Globalscale MOCHAbin is a Armada 7040 based development board.
Specifications:
* Armada 7040 Quad core ARMv8 Cortex A-72 @ 1.4GHz
* 2 / 4 / 8 GB of DDR4 DRAM
* 16 GB eMMC
* 4MB SPI-NOR (Bootloader)
* 1x M.2-2280 B-key socket (for SSD expansion, SATA3 only)
* 1x M.2-2250 B-key socket (for modems, USB2.0 and I2C only)
* 1x Mini-PCIe 3.0 (x1, USB2.0 and I2C)
* 1x SATA 7+15 socket (SATA3)
* 1x 16-pin (2×8) MikroBus Connector
* 1x SIM card slot (Connected to the mini-PCIe and both M.2 slots)
* 2x USB3.0 Type-A ports via SMSC USB5434B hub
* Cortex 2x5 JTAG
* microUSB port for UART (PL2303GL/PL2303SA onboard)
* 1x 10G SFP+
* 1x 1G SFP (Connected to 88E1512 PHY)
* 1x 1G RJ45 with PoE PD (Connected to 88E1512 PHY)
* 4x 1G RJ45 ports via Topaz 88E6141 switch
* RTC with battery holder (SoC provided, requires CR2032 battery)
* 1x 12V DC IN
* 1x Power switch
* 1x 12V fan header (3-pin, power only)
* 1x mini-PCIe LED header (2x0.1" pins)
* 1x M.2-2280 LED header (2x0.1" pins)
* 6x Bootstrap jumpers
* 1x Power LED (Green)
* 3x Tri-color RGB LEDs (Controllable)
* 1x Microchip ATECC608B secure element
Note that 1G SFP and 1G WAN cannot be used at the same time as they are in
parallel connected to the same PHY.
Installation:
Copy dtb from build_dir to bin/ and run tftpserver there:
$ cp ./build_dir/target-aarch64_cortex-a72_musl/linux-mvebu_cortexa72/image-armada-7040-mochabin.dtb bin/targets/mvebu/cortexa72/
$ in.tftpd -L -s bin/targets/mvebu/cortexa72/
Connect to the device UART via microUSB port and power on the device.
Power on the device and hit any key to stop the autoboot.
Set serverip (host IP) and ipaddr (any free IP address on the same subnet), e.g:
$ setenv serverip 192.168.1.10 # Host
$ setenv ipaddr 192.168.1.15 # Device
Set the ethernet device (Example for the 1G WAN):
$ setenv ethact mvpp2-2
Ping server to confirm network is working:
$ ping $serverip
Using mvpp2-2 device
host 192.168.1.15 is alive
Tftpboot the firmware:
$ tftpboot $kernel_addr_r openwrt-mvebu-cortexa72-globalscale_mochabin-initramfs-kernel.bin
$ tftpboot $fdt_addr_r image-armada-7040-mochabin.dtb
Boot the image:
$ booti $kernel_addr_r - $fdt_addr_r
Once the initramfs is booted, transfer openwrt-mvebu-cortexa72-globalscale_mochabin-squashfs-sdcard.img.gz
to /tmp dir on the device.
Gunzip and dd the image:
$ gunzip /tmp/openwrt-mvebu-cortexa72-globalscale_mochabin-squashfs-sdcard.img.gz
$ dd if=/tmp/openwrt-mvebu-cortexa72-globalscale_mochabin-squashfs-sdcard.img of=/dev/mmcblk0 && sync
Reboot the device.
Hit any key to stop the autoboot.
Reset U-boot env and set the bootcmd:
$ env default -a
$ setenv bootcmd 'load mmc 0 ${loadaddr} boot.scr && source ${loadaddr}'
Optionally I would advise to edit the console env variable to remove earlycon as that
causes the kernel to never use the driver for the serial console.
Earlycon should be used only for debugging before the kernel can configure the console
and will otherwise cause various issues with the console.
$ setenv console 'console=ttyS0,115200'
Save and reset
$ saveenv
$ reset
OpenWrt should boot from eMMC now.
Signed-off-by: Robert Marko <robert.marko@sartura.hr>
While an image layout based on MBR and 'bootfs' partition may be easy
to understand for users who are very used to the IBM PC and always have
the option to access the SD card outside of the device (and hence don't
really depend on other recovery methods or dual-boot), in my opinion
it's a dead end for many desirable features on embedded systems,
especially when managed remotely (and hence without an easy option to
access the SD card using another device in case things go wrong, for
example).
Let me explain:
* using a MSDOS/VFAT filesystem to store kernel(s) is problematic, as a
single corruption of the bootfs can render the system into a state
that it no longer boots at all. This makes dual-boot useless, or at
least very tedious to setup with then 2 independent boot partitions
to avoid the single point of failure on a "hot" block (the FAT index
of the boot partition, written every time a file is changed in
bootfs). And well: most targets even store the bootloader environment
in a file in that very same FAT filesystem, hence it cannot be used
to script a reliable dual-boot method (as loading the environment
itself will already fail if the filesystem is corrupted).
