This commit adds support for Mercusys MR90X(EU) v1 router.
Device specification
--------------------
SoC Type: MediaTek MT7986BLA, Cortex-A53, 64-bit
RAM: MediaTek MT7986BLA (512MB)
Flash: SPI NAND GigaDevice GD5F1GQ5UEYIGY (128 MB)
Ethernet: MediaTek MT7531AE + 2.5GbE MaxLinear GPY211C0VC (SLNW8)
Ethernet: 1x2.5Gbe (WAN/LAN 2.5Gbps), 3xGbE (WAN/LAN 1Gbps, LAN1, LAN2)
WLAN 2g: MediaTek MT7975N, b/g/n/ax, MIMO 4x4
WLAN 5g: MediaTek MT7975P(N), a/n/ac/ax, MIMO 4x4
LEDs: 1 orange and 1 green status LEDs, 4 green gpio-controlled
LEDs on ethernet ports
Button: 1 (Reset)
USB ports: No
Power: 12 VDC, 2 A
Connector: Barrel
Bootloader: Main U-Boot - U-Boot 2022.01-rc4. Additionally, both UBI
slots contain "seconduboot" (also U-Boot 2022.01-rc4)
Serial console (UART)
---------------------
V
+-------+-------+-------+-------+
| +3.3V | GND | TX | RX |
+---+---+-------+-------+-------+
|
+--- Don't connect
The R3 (TX line) and R6 (RX line) are absent on the PCB. You should
solder them or solder the jumpers.
Installation (UART)
-------------------
1. Place OpenWrt initramfs image on tftp server with IP 192.168.1.2
2. Attach UART, switch on the router and interrupt the boot process by
pressing 'Ctrl-C'
3. Load and run OpenWrt initramfs image:
tftpboot initramfs-kernel.bin
bootm
4. Once inside OpenWrt, set / update env variables:
fw_setenv baudrate 115200
fw_setenv bootargs "ubi.mtd=ubi0 console=ttyS0,115200n1 loglevel=8 earlycon=uart8250,mmio32,0x11002000 init=/etc/preinit"
fw_setenv fdtcontroladdr 5ffc0e70
fw_setenv ipaddr 192.168.1.1
fw_setenv loadaddr 0x46000000
fw_setenv mtdids "spi-nand0=spi-nand0"
fw_setenv mtdparts "spi-nand0:2M(boot),1M(u-boot-env),50M(ubi0),50M(ubi1),8M(userconfig),4M(tp_data)"
fw_setenv netmask 255.255.255.0
fw_setenv serverip 192.168.1.2
fw_setenv stderr serial@11002000
fw_setenv stdin serial@11002000
fw_setenv stdout serial@11002000
fw_setenv tp_boot_idx 0
5. Run 'sysupgrade -n' with the sysupgrade OpenWrt image
Installation (without UART)
---------------------------
1. Login as root via SSH (router IP, port 20001, password - your web
interface password)
2. Open for editing /etc/hotplug.d/iface/65-iptv (e.g., using WinSCP and
SSH settings from the p.1)
3. Add a newline after "#!/bin/sh":
telnetd -l /bin/login.sh
4. Save "65-iptv" file
5. Toggle "IPTV/VLAN Enable" checkbox in the router web interface and
save
6. Make sure that telnetd is running:
netstat -ltunp | grep 23
7. Login via telnet to router IP, port 23 (no username and password are
required)
8 Upload OpenWrt "initramfs-kernel.bin" to the "/tmp" folder of the
router (e.g., using WinSCP and SSH settings from the p.1)
9. Stock busybox doesn't contain ubiupdatevol command. Hence, we need to
download and upload the full version of busybox to the router. For
example, from here:
https://github.com/xerta555/Busybox-Binaries/raw/master/busybox-arm64
Upload busybox-arm64 to the /tmp dir of the router and run:
in the telnet shell:
cd /tmp
chmod a+x busybox-arm64
10. Check "initramfs-kernel.bin" size:
du -h initramfs-kernel.bin
11. Delete old and create new "kernel" volume with appropriate size
(greater than "initramfs-kernel.bin" size):
ubirmvol /dev/ubi0 -N kernel
ubimkvol /dev/ubi0 -n 1 -N kernel -s 9MiB
12. Write OpenWrt "initramfs-kernel.bin" to the flash:
./busybox-arm64 ubiupdatevol /dev/ubi0_1 /tmp/initramfs-kernel.bin
13. u-boot-env can be empty so lets create it (or overwrite it if it
already exists) with the necessary values:
fw_setenv baudrate 115200
fw_setenv bootargs "ubi.mtd=ubi0 console=ttyS0,115200n1 loglevel=8 earlycon=uart8250,mmio32,0x11002000 init=/etc/preinit"
fw_setenv fdtcontroladdr 5ffc0e70
fw_setenv ipaddr 192.168.1.1
fw_setenv loadaddr 0x46000000
fw_setenv mtdids "spi-nand0=spi-nand0"
fw_setenv mtdparts "spi-nand0:2M(boot),1M(u-boot-env),50M(ubi0),50M(ubi1),8M(userconfig),4M(tp_data)"
fw_setenv netmask 255.255.255.0
fw_setenv serverip 192.168.1.2
fw_setenv stderr serial@11002000
fw_setenv stdin serial@11002000
fw_setenv stdout serial@11002000
fw_setenv tp_boot_idx 0
14. Reboot to OpenWrt initramfs:
reboot
15. Login as root via SSH (IP 192.168.1.1, port 22)
16. Upload OpenWrt sysupgrade.bin image to the /tmp dir of the router
17. Run sysupgrade:
sysupgrade -n /tmp/sysupgrade.bin
Recovery
--------
1. Press Reset button and power on the router
2. Navigate to U-Boot recovery web server (http://192.168.1.1/) and
upload the OEM firmware
Recovery (UART)
---------------
1. Place OpenWrt initramfs image on tftp server with IP 192.168.1.2
2. Attach UART, switch on the router and interrupt the boot process by
pressing 'Ctrl-C'
3. Load and run OpenWrt initramfs image:
tftpboot initramfs-kernel.bin
bootm
4. Do what you need (restore partitions from a backup, install OpenWrt
etc.)
