Ensures that the DSA driver sets exactly the same default flags as the
bridge when a port joins or leaves. Without this we end up with a
confusing flag mismatch, where DSA and bridge ports use different sets
of flags.
This is critical as the "learning" mismatch will be harmful to the
network, causing all traffic to be flooded on all ports.
The original commit was buggy, trying to set the flags one-by-one in a
loop. This was not supported by the API and the end result was that
all but the last flag were cleared. This bug was implicitly fixed
upstream by commit e18f4c18ab5b ("net: switchdev: pass flags and mask
to both {PRE_,}BRIDGE_FLAGS attributes").
This is a minimum temporary stop measure fix for the critical lack of
"learning" only. The major API change associated with a full v5.12+
backport is neither required nor wanted. A simpler fix, moving the
call to dsa_port_bridge_flags() out of the loop, has therefore been
merged into this modified backport.
Fixes: afa3ab54c0 ("realtek: Backport bridge configuration for DSA")
Signed-off-by: Bjørn Mork <bjorn@mork.no>
Acked-by: Daniel Golle <daniel@makrotopia.org>
Tested-by: Stijn Tintel <stijn@linux-ipv6.be>
[fix typos in commit message]
Signed-off-by: Stijn Tintel <stijn@linux-ipv6.be>
This patch enable parser_trx and disable mtdsplit_trx for mt76x8
subtarget.
The trx format is used only on Buffalo WCR-1166DS in mt76x8 subtarget
and the parser need to be switched to parser_trx to use the custom magic
number in the header for WCR-1166DS.
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
This patch adds a patch to allow using parser_trx from ramips target,
mainly for Buffalo devices.
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
This patch moves the patches of parser_trx in mediatek target to
generic/backport-5.10 to use the changes from ramips target and
backport the additional patch of the parser.
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
This patch converts MAC address configuration of Buffalo WCR-1166DS in
02_network to use the generic function of OpenWrt. And also, add
label_mac.
Signed-off-by: INAGAKI Hiroshi <musashino.open@gmail.com>
AV1300 Gigabit Passthrough Powerline ac Wi-Fi Extender
Specifications
--------------
* SoC: MediaTek MT7621AT
* CPU: 880 MHz MIPS 1004KEc dual-core CPU
* RAM: 64 MiB DDR2 (Zentel A3R12E40DBF-8E)
* Flash: 8 MiB SPI NOR (GigaDevice GD25Q64CSIG)
* Ethernet: SoC built-in Switch 5x 1GbE
* Port 0: PLC (connected through AR8035-A)
* Port 1-3: LAN
* WLAN: 2x2 2.4GHz 300 Mbps + 2x2 5GHz 867 Mbps (MT7603EN + MT7613BEN)
* PLC: HomePlug AV2 (Qualcomm QCA7500)
* PLC Flash: 2MiB SPI NOR (GigaDevice GD25Q16CSIG)
* Buttons: Reset, LED, Pair, Wi-Fi
* LEDs: Power (green), PLC (green/amber), LAN (green), 2.4G (green),
5G (green)
* UART: J1 (57600 baud)
* Pinout: (3V3) (GND) (RX) (TX)
* Visually identify GND from connection to PCB ground plane
Installation
------------
Installation is possible from the OEM web interface. Make sure to install
the latest OEM firmware first, so that the PLC firmware is at the latest
version. However, please first check the OpenWRT Wiki page for
confirmation that your OEM firmware version is supported.
Signed-off-by: Joe Mullally <jwmullally@gmail.com>
X32 Pro is another product name for it in the Chinese market.
