keep the reset button pressed for around
5 seconds during boot. Your machine will be assigned an IP through DHCP
and the router will use IP address 192.168.1.1. The recovery website is
in Chinese, but is easy to use. Click on the second item in the list to
access the recovery page, then the second item on the next page is where
you select the firmware. In order to start the recovery, you click the
button at the bottom.
LEDs list (left to right):
- ESW_P0_LED_0
- ESW_P1_LED_0
- ESW_P2_LED_0
- ESW_P3_LED_0
- ESW_P4_LED_0
- CTS2_N (GPIO10, configured as "status" LED)
- LED_WLAN# (connected with pin 44 in wifi1 slot)
Signed-off-by: David Bentham <db260179@gmail.com>
[add DEVICE_VARIANT, fix DEVICE_PACKAGES, remove &gpio]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Specifications:
- SoC: MediaTek MT7688AN
- RAM: 128 MB
- Flash: 32 MB
- Ethernet: 5x 10/100 (1x WAN, 4x LAN)
- Wireless: built in 2.4GHz (bgn)
- USB: 1x USB 2.0 port
- Buttons: 1x Reset
- LEDs: 1x (WiFi)
Flash instructions:
- Configure TFTP server with IP address 10.10.10.3
- Name the firmware file as firmware.bin
- Connect any Ethernet port to the TFTP server's LAN
- Choose option 2 in U-Boot
- Alternatively choose option 7 to upload firmware to the built-in
web server
MAC addresses as verified by OEM firmware:
use address source
2g *:XX factory 0x4
LAN *:XX+1 factory 0x28
WAN *:XX+1 factory 0x2e
Notes:
This board is ostensibly a module containing the MediaTek MT7688AN SoC,
128 MB DDR2 SDRAM and 32 MB flash storage. The SoC can be operated in
IoT Gateway Mode or IoT Device Mode.
From some vendors the U-Boot that comes installed operates on UART 2
which is inaccessible in gateway mode and operates unreliably in the
Linux kernel when using more than 64 MB of RAM. For those, updating
U-Boot is recommended.
Signed-off-by: Ewan Parker <ewan@ewan.cc>
[add WLAN to 01_leds]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The majority of our targets provide a default value for the variable
SUPPORTED_DEVICES, which is used in images to check against the
compatible on a running device:
SUPPORTED_DEVICES := $(subst _,$(comma),$(1))
At the moment, this is implemented in the Device/Default block of
the individual targets or even subtargets. However, since we
standardized device names and compatible in the recent past, almost
all targets are following the same scheme now:
device/image name: vendor_model
compatible: vendor,model
The equal redundant definitions are a symptom of this process.
Consequently, this patch moves the definition to image.mk making it
a global default. For the few targets not using the scheme above,
SUPPORTED_DEVICES will be defined to a different value in
Device/Default anyway, overwriting the default. In other words:
This change is supposed to be cosmetic.
This can be used as a global measure to get the current compatible
with: $(firstword $(SUPPORTED_DEVICES))
(Though this is not precisely an achievement of this commit.)
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Xiaomi Mi Router 4 is the same as Xiaomi Mi Router 3G, except for
the RAM (256Mib→128Mib), LEDs and gpio (MiNet button).
Specifications:
Power: 12 VDC, 1 A
Connector type: barrel
CPU1: MediaTek MT7621A (880 MHz, 4 cores)
FLA1: 128 MiB (ESMT F59L1G81MA)
RAM1: 128 MiB (ESMT M15T1G1664A)
WI1 chip1: MediaTek MT7603EN
WI1 802dot11 protocols: bgn
WI1 MIMO config: 2x2:2
WI1 antenna connector: U.FL
WI2 chip1: MediaTek MT7612EN
WI2 802dot11 protocols: an+ac
WI2 MIMO config: 2x2:2
WI2 antenna connector: U.FL
ETH chip1: MediaTek MT7621A
Switch: MediaTek MT7621A
UART Serial
[o] TX
[o] GND
[o] RX
[ ] VCC - Do not connect it
MAC addresses as verified by OEM firmware:
use address source
LAN *:c2 factory 0xe000 (label)
WAN *:c3 factory 0xe006
2g *:c4 factory 0x0000
5g *:c5 factory 0x8000
Flashing instructions:
1.Create a simple http server (nginx etc)
2.set uart enable
To enable writing to the console, you must reset to factory settings
Then you see uboot boot, press the keyboard 4 button (enter uboot command line)
If it is not successful, repeat the above operation of restoring the factory settings.
