Commit Graph

147 Commits

Author SHA1 Message Date
Nick French
20581ee8b5 ath79: add support for TP-Link Deco S4
Add support for TP-Link Deco S4 wifi router

The label refers to the device as S4R and the TP-Link firmware
site calls it the Deco S4 v2. (There does not appear to be a v1)

Hardware (and FCC id) are identical to the Deco M4R v2 but the
flash layout is ordered differently and the OEM firmware encrypts
some config parameters (including the label mac address) in flash

In order to set the encrypted mac address, the wlan's caldata
node is removed from the DTS so the mac can be decrypted with
the help of the uencrypt tool and patched into the wlan fw
via hotplug

Specifications:
SoC: QCA9563-AL3A
RAM: Zentel A3R1GE40JBF
Wireless 2.4GHz: QCA9563-AL3A (main SoC)
Wireless 5GHz: QCA9886
Ethernet Switch: QCA8337N-AL3C
Flash: 16 MB SPI NOR

UART serial access (115200N1) on board via solder pads:
RX = TP1 pad
TX = TP2 pad
GND = C201 (pad nearest board edge)

The device's bootloader and web gui will only accept images that
were signed using TP-Link's RSA key, however a memory safety bug
in the bootloader can be leveraged to install openwrt without
accessing the serial console. See developer forum S4 support page
for link to a "firmware" file that starts a tftp client, or you
may generate one on your own like this:
```
python - > deco_s4_faux_fw_tftp.bin <<EOF
import sys
from struct import pack

b = pack('>I', 0x00008000) + b'X'*16 + b"fw-type:" \
  + b'x'*256 + b"S000S001S002" + pack('>I', 0x80060200) \

b += b"\x00"*(0x200-len(b)) \
  + pack(">33I", *[0x3c0887fc, 0x35083ddc, 0xad000000, 0x24050000,
                   0x3c048006, 0x348402a0, 0x3c1987f9, 0x373947f4,
                   0x0320f809, 0x00000000, 0x24050000, 0x3c048006,
                   0x348402d0, 0x3c1987f9, 0x373947f4, 0x0320f809,
                   0x00000000, 0x24050000, 0x3c048006, 0x34840300,
                   0x3c1987f9, 0x373947f4, 0x0320f809, 0x00000000,
                   0x24050000, 0x3c048006, 0x34840400, 0x3c1987f9,
                   0x373947f4, 0x0320f809, 0x00000000, 0x1000fff1,
                   0x00000000])

b += b"\xff"*(0x2A0-len(b)) + b"setenv serverip 192.168.0.2\x00"
b += b"\xff"*(0x2D0-len(b)) + b"setenv ipaddr 192.168.0.1\x00"
b += b"\xff"*(0x300-len(b)) + b"tftpboot 0x81000000 initramfs-kernel.bin\x00"
b += b"\xff"*(0x400-len(b)) + b"bootm 0x81000000\x00"
b += b"\xff"*(0x8000-len(b))

sys.stdout.buffer.write(b)
EOF
```

Installation:
1. Run tftp server on pc with static ip 192.168.0.2
2. Place openwrt "initramfs-kernel.bin" image in tftp root dir
3. Connect pc to router ethernet port1
4. While holding in reset button on bottom of router, power on router
5. From pc access router webgui at http://192.168.0.1
6. Upload deco_s4_faux_fw_tftp.bin
7. Router will load and execture in-memory openwrt
8. Switch pc back to dhcp or static 192.168.1.x
9. Flash openwrt sysupgrade image via luci/ssh at 192.168.1.1

Revert to stock:
Press and hold reset button while powering device to start the
bootloader's recovery mode, where stock firmware can be uploaded
via web gui at 192.168.0.1

Please note that one additional non-github commits is also needed:
firmware-utils: add tplink-safeloader support for Deco S4

Signed-off-by: Nick French <nickfrench@gmail.com>
2022-09-11 21:54:00 +02:00
Michael Pratt
5df1b33298 ath79: add support for Senao Watchguard AP100
FCC ID: U2M-CAP2100AG

WatchGuard AP100 is an indoor wireless access point with
1 Gb ethernet port, dual-band but single-radio wireless,
internal antenna plates, and 802.3at PoE+

this board is a Senao device:
the hardware is equivalent to EnGenius EAP300 v2
the software is modified Senao SDK which is based on openwrt and uboot
including image checksum verification at boot time,
and a failsafe image that boots if checksum fails

**Specification:**

  - AR9344 SOC          MIPS 74kc, 2.4 GHz AND 5 GHz WMAC, 2x2
  - AR8035-A EPHY       RGMII GbE with PoE+ IN
  - 25 MHz clock
  - 16 MB FLASH         mx25l12805d
  - 2x 64 MB RAM
  - UART console        J11, populated
  - GPIO watchdog       GPIO 16, 20 sec toggle
  - 2 antennas          5 dBi, internal omni-directional plates
  - 5 LEDs              power, eth0 link/data, 2G, 5G
  - 1 button            reset

**MAC addresses:**

  Label has no MAC
  Only one Vendor MAC address in flash at art 0x0

  eth0 ---- *:e5 art 0x0 -2
  phy0 ---- *:e5 art 0x0 -2

**Installation:**

  Method 1: OEM webpage

    use OEM webpage for firmware upgrade to upload factory.bin

  Method 2: root shell

    It may be necessary to use a Watchguard router to flash the image to the AP
    and / or to downgrade the software on the AP to access SSH
    For some Watchguard devices, serial console over UART is disabled.

  NOTE: DHCP is not enabled by default after flashing

**TFTP recovery:**

  reset button has no function at boot time
  only possible with modified uboot environment,
  (see commit message for Watchguard AP300)

**Return to OEM:**

  user should make backup of MTD partitions
  and write the backups back to mtd devices
  in order to revert to OEM reliably

  It may be possible to use sysupgrade
  with an OEM image as well...
  (not tested)

**OEM upgrade info:**

  The OEM upgrade script is at /etc/fwupgrade.sh

  OKLI kernel loader is required because the OEM software
  expects the kernel to be no greater than 1536k
  and the factory.bin upgrade procedure would otherwise
  overwrite part of the kernel when writing rootfs.

**Note on eth0 PLL-data:**

  The default Ethernet Configuration register values will not work
  because of the external AR8035 switch between
  the SOC and the ethernet port.

  For AR934x series, the PLL registers for eth0
  can be see in the DTSI as 0x2c.
  Therefore the PLL registers can be read from uboot
  for each link speed after attempting tftpboot
  or another network action using that link speed
  with `md 0x1805002c 1`.

  The clock delay required for RGMII can be applied
  at the PHY side, using the at803x driver `phy-mode`.
  Therefore the PLL registers for GMAC0
  do not need the bits for delay on the MAC side.
  This is possible due to fixes in at803x driver
  since Linux 5.1 and 5.3

**Note on WatchGuard Magic string:**

  The OEM upgrade script is a modified version of
  the generic Senao sysupgrade script
  which is used on EnGenius devices.

  On WatchGuard boards produced by Senao,
  images are verified using a md5sum checksum of
  the upgrade image concatenated with a magic string.
  this checksum is then appended to the end of the final image.

  This variable does not apply to all the senao devices
  so set to null string as default

Tested-by: Steve Wheeler <stephenw10@gmail.com>
Signed-off-by: Michael Pratt <mcpratt@pm.me>
2022-09-11 21:54:00 +02:00
Michael Pratt
9f6e247854 ath79: add support for Senao WatchGuard AP200
FCC ID: U2M-CAP4200AG

WatchGuard AP200 is an indoor wireless access point with
1 Gb ethernet port, dual-band wireless,
internal antenna plates, and 802.3at PoE+

this board is a Senao device:
the hardware is equivalent to EnGenius EAP600
the software is modified Senao SDK which is based on openwrt and uboot
including image checksum verification at boot time,
and a failsafe image that boots if checksum fails

**Specification:**

  - AR9344 SOC		MIPS 74kc, 2.4 GHz WMAC, 2x2
  - AR9382 WLAN		PCI card 168c:0030, 5 GHz, 2x2, 26dBm
  - AR8035-A EPHY	RGMII GbE with PoE+ IN
  - 25 MHz clock
  - 16 MB FLASH		mx25l12805d
  - 2x 64 MB RAM
  - UART console        J11, populated
  - GPIO watchdog       GPIO 16, 20 sec toggle
  - 4 antennas          5 dBi, internal omni-directional plates
  - 5 LEDs              power, eth0 link/data, 2G, 5G
  - 1 button            reset

**MAC addresses:**

  Label has no MAC
  Only one Vendor MAC address in flash at art 0x0

  eth0 ---- *:be art 0x0 -2
  phy1 ---- *:bf art 0x0 -1
  phy0 ---- *:be art 0x0 -2

**Installation:**

  Method 1: OEM webpage

    use OEM webpage for firmware upgrade to upload factory.bin

  Method 2: root shell

    It may be necessary to use a Watchguard router to flash the image to the AP
    and / or to downgrade the software on the AP to access SSH
    For some Watchguard devices, serial console over UART is disabled.

  NOTE: DHCP is not enabled by default after flashing

**TFTP recovery:**

  reset button has no function at boot time
  only possible with modified uboot environment,
  (see commit message for Watchguard AP300)

**Return to OEM:**

  user should make backup of MTD partitions
  and write the backups back to mtd devices
  in order to revert to OEM reliably

  It may be possible to use sysupgrade
  with an OEM image as well...
  (not tested)

**OEM upgrade info:**

  The OEM upgrade script is at /etc/fwupgrade.sh

  OKLI kernel loader is required because the OEM software
  expects the kernel to be no greater than 1536k
  and the factory.bin upgrade procedure would otherwise
  overwrite part of the kernel when writing rootfs.

**Note on eth0 PLL-data:**

  The default Ethernet Configuration register values will not work
  because of the external AR8035 switch between
  the SOC and the ethernet port.

  For AR934x series, the PLL registers for eth0
  can be see in the DTSI as 0x2c.
  Therefore the PLL registers can be read from uboot
  for each link speed after attempting tftpboot
  or another network action using that link speed
  with `md 0x1805002c 1`.

  The clock delay required for RGMII can be applied
  at the PHY side, using the at803x driver `phy-mode`.
  Therefore the PLL registers for GMAC0
  do not need the bits for delay on the MAC side.
  This is possible due to fixes in at803x driver
  since Linux 5.1 and 5.3

**Note on WatchGuard Magic string:**

  The OEM upgrade script is a modified version of
  the generic Senao sysupgrade script
  which is used on EnGenius devices.

  On WatchGuard boards produced by Senao,
  images are verified using a md5sum checksum of
  the upgrade image concatenated with a magic string.
  this checksum is then appended to the end of the final image.