* loading the kernel uImage from bootfs and using rootfs inside an
additional partition means the bootloader can only validate the
kernel -- if rootfs is broken or corrupted, this can lead to a reboot
loop, which is often a quite costly thing to happen in terms of
hardware lifetime.
* imitating MBR-boot behavior with a FAT-formatted bootfs partition
(like IBM PC in the 80s and 90s) is just one of many choices on
embedded targets. There are much better options with modern U-Boot
(which is what we use and build from source for all targets booting
off SD cards), see examples in mediatek/mt7622 and mediatek/mt7623.
Hence rename the 'sdcard' feature to 'legacy-sdcard', and prefix
functions with 'legacy_sdcard_' instead of 'sdcard_'.
Tested-by: Stijn Tintel <stijn@linux-ipv6.be>
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
Now that we have a generic sdcard upgrade method, which was copied from
the mvebu platform method, we can switch mvebu to the generic method.
Signed-off-by: Stijn Tintel <stijn@linux-ipv6.be>
So far, board.d files were having execute bit set and contained a
shebang. However, they are just sourced in board_detect, with an
apparantly unnecessary check for execute permission beforehand.
Replace this check by one for existance and make the board.d files
"normal" files, as would be expected in /etc anyway.
Note:
This removes an apparantly unused '#!/bin/sh /etc/rc.common' in
target/linux/bcm47xx/base-files/etc/board.d/01_network
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Add support for Marvell MACCHIATObin Single Shot, cortex-a72 based
Marvell ARMADA 8040 Community board. Single Shot was broken as the
device tree is different on the Double Shot Board.
Specifications:
- Quad core Cortex-A72 (up to 2GHz)
- DDR4 DIMM slot with optional ECC and single/dual chip select support
- Dual 10GbE (1/2.5/10GbE) SFP+
2.5GbE (1/2.5GbE) via SFP
1GbE via copper
- SPI Flash
- 3 X SATA 3.0 connectors
- MicroSD connector
- eMMC
- PCI x4 3.0 slot
- USB 2.0 Headers (Internal)
- USB 3.0 connector
- Console port (UART) over microUSB connector
- 20-pin Connector for CPU JTAG debugger
- 2 X UART Headers
- 12V input via DC Jack
- ATX type power connector
- Form Factor: Mini-ITX (170 mm x 170 mm)
More details at http://macchiatobin.net
Installation:
Write the Image to your Micro SD Card and insert it in the
MACCHIATObin Single Shot SD Card Slot.
In the U-Boot Environment:
1. reset U-Boot environment:
env default -a
saveenv
2. prepare U-Boot with boot script:
setenv bootcmd "load mmc 1:1 0x4d00000 boot.scr; source 0x4d00000"
saveenv
or manually (hanging lines indicate wrapped one-line command):
setenv fdt_name armada-8040-mcbin-singleshot.dtb
setenv image_name Image
setenv bootcmd 'mmc dev 1; ext4load mmc 1:1 $kernel_addr
$image_name;ext4load mmc 1:1 $fdt_addr $fdt_name;setenv
bootargs $console root=/dev/mmcblk1p2 rw rootwait; booti
$kernel_addr - $fdt_addr'
saveenv
On newer Bootloaders (18.12) the Variables have been changed, use:
setenv fdt_name armada-8040-mcbin-singleshot.dtb
setenv image_name Image
setenv bootcmd 'mmc dev 1; ext4load mmc 1:1 $kernel_addr_r
$image_name;ext4load mmc 1:1 $fdt_addr_r $fdt_name;setenv
bootargs $console root=/dev/mmcblk1p2 rw rootwait; booti
$kernel_addr_r - $fdt_addr_r'
Reported-by: Alexandra Alth <alexandra@alth.de>
Signed-off-by: Tomasz Maciej Nowak <tomek_n@o2.pl>
Tested-by: Alexandra Alth <alexandra@alth.de>
[add specs and installation as provided by Alexandra Alth]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Between kernels 4.20 and 5.0, a new variant of this board has been
introduced ("Single Shot"), and the existing one has been renamed
with the appendix "Double Shot". [1]
This also adjusted the first compatible in the list:
marvell,armada8040-mcbin -> marvell,armada8040-mcbin-doubleshot
This patch updates the OpenWrt implementation of this device by
adjusting the relevant references to that compatible (i.e., our
board name).
To still provide support for 4.19 with our setup, this adds a
small patch to change the compatible there as well.
[1] https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?id=b1f0bbe2700051886b954192b6c1751233fe0f52
Cc: Tomasz Maciej Nowak <tomek_n@o2.pl>
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Reviewed-by: Tomasz Maciej Nowak <tomek_n@o2.pl>
For the mvebu target in particular, there is a lot of files in
base-files that are only relevant for one subtarget. Improve
overview and reduce size per subtarget by moving/splitting
base-files depending on the subtarget they belong to.
While at it, consolidate 01_leds by using the model part of
the board name as variable.
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
Acked-by: Tomasz Maciej Nowak <tomek_n@o2.pl>