After entering the uboot command line, type:
setenv uart_en 1
saveenv
boot
3.use shell in uart
cd /tmp
wget http://"your_computer_ip:80"/openwrt-ramips-mt7621-xiaomi_mir4-squashfs-kernel1.bin
wget http://"your_computer_ip:80"/openwrt-ramips-mt7621-xiaomi_mir4-squashfs-rootfs0.bin
mtd write openwrt-ramips-mt7621-xiaomi_mir4-squashfs-kernel1.bin kernel1
mtd write openwrt-ramips-mt7621-xiaomi_mir4-squashfs-rootfs0.bin rootfs0
nvram set flag_try_sys1_failed=1
nvram commit
reboot
4.login to the router http://192.168.1.1/
Installation via Software exploit
Find the instructions in the https://github.com/acecilia/OpenWRTInvasion
Signed-off-by: Dmytro Oz <sequentiality@gmail.com>
[commit message facelift, rebase onto shared DTSI/common device
definition, bump uboot-envtools]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This creates a shared device definition for Xiaomi devices with
NAND and "separate" images, i.e. kernel1.bin and rootfs0.bin.
This allows to consolidate similar/duplicate code for AC2100 family
and Mi Router 3G.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
The following four led triggers are enabled in generic config.
* kmod-ledtrig-default-on
* kmod-ledtrig-heartbeat
* kmod-ledtrig-netdev
* kmod-ledtrig-timer
Drop the packages and remove them from DEVICE_PACKAGES.
There's no other package depending on them in this repo.
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
Remove trailing whitespaces in two *.mk files.
Signed-off-by: Leon M. George <leon@georgemail.eu>
[fix title, add message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Hardware
--------
MediaTek MT7621AT
256M DDR3
32M SPI-NOR
MediaTek MT7603 2T2R 802.11n 2.4GHz
MediaTek MT7915 2T2R 802.11ax 5GHz
Not Working
-----------
- Bluetooth (connected to UART3)
UART
----
UART is located in the lower left corner of the board. Pinout is
0 - 3V3 (don't connect)
1 - RX
2 - TX
3 - GND
Console is 115200 8N1.
Boot
----
1. Connect to the serial console and connect power.
2. Double-press ESC when prompted
3. Set the fdt address
$ fdt addr $(fdtcontroladdr)
4. Remove the signature node from the control FDT
$ fdt rm /signature
5. Transfer and boot the OpenWrt initramfs image to the device.
Make sure to name the file C0A80114.img and have it reachable at
192.168.1.1/24
$ tftpboot; bootm
Installation
------------
1. Connect to the booted device at 192.168.1.20 using username/password
"ubnt".
2. Update the bootloader environment.
$ fw_setenv devmode TRUE
$ fw_setenv boot_openwrt "fdt addr \$(fdtcontroladdr);
fdt rm /signature; bootubnt"
$ fw_setenv bootcmd "run boot_openwrt"
3. Transfer the OpenWrt sysupgrade image to the device using SCP.
4. Check the mtd partition number for bs / kernel0 / kernel1
$ cat /proc/mtd
5. Set the bootselect flag to boot from kernel0
$ dd if=/dev/zero bs=1 count=1 of=/dev/mtdblock4
6. Write the OpenWrt sysupgrade image to both kernel0 as well as kernel1
$ dd if=openwrt.bin of=/dev/mtdblock6
$ dd if=openwrt.bin of=/dev/mtdblock7
7. Reboot the device. It should boot into OpenWrt.
Below are the original installation instructions prior to the discovery
of "devmode=TRUE". They are not required for installation and are
documentation only.
The bootloader employs signature verification on the FIT image
configurations. This way, booting unauthorized image without patching
the bootloader is not possible. Manually configuring the bootcmd in the
U-Boot envronment won't work, as this is restored to the default value
if modified.
The bootloader is made up of three different parts.
1. The SPL performing early board initialization and providing a XModem
recovery in case the PBL is missing
2. The PBL being the primary U-Boot application and containing the
control FDT. It is LZMA packed with a uImage header.
3. A Ubiquiti standalone U-Boot application providing the main boot
routine as well as their recovery mechanism.
In a perfect world, we would only replace the PBL, as the SPL does not
perform checks on the PBLs integrity. However, as the PBL is in the same
eraseblock as the SPL, we need to at least rewrite both.
The bootloader will only verify integrity in case it has a "signature"
node in it's control device-tree. Renaming the signature node to
something else will prevent this from happening.
Warning: These instructions are based on the firmware intially
shipped with the device and potentially brick your device in a way it
can only be recovered using a SPI flasher.
Only (!) proceed if you understand this!
1. Extract the bootloader from the U-Boot partition using the OpenWrt
initramfs image.
2. Split the bootloader into it's 3 components:
$ dd if=bootloader.bin of=spl.bin bs=1 skip=0 count=45056
$ dd if=bootloader.bin of=pbl.uimage bs=1 skip=45056 count=143360
$ dd if=bootloader.bin of=ubnt.uimage bs=1 skip=188416
3. Strip the uImage header from the PBL
$ dd if=pbl.uimage of=pbl.lzma bs=64 skip=1
4. Decompress the PBL
$ lzma -d pbl.lzma --single-stream
The decompressed PBL sha256sum should be
d8b406c65240d260cf15be5f97f40c1d6d1b6e61ec3abed37bb841c90fcc1235
5. Open the decompressed PBL using your favorite hexeditor. Locate the
control FDT at offset 0x4CED0 (0xD00DFEED). At offset 0x4D5BC, the
label for the signature node is located. Rename the "signature"
string at this offset to "signaturr".