  This variable does not apply to all the senao devices
  so set to null string as default

Tested-by: Steve Wheeler <stephenw10@gmail.com>
Tested-by: John Delaney <johnd@ankco.net>
Signed-off-by: Michael Pratt <mcpratt@pm.me>
2022-09-11 21:54:00 +02:00
Michael Pratt
146aaeafb7 ath79: add support for Senao WatchGuard AP300
FCC ID: Q6G-AP300

WatchGuard AP300 is an indoor wireless access point with
1 Gb ethernet port, dual-band wireless,
internal antenna plates, and 802.3at PoE+

this board is a Senao device:
the hardware is equivalent to EnGenius EAP1750
the software is modified Senao SDK which is based on openwrt and uboot
including image checksum verification at boot time,
and a failsafe image that boots if checksum fails

**Specification:**

  - QCA9558 SOC		MIPS 74kc, 2.4 GHz WMAC, 3x3
  - QCA9880 WLAN	PCI card 168c:003c, 5 GHz, 3x3, 26dBm
  - AR8035-A PHY	RGMII GbE with PoE+ IN
  - 40 MHz clock
  - 32 MB FLASH		S25FL512S
  - 2x 64 MB RAM	NT5TU32M16
  - UART console	J10, populated
  - GPIO watchdog	GPIO 16, 20 sec toggle
  - 6 antennas		5 dBi, internal omni-directional plates
  - 5 LEDs		power, eth0 link/data, 2G, 5G
  - 1 button		reset

**MAC addresses:**

  MAC address labeled as ETH
  Only one Vendor MAC address in flash at art 0x0

  eth0 ETH  *:3c art 0x0
  phy1 ---- *:3d ---
  phy0 ---- *:3e ---

**Serial console access:**

  For this board, its not certain whether UART is possible
  it is likely that software is blocking console access

  the RX line on the board for UART is shorted to ground by resistor R176
  the resistors R175 and R176 are next to the UART RX pin at J10

  however console output is garbage even after this fix

**Installation:**

  Method 1: OEM webpage

    use OEM webpage for firmware upgrade to upload factory.bin

  Method 2: root shell access

    downgrade XTM firewall to v2.0.0.1
    downgrade AP300 firmware: v1.0.1
    remove / unpair AP from controller
    perform factory reset with reset button
    connect ethernet to a computer
    login to OEM webpage with default address / pass: wgwap
    enable SSHD in OEM webpage settings
    access root shell with SSH as user 'root'
    modify uboot environment to automatically try TFTP at boot time
    (see command below)

    rename initramfs-kernel.bin to test.bin
    load test.bin over TFTP (see TFTP recovery)
    (optionally backup all mtdblocks to have flash backup)
    perform a sysupgrade with sysupgrade.bin

  NOTE: DHCP is not enabled by default after flashing

**TFTP recovery:**

  server ip: 192.168.1.101

  reset button seems to do nothing at boot time...
  only possible with modified uboot environment,
  running this command in the root shell:

  fw_setenv bootcmd 'if ping 192.168.1.101; then tftp 0x82000000 test.bin && bootm 0x82000000; else bootm 0x9f0a0000; fi'

  and verify that it is correct with

  fw_printenv

  then, before boot, the device will attempt TFTP from 192.168.1.101
  looking for file 'test.bin'

  to return uboot environment to normal:

  fw_setenv bootcmd 'bootm 0x9f0a0000'

**Return to OEM:**

  user should make backup of MTD partitions
  and write the backups back to mtd devices
  in order to revert to OEM
  (see installation method 2)

  It may be possible to use sysupgrade
  with an OEM image as well...
  (not tested)

**OEM upgrade info:**

  The OEM upgrade script is at /etc/fwupgrade.sh

  OKLI kernel loader is required because the OEM software
  expects the kernel to be no greater than 1536k
  and the factory.bin upgrade procedure would otherwise
  overwrite part of the kernel when writing rootfs.

**Note on eth0 PLL-data:**

  The default Ethernet Configuration register values will not work
  because of the external AR8035 switch between
  the SOC and the ethernet port.

  For QCA955x series, the PLL registers for eth0 and eth1
  can be see in the DTSI as 0x28 and 0x48 respectively.
  Therefore the PLL registers can be read from uboot
  for each link speed after attempting tftpboot
  or another network action using that link speed
  with `md 0x18050028 1` and `md 0x18050048 1`.

  The clock delay required for RGMII can be applied
  at the PHY side, using the at803x driver `phy-mode`.
  Therefore the PLL registers for GMAC0
  do not need the bits for delay on the MAC side.
  This is possible due to fixes in at803x driver
  since Linux 5.1 and 5.3

**Note on WatchGuard Magic string:**

  The OEM upgrade script is a modified version of
  the generic Senao sysupgrade script
  which is used on EnGenius devices.

  On WatchGuard boards produced by Senao,
  images are verified using a md5sum checksum of
  the upgrade image concatenated with a magic string.
  this checksum is then appended to the end of the final image.

  This variable does not apply to all the senao devices
  so set to null string as default

Tested-by: Alessandro Kornowski <ak@wski.org>
Tested-by: John Wagner <john@wagner.us.org>
Signed-off-by: Michael Pratt <mcpratt@pm.me>
2022-09-11 21:54:00 +02:00
Albin Hellström
f8c87aa2d2 ath79: add support for Extreme Networks WS-AP3805i
Specifications:

 - SoC:    Qualcomm Atheros QCA9557-AT4A
 - RAM:	   2x 128MB Nanya NT5TU64M16HG
 - FLASH:  64MB - SPANSION FL512SAIFG1
 - LAN:    Atheros AR8035-A (RGMII GbE with PoE+ IN)
 - WLAN2:  Qualcomm Atheros QCA9557 2x2 2T2R
 - WLAN5:  Qualcomm Atheros QCA9882-BR4A 2x2 2T2R
 - SERIAL: UART pins at J10 (115200 8n1)
           Pinout is 3.3V - GND - TX - RX (Arrow Pad is 3.3V)
 - LEDs: Power (Green/Amber)
   WiFi 5 (Green)
   WiFi 2 (Green)
 - BTN: Reset

Installation:

1. Download the OpenWrt initramfs-image.

Place it into a TFTP server root directory and rename it to 1D01A8C0.img
Configure the TFTP server to listen at 192.168.1.66/24.

2. Connect the TFTP server to the access point.

3. Connect to the serial console of the access point.

Attach power and interrupt the boot procedure when prompted.

Credentials are admin / new2day

4. Configure U-Boot for booting OpenWrt from ram and flash:

 $ setenv boot_openwrt 'setenv bootargs; bootm 0xa1280000'
 $ setenv ramboot_openwrt 'setenv serverip 192.168.1.66;
   tftpboot 0x89000000 1D01A8C0.img; bootm'
 $ setenv bootcmd 'run boot_openwrt'
 $ saveenv

5. Load OpenWrt into memory:

 $ run ramboot_openwrt

6. Transfer the OpenWrt sysupgrade image to the device.

Write the image to flash using sysupgrade:

 $ sysupgrade -n /path/to/openwrt-sysupgrade.bin

Signed-off-by: Albin Hellström <albin.hellstrom@gmail.com>
[rename vendor - minor style fixes - update commit message]
Signed-off-by: David Bauer <mail@david-bauer.net>
2022-08-29 01:09:17 +02:00
Sebastian Schaper
a6e0ca96da ath79: add support for ZyXEL NWA1123-AC
Specifications:
 * AR9342, 16 MiB Flash, 64 MiB RAM, 802.11n 2T2R, 2.4 GHz
 * QCA9882 PCIe card, 802.11ac 2T2R
 * 1x Gigabit Ethernet (AR8035), 802.3af PoE

Installation:
* OEM Web UI is at 192.168.1.2
  login as `admin` with password `1234`
* Flash factory-AAOX.bin

The string `AAOX` needs to be present within the file name of the uploaded
image to be accepted by the OEM Web-based updater, the factory image is
named accordingly to save the user from the hassle of manual renaming.

TFTP Recovery:
* Open the case, connect to TTL UART port (this is the official method
  described by Zyxel, the reset button is useless during power-on)
* Extract factory image (.tar.bz2), serve `vmlinux_mi124_f1e.lzma.uImage`
  and `mi124_f1e-jffs2` via tftp at 192.168.1.10
* Interrupt uboot countdown, execute commands
  `run lk`
  `run lf`
  to flash the kernel / filesystem accordingly

MAC addresses as verified by OEM firmware:
use   address   source
LAN   *:1c      mib0 0x30 ('eth0mac'), art 0x1002 (label)
2g    *:1c      mib0 0x4b ('wifi0mac')
5g    *:1e      mib0 0x66 ('wifi1mac')

Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
2022-08-21 00:09:53 +02:00
Sebastian Schaper
527be5a456 ath79: add support for ZyXEL NWA1123-NI
Specifications:
 * AR9342, 16 MiB Flash, 64 MiB RAM, 802.11n 2T2R, 2.4 GHz
 * AR9382 PCIe card, 802.11n 2T2R, 5 GHz
 * 1x Gigabit Ethernet (AR8035), 802.3af PoE

Installation:
* OEM Web UI is at 192.168.1.2
  login as `admin` with password `1234`
* Flash factory-AAEO.bin

The string `AAEO` needs to be present within the file name of the uploaded
image to be accepted by the OEM Web-based updater, the factory image is
named accordingly to save the user from the hassle of manual renaming.

TFTP Recovery:
* Open the case, connect to TTL UART port (this is the official method
  described by Zyxel, the reset button is useless during power-on)
* Extract factory image (.tar.bz2), serve `vmlinux_mi124_f1e.lzma.uImage`
  and `mi124_f1e-jffs2` via tftp at 192.168.1.10
* Interrupt uboot countdown, execute commands
  `run lk`
  `run lf`
  to flash the kernel / filesystem accordingly

MAC addresses as verified by OEM firmware:
use   address   source
LAN   *:fb      mib0 0x30 ('eth0mac'), art 0x1002 (label)
2g    *:fc      mib0 0x4b ('wifi0mac')
5g    *:fd      mib0 0x66 ('wifi1mac')

Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
2022-08-21 00:09:53 +02:00
Manuel Niekamp
0dc5821489 ath79: add support for Sophos AP15
The Sophos AP15 seems to be very close to Sophos AP55/AP100.