Stock layout
------------
0x000000000000-0x000000200000 : "boot"
0x000000200000-0x000000300000 : "u-boot-env"
0x000000300000-0x000003500000 : "ubi0"
0x000003500000-0x000006700000 : "ubi1"
0x000006700000-0x000006f00000 : "userconfig"
0x000006f00000-0x000007300000 : "tp_data"
ubi0/ubi1 format
----------------
U-Boot at boot checks that all volumes are in place:
+-------------------------------+
| Volume Name: uboot Vol ID: 0|
| Volume Name: kernel Vol ID: 1|
| Volume Name: rootfs Vol ID: 2|
+-------------------------------+
MAC addresses
-------------
+---------+-------------------+-----------+
| | MAC | Algorithm |
+---------+-------------------+-----------+
| label | 00:eb:xx:xx:xx:be | label |
| LAN | 00:eb:xx:xx:xx:be | label |
| WAN | 00:eb:xx:xx:xx:bf | label+1 |
| WLAN 2g | 00:eb:xx:xx:xx:be | label |
| WLAN 5g | 00:eb:xx:xx:xx:bd | label-1 |
+---------+-------------------+-----------+
label MAC address was found in UBI partition "tp_data", file
"default-mac". OEM wireless eeprom is also there (file
"MT7986_EEPROM.bin").
Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
(cherry picked from commit e4fe3097ef)
[Fix merging conflict]
Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
The ZTE MF287+ is a LTE router used (exclusively?) by the network operator
"3". The MF287 (i.e. non-plus aka 3Neo) is also supported (the only
difference is the LTE modem)
Specifications
==============
SoC: IPQ4018
RAM: 256MiB
Flash: 8MiB SPI-NOR + 128MiB SPI-NAND
LAN: 4x GBit LAN
LTE: ZTE Cat12 (MF287+) / ZTE Cat6 (MF287)
WiFi: 802.11a/b/g/n/ac SoC-integrated
MAC addresses
=============
LAN: from config + 2
WiFi 1: from config
WiFi 2: from config + 1
Installation
============
Option 1 - TFTP
---------------
TFTP installation using UART is preferred. Disassemble the device and
connect serial. Put the initramfs image as openwrt.bin to your TFTP server
and configure a static IP of 192.168.1.100. Load the initramfs image by
typing:
setenv serverip 192.168.1.100
setenv ipaddr 192.168.1.1
tftpboot 0x82000000 openwrt.bin
bootm 0x82000000
From this intiramfs boot you can take a backup of the currently installed
partitions as no vendor firmware is available for download:
ubiattach -m14
cat /dev/ubi0_0 > /tmp/ubi0_0
cat /dev/ubi0_1 > /tmp/ubi0_1
Copy the files /tmp/ubi0_0 and /tmp/ubi0_1 somewhere save.
Once booted, transfer the sysupgrade image and run sysupgrade. You might
have to delete the stock volumes first:
ubirmvol /dev/ubi0 -N ubi_rootfs
ubirmvol /dev/ubi0 -N kernel
Option 2 - From stock firmware
------------------------------
The installation from stock requires an exploit first. The exploit consists
of a backup file that forces the firmware to download telnetd via TFTP from
192.168.0.22 and run it. Once exploited, you can connect via telnet and
login as admin:admin.
The exploit will be available at the device wiki page.
Once inside the stock firmware, you can transfer the -factory.bin file to
/tmp by using "scp" from the stock frmware or "tftp".