The patched PBL sha256sum should be
d028e374cdb40ba44b6e3cef2e4e8a8c16a3b85eb15d9544d24fdd10eed64c97
6. Compress the patched PBL
$ lzma -z pbl --lzma1=dict=67108864
The resulting pbl.lzma file should have the sha256sum
7ae6118928fa0d0b3fe4ff81abd80ecfd9ba2944cb0f0a462b6ae65913088b42
7. Create the PBL uimage
$ SOURCE_DATE_EPOCH=1607909492 mkimage -A mips -O u-boot -C lzma
-n "U-Boot 2018.03 [UniFi,v1.1.40.71]" -a 84000000 -e 84000000
-T firmware -d pbl.lzma patched_pbl.uimage
The resulting patched_pbl.uimage should have the sha256sum
b90d7fa2dcc6814180d3943530d8d6b0d6a03636113c94e99af34f196d3cf2ce
8. Reassemble the complete bootloader
$ dd if=patched_pbl.uimage of=aligned_pbl.uimage bs=143360 count=1
conv=sync
$ cat spl.bin > patched_uboot.bin
$ cat aligned_pbl.uimage >> patched_uboot.bin
$ cat ubnt.uimage >> patched_uboot.bin
The resulting patched_uboot.bin should have the sha256sum
3e1186f33b88a525687285c2a8b22e8786787b31d4648b8eee66c672222aa76b
9. Transfer your patched bootloader to the device. Also install the
kmod-mtd-rw package using opkg and load it.
$ insmod mtd-rw.ko i_want_a_brick=1
Write the patched bootloader to mtd0
$ mtd write patched_uboot.bin u-boot
10. Erase the kernel1 partition, as the bootloader might otherwise
decide to boot from there.
$ mtd erase kernel1
11. Transfer the OpenWrt sysupgrade image to the device and install
using sysupgrade.
FIT configurations
------------------
In the future, the MT7621 UniFi6 family can be supported by a single
OpenWrt image.
config@1: U6 Lite
config@2: U6 IW
config@3: U6 Mesh
config@4: U6 Extender
config@5: U6 LR-EA (Early Access - GA is MT7622)
Signed-off-by: David Bauer <mail@david-bauer.net>
ELECOM WRC-1167GST2 is a 2.4/5 GHz band 11ac (Wi-Fi 5) router, based
on MT7621A.
Specification:
- SoC : MediaTek MT7621A
- RAM : DDR3 256 MiB
- Flash : SPI-NOR 32 MiB
- WLAN : 2.4/5 GHz 2T2R (MediaTek MT7615D)
- Ethernet : 10/100/1000 Mbps x5
- Switch : MediaTek MT7530 (SoC)
- LED/keys : 6x/6x (2x buttons, 1x slide-switch)
- UART : through-hole on PCB
- J4: 3.3V, GND, TX, RX from ethernet port side
- 57600n8
- Power : 12VDC, 1A
MAC addresses:
LAN : 04:AB:18:**:**:07 (Factory, 0xE000 (hex))
WAN : 04:AB:18:**:**:08 (Factory, 0xE006 (hex))
2.4 GHz : 04:AB:18:**:**:09 (none)
5 GHz : 04:AB:18:**:**:0A (none)
Flash instruction using factory image:
1. Boot WRC-1167GST2 normally
2. Access to "http://192.168.2.1/" and open firmware update page
("ファームウェア更新")
3. Select the OpenWrt factory image and click apply ("適用") button
4. Wait ~150 seconds to complete flashing
Notes:
- there is no way to configure the correct MAC address for secondary phy
(5GHz) on MT7615D
- Wi-Fi band on primary phy (2.4GHz) cannot be limitted by specifying
ieee80211-freq-limit
(fail to register secondary phy due to error)
- mtd-mac-address in the wifi node is required for using
mtd-mac-address-increment
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
[rebase onto split DTSI]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
ELECOM WRC-1167GS2-B is a 2.4/5 GHz band 11ac (Wi-Fi 5) router, based
on MT7621A.