Specifications:
- SoC: MT7622B
- RAM: 256MB
- Flash: XMC XM25QH128C or Winbond WQ25Q128JVSQ 16MB SPI NOR
- Ethernet: 5x1GbE
- Switch: MT7531BE
- WiFi: 2.4G: MT7622 5G: MT7915AN+MT7975AN
- 3LEDs: System LED(blue) + Mesh LED(green) + Mesh LED(red)
- 2Keys: Mesh button + Reset button
- UART: Marked J19 on board. 3.3v, 115200n1
- Power: 12V 2.5A
MAC addresses as verified by OEM firmware:
use address source
WAN *:F4 ethaddr@product_info
LAN *:F5
5g *:F6
2g *:F7
Flash instruction:
1. Serve the initramfs.img using a TFTP server with address 10.10.10.3.
2. Interrupt the uboot startup process via UART.
3. Select "System Load Linux to SDRAM via TFTP" item.
4. (important) Back up firmware(mtd7) partitions with:
dd if=/dev/mtd7 of=/tmp/firmware.bin
and then download the firmware.bin image via SCP.
5. Flash the OpenWrt sysupgrade firmware.
Recovery stock firmware:
1. Transfer the firmware.bin image to the device.
2. Flash the image with:
mtd write firmware.bin firmware
Signed-off-by: Langhua Ye <y1248289414@outlook.com>
The XMC XM25QH128C is a 16MB SPI NOR chip. The patch is verified on Ruijie RG-EW3200GX PRO.
Datasheet available at https://www.xmcwh.com/uploads/435/XM25QH128C.pdf
Signed-off-by: Langhua Ye <y1248289414@outlook.com>
1. Create "rootfs_data" dynamicaly
U-Boot firmware images can contain only 2 UBI volumes: bootfs (container
with U-Boot + kernel + DTBs) and rootfs (e.g. squashfs). There is no way
to include "rootfs_data" UBI volume or make firmware file tell U-Boot to
create one.
For that reason "rootfs_data" needs to be created dynamically. Use
preinit script to handle that. Fire it right before "mount_root" one.
2. Relate "rootfs_data" to flashed firmware
As already explained flashing new firmware with U-Boot will do nothing
to the "rootfs_data". It could result in new firmware reusing old
"rootfs_data" overlay UBI volume and its file. Users expect a clean
state after flashing firmware (even if flashing the same one).
Solve that by reading flash counter of running firmware and storing it
in "rootfs_data" UBI volume. Every mismatch will result in wiping old
data.
Signed-off-by: Rafał Miłecki <rafal@milecki.pl>
Enable support for allocating user space page table entries in high memory [1],
for the targets which support this feature. This saves precious low memory
(permanently mapped, the only type of memory directly accessible by the kernel).
[1] https://www.kernel.org/doc/html/latest/vm/highmem.html
Signed-off-by: Rui Salvaterra <rsalvaterra@gmail.com>
Ran `make kernel_menuconfig CONFIG_TARGET=bcm2710` having used the snapshot
config for bcm2710[1]. Manually added back two symbols that the make target
removed, namely:
* # CONFIG_SND_SOC_AD193X_I2C is not set
* # CONFIG_SND_SOC_AD193X_SPI is not set
1. https://downloads.openwrt.org/snapshots/targets/bcm27xx/bcm2710/config.buildinfo
Signed-off-by: John Audia <graysky@archlinux.us>
Ran `make kernel_menuconfig CONFIG_TARGET=bcm2711` having used the snapshot
config for bcm2711[1]. Manually added back two symbols that the make target
removed, namely:
* # CONFIG_SND_SOC_AD193X_I2C is not set
* # CONFIG_SND_SOC_AD193X_SPI is not set
Without adding these back, the build fails due to unsatisfied deps[2].
Build system: x86_64
Build-tested: bcm2711/multidevices
1. https://downloads.openwrt.org/snapshots/targets/bcm27xx/bcm2711/config.buildinfo
2. a478202d74 (commitcomment-67096592)
Signed-off-by: John Audia <graysky@archlinux.us>
Fixes following missing kernel config symbol after adding GPIO watchdog:
Software watchdog (SOFT_WATCHDOG) [M/n/y/?] m
Watchdog device controlled through GPIO-line (GPIO_WATCHDOG) [Y/n/m/?] y
Register the watchdog as early as possible (GPIO_WATCHDOG_ARCH_INITCALL) [N/y/?] (NEW)
Fixes: 1a97c03d86 ("rampis: feed zbt-we1026 external watchdog")
Signed-off-by: Petr Štetiar <ynezz@true.cz>
Fixes following warning message during image building process:
Finalizing root filesystem...