ZTE has blocked writing to the NAND. Fortunately, it's easy to allow write
access - you need to read from one file in /proc. Once done, you need to
erase the UBI partition and flash OpenWrt. Before performing the operation,
make sure that mtd13 is the partition labelled "rootfs" by calling
"cat /proc/mtd".
Complete commands:
cd /tmp
tftp -g -r factory.bin 192.168.0.22
cat /proc/driver/sensor_id
flash_erase /dev/mtd13 0 0
dd if=/tmp/factory.bin of=/dev/mtdblock13 bs=131072
Afterwards, reboot your device and you should have a working OpenWrt
installation.
Restore Stock
=============
Option 1 - via UART
-------------------
Boot an OpenWrt initramfs image via TFTP as for the initial installation.
Transfer the two backed-up files to your box to /tmp.
Then, run the following commands - replace $kernel_length and $rootfs_size
by the size of ubi0_0 and ubi0_1 in bytes.
ubiattach -m 14
ubirmvol /dev/ubi0 -N kernel
ubirmvol /dev/ubi0 -N rootfs
ubirmvol /dev/ubi0 -N rootfs_data
ubimkvol /dev/ubi0 -N kernel -s $kernel_length
ubimkvol /dev/ubi0 -N ubi_rootfs -s $rootfs_size
ubiupdatevol /dev/ubi0_0 /tmp/ubi0_0
ubiupdatevol /dev/ubi0_1 /tmp/ubi0_1
Option 2 - from within OpenWrt
------------------------------
This option requires to flash an initramfs version first so that access
to the flash is possible. This can be achieved by sysupgrading to the
recovery.bin version and rebooting. Once rebooted, you are again in a
default OpenWrt installation, but no partition is mounted.
Follow the commands from Option 1 to flash back to stock.
LTE Modem
=========
The LTE modem is similar to other ZTE devices and controls some more LEDs
and battery management.
Configuring the connection using uqmi works properly, the modem
provides three serial ports and a QMI CDC ethernet interface.
Signed-off-by: Andreas Böhler <dev@aboehler.at>
(cherry picked from commit f70ee53b08)
Some ZTE devices require the gpio-restart driver to support restarting the
LTE modem along with OpenWrt
Signed-off-by: Andreas Böhler <dev@aboehler.at>
(cherry picked from commit 9ffdaa7fa1)
This commit add u-boot env config for GL-MT3000, so
that we can use fw_printenv to print u-boot env and
use fw_setenv to set u-boot env in GL-MT3000.
Signed-off-by: Jianhui Zhao <zhaojh329@gmail.com>
(cherry picked from commit 6892603efa)
Hardware
--------
SOC: MediaTek MT7986
RAM: 1024MB DDR3
FLASH: 128MB SPI-NAND (Winbond)
WIFI: Mediatek MT7986 DBDC 802.11ax 2.4/5 GHz
ETH: Realtek RTL8221B-VB-CG 2.5 N-Base-T PHY with PoE
UART: 3V3 115200 8N1 (Pinout silkscreened / Do not connect VCC)
Installation
------------
1. Download the OpenWrt initramfs image. Copy the image to a TFTP server
2. Connect the TFTP server to the WAX220. Conect to the serial console,
interrupt the autoboot process by pressing '0' when prompted.
3. Download & Boot the OpenWrt initramfs image.
$ setenv ipaddr 192.168.2.1
$ setenv serverip 192.168.2.2
$ tftpboot openwrt.bin
$ bootm
4. Wait for OpenWrt to boot. Transfer the sysupgrade image to the device
using scp and install using sysupgrade.
$ sysupgrade -n <path-to-sysupgrade.bin>
Signed-off-by: Flole Systems <flole@flole.de>
Signed-off-by: Stefan Agner <stefan@agner.ch>
(cherry picked from commit 984786a2f7)
34a8a74 uhttpd/file: fix string out of buffer range on uh_defer_script
Signed-off-by: Hauke Mehrtens <hauke@hauke-m.de>
(cherry picked from commit 7a6f6b8126)
After migrating to kernel 5.15, upgrading causes the units to become
soft-bricked, hanging forever at the kernel startup.
Kernel size limitation of 4000000 bytes is suspected here, but this is
not fully confirmed.
Disable the images to protect users from inadvertent bricking of units,
because recovery of those is painful with Cisco's U-boot, until the root
cause is found and fixed.
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
(cherry picked from commit 9d64cc068f)
Previously both lan1 and lan2 leds were wrongly labelled as lan2.
Moreover they were connected to the wrong lan port.
Fixes 8fde82095b ("ramips: add support for Wavlink WL-WN535K1")
Reported-by: Nicolò Maria Semprini <nicosemp@gmail.com>
Signed-off-by: Davide Fioravanti <pantanastyle@gmail.com>
(cherry picked from commit c71dada926)
Zbtlink ZBT-WG1608 is a Wi-Fi router intendent to use with WWAN (4G/5G)
modems.