Specification:
- SoC : MediaTek MT7621A
- RAM : DDR3 128 MiB
- Flash : SPI-NOR 16 MiB
- WLAN : 2.4/5 GHz 2T2R (MediaTek MT7615D)
- Ethernet : 10/100/1000 Mbps x5
- Switch : MediaTek MT7530 (SoC)
- LED/keys : 6x/6x (2x buttons, 1x slide-switch)
- UART : through-hole on PCB
- J4: 3.3V, GND, TX, RX from ethernet port side
- 57600n8
- Power : 12VDC, 1A
MAC addresses:
LAN : 04:AB:18:**:**:13 (Factory, 0xFFF4 (hex))
WAN : 04:AB:18:**:**:14 (Factory, 0xFFFA (hex))
2.4 GHz : 04:AB:18:**:**:15 (none)
5 GHz : 04:AB:18:**:**:16 (Factory, 0x4 (hex))
Flash instruction using factory image:
1. Boot WRC-1167GS2-B normally
2. Access to "http://192.168.2.1/" and open firmware update page
("ファームウェア更新")
3. Select the OpenWrt factory image and click apply ("適用") button
4. Wait ~120 seconds to complete flashing
Notes:
- there is no way to configure the correct MAC address for secondary phy
(5GHz) on MT7615D
- Wi-Fi band on primary phy (2.4GHz) cannot be limitted by specifying
ieee80211-freq-limit
(fail to register secondary phy due to error)
- mtd-mac-address in the wifi node is required for using
mtd-mac-address-increment
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
[rebase onto split DTSI patch]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Specifications:
- SoC: MediaTek MT7621AT
- RAM: 128 MB (DDR3)
- Flash: 16 MB (SPI NOR)
- WiFi: MediaTek MT7615N (x2)
- Switch: 1 WAN, 4 LAN (Gigabit)
- Ports: 1 USB 2.0, 1 USB 3.0
- Buttons: Reset, WiFi Toggle, WPS
- LEDs: Power, Internet, WiFi 2.4G WiFi 5G, USB 2.0, USB 3.0
The R1 revision is identical to the A1 revision except
- No Config2 Parition, therefore
- factory partition resized to 64k from 128K
- Firmware partition offset is 0x50000 not 0x60000
- Firmware partitions size increased by 64K
- Firmware partition type is "denx,uimage", not "sge,uimage"
- Padding of image creation "uimage-padhdr 96" removed
Installation:
- Older firmware versions: put the factory image on a USB stick, turn on
the telnet console, and flash using the following cmd
"fw_updater Linux /mnt/usb_X_X/firmware.bin"
- D-Link FailsafeUI:
Power down the router, press and hold the reset button, then
re-plug it. Keep the reset button pressed until the internet LED stops
flashing, then jack into any lan port and manually assign a static IP
address in 192.168.0.0/24 other than 192.168.0.0 (e.g. 192.168.0.2)
and go to http://192.168.0.1
Flash with the factory image.
Signed-off-by: Andrew Pikler <andrew.pikler@gmail.com>
Some Russian d-link routers require that their firmware be signed with a
salted md5 checksum followed by the bytes 0x00 0xc0 0xff 0xee. This tool
signs factory images the OEM's firmware accepts them.
Signed-off-by: Andrew Pikler <andrew.pikler@gmail.com>
FCC ID: A8J-ESR750H
Engenius ESR600H is an indoor wireless router with a gigabit switch,
2.4 GHz and 5 GHz wireless, internal and external antennas, and a USB port.
**Specification:**
- RT3662F MIPS SOC, 5 GHz WMAC (2x2)
- RT5392L PCI on-board, 2.4 GHz (2x2)
- AR8327 RGMII, 7-port GbE, 25 MHz clock
- 40 MHz reference clock
- 8 MB FLASH 25L6406EM2I-12G
- 64 MB RAM
- UART at J12 (unpopulated)
- 2 internal antennas (5 GHz)
- 2 external antennas (2.4 GHz)
- 9 LEDs, 1 button (power, wps, wifi2g, wifi5g, 5 LAN/WAN)
- USB 2 port (GPIO controlled power)
**MAC addresses:**
MAC Addresses are labeled as WAN and WLAN
U-boot environment has the the vendor MAC address for ethernet
MAC addresses in "factory" are part of wifi calibration data
eth0.2 WAN *:13:e7 u-boot-env wanaddr
eth0.1 ---- *:13:e8 u-boot-env wanaddr + 1
phy0 WLAN *:14:b8 factory 0x8004
phy1 ---- *:14:bc factory 0x4
**Installation:**
Method 1: Firmware upgrade page
OEM webpage at 192.168.0.1
username and password "admin"
Navigate to Network Setting --> Tools --> Firmware
Click Browse and select the factory.dlf image
Click Continue to confirm and wait 6 minutes or more...
Method 2: Serial console to load TFTP image:
(see TFTP recovery)
**Return to OEM:**
Unlike most Engenius boards, this does not have a 'failsafe' image
the only way to return to OEM is serial access to uboot
Unlike most Engenius boards, public images are not available...
so the only way to return to OEM is to have a copy
of the MTD partition "firmware" BEFORE flashing openwrt.
**TFTP recovery:**
Unlike most Engenius boards, TFTP is reliable here
however it requires serial console access
(soldering pins to the UART pinouts)
build your own image...
with 'ramdisk' selected under 'Target Images'
rename initramfs-kernel.bin to 'uImageESR-600H'
make the file available on a TFTP server at 192.168.99.8
interrupt boot by holding or pressing '4' in serial console
as soon as board is powered on
`tftpboot 0x81000000`
`bootm 0x81000000`
perform a sysupgrade
**Format of OEM firmware image:**
This Engenius board uses the Senao proprietary header
with a unique Product ID. The header for factory.bin is
generated by the mksenaofw program included in openwrt.