root-ipq806x/lib/upgrade/asrock.sh: line 1: /lib/functions.sh: No such file or directory
Enabling boot
root-ipq806x/lib/upgrade/asrock.sh: line 1: /lib/functions.sh: No such file or directory
Enabling bootcount
Fixes#9350
Fixes: 98b86296e6 ("ipq806x: add support for ASRock G10")
Signed-off-by: Petr Štetiar <ynezz@true.cz>
TP-Link Archer A9 v6 (FCCID: TE7A9V6) is an AC1900 Wave-2 gigabit home
router based on a combination of Qualcomm QCN5502 (most likely a 4x4:4
version of the QCA9563 WiSOC), QCA9984 and QCA8337N.
The vendor's firmware content reveals that the same device might be
available on the US market under name 'Archer C90 v6'. Due to lack of
access to such hardware, support introduced in this commit was tested
only on the EU version (sold under 'Archer A9 v6' name).
Based on the information on the PL version of the vendor website, this
device has been already phased out and is no longer available.
Specifications:
- Qualcomm QCN5502 (775 MHz)
- 128 MB of RAM (DDR2)
- 16 MB of flash (SPI NOR)
- 5x Gbps Ethernet (Qualcomm QCA8337N over SGMII)
- Wi-Fi:
- 802.11b/g/n on 2.4 GHz: Qualcomm QCN5502* in 4x4:4 mode
- 802.11a/n/ac on 5 GHz: Qualcomm QCA9984 in 3x3:3 mode
- 3x non-detachable, dual-band external antennas (~3.5 dBi for 5 GHz,
~2.2 dBi for 2.4 GHz, IPEX/U.FL connectors)
- 1x internal PCB antenna for 2.4 GHz (~1.8 dBi)
- 1x USB 2.0 Type-A
- 11x LED (4x connected to QCA8337N, 7x connected to QCN5502)
- 2x button (reset, WPS)
- UART (4-pin, 2.54 mm pitch) header on PCB (not populated)
- 1x mechanical power switch
- 1x DC jack (12 V)
*) unsupported due to missing support for QCN550x in ath9k
UART system serial console notice:
The RX signal of the main SOC's UART on this device is shared with the
WPS button's GPIO. The first-stage U-Boot by default disables the RX,
resulting in a non-functional UART input.
If you press and keep 'ENTER' on the serial console during early
boot-up, the first-stage U-Boot will enable RX input.
Vendor firmware allows password-less access to the system over serial.
Flash instruction (vendor GUI):
1. It is recommended to first upgrade vendor firmware to the latest
version (1.1.1 Build 20210315 rel.40637 at the time of writing).
2. Use the 'factory' image directly in the vendor's GUI.
Flash instruction (TFTP based recovery in second-stage U-Boot):
1. Rename 'factory' image to 'ArcherA9v6_tp_recovery.bin'
2. Setup a TFTP server on your PC with IP 192.168.0.66/24.
3. Press and hold the reset button for ~5 sec while turning on power.
4. The device will download image, flash it and reboot.
Flash instruction (web based recovery in first-stage U-Boot):
1. Use 'CTRL+C' during power-up to enable CLI in first-stage U-Boot.
2. Connect a PC with IP set to 192.168.0.1 to one of the LAN ports.
3. Issue 'httpd' command and visit http://192.168.0.1 in browser.
4. Use the 'factory' image.
If you would like to restore vendor's firmware, follow one of the
recovery methods described above.
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
ALFA Network Tube-2HQ is a successor of the Tube-2H/P series (EOL) which
was based on the Atheros AR9331. The new version uses Qualcomm QCA9531.