Specifications:
* SoC: MediaTek MT7621A
* RAM: 256/512 MiB
* Flash: 16/32 MiB (SPI NOR)
* Wi-Fi:
* MediaTek MT7603E : 2.4Ghz
* MediaTek MT7613BE : 5Ghz
* Ethernet: 10/100/1000 Mbps Ethernet x5 ports (4xLAN + WAN)
* M.2: 1x slot with USB&SIM
* EM7455/EM12-G/EM160R/RM500Q-AE
* USB: 1x 3.0 Type-A port
* External storage: 1x microSD (SDXC) slot
* UART: console (115200 baud)
* LED:
* 1 power indicator
* 1 WLAN 2.4G controlled (wlan 2G)
* 3 SoC controlled (wlan 5G, wwan, internet)
* 5 per Eth phy (4xLAN + WAN)
MAC Addresses:
* LAN : f8:5e:3c:xx:xx:e0 (Factory, 0xe000 (hex))
* WAN : f8:5e:3c:xx:xx:e1 (Factory, 0xe006 (hex))
* 2.4 GHz: f8:5e:3c:xx:xx:de (Factory, 0x0004 (hex))
* 5 GHz : f8:5e:3c:xx:xx:df (Factory, 0x8004 (hex))
Installation:
* Vendor's firmware is OpenWrt (LEDE) based, so the sysupgrade image can
be directly used to install OpenWrt. Firmware must be upgraded using the
'force' and 'do not save configuration' command line options (or
correspondig web interface checkboxes) since the vendor firmware is from
the pre-DSA era.
Recovery Mode:
* Press reset button, power up the device, wait for about 10sec.
* Upload sysupgrade image through the firmware recovery mode web page at
192.168.1.1.
Signed-off-by: Kim DoHyoung <azusahmr@k-on.kr>
(cherry picked from commit 0bbd5699c8)
5211264 odhcpd: add support for dhcpv6_pd_min_len parameter
c6bff6f router: Add PREF64 (RFC 8781) support
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
(cherry picked from commit acd9981b4e)
Fix a typo where the wrong KCONFIG was used and fix selecting the
correct kernel config option to use these packages.
Fixes: 4f443c885d ("netfilter: separate packages for kmod-ipt-socket and kmod-ipt-tproxy")
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
(cherry picked from commit 3ebebf08be)
ath10k does not report excessive loss in case of broken block-ack
sessions. The loss is communicated to the host-os, but ath10k does not
trigger a low-ack events by itself.
The mac80211 framework for loss detection however detects this
circumstance well in case of ath10k. So use it regardless of ath10k's
own loss detection mechanism.
Signed-off-by: David Bauer <mail@david-bauer.net>
(cherry picked from commit ed816f6ba8)
Hardware
========
CPU Qualcomm Atheros QCA9558
RAM 256MB DDR2
FLASH 2x 16M SPI-NOR (Macronix MX25L12805D)
WIFI Qualcomm Atheros QCA9558
Atheros AR9590
Installation
============
1. Attach to the serial console of the AP-105.
Interrupt autoboot and change the U-Boot env.
$ setenv rb_openwrt "setenv ipaddr 192.168.1.1;
setenv serverip 192.168.1.66;
netget 0x80060000 ap115.bin; go 0x80060000"
$ setenv fb_openwrt "bank 1;
cp.b 0xbf100040 0x80060000 0x10000; go 0x80060000"
$ setenv bootcmd "run fb_openwrt"
$ saveenv
2. Load the OpenWrt initramfs image on the device using TFTP.
Place the initramfs image as "ap105.bin" in the TFTP server
root directory, connect it to the AP and make the server reachable
at 192.168.1.66/24.
$ run rb_openwrt
3. Once OpenWrt booted, transfer the sysupgrade image to the device
using scp and use sysupgrade to install the firmware.
Signed-off-by: David Bauer <mail@david-bauer.net>
(cherry picked from commit 1b467a902e)
The Arcadyan AR7516, AKA Orange Bright Box or EE Bright Box 1, is a wifi
fast ethernet router, 2.4 GHz single band with two internal antennas. It
comes with a horizontal stand black shiny casing.
Newer Bright Box 1 model stands vertically, and comes with a totally
different board inside, not compatible with this firmware.