.dlf file extension is also required for OEM software to accept it
**Note on using OKLI:**
the kernel is now too large for the bootloader to handle
so OKLI is used via the `kernel-loader` image command
recently in master several other ramips boards have the same problem
'Kernel panic - not syncing: Failed to find ralink,rt3883-sysc node'
see commit ad19751edc
Signed-off-by: Michael Pratt <mcpratt@pm.me>
Most of Build/elecom-wrc-factory and Build/elecom-wrc-gs-factory are
nearly equal, Unify those definitions by using "-N" option of mkhash and
splitting the appending text at the end of firmware image for WRC-GS/GST
devices.
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
The GL-MT1300 is a high-performance new generation pocket-sized router
that offers a powerful hardware and first-class cybersecurity protocol
with unique and modern design.
Specifications:
- SoC: MT7621A, Dual-Core @880MHz
- RAM: 256 MB DDR3
- Flash: 32 MB
- Ethernet: 3 x 10/100/1000: 2 x LAN + 1 x WAN
- Wireless: 1 x MT7615D Dual-Band 2.4GHz(400Mbps) + 5GHz(867Mbps)
- USB: 1 x USB 3.0 port
- Slot: 1 x MicroSD card slot
- Button: 1 x Reset button
- Switch: 1 x Mode switch
- LED: 1 x Blue LED + 1 x White LED
MAC addresses based on vendor firmware:
WAN : factory 0x4000
LAN : Mac from factory 0x4000 + 1
2.4GHz : factory 0x4
5GHz : Mac form factory 0x4 + 1
Flashing instructions:
1.Connect to one of LAN ports.
2.Set the static IP on the PC to 192.168.1.2.
3.Press the Reset button and power the device (do not release the button).
After waiting for the blue led to flash 5 times, the white led will
come on and release the button.
4.Browse the 192.168.1.1 web page and update firmware according to web
tips.
5.The blue led will flash when the firmware is being upgraded.
6.The blue led stops blinking to indicate that the firmware upgrade is
complete and U-Boot automatically starts the firmware.
For more information on GL-MT1300, see the OFFICIAL GL.iNet website:
https://www.gl-inet.com/products/gl-mt1300/
Signed-off-by: Xinfa Deng <xinfa.deng@gl-inet.com>
[add input-type for switch, wrap long line in 10_fix_wifi_mac]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This aligns the device/image names of the older Xiaomi Mi Router
devices with their "friendly" model and DEVICE_MODEL properties.
This also reintroduces consistency with the newer devices already
following that scheme.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Specifications:
SoC: MediaTek MT7621ST (880 MHz)
FLASH: 16 MiB (Macronix MX25L12835FM2I-10G)
RAM: 128 MiB (Nanya NT5CB64M16FP-DH)
WiFi: MediaTek MT7603EN bgn 2x2:2
WiFi: MediaTek MT7612EN an 2x2:2
BTN: Reset, WPS
LED: - Power
- WiFi 2.4 GHz
- WiFi 5 GHz
- WAN
- LAN {1-4}
- USB {1-2}
UART: UART is present as pin hole next to the aluminium capacitor.
3V3 - RX - GND - TX / 115200-8N1
3V3 is the nearest on the aluminium capacitor and nut hole (pin1).
USB: 2 ports
POWER: 12VDC, 1.5A (Barrel 5.5x2.1)
Installation:
Via TFTP:
Set your computers IP-Address to 192.168.1.75
Power up the Router with the Reset button pressed.
Release the Reset button after 5 seconds.
Upload OpenWRT sysupgrade image via TFTP:
tftp -4 -v -m binary 192.168.1.1 -c put IMAGE
MAC addresses:
0x4 *:98 2g/wan, label
0x22 *:9c
0x28 *:98
0x8004 *:9c 5g/lan
Though addresses are written to 0x22 and 0x28, it appears that the
vendor firmware actually only uses 0x4 and 0x8004. Thus, we do the
same here.
Signed-off-by: Pavel Chervontsev <cherpash@gmail.com>
[add MAC address overview, add label-mac-device, fix IMAGE_SIZE]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
custom-initramfs-uimage was replaced by calls to uImage, but apparently
mtc_wr1201 was missed in the transistion. Use uImage for this device
too.
Fixes: 9f574b1b87 "ramips: mt7621: drop custom uImage function"
Signed-off-by: Sander Vanheule <sander@svanheule.net>
This commit adds support for Xiaomi's Mi Router 4C device.