Based on:
commit 6f1efb2898 ("ath79: add support for Sophos AP100/AP55 family")
author    Andrew Powers-Holmes <andrew@omnom.net>
          Fri, 3 Sep 2021 15:53:57 +0200 (23:53 +1000)
committer Hauke Mehrtens <hauke@hauke-m.de>
          Sat, 16 Apr 2022 16:59:29 +0200 (16:59 +0200)

Unique to AP15:
 - Green and yellow LED
 - 2T2R 2.4GHz 802.11b/g/n via SoC WMAC
 - No buttons
 - No piezo beeper
 - No 5.8GHz

Flashing instructions:
 - Derived from UART method described in referenced commit, methods
   described there should work too.
 - Set up a TFTP server; IP address has to be 192.168.99.8/24
 - Copy the firmware (initramfs-kernel) to your TFTP server directory
   renaming it to e.g. boot.bin
 - Open AP's enclosure and locate UART header (there is a video online)
 - Terminal connection parameters are 115200 8/N/1
 - Connect TFTP server and AP via ethernet
 - Power up AP and cancel autoboot when prompted
 - Prompt shows 'ath> '
 - Commands used to boot:
    ath> tftpboot 0x81000000 boot.bin
    ath> bootm 0x81000000
 - Device should boot OpenWRT
 - IP address after boot is 192.168.1.1/24
 - Connect to device via browser
 - Permanently flash using the web ui (flashing sysupgrade image)
 - (BTW: the AP55 images seem to work too, only LEDs are not working)

Testing done:
 - To be honest: Currently not so much testing done.
 - Flashed onto two devices
 - Devices are booting
 - MAC addresses are correct
 - LEDs are working
 - Scanning for WLANs is working

Big thanks to all the people working on this great project!
(Sorry about my english, it is not my native language)

Signed-off-by: Manuel Niekamp <m.niekamp@richter-leiterplatten.de>
2022-08-06 20:33:59 +02:00
Tamas Balogh
416d4483e8 ath79: add support for ASUS RP-AC51
Asus RP-AC51 Repeater
Category:
AC750 300+433 (OEM w. unstable driver)
AC1200 300+866 (OpenWrt w. stable driver)

Hardware specifications:
Board: AP147
SoC: QCA9531 2.4G b/g/n
WiFi: QCA9886 5G n/ac
DRAM: 128MB DDR2
Flash: gd25q128 16MB SPI-NOR
LAN/WAN: AR8229 1x100M
Clocks: CPU:650MHz, DDR:600MHz, AHB:200MHz

MAC addresses as verified by OEM firmware:
use address source
Lan/W2G *:C8 art 0x1002 (label)
5G *:CC art 0x5006

Installation:

Asus windows recovery tool:

install the Asus firmware restoration utility
unplug the router, hold the reset button while powering it on
release when the power LED flashes slowly
specify a static IP on your computer:
IP address: 192.168.1.75
Subnet mask 255.255.255.0
Start the Asus firmware restoration utility, specify the factory image
and press upload
Do not power off the device after OpenWrt has booted until the LED flashing.
TFTP Recovery method:

set computer to a static ip, 192.168.1.10
connect computer to the LAN 1 port of the router
hold the reset button while powering on the router for a few seconds
send firmware image using a tftp client; i.e from linux:
$ tftp
tftp> binary
tftp> connect 192.168.1.1
tftp> put factory.bin
tftp> quit

Signed-off-by: Tamas Balogh <tamasbalogh@hotmail.com>
2022-06-30 00:23:42 +02:00
Tamas Balogh
e1dcaeb55c ath79: add support for ASUS PL-AC56
Asus PL-AC56 Powerline Range Extender Rev.A1
(in kit with Asus PL-E56P Powerline-slave)

Hardware specifications:
Board: AP152
SoC: QCA9563 2.4G n 3x3
PLC: QCA7500
WiFi: QCA9882 5G ac 2x2
Switch: QCA8337 3x1000M
Flash: 16MB 25L12835F SPI-NOR
DRAM SoC: 64MB w9751g6kb-25
DRAM PLC: 128MB w631gg6kb-15

Clocks: CPU:775.000MHz, DDR:650.000MHz, AHB:258.333MHz, Ref:25.000MHz

MAC addresses as verified by OEM firmware:
use address source
Lan/Wan/PLC *:10 art 0x1002 (label)
2G *:10 art 0x1000
5G *:14 art 0x5000

Important notes:

the PLC firmware has to be provided and copied manually onto the
device! The PLC here has no dedicated flash, thus the firmware file
has to be uploaded to the PLC controller at every system start
the PLC functionality is managed by the script /etc/init.d/plc_basic,
a very basic script based on the the one from Netadair (netadair dot de)
Installation:

Asus windows recovery tool:

have to have the latest Asus firmware flashed before continuing!
install the Asus firmware restoration utility
unplug the router, hold the reset button while powering it on
release when the power LED flashes slowly
specify a static IP on your computer:
IP address: 192.168.1.75
Subnet mask 255.255.255.0
start the Asus firmware restoration utility, specify the factory image
and press upload
do NOT power off the device after OpenWrt has booted until the LED flashing
TFTP Recovery method:

have to have the latest Asus firmware flashed before continuing!
set computer to a static ip, 192.168.1.75
connect computer to the LAN 1 port of the router
hold the reset button while powering on the router for a few seconds
send firmware image using a tftp client; i.e from linux:
$ tftp
tftp> binary
tftp> connect 192.168.1.1
tftp> put factory.bin
tftp> quit
do NOT power off the device after OpenWrt has booted until the LED flashing
Additional notes:

the pairing buttons have to have pressed for at least half a second,
it doesn't matter on which plc device (master or slave) first
it is possible to pair the devices without the button-pairing requirement
simply by pressing reset on the slave device. This will default to the
firmware settings, which is also how the plc_basic script is setting up
the master device, i.e. configuring it to firmware defaults
the PL-E56P slave PLC has its dedicated 4MByte SPI, thus it is capable
to store all firmware currently available. Note that some other
slave devices are not guarantied to have the capacity for the newer
~1MByte firmware blobs!
To have a good overlook about the slave device, here are its specs:
same QCA7500 PLC controller, same w631gg6kb-15 128MB RAM,
25L3233F 4MB SPI-NOR and an AR8035-A 1000M-Transceiver

Signed-off-by: Tamas Balogh <tamasbalogh@hotmail.com>
2022-06-30 00:16:59 +02:00
Sander Vanheule
7868f7ad0f ath79: D-Link DAP-3662 A1: convert ath10k caldata to nvmem
Add the PCIe node for the ath10k radio to the devicetree, and refer to
the art partition for the calibration data using nvmem-cells.

MAC address assignment is moved to '10_fix_wifi_mac', so the device can
then be removed from the caldata extraction script '11-ath10k-caldata'.

Cc: Sebastian Schaper <openwrt@sebastianschaper.net>
Signed-off-by: Sander Vanheule <sander@svanheule.net>
2022-06-18 11:57:21 +02:00
Sander Vanheule
e5df381208 ath79: D-Link DAP-2695 A1: convert ath10k caldata to nvmem
Add the PCIe node for the ath10k radio to the devicetree, and refer to
the art partition for the calibration data using nvmem-cells.

MAC address assignment is moved to '10_fix_wifi_mac', so the device can
then be removed from the caldata extraction script '11-ath10k-caldata'.

Cc: Sebastian Schaper <openwrt@sebastianschaper.net>
Signed-off-by: Sander Vanheule <sander@svanheule.net>
2022-06-18 11:57:21 +02:00
Sander Vanheule
abf28b79c8 ath79: D-Link DAP-2660 A1: convert ath10k caldata to nvmem
Add the PCIe node for the ath10k radio to the devicetree, and refer to
the art partition for the calibration data using nvmem-cells.

MAC address assignment is moved to '10_fix_wifi_mac', so the device can
then be removed from the caldata extraction script '11-ath10k-caldata'.

Cc: Sebastian Schaper <openwrt@sebastianschaper.net>
Tested-by: Sebastian Schaper <openwrt@sebastianschaper.net>
Signed-off-by: Sander Vanheule <sander@svanheule.net>
2022-06-18 11:57:21 +02:00
Sander Vanheule
8ccbc95d50 ath79: D-Link DAP-2680 A1: convert ath10k caldata to nvmem
Add the PCIe node for the ath10k radio to the devicetree, and refer to
the art partition for the pre-calibration data using nvmem-cells.

MAC address assignment is moved to '10_fix_wifi_mac', so the device can
then be removed from the caldata extraction script '11-ath10k-caldata'.

Cc: Sebastian Schaper <openwrt@sebastianschaper.net>
Tested-by: Sebastian Schaper <openwrt@sebastianschaper.net>
Signed-off-by: Sander Vanheule <sander@svanheule.net>
2022-06-18 11:57:19 +02:00
Sander Vanheule
48625a0445 ath79: TP-Link EAP225-Wall v1: convert radios to nvmem-cells
Replace the mtd-cal-data phandle by an nvmem-cell reference to the art
partition for the 2.4GHz ath9k radio.

Add the PCIe node for the ath10k radio to the devicetree, and refer to
the art partition for the calibration data using nvmem-cells.

Use mac-address-increment to ensure the MAC address is set correctly,
and remove the device from the caldata extraction and patching script.

Signed-off-by: Sander Vanheule <sander@svanheule.net>
2022-06-16 21:39:32 +02:00
Sander Vanheule
d4b3b23942 ath79: TP-Link EAP245 v3: convert radios to nvmem-cells
Replace the mtd-cal-data phandle by an nvmem-cell reference from the art
partition for the 2.4GHz ath9k radio.

Add the PCIe node for the ath10k radio to the devicetree, and refer to
the art partition for the calibration data using an nvmem-cell.

Use mac-address-increment to ensure the MAC address is set correctly,
and remove the device from the caldata extraction and patching script.

Signed-off-by: Sander Vanheule <sander@svanheule.net>
2022-06-16 21:39:32 +02:00
Sander Vanheule
eca0d73011 ath79: TP-Link EAP225 v3: convert ath10k to nvmem-cells
Add the PCIe node for the ath10k radio to the devicetree, and refer to
the art partition for the calibration data using nvmem-cells.

Use mac-address-increment to ensure the MAC address is set correctly,
and remove the device from the caldata extraction and patching script.

Signed-off-by: Sander Vanheule <sander@svanheule.net>
2022-06-16 21:39:32 +02:00
Sander Vanheule
23b9040745 ath79: TP-Link EAP225-Outdoor v1: convert ath10k to nvmem-cells
Add the PCIe node for the ath10k radio to the devicetree, and refer to
the art partition for the calibration data using nvmem-cells.

Use mac-address-increment to ensure the MAC address is set correctly,
and remove the device from the caldata extraction and patching script.

Signed-off-by: Sander Vanheule <sander@svanheule.net>
2022-06-16 21:39:32 +02:00
Sander Vanheule
7cf3a37957 ath79: TP-Link EAP225 v1: convert ath10k to nvmem-cells
Add the PCIe node for the ath10k radio to the devicetree, and refer to
the art partition for the calibration data using nvmem-cells.

Use mac-address-increment to ensure the MAC address is set correctly,
and remove the device from the caldata extraction and patching script.

Signed-off-by: Sander Vanheule <sander@svanheule.net>
2022-06-16 21:39:32 +02:00
Sander Vanheule
d61882783d ath79: TP-Link EAP245 v1: convert ath10k to nvmem-cells
Add the PCIe node for the ath10k radio to the devicetree, and refer to
the art partition for the calibration data using nvmem-cells.

Use mac-address-increment to ensure the MAC address is set correctly,
and remove the device from the caldata extraction and patching script.

Signed-off-by: Sander Vanheule <sander@svanheule.net>
2022-06-16 21:39:32 +02:00
Nick Hainke
f4415f7635 ath79: move ubnt-xm to tiny
ath79 has was bumped to 5.10. With this, as with every kernel change,
the kernel has become larger. However, although the kernel gets bigger,
there are still enough flash resources. But the RAM reaches its capacity
limits. The tiny image comes with fewer kernel flags enabled and
fewer daemons.