Hardware:
- SoC: Broadcom BCM6328
- CPU: single core BMIPS4350 V7.5 @ 320Mhz
- RAM: 64 MB DDR2
- Flash: 8 MB SPI NOR
- Ethernet LAN: 4x 100Mbit
- Wifi 2.4 GHz: Broadcom BCM43227 802.11bgn (onboard)
- USB: 1x 2.0
- ADSL: yes, unsupported
- Buttons: 2x
- LEDs: 9x, power LED is hardware controlled
- UART: yes
Installation in two steps, new CFE bootloader and firmware:
Install new CFE:
1. Power off the router and press the RESET button
2. Power on the router and wait some seconds
3. Release the RESET button
3. Browse to http://192.168.1.1, this web interface will offer both
firmware (“Software”) upgrade and bootloader upgrade; be sure to
use the bootloader section of the upload form.
4. Upload the new CFE (availabe at the wiki page)
5. Wait about a minute for flashing to finish and reboot into the new bootloader.
Install OpenWrt via new CFE web UI:
1. After installing the new CFE, visit http://192.168.1.1
2. Upload the Openwrt cfe firmware
5. Wait a few minutes for it to finish
Signed-off-by: Daniel González Cabanelas <dgcbueu@gmail.com>
(cherry-picked from df8e4b6c2e)
This patch initially introduced in 94b4da9b4a
breaks mvebu devices when using vlan filtering with kernel 5.15 or 6.1,
it was working ok in 5.10.
With this patch, frame that should exit untagged from the switch exit tagged.
Running 'tcpdump -Q out -evnnli eth1' (eth1 being the dsa interface)
- with the hack, frame is sent directly to the
destination port 4 with VID 2, so the switch leave the tag as instructed:
11:22:33:44:55:66 > 77:88:99:aa:bb:cc, Marvell EDSA ethertype 0xdada (Unknown), rsvd 0 0, mode From CPU, target dev 0, port 4, tagged, VID 2, FPri 0, ethertype ARP (0x0806), length 50: Ethernet (len 6), IPv4 (len 4), Request who-has 5.6.7.8 tell 1.2.3.4, length 28
- without the hack, frame is sent to the switch that
performs the forwarding decision and untagging:
11:22:33:44:55:66 > 77:88:99:aa:bb:cc, Marvell EDSA ethertype 0xdada (Unknown), rsvd 0 0, mode Forward, dev 1, port 0, tagged, VID 2, FPri 0, ethertype ARP (0x0806), length 50: Ethernet (len 6), IPv4 (len 4), Request who-has 5.6.7.8 tell 1.2.3.4, length 28
Removing this patch makes my Turris Omnia usable with vlan filtering,
ie wifi device can talk to wired device again.
Using kernel 5.15 some broadcast/multicast traffic is still leaked
(on a VLAN 2 access port I see tagged VLAN 3 frame),
using kernel 6.1 fixes that.
People needing the extra performance should try the bridger package.
Acked-by: Felix Fietkau <nbd@nbd.name>
Signed-off-by: Etienne Champetier <champetier.etienne@gmail.com>
(cherry picked from commit 244328b19c)
The NuCom R5010UNv2 is a wifi fast ethernet router, 2.4 GHz single band
with two external antennas.
Hardware:
- SoC: Broadcom BCM6328
- CPU: single core BMIPS4350 V7.5 @ 320Mhz
- RAM: 64 MB DDR2
- Flash: 16 MB SPI NOR
- Ethernet LAN: 4x 100Mbit
- Wifi 2.4 GHz: Broadcom BCM43217 802.11bgn (onboard)
- USB: 1x 2.0
- Buttons: 2x
- ADSL: yes, unsupported
- LEDs: 7x
- UART: yes
Installation via CFE web UI:
1. Power off the router and press the RESET button
2. Power on the router and wait 12 or more seconds
3. Release the RESET button
4. Browse to http://192.168.1.1 and upload the Openwrt cfe firmware
5. Wait a few minutes for it to finish
Signed-off-by: Daniel González Cabanelas <dgcbueu@gmail.com>
(cherry picked from commit 6cb3328b4f)
The data RAC is left disabled by the bootloader in some SoCs, at least in
the core it boots from. Enabling this feature increases the performance up
to +30% depending on the task.
The kernel enables the whole RAC unconditionally on BMIPS3300 CPUs. Enable
the data RAC in a similar way also for BMIPS4350.
Tested on DGND3700 v1 (BCM6368) and HG556a (BCM6358).
Signed-off-by: Daniel González Cabanelas <dgcbueu@gmail.com>
(cherry picked from commit 6d1265b148)
BMIPS_GET_CBR() returns an invalid address on some SoCs.
Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
(cherry picked from commit 62cdca25ed)
This adds support for Beeline Smart Box TURBO+ (Serсomm S3 CQR) router.