Specifications:
- CPU: MediaTek MT7628AN (580MHz)
- Flash: 16MB
- RAM: 64MB DDR2
- 2.4 GHz: IEEE 802.11b/g/n with Integrated LNA and PA
- Antennas: 4x external single band antennas
- WAN: 1x 10/100M
- LAN: 2x 10/100M
- LEDs: 2x yellow/blue. Programmable (labelled as power on case)
- Non-programmable (shows WAN activity)
- Button: Reset
How to install:
1- Use OpenWRTInvasion to gain telnet and ftp access.
2- Push openwrt firmware to /tmp/ using ftp.
3- Connect to router using telnet. (IP: 192.168.31.1 -
Username: root - No password)
4- Use command "mtd -r write /tmp/firmware.bin OS1" to flash into
the router..
5- It takes around 2 minutes. After that router will restart itself
to OpenWrt.
Signed-off-by: Ataberk Özen <ataberkozen123@gmail.com>
[wrap commit message, bump PKG_RELEASE for uboot-envtools, remove
dts-v1 from DTS, fix LED labels]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Use the mkimage argument overrides provided by uImage to implement the
customisations required for the initramfs, instead of the near-identical
custom function.
Signed-off-by: Sander Vanheule <sander@svanheule.net>
TL-MR6400v5 is very similar to TL-MR6400v4. Main differences are:
- smaller form factor
- different LED GPIOs
- different switch connections
You can flash via tftp recovery:
- serve tftp-recovery image as /tp_recovery.bin on 192.168.0.225/24
- connect to any ethernet port
- power on the device while holding the reset button
- wait at least 8 seconds before releasing reset button
Flashing via OEM web interface does not work.
LTE module does not support DHCP so it must be configured via QMI.
Hardware Specification (v5.0 EU):
- SoC: MT7628NN
- Flash: Winbond W25Q64JVS (8MiB)
- RAM: ESMT M14D5121632A (64MiB)
- Wireless: SoC platform only (2.4GHz b/g/n, 2x internal antenna)
- Ethernet: 1NIC (4x100M)
- WWAN: TP-LINK LTE MODULE (2x external detachable antenna)
- Power: DC 9V 0.85A
Signed-off-by: Filip Moc <lede@moc6.cz>
You can flash via tftp recovery:
- serve tftp-recovery image as /tp_recovery.bin on 192.168.0.225/24
- connect to any ethernet port
- power on the device while holding the reset button
- wait at least 8 seconds before releasing reset button
Flashing via OEM web interface does not work.
LTE module does not support DHCP so it must be configured via QMI.
Hardware Specification (v4.0 EU):
- SoC: MT7628NN
- Flash: Winbond W25Q64JVS (8MiB)
- RAM: ESMT M14D5121632A (64MiB)
- Wireless: SoC platform only (2.4GHz b/g/n, 2x internal antenna)
- Ethernet: 1NIC (4x100M)
- WWAN: TP-LINK LTE MODULE (2x external detachable antenna)
- Power: DC 9V 0.85A
Signed-off-by: Filip Moc <lede@moc6.cz>
This patch adds support for the WiFi Pineapple Mark 7, a wireless
penetration testing tool.
Specifications:
* SoC: MediaTek MT7628 (580MHz)
* RAM: 256MiB (DDR2)
* Storage 1: 32MiB NOR (SPI)
* Storage 2: 2GB eMMC
* Wireless 1: 802.11b/g/n 2.4GHz (Built In)
* Wireless 2: 802.11b/g/n 2.4GHz (MT7601)
* Wireless 3: 802.11b/g/n 2.4GHz (MT7601)
* USB: 1x USB Type-A 2.0 Host Port
* Ethernet: 1x USB Type-C AX88772C Ethernet
* UART: 57600 8N1 on PCB
* Inputs: 1x Reset Button
* Outputs: 1x RGB LED
* FCCID: 2AA52MK7
Flash Instructions:
Original firmware is based on OpenWRT.
Use sysupgrade via SSH to flash.
Signed-off-by: Marc Egerton <foxtrot@realloc.me>
[pepe2k@gmail.com: set only required/used gpio groups to gpio function]
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
This device has previously been supported by the image
for Xiaomi Mi Router 3G v2. Since this is not obvious, the
4A is marketed as a new major revision and it also seems to
have a different bootloader, this will be both more tidy and
more helpful for the users.
Apart from that, note that there also is a 100M version of
the device that uses mt7628 platform, so a specifically named
image will also prevent confusion in this area.
Specifications:
- SoC: MediaTek MT7621
- Flash: 16 MiB NOR SPI
- RAM: 128 MiB DDR3
- Ethernet: 3x 10/100/1000 Mbps (switched, 2xLAN + WAN)
- WIFI0: MT7603E 2.4GHz 802.11b/g/n
- WIFI1: MT7612E 5GHz 802.11ac
- Antennas: 4x external (2 per radio), non-detachable
- LEDs: Programmable "power" LED (two-coloured, yellow/blue)
Non-programmable "internet" LED (shows WAN activity)
- Buttons: Reset
Installation:
Bootloader won't accept any serial input unless "boot_wait" u-boot
environment variable is changed to "on".