Improves: 15aa53d7ee ("ath79: switch to Kernel 5.10")

Tested-by: Robert Foss <me@robertfoss.se>
Signed-off-by: Nick Hainke <vincent@systemli.org>
2022-06-11 21:22:58 +02:00
Nick Hainke
88527294cd ath79: add Netgear WNDAP360
SoC: Atheros AR7161
RAM: DDR 128 MiB (hynix h5dU5162ETR-E3C)
Flash: SPI-NOR 8 MiB (mx25l6406em2i-12g)
WLAN: 2.4/5 GHz
2.4 GHz: Atheros AR9220
5 GHz: Atheros AR9223
Ethernet: 4x 10/100/1000 Mbps (Atheros AR8021)
LEDs/Keys: 2/2 (Internet + System LED, Mesh button + Reset pin)
UART: RJ45 9600,8N1
Power: 12 VDC, 1.0 A

Installation instruction:
0. Make sure you have latest original firmware (3.7.11.4)
1. Connect to the Serial Port with a Serial Cable RJ45 to DB9/RS232
   (9600,8N1)
   screen  /dev/ttyUSB0 9600,cs8,-parenb,-cstopb,-hupcl,-crtscts,clocal
2. Configure your IP-Address to 192.168.1.42
3. When device boots hit spacebar
3. Configure the device for tftpboot
   setenv ipaddr 192.168.1.1
   setenv serverip 192.168.1.42
   saveenv
4. Reset the device
   reset
5. Hit again the spacebar
6. Now load the image via tftp:
   tftpboot 0x81000000 INITRAMFS.bin
7. Boot the image:
   bootm 0x81000000
8. Copy the squashfs-image to the device.
9. Do a sysupgrade.

https://openwrt.org/toh/netgear/wndap360

The device should be converted from kmod-owl-loader to nvmem-cells in the
future. Nvmem cells were not working. Maybe ATH9K_PCI_NO_EEPROM is missing.
That is why this commit is still using kmod-owl-loader. In the future
the device tree may look like this:

&ath9k0 {
       nvmem-cells = <&macaddr_art_120c>, <&cal_art_1000>;
       nvmem-cell-names = "mac-address", "calibration";
};

&ath9k1 {
       nvmem-cells = <&macaddr_art_520c>, <&cal_art_5000>;
       nvmem-cell-names = "mac-address", "calibration";
};

&art {
	...
	cal_art_1000: cal@1000 {
		reg = <0x1000 0xeb8>;
	};

	cal_art_5000: cal@5000 {
		reg = <0x5000 0xeb8>;
	};
};

Signed-off-by: Nick Hainke <vincent@systemli.org>
2022-04-30 23:56:47 +02:00
Foica David
063e9047cc ath79: add support for TP-Link Deco M4R v1 and v2
This commit adds support for the TP-Link Deco M4R (it can also be M4,
TP-Link uses both names) v1 and v2. It is similar hardware-wise to the
Archer C6 v2. Software-wise it is very different. V2 has a bit different
layout from V1 but the chips are the same and the OEM firmware is the same
for both versions.

Specifications:
SoC: QCA9563-AL3A
RAM: Zentel A3R1GE40JBF
Wireless 2.4GHz: QCA9563-AL3A (main SoC)
Wireless 5GHz: QCA9886
Ethernet Switch: QCA8337N-AL3C
Flash: 16 MB SPI NOR

Flashing:

The device's bootloader only accepts images that are signed using
TP-Link's RSA key, therefore this way of flashing is not possible. The
device has a web GUI that should be accessible after setting up the device
using the app (it requires the app to set it up first because the web GUI
asks for the TP-Link account password) but for unknown reasons, the web
GUI also refuses custom images.

There is a debug firmware image that has been shared on the device's
OpenWrt forum thread that has telnet unlocked, which the bootloader will
accept because it is signed. It can be used to transfer an OpenWrt image
file over to the device and then be used with mtd to flash the device.

Pre-requisites:

- Debug firmware.
- A way of transferring the file to the router, you can use an FTP server
  as an example.
- Set a static IP of 192.168.0.2/255.255.255.0 on your computer.
- OpenWrt image.

Installation:

- Unplug your router and turn it upside down. Using a long and thin object
  like a SIM unlock tool, press and hold the reset button on the router and
  replug it. Keep holding it until the LED flashes yellow.
- Open 192.168.0.1. You should see the bootloader recovery's webpage.
  Choose the debug firmware that you downloaded and flash it. Wait until the
  router reboots (at this stage you can remove the static IP).

- Open a terminal window and connect to the router via telnet (the primary
  router should have a 192.168.0.1 IP address, secondary routers are
  different).
- Transfer the file over to the router, you can use curl to download it
  from the internet (use the insecure flag and make sure your source accepts
  insecure downloads) or from an FTP server.
- The router's default mtd partition scheme has kernel and rootfs
  separated. We can use dd to split the OpenWrt image file and flash it with
  mtd:

   dd if=openwrt.bin of=kernel.bin skip=0 count=8192 bs=256
   dd if=openwrt.bin of=rootfs.bin skip=8192 bs=256

- Once the images are ready, you have to flash the device using mtd
  (make sure to flash the correct partitions or you may be left with a
  hard bricked router):

   mtd write kernel.bin kernel
   mtd write rootfs.bin rootfs

- Flashing is done, reboot the device now.

Signed-off-by: Foica David <superh552@gmail.com>
2022-04-30 23:56:47 +02:00
Andrew Powers-Holmes
6f1efb2898 ath79: add support for Sophos AP100/AP55 family
The Sophos AP100, AP100C, AP55, and AP55C are dual-band 802.11ac access
points based on the Qualcomm QCA9558 SoC. They share PCB designs with
several devices that already have partial or full support, most notably the
Devolo DVL1750i/e.

The AP100 and AP100C are hardware-identical to the AP55 and AP55C, however
the 55 models' ART does not contain calibration data for their third chain
despite it being present on the PCB.

Specifications common to all models:
 - Qualcomm QCA9558 SoC @ 720 MHz (MIPS 74Kc Big-endian processor)
 - 128 MB RAM
 - 16 MB SPI flash
 - 1x 10/100/1000 Mbps Ethernet port, 802.3af PoE-in
 - Green and Red status LEDs sharing a single external light-pipe
 - Reset button on PCB[1]
 - Piezo beeper on PCB[2]
 - Serial UART header on PCB
 - Alternate power supply via 5.5x2.1mm DC jack @ 12 VDC

Unique to AP100 and AP100C:
 - 3T3R 2.4GHz 802.11b/g/n via SoC WMAC
 - 3T3R 5.8GHz 802.11a/n/ac via QCA9880 (PCI Express)

AP55 and AP55C:
 - 2T2R 2.4GHz 802.11b/g/n via SoC WMAC
 - 2T2R 5.8GHz 802.11a/n/ac via QCA9880 (PCI Express)

AP100 and AP55:
 - External RJ45 serial console port[3]
 - USB 2.0 Type A port, power controlled via GPIO 11

Flashing instructions:

This firmware can be flashed either via a compatible Sophos SG or XG
firewall appliance, which does not require disassembling the device, or via
the U-Boot console available on the internal UART header.

To flash via XG appliance:
 - Register on Sophos' website for a no-cost Home Use XG firewall license
 - Download and install the XG software on a compatible PC or virtual
   machine, complete initial appliance setup, and enable SSH console access
 - Connect the target AP device to the XG appliance's LAN interface
 - Approve the AP from the XG Web UI and wait until it shows as Active
   (this can take 3-5 minutes)
 - Connect to the XG appliance over SSH and access the Advanced Console
   (Menu option 5, then menu option 3)
 - Run `sudo awetool` and select the menu option to connect to an AP via
   SSH. When prompted to enable SSH on the target AP, select Yes.
 - Wait 2-3 minutes, then select the AP from the awetool menu again. This
   will connect you to a root shell on the target AP.
 - Copy the firmware to /tmp/openwrt.bin on the target AP via SCP/TFTP/etc
 - Run `mtd -r write /tmp/openwrt.bin astaro_image`
 - When complete, the access point will reboot to OpenWRT.

To flash via U-Boot serial console:
 - Configure a TFTP server on your PC, and set IP address 192.168.99.8 with
   netmask 255.255.255.0
 - Copy the firmware .bin to the TFTP server and rename to 'uImage_AP100C'
 - Open the target AP's enclosure and locate the 4-pin 3.3V UART header [4]
 - Connect the AP ethernet to your PC's ethernet port
 - Connect a terminal to the UART at 115200 8/N/1 as usual
 - Power on the AP and press a key to cancel autoboot when prompted
 - Run the following commands at the U-Boot console:
    - `tftpboot`
    - `cp.b $fileaddr 0x9f070000 $filesize`
    - `boot`
 - The access point will boot to OpenWRT.

MAC addresses as verified by OEM firmware:

use   address     source
LAN   label       config 0x201a (label)
2g    label + 1   art 0x1002    (also found at config 0x2004)
5g    label + 9   art 0x5006

Increments confirmed across three AP55C, two AP55, and one AP100C.

These changes have been tested to function on both current master and
21.02.0 without any obvious issues.

[1] Button is present but does not alter state of any GPIO on SoC
[2] Buzzer and driver circuitry is present on PCB but is not connected to
    any GPIO. Shorting an unpopulated resistor next to the driver circuitry
    should connect the buzzer to GPIO 4, but this is unconfirmed.
[3] This external RJ45 serial port is disabled in the OEM firmware, but
    works in OpenWRT without additional configuration, at least on my
    three test units.
[4] On AP100/AP55 models the UART header is accessible after removing
    the device's top cover. On AP100C/AP55C models, the PCB must be removed
    for access; three screws secure it to the case.
    Pin 1 is marked on the silkscreen. Pins from 1-4 are 3.3V, GND, TX, RX

Signed-off-by: Andrew Powers-Holmes <andrew@omnom.net>
2022-04-16 16:59:29 +02:00
Thibaut VARÈNE
c91df224f5 ath79: add support for Yuncore XD3200
Specification:

- QCA9563 (775MHz), 128MB RAM, 16MB SPI NOR
- 2T2R 802.11b/g/n 2.4GHz
- 2T2R 802.11n/ac 5GHz
- 2x 10/100/1000 Mbps Ethernet, with 802.3at PoE support (WAN port)

LED for 5 GHz WLAN is currently not supported as it is connected directly
to the QCA9882 radio chip.

Flash instructions:

If your device comes with generic QSDK based firmware, you can login
over telnet (login: root, empty password, default IP: 192.168.188.253),
issue first (important!) 'fw_setenv' command and then perform regular
upgrade, using 'sysupgrade -n -F ...' (you can use 'wget' to download
image to the device, SSH server is not available):

  fw_setenv bootcmd "bootm 0x9f050000 || bootm 0x9fe80000"
  sysupgrade -n -F openwrt-...-yuncore_...-squashfs-sysupgrade.bin

In case your device runs firmware with YunCore custom GUI, you can use
U-Boot recovery mode:

1. Set a static IP 192.168.0.141/24 on PC and start TFTP server with
   'tftp' image renamed to 'upgrade.bin'
2. Power the device with reset button pressed and release it after 5-7
   seconds, recovery mode should start downloading image from server
   (unfortunately, there is no visible indication that recovery got
   enabled - in case of problems check TFTP server logs)

Signed-off-by: Thibaut VARÈNE <hacks@slashdirt.org>
2022-04-15 07:11:18 +02:00
Joe Mullally
44e1e5d153 ath79: Move TPLink WPA8630Pv2 to ath79-tiny target
These devices only have 6MiB available for firmware, which is not
enough for recent release images, so move these to the tiny target.

Note for users sysupgrading from the previous ath79-generic snapshot
images:

The tiny target kernel has a 4Kb flash erase block size instead
of the generic target's 64kb. This means the JFFS2 overlay partition
containing settings must be reformatted with the new block size or else
there will be data corruption.

To do this, backup your settings before upgrading, then during the
sysupgrade, de-select "Keep Settings". On the CLI, use "sysupgrade -n".