Device specification
--------------------
SoC Type: MediaTek MT7621AT (880 MHz, 2 cores)
RAM (Nanya NT5CC64M16GP): 128 MiB
Flash (Macronix MX30LF1G18AC): 128 MiB
Wireless 2.4 GHz (MT7603EN): b/g/n, 2x2
Wireless 5 GHz (MT7615N): a/n/ac, 4x4
Ethernet: 5 ports - 5×GbE (WAN, LAN1-4)
USB ports: 1xUSB3.0
Buttons: 2 button (reset, wps)
LEDs: Red, Green, Blue
Zigbee (EFR32MG1B232GG): 3.0
Stock bootloader: U-Boot 1.1.3
Power: 12 VDC, 1.5 A
Installation (fw 2.0.9)
-----------------------
1. Login to the web interface under SuperUser (root) credentials.
Password: SDXXXXXXXXXX, where SDXXXXXXXXXX is serial number of the
device written on the backplate stick.
2. Navigate to Setting -> WAN. Add:
Name - WAN1
Connection Type - Static
IP Address - 172.16.0.1
Netmask - 255.255.255.0
Save -> Apply. Set default: WAN1
3. Enable SSH and HTTP on WAN. Setting -> Remote control. Add:
Protocol - SSH
Port - 22
IP Address - 172.16.0.1
Netmask - 255.255.255.0
WAN Interface - WAN1
Save ->Apply
Add:
Protocol - HTTP
Port - 80
IP Address - 172.16.0.1
Netmask - 255.255.255.0
WAN interface - WAN1
Save -> Apply
4. Set up your PC ethernet:
Connection Type - Static
IP Address - 172.16.0.2
Netmask - 255.255.255.0
Gateway - 172.16.0.1
5. Connect PC using ethernet cable to the WAN port of the router
6. Connect to the router using SSH shell under SuperUser account
7. Make a mtd backup (optional, see related section)
8. Change bootflag to Sercomm1 and reboot:
printf 1 | dd bs=1 seek=7 count=1 of=/dev/mtdblock3
reboot
9. Login to the router web interface under admin account
10. Remove dots from the OpenWrt factory image filename
11. Update firmware via web using OpenWrt factory image
Revert to stock
---------------
Change bootflag to Sercomm1 in OpenWrt CLI and then reboot:
printf 1 | dd bs=1 seek=7 count=1 of=/dev/mtdblock3
mtd backup
----------
1. Set up a tftp server (e.g. tftpd64 for windows)
2. Connect to a router using SSH shell and run the following commands:
cd /tmp
for i in 0 1 2 3 4 5 6 7 8 9 10; do nanddump -f mtd$i /dev/mtd$i; \
tftp -l mtd$i -p 172.16.0.2; md5sum mtd$i >> mtd.md5; rm mtd$i; done
tftp -l mtd.md5 -p 171.16.0.2
Recovery
--------
Use sercomm-recovery tool.
Link: https://github.com/danitool/sercomm-recovery
MAC Addresses (fw 2.0.9)
------------------------
+-----+------------+---------+
| use | address | example |
+-----+------------+---------+
| LAN | label | *:e8 |
| WAN | label + 1 | *:e9 |
| 2g | label + 4 | *:ec |
| 5g | label + 5 | *:ed |
+-----+------------+---------+
The label MAC address was found in Factory 0x21000
Factory image format
--------------------
+---+-------------------+-------------+--------------------+
| # | Offset | Size | Description |
+---+-------------------+-------------+--------------------+
| 1 | 0x0 | 0x200 | Tag Header Factory |
| 2 | 0x200 | 0x100 | Tag Header Kernel1 |
| 3 | 0x300 | 0x100 | Tag Header Kernel2 |
| 4 | 0x400 | SIZE_KERNEL | Kernel |
| 5 | 0x400+SIZE_KERNEL | SIZE_ROOTFS | RootFS(UBI) |
+---+-------------------+-------------+--------------------+
Co-authored-by: Mikhail Zhilkin <csharper2005@gmail.com>
Signed-off-by: Maximilian Weinmann <x1@disroot.org>
(cherry picked from commit 8fcfb21b16)
This improves compatibility with the elder stock firmwares of the
following devices, which have not yet been merged into OpenWrt:
- Beeline SmartBox Pro
- Beeline SmartBox Turbo+
- WiFire S1500.NBN
Without this, OpenWrt factory image installation may fail.
Signed-off-by: Mikhail Zhilkin <csharper2005@gmail.com>
Signed-off-by: Maximilian Weinmann <x1@disroot.org>
(cherry picked from commit 35a4418d39)
openssl sets additional cflags in its configuration script. We need to
make it aware of our custom cflags to avoid adding conflicting cflags.
Fixes: #12866
Signed-off-by: Jitao Lu <dianlujitao@gmail.com>
(cherry picked from commit 51f57e7c2d)
Without it the WAN port won't be initialized properly.