Vendor firmware won't accept any serial input until "uart_en" is
set to "1".
Using the https://github.com/acecilia/OpenWRTInvasion exploit you
can gain access to shell to enable these options:
To enable uart keyboard actions - 'nvram set uart_en=1'
To make uboot delay boot work - 'nvram set boot_wait=on'
Set boot delay to 5 - 'nvram set bootdelay=5'
Then run 'nvram commit' to make the changes permanent.
Once in the shell (following the OpenWRTInvasion instructions) you
can then run the following to flash OpenWrt and then reboot:
'cd /tmp; curl https://downloads.openwrt.org/...-sysupgrade.bin
--output firmware.bin; mtd -e OS1 -r write firmware.bin OS1'
Suggested-by: David Bentham <db260179@gmail.com>
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This patch adds support for D-Link DIR-2640 A1.
Specifications:
* Board: AP-MTKH7-0002
* SoC: MediaTek MT7621AT
* RAM: 256 MB (DDR3)
* Flash: 128 MB (NAND)
* WiFi: MediaTek MT7615N (x2)
* Switch: 1 WAN, 4 LAN (Gigabit)
* Ports: 1 USB 2.0, 1 USB 3.0
* Buttons: Reset, WPS
* LEDs: Power (blue/orange), Internet (blue/orange), WiFi 2.4G (blue),
WiFi 5G (blue), USB 3.0 (blue), USB 2.0 (blue)
Notes:
* WiFi 2.4G and WiFi 5G LEDs are wired directly to the wireless chips
Installation:
* D-Link Recovery GUI: power down the router, press and hold the reset
button, then re-plug it. Keep the reset button pressed until the power
LED starts flashing orange, manually assign a static IP address under
the 192.168.0.xxx subnet (e.g. 192.168.0.2) and go to http://192.168.0.1
* Some modern browsers may have problems flashing via the Recovery GUI,
if that occurs consider uploading the firmware through cURL:
curl -v -i -F "firmware=@file.bin" 192.168.0.1
MAC addresses:
lan factory 0xe000 *:a7 (label)
wan factory 0xe006 *:aa
2.4 factory 0xe000 +1 *:a8
5.0 factory 0xe000 +2 *:a9
Seems like vendor didn't replace the dummy entries in the calibration data.
Signed-off-by: James McGuire <jamesm51@gmail.com>
[fix device definition title]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
- minimal built initramfs: 11MB vmlinux ELF -> 4.5MB vmlinuz
- ~5 seconds for kernel decompression, which was equivalent to the
additional time to load the uncompressed ELF from SPI NOR.
- Removes requirement for lzma-loader, which may have been causing some
image builds to fail to boot on Mikrotik mt7621.
Fixes: FS#3354
Suggested-by: Thibaut VARÈNE <hacks@slashdirt.org>
Signed-off-by: John Thomson <git@johnthomson.fastmail.com.au>
Same hardware as Phicomm K2G but different flash layout.
Specification:
- SoC: MediaTek MT7620A
- Flash: 8 MB
- RAM: 64 MB
- Ethernet: 4 FE ports and 1 GE port (RTL8211F on port 5)
- Wireless radio: MT7620 for 2.4G and MT7612E for 5G, both equipped
with external PA.
- UART: 1 x UART on PCB - 57600 8N1
Flash instruction:
To avoid requiring UART for TFTP a dual flash procedure is suggested
to install the squashfs image:
1. Rename openwrt-ramips-mt7620-wavlink_wl-wn530hg4-initramfs-kernel.bin
to WN530HG4-WAVLINK.
2. Flash this file with the factory web interface.
3. With OpenWRT now running use standard sysupgrade to install the
squashfs image.
Signed-off-by: Nuno Goncalves <nunojpg@gmail.com>
[remove dts-v1, remove model from LED labels, wrap commit message]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Specifications:
- SoC: MT7621AT
- RAM: 256MB
- Flash: 16MB (EN25QH128A)
- Ethernet: 5xGbE
- WiFi: MT7915 2x2 2.4G 573.5Mbps + 2x2 5G 1201Mbps
Known issue:
MT7915 DBDC variant isn't supported yet.
Flash instruction:
Upload the sysupgrade firmware to the firmware upgrade page in
vendor fw.
Other info:
MT7915 seems to have two PCIEs connected to MT7621. Card detected on
PCIE0 has an ID of 14c3:7916 and the other one on PCIE1 has 14c3:7915.
Signed-off-by: Chuanhong Guo <gch981213@gmail.com>
TP-Link RE200 v4 is a wireless range extender with Ethernet and 2.4G and 5G
WiFi with internal antennas.
It's based on MediaTek MT7628AN+MT7610EN like the v2/v3.