If you forget to do this and your system becomes unstable after
upgrading, you can do this to format the partition and recover:

* Reboot
* Press RESET when Power LED blinks during boot to enter Failsafe mode
* SSH to 192.168.1.1
* Run "firstboot" and reboot

Signed-off-by: Joe Mullally <jwmullally@gmail.com>
Tested-by: Robert Högberg <robert.hogberg@gmail.com>
2022-04-09 19:31:46 +02:00
Michael Pratt
41be1a2de2 ath79: add support for Araknis AN-700-AP-I-AC
FCC ID: 2AG6R-AN700APIAC

Araknis AN-700-AP-I-AC is an indoor wireless access point with
1 Gb ethernet port, dual-band wireless,
internal antenna plates, and 802.3at PoE+

this board is a Senao device:
the hardware is equivalent to EnGenius EAP1750
the software is modified Senao SDK which is based on openwrt and uboot
including image checksum verification at boot time,
and a failsafe image that boots if checksum fails

**Specification:**

  - QCA9558 SOC		MIPS 74kc, 2.4 GHz WMAC, 3x3
  - QCA9880 WLAN	PCI card, 5 GHz, 3x3, 26dBm
  - AR8035-A PHY	RGMII GbE with PoE+ IN
  - 40 MHz clock
  - 16 MB FLASH		MX25L12845EMI-10G
  - 2x 64 MB RAM	NT5TU32M16
  - UART console	J10, populated, RX shorted to ground
  - 4 antennas		5 dBi, internal omni-directional plates
  - 4 LEDs		power, 2G, 5G, wps
  - 1 button		reset

  NOTE: all 4 gpio controlled LEDS are viewed through the same lightguide
	therefore, the power LED is off for default state

**MAC addresses:**

  MAC address labeled as ETH
  Only one Vendor MAC address in flash at art 0x0

  eth0 ETH  *:xb art 0x0
  phy1 2.4G *:xc ---
  phy0 5GHz *:xd ---

**Serial Access:**

  the RX line on the board for UART is shorted to ground by resistor R176
  therefore it must be removed to use the console
  but it is not necessary to remove to view boot log

  optionally, R175 can be replaced with a solder bridge short

  the resistors R175 and R176 are next to the UART RX pin at J10

**Installation:**

  Method 1: Firmware upgrade page:

    (if you cannot access the APs webpage)
    factory reset with the reset button
    connect ethernet to a computer
    OEM webpage at 192.168.20.253
    username and password 'araknis'
    make a new password, login again...

    Navigate to 'File Management' page from left pane
    Click Browse and select the factory.bin image
    Upload and verify checksum
    Click Continue to confirm
    wait about 3 minutes

  Method 2: Serial to load Failsafe webpage:

    After connecting to serial console and rebooting...
    Interrupt uboot with any key pressed rapidly
    execute `run failsafe_boot` OR `bootm 0x9fd70000`
    wait a minute
    connect to ethernet and navigate to
    192.168.20.253
    Select the factory.bin image and upload
    wait about 3 minutes

**Return to OEM:**

  Method 1: Serial to load Failsafe webpage (above)

  Method 2: delete a checksum from uboot-env
  this will make uboot load the failsafe image at next boot
  because it will fail the checksum verification of the image

    ssh into openwrt and run
    `fw_setenv rootfs_checksum 0`
    reboot, wait a minute
    connect to ethernet and navigate to
    192.168.20.253
    select OEM firmware image and click upgrade

  Method 3: backup mtd partitions before upgrade

**TFTP recovery:**

  Requires serial console, reset button does nothing

  rename initramfs-kernel.bin to '0101A8C0.img'
  make available on TFTP server at 192.168.1.101
  power board, interrupt boot with serial console
  execute `tftpboot` and `bootm 0x81000000`

  NOTE: TFTP may not be reliable due to bugged bootloader
	set MTU to 600 and try many times

**Format of OEM firmware image:**

  The OEM software is built using SDKs from Senao
  which is based on a heavily modified version
  of Openwrt Kamikaze or Altitude Adjustment.
  One of the many modifications is sysupgrade being performed by a custom script.
  Images are verified through successful unpackaging, correct filenames
  and size requirements for both kernel and rootfs files, and that they
  start with the correct magic numbers (first 2 bytes) for the respective headers.

  Newer Senao software requires more checks but their script
  includes a way to skip them.

  The OEM upgrade script is at
  /etc/fwupgrade.sh

  OKLI kernel loader is required because the OEM software
  expects the kernel to be less than 1536k
  and the OEM upgrade procedure would otherwise
  overwrite part of the kernel when writing rootfs.

Note on PLL-data cells:

  The default PLL register values will not work
  because of the external AR8035 switch between
  the SOC and the ethernet port.

  For QCA955x series, the PLL registers for eth0 and eth1
  can be see in the DTSI as 0x28 and 0x48 respectively.
  Therefore the PLL registers can be read from uboot
  for each link speed after attempting tftpboot
  or another network action using that link speed
  with `md 0x18050028 1` and `md 0x18050048 1`.

  The clock delay required for RGMII can be applied at the PHY side,
  using the at803x driver `phy-mode` setting through the DTS.
  Therefore, the Ethernet Configuration registers for GMAC0
  do not need the bits for RGMII delay on the MAC side.
  This is possible due to fixes in at803x driver
  since Linux 5.1 and 5.3

Signed-off-by: Michael Pratt <mcpratt@pm.me>
2022-03-13 19:54:58 +01:00
Michael Pratt
56716b578e ath79: add support for Araknis AN-500-AP-I-AC
FCC ID: 2AG6R-AN500APIAC

Araknis AN-500-AP-I-AC is an indoor wireless access point with
1 Gb ethernet port, dual-band wireless,
internal antenna plates, and 802.3at PoE+

this board is a Senao device:
the hardware is equivalent to EnGenius EAP1200
the software is modified Senao SDK which is based on openwrt and uboot
including image checksum verification at boot time,
and a failsafe image that boots if checksum fails

**Specification:**

  - QCA9557 SOC		MIPS 74kc, 2.4 GHz WMAC, 2x2
  - QCA9882 WLAN	PCI card 168c:003c, 5 GHz, 2x2, 26dBm
  - AR8035-A PHY	RGMII GbE with PoE+ IN
  - 40 MHz clock
  - 16 MB FLASH		MX25L12845EMI-10G
  - 2x 64 MB RAM	NT5TU32M16
  - UART console	J10, populated, RX shorted to ground
  - 4 antennas		5 dBi, internal omni-directional plates
  - 4 LEDs		power, 2G, 5G, wps
  - 1 button		reset

  NOTE: all 4 gpio controlled LEDS are viewed through the same lightguide
	therefore, the power LED is off for default state

**MAC addresses:**

  MAC address labeled as ETH
  Only one Vendor MAC address in flash at art 0x0

  eth0 ETH  *:e1 art 0x0
  phy1 2.4G *:e2 ---
  phy0 5GHz *:e3 ---

**Serial Access:**

  the RX line on the board for UART is shorted to ground by resistor R176
  therefore it must be removed to use the console
  but it is not necessary to remove to view boot log

  optionally, R175 can be replaced with a solder bridge short

  the resistors R175 and R176 are next to the UART RX pin at J10

**Installation:**

  Method 1: Firmware upgrade page:

    (if you cannot access the APs webpage)
    factory reset with the reset button
    connect ethernet to a computer
    OEM webpage at 192.168.20.253
    username and password 'araknis'
    make a new password, login again...

    Navigate to 'File Management' page from left pane
    Click Browse and select the factory.bin image
    Upload and verify checksum
    Click Continue to confirm
    wait about 3 minutes

  Method 2: Serial to load Failsafe webpage:

    After connecting to serial console and rebooting...
    Interrupt uboot with any key pressed rapidly
    execute `run failsafe_boot` OR `bootm 0x9fd70000`
    wait a minute
    connect to ethernet and navigate to
    192.168.20.253
    Select the factory.bin image and upload
    wait about 3 minutes

**Return to OEM:**

  Method 1: Serial to load Failsafe webpage (above)

  Method 2: delete a checksum from uboot-env
  this will make uboot load the failsafe image at next boot
  because it will fail the checksum verification of the image

    ssh into openwrt and run
    `fw_setenv rootfs_checksum 0`
    reboot, wait a minute
    connect to ethernet and navigate to
    192.168.20.253
    select OEM firmware image and click upgrade

  Method 3: backup mtd partitions before upgrade

**TFTP recovery:**

  Requires serial console, reset button does nothing

  rename initramfs-kernel.bin to '0101A8C0.img'
  make available on TFTP server at 192.168.1.101
  power board, interrupt boot with serial console
  execute `tftpboot` and `bootm 0x81000000`

  NOTE: TFTP may not be reliable due to bugged bootloader
	set MTU to 600 and try many times

**Format of OEM firmware image:**

  The OEM software is built using SDKs from Senao
  which is based on a heavily modified version
  of Openwrt Kamikaze or Altitude Adjustment.
  One of the many modifications is sysupgrade being performed by a custom script.
  Images are verified through successful unpackaging, correct filenames
  and size requirements for both kernel and rootfs files, and that they
  start with the correct magic numbers (first 2 bytes) for the respective headers.

  Newer Senao software requires more checks but their script
  includes a way to skip them.

  The OEM upgrade script is at
  /etc/fwupgrade.sh

  OKLI kernel loader is required because the OEM software
  expects the kernel to be less than 1536k
  and the OEM upgrade procedure would otherwise
  overwrite part of the kernel when writing rootfs.

Note on PLL-data cells:

  The default PLL register values will not work
  because of the external AR8035 switch between
  the SOC and the ethernet port.

  For QCA955x series, the PLL registers for eth0 and eth1
  can be see in the DTSI as 0x28 and 0x48 respectively.
  Therefore the PLL registers can be read from uboot
  for each link speed after attempting tftpboot
  or another network action using that link speed
  with `md 0x18050028 1` and `md 0x18050048 1`.

  The clock delay required for RGMII can be applied at the PHY side,
  using the at803x driver `phy-mode` setting through the DTS.
  Therefore, the Ethernet Configuration registers for GMAC0
  do not need the bits for RGMII delay on the MAC side.
  This is possible due to fixes in at803x driver
  since Linux 5.1 and 5.3

Signed-off-by: Michael Pratt <mcpratt@pm.me>
2022-03-13 19:54:57 +01:00
Michael Pratt
561f46bd02 ath79: add support for Araknis AN-300-AP-I-N
FCC ID: U2M-AN300APIN

Araknis AN-300-AP-I-N is an indoor wireless access point with
1 Gb ethernet port, dual-band wireless,
internal antenna plates, and 802.3at PoE+

this board is a Senao device:
the hardware is equivalent to EnGenius EWS310AP
the software is modified Senao SDK which is based on openwrt and uboot
including image checksum verification at boot time,
and a failsafe image that boots if checksum fails

**Specification:**

  - AR9344 SOC		MIPS 74kc, 2.4 GHz WMAC, 2x2
  - AR9382 WLAN		PCI on-board 168c:0030, 5 GHz, 2x2
  - AR8035-A PHY	RGMII GbE with PoE+ IN
  - 40 MHz clock
  - 16 MB FLASH		MX25L12845EMI-10G
  - 2x 64 MB RAM	1839ZFG V59C1512164QFJ25
  - UART console	J10, populated, RX shorted to ground
  - 4 antennas		5 dBi, internal omni-directional plates
  - 4 LEDs		power, 2G, 5G, wps
  - 1 button		reset

  NOTE: all 4 gpio controlled LEDS are viewed through the same lightguide
	therefore, the power LED is off for default state

**MAC addresses:**

  MAC address labeled as ETH
  Only one Vendor MAC address in flash at art 0x0

  eth0 ETH  *:7d art 0x0
  phy1 2.4G *:7e ---
  phy0 5GHz *:7f ---

**Serial Access:**

  the RX line on the board for UART is shorted to ground by resistor R176
  therefore it must be removed to use the console
  but it is not necessary to remove to view boot log

  optionally, R175 can be replaced with a solder bridge short

  the resistors R175 and R176 are next to the UART RX pin at J10

**Installation:**

  Method 1: Firmware upgrade page:

    (if you cannot access the APs webpage)
    factory reset with the reset button
    connect ethernet to a computer
    OEM webpage at 192.168.20.253
    username and password 'araknis'
    make a new password, login again...