Fixes: 8f578c15b3 ("rockchip: add NanoPi R2C support")
Reviewed-by: Robert Marko <robimarko@gmail.com>
Signed-off-by: Tianling Shen <cnsztl@immortalwrt.org>
(cherry picked from commit d312f12b1a)
Move default cpufreq governor from ONDEMAND to PERFORMANCE. The temp
increase is just 2°C and Watt usage the change is minimal in the order
of additional millwatt. The SoC and krait in general looks to suffer for
some problem with cache scaling. To have better system stability, force
cpu freq and cache freq to the max value supported by the system. This
follows mvebu platform where cpufreq is broken and cause minimal
temp/watt increase.
User can still tweak the governor to ondemand using sysfs entry if
needed.
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
(cherry picked from commit 6f5ea752d7)
This reverts commit 60fc93b359.
Reenable devfreq and revert for both 5.15 and 6.1.
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
(cherry picked from commit 37e4593213)
Add support for 'sifiveu' target and its specific packages in labeler.
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
(cherry picked from commit 92b8b18c26)
RISC-V has no support for subword atomic operations; code currently
generates libatomic library calls.
This patch changes the default behavior to fast inline subword atomic
calls that do not require libatomic.
Signed-off-by: Tianling Shen <cnsztl@immortalwrt.org>
(cherry picked from commit 7b4a966de8)
Power LED register is wrong at dts. Fix it.
Fixes: 9ceeaf4c6c ("brcm63xx: switch to hardware led controllers")
Signed-off-by: Daniel González Cabanelas <dgcbueu@gmail.com>
(cherry picked from commit 0e01ba9361)
The Comtrend VG-8050 is a wifi gigabit ethernet router, 2.4 GHz single band with
two external antennas.
Hardware:
- SoC: Broadcom BCM63169
- CPU: dual core BMIPS4350 @ 400Mhz
- RAM: 128 MB DDR
- Flash: 128 MB NAND
- LAN switch: Broadcom BCM53125, 5x 1Gbit
- Wifi 2.4 GHz: SoC (BCM63268) 802.11bgn
- USB: 1x 2.0 (optional)
- Buttons: 2x (reset)
- LEDs: yes
- UART: yes
Installation via CFE web UI:
1. Power off the router.
2. Press reset button near the power switch.
3. Keep it pressed while powering up during ~20+ seconds.
4. Browse to http://192.168.1.1 and upload the firmware.
5. Wait a few minutes for it to finish.
Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
(cherry picked from commit 47cc09aa7a)
All switch ports are labeled as port@address so let's follow the same pattern.
Fixes: ed79519b8d ("bmips: add support for Netgear DGND3700 v1, DGND3800B")
Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
(cherry picked from commit d9210c5ff7)
The Sercomm AD1018 is a wifi fast ethernet router, 2.4 GHz single band with
two internal antennas.
Hardware:
- SoC: Broadcom BCM6328
- CPU: single core BMIPS4350 @ 320Mhz
- RAM: 64 MB (v1) / 128 MB (v2) DDR
- Flash: 128 MB NAND
- Ethernet LAN: 4x 100Mbit
- Wifi 2.4 GHz: miniPCI Broadcom BCM43217 802.11bgn
- USB: 1x 2.0
- Buttons: 3x (reset)
- LEDs: yes
- UART: yes
Installation via OEM web UI:
1. Use the admin credentials to login via web UI
2. Go to Managament->Update firmware and select the OpenWrt CFE firmware
3. Press "Update Firmware" button and wait some minutes until it finish
Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
(cherry picked from commit 38ebb2eafd)
This is needed on devices like Sercomm AD1018 for booting recent kernels due
to bigger kernels.
Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
(cherry picked from commit 434434ca47)
The Actiontec R1000H is a gigabit wifi router, 2.4 GHz single band with
two external antennas. It comes with a coaxial HomePNA port.
Hardware:
- SoC: Broadcom BCM6368
- CPU: dual core BMIPS4350 V3.1 @400Mhz
- RAM: 64 MB DDR
- Flash: 32 MB parallel NOR
- LAN switch: Broadcom BCM53115, 5x 1Gbit
- LAN coaxial : 1x HPNA 3.1, CG3211 + CG3213
- Wifi 2.4 GHz: Broadcom BCM4322 802.11bgn
- USB: 1x 2.0
- Buttons: 2x, 1 reset
- LEDs: 7x
- UART: yes
The HPNA hardware probably needs a firmware to make the coaxial port work.
In the OEM firmware, it's apparently sent with an utility (inhpna) through
the ethernet port.
Installation via CFE web UI:
1. Connect the UART serial port.
2. Power on the router and press enter at the console prompt to stop the
bootloader.
4. Browse to http://192.168.1.1 and upload the OpenWrt CFE firmware
5. Wait a few minutes for it to finish
Signed-off-by: Daniel González Cabanelas <dgcbueu@gmail.com>
(cherry picked from commit e1a55de7a7)
Now that JFFS2 cleanmarkers are supported on the standard nand_do_upgrade
function we can start using it on bcm63xx.
Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
(cherry picked from 60fc3bc948)
Now that JFFS2 cleanmarkers are supported on the standard nand_do_upgrade
function we can start using it on bmips.
Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
(cherry picked from 464dfac049)
Some Broadcom MIPS devices require JFFS2 cleanmarkers to be present on the
kernel partition or the bootloader will identify the partition as corrupt and
won't boot the kernel.
Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
(cherry picked from commit 434df8df54)
The DGND3700v2 renames the cferam bootloader from cferam to cfeXXX, where XXX
is the number of firmware upgrades performed by the bootloader. Other bcm63xx
devices rename cferam.000 to cferam.XXX, but this device is special because
the cferam name isn't changed on the first firmware flashing but it's changed
on the subsequent ones.
Therefore, we need to look for "cfe" instead of "cferam" to properly detect
the cferam partition and fix the bootlop.
Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
(cherry picked from commit cdfcac6e24)
The DGND3700v2 renames the cferam bootloader from cferam to cfeXXX, where XXX
is the number of firmware upgrades performed by the bootloader. Other bcm63xx
devices rename cferam.000 to cferam.XXX, but this device is special because
the cferam name isn't changed on the first firmware flashing but it's changed
on the subsequent ones.
Therefore, we need to look for "cfe" instead of "cferam" to properly detect
the cferam partition and fix the bootlop.
Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
(cherry picked from commit 915e914cfa)
Some devices rename cferam bootloader using specific patterns and don't follow
broadcom standards for renaming cferam files. This requires supporting
different cferam file names.
Signed-off-by: Álvaro Fernández Rojas <noltari@gmail.com>
(cherry picked from commit 8813edd8d9)
RISC-V is a new CPU architecture aimed to be fully free and open. This
target will add support for it, based on 5.15.
Supports running on:
- HiFive Unleashed - FU540, first generation
- HiFive Unmatched - FU740, current latest generation, PCIe
SD-card images are generated, where the partitions are required to have
specific type codes. As it is commonplace nowadays, OpenSBI is used as the
first stage, with U-boot following as the proper bootloader.
Specifications:
HiFive Unleashed:
- CPU: SiFive FU540 quad-core RISC-V (U54, RV64IMAFDC or RV64GC)
- Memory: 8Gb
- Ethernet: 1x 10/100/1000
- Console: via microUSB
HiFive Unmatched:
- CPU: SiFive FU740 quad-core RISC-V (U74, RV64IMAFDCB or RV64GCB)
- Memory: 16Gb
- Ethernet: 1x 10/100/1000
- USB: 4x USB 3.2
- PCIe: - 1x PCIe Gen3 x8
- 1x M.2 key M (PCIe x4)
- 1x M.2 Key E (PCIe x1 / USB2.0)
- Console: via microUSB
Installation:
Standard SD-card installation via dd-ing the generated image to
an SD-card of at least 256Mb.
Signed-off-by: Zoltan HERPAI <wigyori@uid0.hu>
(cherry picked from commit a3469a90c4)
Add new package for building bootloader for the SiFive U-series boards. Supported
boards at this stage are the HiFive Unleashed and HiFive Unmatched.
Signed-off-by: Zoltan HERPAI <wigyori@uid0.hu>
(cherry picked from commit 91406797f9)
Add patch until it gets accepted in firmware-utils upstream.
The SiFive RISC-V SoCs use two special partition types in the boot process.
As a first step, the ZSBL (zero-stage bootloader) in the CPU looks for a
partition with a GUID of 5B193300-FC78-40CD-8002-E86C45580B47 to load the
first-stage bootloader - which in OpenWrt's case is an SPL image. The FSBL
(SPL) then looks for a partition with a GUID of
2E54B353-1271-4842-806F-E436D6AF6985 to load the SSBL which is usually an
u-boot.
With ptgen already supporting GPT partition creation, add the required GUID
types and name them accordingly to be invoked with the '-T <GPT partition
type>' parameter.
Signed-off-by: Zoltan HERPAI <wigyori@uid0.hu>
(cherry picked from commit 18238c4428)
Add "linux-riscv64-openwrt" into openssl configurations to enable building
on riscv64.
Signed-off-by: Zoltan HERPAI <wigyori@uid0.hu>
(cherry picked from commit a0840ecd53)
OpenSBI is a form of a first-stage bootloader, which initializes
certain parts of an SoC and then passes on control to the second
stage bootloader i.e. an u-boot image.
We're introducing the package with release v1.2, which provides
SBI v0.3 and the SBI SRST extensions which helps to gracefully
reboot/shutdown various HiFive-U SoCs.
Tested on SiFive Unleashed and Unmatched boards.
Signed-off-by: Zoltan HERPAI <wigyori@uid0.hu>
(cherry picked from commit 944b13b3ee)