Specifications
--------------
- MediaTek MT7628AN (580 Mhz)
- 64 MB of RAM
- 8 MB of FLASH
- 2T2R 2.4 GHz and 1T1R 5 GHz
- 1x 10/100 Mbps Ethernet
- 8x LED (GPIO-controlled), 2x button
- UART connection holes on PCB (57600 8n1)
There are 2.4G and 5G LEDs in red and green which are controlled
separately.
MAC addresses
-------------
The MAC address assignment matches stock firmware, i.e.:
LAN : *:8E
2.4G: *:8D
5G : *:8C
MAC address assignment has been done according to the RE200 v2.
The label MAC address matches the OpenWrt ethernet address.
Installation
------------
Web Interface
-------------
It is possible to upgrade to OpenWrt via the web interface. Simply flash
the -factory.bin from OEM. In contrast to a stock firmware, this will not
overwrite U-Boot.
Recovery
--------
Unfortunately, this devices does not offer a recovery mode or a tftp
installation method. If the web interface upgrade fails, you have to open
your device and attach serial console.
Instructions for serial console and recovery may be checked out in
commit 6d6f36ae78 ("ramips: add support for TP-Link RE200 v2") or on
the device's Wiki page.
Signed-off-by: Richard Fröhning <misanthropos@gmx.de>
[removed empty line, fix commit message formatting]
Signed-off-by: David Bauer <mail@david-bauer.net>
This submission relied heavily on the work of
Santiago Rodriguez-Papa <contact at rodsan.dev>
Specifications:
* SoC: MediaTek MT7621A (880 MHz 2c/4t)
* RAM: Winbond W632GG6MB-12 (256M DDR3-1600)
* Flash: Winbond W29N01HVSINA (128M NAND)
* Eth: MediaTek MT7621A (10/100/1000 Mbps x5)
* Radio: MT7603E/MT7615N (2.4 GHz & 5 GHz)
4 antennae: 1 internal and 3 non-deatachable
* USB: 3.0 (x1)
* LEDs:
White (x1 logo)
Green (x6 eth + wps)
Orange (x5, hardware-bound)
* Buttons:
Reset (x1)
WPS (x1)
Installation:
Flash factory image through GUI.
This might fail due to the A/B nature of this device. When flashing, OEM
firmware writes over the non-booted partition. If booted from 'A',
flashing over 'B' won't work. To get around this, you should flash the
OEM image over itself. This will then boot the router from 'B' and
allow you to flash OpenWRT without problems.
Reverting to factory firmware:
Hard-reset the router three times to force it to boot from 'B.' This is
where the stock firmware resides. To remove any traces of OpenWRT from
your router simply flash the OEM image at this point.
Signed-off-by: J. Scott Heppler <shep971@centurylink.net>
The RAVPower RP-WD03 is a battery powered router, with an Ethernet and
USB port. Due due a limitation in the vendor supplied U-Boot bootloader,
we cannot exceed a 1.5 MB kernel size, as is the case with recent builds
(i.e. post v19.07). This breaks both factory and sysupgrade images.
To address this, use the lzma loader (loader-okli) to work around this
limitation.
The improvements here also address the "misplaced" U-Boot environment
partition, which is located between the kernel and rootfs in the stock
image / implementation. This is addressed by making use of mtd-concat,
maximizing space available in the booted image.
This will make sysupgrade from earlier versions impossible.
Changes are based on the recently supported HooToo HT-TM05, as the
hardware is almost identical (except for RAM size) and is from the same
vendor (SunValley). While at it, also change the SPI frequency
accordingly.
Installation:
- Download the needed OpenWrt install files, place them in the root
of a clean TFTP server running on your computer. Rename the files as,
- openwrt-ramips-mt7620-ravpower_rp-wd03-squashfs-kernel.bin => kernel
- openwrt-ramips-mt7620-ravpower_rp-wd03-squashfs-rootfs.bin => rootfs
- Plug the router into your computer via Ethernet
- Set your computer to use 10.10.10.254 as its IP address
- With your router shut down, hold down the power button until the first
white LED lights up.
- Push and hold the reset button and release the power button. Continue
holding the reset button for 30 seconds or until it begins searching
for files on your TFTP server, whichever comes first.
- The router (10.10.10.128) will look for your computer at 10.10.10.254
and install the two files. Once it has finished installation, it will
automatically reboot and start up OpenWrt.
- Set your computer to use DHCP for its IP address
Notes:
- U-Boot environment can be modified, u-boot-env is preserved on initial
install or sysupgrade
- mtd-concat functionality is included, to leave a "hole" for u-boot-env,
combining the OEM kernel and rootfs partitions
Most of the changes in this commit are the work of Russell Morris (as
credited below), I only wrapped them up and added compat-version.
Thanks to @mpratt14 and @xabolcs for their help getting the lzma loader
to work!
Fixes: 5ef79af4f8 ("ramips: add support for Ravpower WD03")
Suggested-by: Russell Morris <rmorris@rkmorris.us>
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
This reverts commit e81e625ca3.
This was meant just for early DSA-adopters. Those should have
updated by now, remove it so future updaters get the intended
experience.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>