    Navigate to 'File Management' page from left pane
    Click Browse and select the factory.bin image
    Upload and verify checksum
    Click Continue to confirm
    wait about 3 minutes

  Method 2: Serial to load Failsafe webpage:

    After connecting to serial console and rebooting...
    Interrupt uboot with any key pressed rapidly
    execute `run failsafe_boot` OR `bootm 0x9fd70000`
    wait a minute
    connect to ethernet and navigate to
    192.168.20.253
    Select the factory.bin image and upload
    wait about 3 minutes

**Return to OEM:**

  Method 1: Serial to load Failsafe webpage (above)

  Method 2: delete a checksum from uboot-env
  this will make uboot load the failsafe image at next boot
  because it will fail the checksum verification of the image

    ssh into openwrt and run
    `fw_setenv rootfs_checksum 0`
    reboot, wait a minute
    connect to ethernet and navigate to
    192.168.20.253
    select OEM firmware image and click upgrade

  Method 3: backup mtd partitions before upgrade

**TFTP recovery:**

  Requires serial console, reset button does nothing

  rename initramfs-kernel.bin to '0101A8C0.img'
  make available on TFTP server at 192.168.1.101
  power board, interrupt boot with serial console
  execute `tftpboot` and `bootm 0x81000000`

  NOTE: TFTP may not be reliable due to bugged bootloader
	set MTU to 600 and try many times

**Format of OEM firmware image:**

  The OEM software is built using SDKs from Senao
  which is based on a heavily modified version
  of Openwrt Kamikaze or Altitude Adjustment.
  One of the many modifications is sysupgrade being performed by a custom script.
  Images are verified through successful unpackaging, correct filenames
  and size requirements for both kernel and rootfs files, and that they
  start with the correct magic numbers (first 2 bytes) for the respective headers.

  Newer Senao software requires more checks but their script
  includes a way to skip them.

  The OEM upgrade script is at
  /etc/fwupgrade.sh

  OKLI kernel loader is required because the OEM software
  expects the kernel to be less than 1536k
  and the OEM upgrade procedure would otherwise
  overwrite part of the kernel when writing rootfs.

Note on PLL-data cells:

  The default PLL register values will not work
  because of the external AR8035 switch between
  the SOC and the ethernet port.

  For QCA955x series, the PLL registers for eth0 and eth1
  can be see in the DTSI as 0x28 and 0x48 respectively.
  Therefore the PLL registers can be read from uboot
  for each link speed after attempting tftpboot
  or another network action using that link speed
  with `md 0x18050028 1` and `md 0x18050048 1`.

  The clock delay required for RGMII can be applied at the PHY side,
  using the at803x driver `phy-mode` setting through the DTS.
  Therefore, the Ethernet Configuration registers for GMAC0
  do not need the bits for RGMII delay on the MAC side.
  This is possible due to fixes in at803x driver
  since Linux 5.1 and 5.3

Signed-off-by: Michael Pratt <mcpratt@pm.me>
2022-03-13 19:54:57 +01:00
Sungbo Eo
3e3e78de11 ath79: utilize nvmem on Netgear EX7300 v2
mtd-mac-address should no longer be used after commit 5ae2e78639
("kernel: drop support for mtd-mac-address"). Convert it to nvmem-cells.

While at it, also convert OpenWrt's custom mtd-cal-data property and
userspace pre-calibration data extraction to the nvmem implementation.

Note: nvmem-cells in QCN5502 wmac has not been tested.

Fixes: c32008a37b ("ath79: add partial support for Netgear EX7300v2")
Signed-off-by: Sungbo Eo <mans0n@gorani.run>
2022-02-20 13:45:06 +09:00
Daniel González Cabanelas
73ea763c0d ath79: Add support for Ubiquiti NanoBeam AC Gen1 XC
The Ubiquiti NanoBeam AC Gen1 XC (NBE-5AC-19) is an outdoor 802.11ac CPE
with a waterproof casing (ultrasonically welded) and bulb shaped.

Hardware:
 - SoC: Qualcomm Atheros QCA9558
 - RAM: 128 MB DDR2
 - Flash: 16 MB SPI NOR
 - Ethernet: 1x GbE, AR8033 phy connected via SGMII
 - PSU: 24 Vdc passive PoE
 - WiFi 5 GHz: Qualcomm Atheros QCA988X
 - Buttons: 1x reset
 - LEDs: 1x power, 1x Ethernet, 4x RSSI, all blue
 - Internal antenna: 19 dBi planar

Installation from stock airOS firmware:
 - Follow instructions for XC-type Ubiquiti devices on OpenWrt wiki at
   https://openwrt.org/toh/ubiquiti/common

Signed-off-by: Daniel González Cabanelas <dgcbueu@gmail.com>
2022-02-19 13:10:01 +01:00
Wenli Looi
c32008a37b ath79: add partial support for Netgear EX7300v2
Hardware
--------
SoC: QCN5502
Flash: 16 MiB
RAM: 128 MiB
Ethernet: 1 gigabit port
Wireless No1: QCN5502 on-chip 2.4GHz 4x4
Wireless No2: QCA9984 pcie 5GHz 4x4
USB: none

Installation
------------
Flash the factory image using the stock web interface or TFTP the
factory image to the bootloader.

What works
----------
- LEDs
- Ethernet port
- 5GHz wifi (QCA9984 pcie)

What doesn't work
-----------------
- 2.4GHz wifi (QCN5502 on-chip)
  (I was not able to make this work, probably because ath9k requires
  some changes to support QCN5502.)

Signed-off-by: Wenli Looi <wlooi@ucalgary.ca>
2022-02-07 00:03:27 +01:00
Sven Eckelmann
8143709c90 ath79: Add support for OpenMesh OM2P v1
Device specifications:
======================

* Qualcomm/Atheros AR7240 rev 2
* 350/350/175 MHz (CPU/DDR/AHB)
* 32 MB of RAM
* 16 MB of SPI NOR flash
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2x 10/100 Mbps Ethernet
* 1T1R 2.4 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* 2x fast ethernet
  - eth0
    + 18-24V passive POE (mode B)
    + used as WAN interface
  - eth1
    + builtin switch port 4
    + used as LAN interface
* 12-24V 1A DC
* external antenna

The device itself requires the mtdparts from the uboot arguments to
properly boot the flashed image and to support dual-boot (primary +
recovery image). Unfortunately, the name of the mtd device in mtdparts is
still using the legacy name "ar7240-nor0" which must be supplied using the
Linux-specfic DT parameter linux,mtd-name to overwrite the generic name
"spi0.0".

Flashing instructions:
======================

Various methods can be used to install the actual image on the flash.
Two easy ones are:

ap51-flash
----------

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.

initramfs from TFTP
-------------------

The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):

   setenv serverip 192.168.1.21
   setenv ipaddr 192.168.1.1
   tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr

The actual sysupgrade image can then be transferred (on the LAN port) to the
device via

  scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/

On the device, the sysupgrade must then be started using

  sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin

Signed-off-by: Sven Eckelmann <sven@narfation.org>
2022-01-16 21:42:19 +01:00
Sven Eckelmann
1699c1dc7f ath79: Add support for OpenMesh OM5P-AC v2
Device specifications:
======================

* Qualcomm/Atheros QCA9558 ver 1 rev 0
* 720/600/200 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2T2R 2.4 GHz Wi-Fi (11n)
* 2T2R 5 GHz Wi-Fi (11ac)
* 4x GPIO-LEDs (3x wifi, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default))
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* TI tmp423 (package kmod-hwmon-tmp421) for temperature monitoring
* 2x ethernet
  - eth0
    + AR8035 ethernet PHY (RGMII)
    + 10/100/1000 Mbps Ethernet
    + 802.3af POE
    + used as LAN interface
  - eth1
    + AR8031 ethernet PHY (RGMII)
    + 10/100/1000 Mbps Ethernet
    + 18-24V passive POE (mode B)
    + used as WAN interface
* 12-24V 1A DC
* internal antennas

This device support is based on the partially working stub from commit
53c474abbd ("ath79: add new OF only target for QCA MIPS silicon").

Flashing instructions:
======================

Various methods can be used to install the actual image on the flash.
Two easy ones are:

ap51-flash
----------

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.

initramfs from TFTP
-------------------

The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):

   setenv serverip 192.168.1.21
   setenv ipaddr 192.168.1.1
   tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr

The actual sysupgrade image can then be transferred (on the LAN port) to the
device via

  scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/

On the device, the sysupgrade must then be started using

  sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin

Signed-off-by: Sven Eckelmann <sven@narfation.org>
2022-01-16 20:51:14 +01:00
Tamas Balogh
872b65ecc8 ath79: patch Asus RP-AC66 clean up and fix for sysupgrade image
- clean up leftovers regarding MAC configure in dts
- fix alphabetical order in caldata
- IMAGE_SIZE for sysupgrade image

Signed-off-by: Tamas Balogh <tamasbalogh@hotmail.com>
2022-01-15 17:41:19 +01:00
Sven Eckelmann
97f5617259 ath79: Add support for OpenMesh OM5P-AC v1
Device specifications:
======================

* Qualcomm/Atheros QCA9558 ver 1 rev 0
* 720/600/240 MHz (CPU/DDR/AHB)
* 128 MB of RAM
* 16 MB of SPI NOR flash
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 2T2R 2.4 GHz Wi-Fi (11n)
* 2T2R 5 GHz Wi-Fi (11ac)
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* external h/w watchdog (enabled by default))
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* TI tmp423 (package kmod-hwmon-tmp421) for temperature monitoring
* 2x ethernet
  - eth0
    + AR8035 ethernet PHY (RGMII)
    + 10/100/1000 Mbps Ethernet
    + 802.3af POE
    + used as LAN interface
  - eth1
    + AR8035 ethernet PHY (SGMII)
    + 10/100/1000 Mbps Ethernet
    + 18-24V passive POE (mode B)
    + used as WAN interface
* 12-24V 1A DC
* internal antennas

Flashing instructions:
======================

Various methods can be used to install the actual image on the flash.
Two easy ones are:

ap51-flash
----------

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.

initramfs from TFTP
-------------------

The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):

   setenv serverip 192.168.1.21
   setenv ipaddr 192.168.1.1
   tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr

The actual sysupgrade image can then be transferred (on the LAN port) to the
device via

  scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/

On the device, the sysupgrade must then be started using

  sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin

Signed-off-by: Sven Eckelmann <sven@narfation.org>
2022-01-09 21:12:28 +01:00
Sven Eckelmann
72ef594550 ath79: Add support for OpenMesh OM5P-AN
Device specifications:
======================

* Qualcomm/Atheros AR9344 rev 2
* 560/450/225 MHz (CPU/DDR/AHB)
* 64 MB of RAM
* 16 MB of SPI NOR flash
  - 2x 7 MB available; but one of the 7 MB regions is the recovery image
* 1T1R 2.4 GHz Wi-Fi
* 2T2R 5 GHz Wi-Fi
* 6x GPIO-LEDs (3x wifi, 2x ethernet, 1x power)
* 1x GPIO-button (reset)
* external h/w watchdog (enabled by default)
* TTL pins are on board (arrow points to VCC, then follows: GND, TX, RX)
* TI tmp423 (package kmod-hwmon-tmp421) for temperature monitoring
* 2x ethernet
  - eth0
    + AR8035 ethernet PHY
    + 10/100/1000 Mbps Ethernet
    + 802.3af POE
    + used as LAN interface
  - eth1
    + 10/100 Mbps Ethernet
    + builtin switch port 1
    + 18-24V passive POE (mode B)
    + used as WAN interface
* 12-24V 1A DC
* internal antennas

Flashing instructions:
======================

Various methods can be used to install the actual image on the flash.
Two easy ones are:

ap51-flash
----------

The tool ap51-flash (https://github.com/ap51-flash/ap51-flash) should be
used to transfer the image to the u-boot when the device boots up.

initramfs from TFTP
-------------------

The serial console must be used to access the u-boot shell during bootup.
It can then be used to first boot up the initramfs image from a TFTP server
(here with the IP 192.168.1.21):

   setenv serverip 192.168.1.21
   setenv ipaddr 192.168.1.1
   tftpboot 0c00000 <filename-of-initramfs-kernel>.bin && bootm $fileaddr

The actual sysupgrade image can then be transferred (on the LAN port) to the
device via

  scp <filename-of-squashfs-sysupgrade>.bin root@192.168.1.1:/tmp/

On the device, the sysupgrade must then be started using

  sysupgrade -n /tmp/<filename-of-squashfs-sysupgrade>.bin

Signed-off-by: Sven Eckelmann <sven@narfation.org>
2022-01-09 21:12:28 +01:00
Tamas Balogh
b29f4cf34c ath79: add support for ASUS RP-AC66
Asus RP-AC66 Repeater

Hardware specifications:
Board: AP152
SoC: QCA9563
DRAM: 64MB DDR2
Flash: 25l128 16MB SPI-NOR
LAN/WAN: 1x1000M QCA8033
WiFi 5GHz: QCA9880
Clocks: CPU:775.000MHz, DDR:650.000MHz, AHB:258.333MHz, Ref:25.000MHz

MAC addresses as verified by OEM firmware:
use            address   source
Lan/Wan   *:24         art 0x1002 (label)
2G             *:24         art 0x1002
5G             *:26         art 0x5006

Installation:

Asus windows recovery tool:
 - install the Asus firmware restoration utility
 - unplug the router, hold the reset button while powering it on
 - release when the power LED flashes slowly
 - specify a static IP on your computer:
     IP address: 192.168.1.75
     Subnet mask 255.255.255.0
 - Start the Asus firmware restoration utility, specify the factory image
    and press upload
 - Do not power off the device after OpenWrt has booted until the LED flashing.

TFTP Recovery method:
 - set computer to a static ip, 192.168.1.75
 - connect computer to the LAN 1 port of the router
 - hold the reset button while powering on the router for a few seconds
 - send firmware image using a tftp client; i.e from linux:
 $ tftp
 tftp> binary
 tftp> connect 192.168.1.1
 tftp> put factory.bin
 tftp> quit

Signed-off-by: Tamas Balogh <tamasbalogh@hotmail.com>
2022-01-09 20:32:41 +01:00
Ryan Mounce
35aecc9d4a ath79: add support for WD My Net N600
SoC: AR9344
RAM: 128MB
Flash: 16MiB SPI NOR
5GHz WiFi: AR9382 PCIe 2x2:2 802.11n
2.4GHz WiFi: AR9344 (SoC) AHB 2x2:2 802.11n

5x Fast ethernet via SoC switch (green LEDs)
1x USB 2.0
4x front LEDs from SoC GPIO
1x front WPS button from SoC GPIO
1x bottom reset button from SoC GPIO

UART header JP1, 115200 no parity 1 stop
TX
GND
VCC
(N/P)
RX

Flash factory image via "emergency room" recovery:
- Configure your computer with a static IP 192.168.1.123/24
- Connect to LAN port on the N600 switch
- Hold reset putton
- Power on, holding reset until the power LED blinks slowly
- Visit http://192.168.1.1/ and upload OpenWrt factory image
- Wait at least 5 minutes for flashing, reboot and key generation
- Visit http://192.168.1.1/ (OpenWrt LuCI) and upload OpenWrt sysupgrade image

Signed-off-by: Ryan Mounce <ryan@mounce.com.au>
[dt leds preparations]
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2021-12-11 00:50:02 +01:00
Sander Vanheule
0f6b6aab2b ath79: add support for TP-Link EAP225 v1
TP-Link EAP225 v1 is an AC1200 (802.11ac Wave-1) ceiling mount access point.

Device specifications:
* SoC: QCA9563 @ 775MHz
* RAM: 128MiB DDR2
* Flash: 16MiB SPI-NOR
* Wireless 2.4GHz (SoC): b/g/n, 2x2
* Wireless 5Ghz (QCA9882): a/n/ac, 2x2
* Ethernet (AR8033): 1× 1GbE, 802.3at PoE

Flashing instructions:
* Ensure the device is upgraded to firmware v1.4.0
* Exploit the user management page in the web interface to start telnetd
  by changing the username to `;/usr/sbin/telnetd -l/bin/sh&`.
* Immediately change the malformed username back to something valid
  (e.g. 'admin') to make ssh work again.
* Use the root shell via telnet to make /tmp world writeable (chmod 777)
* Extract /usr/bin/uclited from the device via ssh and apply the binary
  patch listed below. The patch is required to prevent `uclited -u` in
  the last step from crashing.
* Copy the patched uclited binary back to the device at /tmp/uclited
  (via ssh)
* Upload the factory image to /tmp/upgrade.bin (via ssh)
* Run `chmod +x /tmp/uclited && /tmp/uclited -u` to install OpenWrt.

uclited patching:
    --- xxd uclited
    +++ xxd uclited-patched
    @@ -53811,7 +53811,7 @@
     000d2330: 8c44 0000 0320 f809 0000 0000 8fbc 0010  .D... ..........
     000d2340: 8fa6 0a4c 02c0 2821 8f82 87c4 0000 0000  ...L..(!........
    -000d2350: 8c44 0000 0c13 461c 27a7 0018 8fbc 0010  .D....F.'.......
    +000d2350: 8c44 0000 2402 0000 0000 0000 8fbc 0010  .D..$...........
     000d2360: 1040 001d 0000 1821 8f99 8378 3c04 0058  .@.....!...x<..X
     000d2370: 3c05 0056 2484 ad68 24a5 9f00 0320 f809  <..V$..h$.... ..

To make sure the correct file is patched, the following MD5 checksums
should match the unpatched and patched files:
    4bd74183c23859c897ed77e8566b84de  uclited
    4107104024a2e0aeaf6395ed30adccae  uclited-patched

Debricking:
* Serial port can be soldered on unpopulated 4-pin header
  (1: TXD, 2: RXD, 3: GND, 4: VCC)
    * Bridge unpopulated resistors running from pins 1 (TXD) and 2 (RXD).
      Do NOT bridge the pull-down for pin 2, running parallel to the
      header.
    * Use 3.3V, 115200 baud, 8n1
* Interrupt bootloader by holding CTRL+B during boot
* tftp initramfs to flash via the LuCI web interface
    setenv ipaddr 192.168.1.1 # default, change as required
    setenv serverip 192.168.1.10 # default, change as required
    tftp 0x80800000 initramfs.bin
    bootelf $fileaddr

Tested by forum user KernelMaker.

Link: https://forum.openwrt.org/t/eap225-v1-firmware/87116
Signed-off-by: Sander Vanheule <sander@svanheule.net>
2021-12-05 18:49:14 +01:00
Christian Lamparter
297bceeecf ath79: convert TP-Link Archer C7v1/2 Wifis to nvmem-cells
For v2, both ath9k (2.4GHz Wifi) and ath10k (5 GHz) driver now
pull the (pre-)calibration data from the nvmem subsystem. v1
is slightly different as only the ath9k Wifi is supported.

This allows us to move the userspace caldata extraction
and mac-address patching for the 5GHZ ath10k supported
wifi into the device-tree definition of the device.

ath9k's nodes are also changed over to use nvmem-cells
over OpenWrt's custom mtd-cal-data property.

Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2021-11-28 01:13:08 +01:00
Sebastian Schaper
be88f416db ath79: move cal-data extraction to dts for DAP-2695
This device can be merged with the existing dtsi, which declares
the location of ath9k cal-data via devicetree, correcting the 2.4G
mac address in `10_fix_wifi_mac` rather than `10-ath9k-eeprom`.

To make these changes more visible, apply before merging with dtsi.

Signed-off-by: Sebastian Schaper <openwrt@sebastianschaper.net>
2021-11-20 21:08:25 +01:00
Christian Lamparter
217571b6ab ath79: WNDR3700/3800/MAC: utilize nvmem for caldata fetching
converts the still popular WNDR3700 Series to fetch the
caldata through nvmem. As the "MAC with NVMEM" has shown,
there could pitfalls along the way.

Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
2021-11-06 22:18:45 +01:00
Andrew Cameron
ac03e24635 ath79: add support for TP-Link CPE710-v1
TP-Link CPE710-v1 is an outdoor wireless CPE for 5 GHz with
one Ethernet port based on the AP152 reference board

Specifications:
- SoC: QCA9563-AL3A MIPS 74kc @ 775MHz, AHB @ 258MHz
- RAM: 128MiB DDR2 @ 650MHz
- Flash: 16MiB SPI NOR Based on the GD25Q128
- Wi-Fi 5Ghz: ath10k chip (802.11ac for up to 867Mbps on 5GHz wireless
  data rate) Based on the QCA9896
- Ethernet: one 1GbE port
- 23dBi high-gain directional 2×2 MIMO antenna and a dedicated metal
  reflector
- Power, LAN, WLAN5G Blue LEDs
- 3x Blue LEDs

Flashing instructions:
Flash factory image through stock firmware WEB UI or through TFTP
To get to TFTP recovery just hold reset button while powering on for
around 30-40 seconds and release.
Rename factory image to recovery.bin
Stock TFTP server IP:192.168.0.100
Stock device TFTP address:192.168.0.254

Signed-off-by: Andrew Cameron <apcameron@softhome.net>
[convert to nvmem, fix MAC assignment in 11-ath10k-caldata]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-09-25 19:28:54 +02:00
Robert Balas
baacdd53df ath79: add support for TP-Link TL-WA1201 v2
This device is a wireless access point working on the 2.4 GHz and 5 GHz
band, based on Qualcomm/Atheros QCA9563 + QCA9886.

Specification
- 775 MHz CPU
- 128 MB of RAM (DDR2)
- 16 MB of FLASH (SPI NOR)
- QCA9563: 2.4 GHz 3x3
- QCA9886: 5 GHz
- AR8033: 1x 1 Gbs Ethernet
- 4x LED, WPS factory reset and power button
- bare UART on PCB (accessible through testpoints)

Methods for Flashing:
- Apply factory image in OEM firmware web-gui. Wait a minute after the
  progress bar completes and restart the device.
- Sysupgrade on top of existing OpenWRT image
- Solder wires onto UART testpoints and attach a terminal.
  Boot the device and press enter to enter u-boot's menu. Then issue the
  following commands
  1. setenv serverip your-server-ip
     setenv ipaddr your-device-ip
  2. tftp 0x80060000 openwrt-squashfs.bin (Rembember output of size in
    hex, henceforth "sizeinhex")
  3. erase 0x9f030000 +"sizeinhex"
  4. cp.b 0x80060000 0x9f030000 0x"sizeinhex"
  5. reboot

Recover:
- U-boot serial console

Signed-off-by: Robert Balas <balasr@iis.ee.ethz.ch>
[convert to nvmem]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-09-05 23:52:35 +02:00
Zoltan HERPAI
98eb95dd00 ath79: add support for Atheros DB120 reference board
Atheros DB120 reference board.

Specifications:

SoC:    QCA9344
DRAM:   128Mb DDR2
Flash:  8Mb SPI-NOR, 128Mb NAND flash
Switch: 5x 10/100Mbps via AR8229 switch (integrated into SoC),
        5x 10/100/1000Mbps via QCA8237 via RGMII
WLAN:   AR9300 (SoC, 2.4G+5G) + AR9340 (PCIe, 5G-only)
USB:    1x 2.0
UART:   standard QCA UART header
JTAG:   yes
Button: 1x reset
LEDs:   a lot
Slots:  2x mPCIe + 1x mini-PCI, but using them requires
        additional undocumented changes.
Misc:   The board allows to boot off NAND, and there is
        I2S audio support as well - also requiring
        additional undocumented changes.

Installation:

1. Original bootloader

   Connect the board to ethernet
   Set up a server with an IP address of 192.168.1.10
   Make the openwrt-ath79-generic-atheros_db120-squashfs-factory.bin
   available via TFTP

   tftpboot 0x80060000 openwrt-ath79-generic-atheros_db120-squashfs-factory.bin
   erase 0x9f050000 +$filesize
   cp.b $fileaddr 0x9f050000 $filesize

2. pepe2k's u-boot_mod

   Connect the board to ethernet
   Set up a server with an IP address of 192.168.1.10
   Make the openwrt-ath79-generic-atheros_db120-squashfs-factory.bin
   available via TFTP, as "firmware.bin"

   run fw_upg

   Reboot the board.

Signed-off-by: Zoltan HERPAI <wigyori@uid0.hu>
[explicit factory recipe in generic.mk, sorting in 10-ath9k-eeprom,
 convert to nvmem, use fwconcat* names in DTS, remove unneeded DT
 labels, remove redundant uart node]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-08-22 23:02:08 +02:00
Vincent Wiemann
55b4b36552 ath79: add support for Joy-IT JT-OR750i
Specifications:
 * QCA9531, 16 MiB flash (Winbond W25Q128JVSQ), 128 MiB RAM
 * 802.11n 2T2R (external antennas)
 * QCA9887, 802.11ac 1T1R (connected with diplexer to one of the antennas)
 * 3x 10/100 LAN, 1x 10/100 WAN
 * UART header with pinout printed on PCB

Installation:
 * The device comes with a bootloader installed only
 * The bootloader offers DHCP and is reachable at http://10.123.123.1
 * Accept the agreement and flash sysupgrade.bin
 * Use Firefox if flashing does not work

TFTP recovery with static IP:
 * Rename sysupgrade.bin to jt-or750i_firmware.bin
 * Offer it via TFTP server at 192.168.0.66
 * Keep the reset button pressed for 4 seconds after connecting power

TFTP recovery with dynamic IP:
 * Rename sysupgrade.bin to jt-or750i_firmware.bin
 * Offer it via TFTP server with a DHCP server running at the same address
 * Keep the reset button pressed for 6 seconds after connecting power

Co-authored-by: Sebastian Schaper <openwrt@sebastianschaper.net>
Signed-off-by: Vincent Wiemann <vincent.wiemann@ironai.com>
2021-07-28 13:48:15 +02:00
Roberto Valentini
af56075a8f ath79: add support for TP-Link RE455 v1
TP-Link RE455 v1 is a dual band router/range-extender based on
Qualcomm/Atheros QCA9563 + QCA9880.

This device is nearly identical to RE450 v3

Specification:

- 775 MHz CPU
- 64 MB of RAM (DDR2)
- 8 MB of FLASH (SPI NOR)
- 3T3R 2.4 GHz
- 3T3R 5 GHz
- 1x 10/100/1000 Mbps Ethernet (AR8033 PHY)
- 7x LED, 4x button
- UART header on PCB[1]

Flash instruction:
Apply factory image in OEM firmware web-gui.

[1] Didn't work, probably need to short unpopulated resistor R64
    and R69 as RE450v3

Signed-off-by: Roberto Valentini <valantin89@gmail.com>
2021-07-11 16:58:12 +02:00
Evgeniy Isaev
6c148116f7 ath79: add support for Xiaomi AIoT Router AC2350
Device specifications
* SoC: QCA9563 @ 775MHz (MIPS 74Kc)
* RAM: 128MiB DDR2
* Flash: 16MiB SPI-NOR (EN25QH128)
* Wireless 2.4GHz (SoC): b/g/n, 3x3
* Wireless 5Ghz (QCA9988): a/n/ac, 4x4 MU-MIMO
* IoT Wireless 2.4GHz (QCA6006): currently unusable
* Ethernet (AR8327): 3 LAN × 1GbE, 1 WAN × 1GbE
* LEDs: Internet (blue/orange), System (blue/orange)
* Buttons: Reset
* UART: through-hole on PCB ([VCC 3.3v](RX)(GND)(TX) 115200, 8n1)
* Power: 12VDC, 1,5A

MAC addresses map (like in OEM firmware)
  art@0x0     88:C3:97:*:57  wan/label
  art@0x1002  88:C3:97:*:2D  lan/wlan2g
  art@0x5006  88:C3:97:*:2C  wlan5g

Obtain SSH Access
1. Download and flash the firmware version 1.3.8 (China).
2. Login to the router web interface and get the value of `stok=` from the
   URL
3. Open a new tab and go to the following URL (replace <STOK> with the stok
   value gained above; line breaks are only for easier handling, please put
   together all four lines into a single URL without any spaces):
     http://192.168.31.1/cgi-bin/luci/;stok=<STOK>/api/misystem/set_config_iotdev
       ?bssid=any&user_id=any&ssid=-h%0Anvram%20set%20ssh_en%3D1%0Anvram%20commit
       %0Ased%20-i%20%27s%2Fchannel%3D.%2A%2Fchannel%3D%5C%5C%22debug%5C%5C%22%2F
       g%27%20%2Fetc%2Finit.d%2Fdropbear%0A%2Fetc%2Finit.d%2Fdropbear%20start%0A
4. Wait 30-60 seconds (this is the time required to generate keys for the
   SSH server on the router).

Create Full Backup
1. Obtain SSH Access.
2. Create backup of all flash (on router):
    dd if=/dev/mtd0 of=/tmp/ALL.backup
3. Copy backup to PC (on PC):
    scp root@192.168.31.1:/tmp/ALL.backup ./
Tip: backup of the original firmware, taken three times, increases the
chances of recovery :)

Calculate The Password
* Locally using shell (replace "12345/E0QM98765" with your router's serial
  number):
  On Linux
    printf "%s6d2df50a-250f-4a30-a5e6-d44fb0960aa0" "12345/E0QM98765" | \
    md5sum - | head -c8 && echo
  On macOS
    printf "%s6d2df50a-250f-4a30-a5e6-d44fb0960aa0" "12345/E0QM98765" | \
    md5 | head -c8
* Locally using python script (replace "12345/E0QM98765" with your
  router's serial number):
    wget https://raw.githubusercontent.com/eisaev/ax3600-files/master/scripts/calc_passwd.py
    python3.7 -c 'from calc_passwd import calc_passwd; print(calc_passwd("12345/E0QM98765"))'
* Online
    https://www.oxygen7.cn/miwifi/

Debricking (lite)
If you have a healthy bootloader, you can use recovery via TFTP using
programs like TinyPXE on Windows or dnsmasq on Linux. To switch the router
to TFTP recovery mode, hold down the reset button, connect the power
supply, and release the button after about 10 seconds. The router must be
connected directly to the PC via the LAN port.

Debricking
You will need a full dump of your flash, a CH341 programmer, and a clip
for in-circuit programming.

Install OpenWRT
1. Obtain SSH Access.
2. Create script (on router):
    echo '#!/bin/sh' > /tmp/flash_fw.sh
    echo >> /tmp/flash_fw.sh
    echo '. /bin/boardupgrade.sh' >> /tmp/flash_fw.sh
    echo >> /tmp/flash_fw.sh
    echo 'board_prepare_upgrade' >> /tmp/flash_fw.sh
    echo 'mtd erase rootfs_data' >> /tmp/flash_fw.sh
    echo 'mtd write /tmp/openwrt.bin firmware' >> /tmp/flash_fw.sh
    echo 'sleep 3' >> /tmp/flash_fw.sh
    echo 'reboot' >> /tmp/flash_fw.sh
    echo >> /tmp/flash_fw.sh
    chmod +x /tmp/flash_fw.sh
3. Copy `openwrt-ath79-generic-xiaomi_aiot-ac2350-squashfs-sysupgrade.bin`
   to the router (on PC):
    scp openwrt-ath79-generic-xiaomi_aiot-ac2350-squashfs-sysupgrade.bin \
    root@192.168.31.1:/tmp/openwrt.bin
4. Flash OpenWRT (on router):
    /bin/ash /tmp/flash_fw.sh &
5. SSH connection will be interrupted - this is normal.
6. Wait for the indicator to turn blue.

Signed-off-by: Evgeniy Isaev <isaev.evgeniy@gmail.com>
[improve commit message formatting slightly]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-07-05 00:28:04 +02:00
Nick Hainke
3e0387b3db ath79: Support for Ubiquiti Rocket 5AC Lite
The Ubiquiti Rocket 5AC Lite (R5AC-Lite) is an outdoor router.

Specifications:
 - SoC: Qualcomm Atheros QCA9558
 - RAM: 128 MB
 - Flash: 16 MB SPI
 - Ethernet: 1x 10/100/1000 Mbps
 - WiFi 5 GHz: QCA988x
 - Buttons: 1x (reset)
 - LEDs: 1x power, 1x Ethernet, 4x RSSI

Installation:
- Instructions for XC-type Ubiquiti:
  https://openwrt.org/toh/ubiquiti/common

Signed-off-by: Nick Hainke <vincent@systemli.org>
2021-06-07 00:23:51 +02:00