Specifications:
- Qualcomm/Atheros QCA9531 v2
- 650/400/200 MHz (CPU/DDR/AHB)
- 64 or 128 MB of RAM (DDR2)
- 16+ MB of flash (SPI NOR)
- 1x 10/100 Mbps Ethernet with passive PoE input (24 V)
(802.3at/af PoE support with optional module)
- 1T1R 2.4 GHz Wi-Fi with external PA (SE2623L, up to 27 dBm) and LNA
- 1x Type-N (male) antenna connector
- 6x LED (5x driven by GPIO)
- 1x button (reset)
- external h/w watchdog (EM6324QYSP5B, enabled by default)
- UART (4-pin, 2.00 mm pitch) header on PCB
Flash instruction:
You can use sysupgrade image directly in vendor firmware which is based
on LEDE/OpenWrt. Alternatively, you can use web recovery mode in U-Boot:
1. Configure PC with static IP 192.168.1.2/24.
2. Connect PC with one of RJ45 ports, press the reset button, power up
device, wait for first blink of all LEDs (indicates network setup),
then keep button for 3 following blinks and release it.
3. Open 192.168.1.1 address in your browser and upload sysupgrade image.
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
Drop custom 'mtd-cal-data' and switch to 'nvmem-cells' based solution
for fetching radio calibration data and its MAC address.
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
All the QCA9531 based boards from ALFA Network are based on the same
design and share a common DTSI: 'qca9531_alfa-network_r36a.dtsi'.
Instead of defining 'nvmem-cells' for the MAC address in every device's
DTS, move definition to the common DTSI file.
Signed-off-by: Piotr Dymacz <pepe2k@gmail.com>
Bump the last missing target to Kernel 5.10. While this requires a work
around to boot it will allow more people to test the new Kernel before
the upcomming release.
Signed-off-by: Paul Spooren <mail@aparcar.org>
This is a workaround to make the target overall bootable. With this more
people should be able to test the Kernel 5.10 and report further issues.
Suggested-by: Daniel González Cabanelas <dgcbueu@gmail.com>
Signed-off-by: Paul Spooren <mail@aparcar.org>
Add support for the TP-Link EAP615-Wall, an AX1800 Wall Plate WiFi 6 AP.
The device is very similar to the TP-Link EAP235-Wall.
Hardware:
* SoC: MediaTek MT7621AT
* RAM: 128MiB
* Flash: 16MiB SPI-NOR
* Ethernet: 4x GbE
* Back: ETH0 (PoE-PD)
* Bottom: ETH1, ETH2, ETH3 (PoE passthrough)
* WiFi: MT7905DAN/MT7975DN 2.4/5 GHz 2T2R
* LEDS: 1x white
* Buttons: 1x LED, 1x reset
Stock firmware uses a random MAC address for ethernet. OpenWrt uses the
MAC address that is on the device label for ethernet and the wireless
interfaces. MAC address must not be incremented, as this will cause MAC
address conflicts in case you have two devices with consecutive MAC
addresses. Instead, different locally administered addresses will be
generated automatically, based on the MAC on the label.
Installation via stock firmware:
* Enable SSH in the TP-Link web interface
* SSH to the device
* Run `cliclientd stopcs`
* Upload the OpenWrt factory image via the TP-Link web interface
Installation via bootloader:
* Solder TTL header. Pinout: 1: TX, 2: RX, 3: GND, 4: VCC, with pin 1
closest to ETH1. Baud rate 115200
* Interrupt boot process by holding a key during boot
* Boot the OpenWrt initramfs:
# tftpboot 0x84000000 openwrt-ramips-mt7621-tplink_eap615-wall-v1-initramfs-kernel.bin
# bootm
* Copy openwrt-ramips-mt7621-tplink_eap615-wall-v1-squashfs-sysupgrade.bin
to /tmp and use sysupgrade to install it
Thanks to Sander Vanheule for his work on the EAP235-Wall, which made
adding support for the EAP615-Wall very easy.
Signed-off-by: Stijn Tintel <stijn@linux-ipv6.be>
Reviewed-by: Sander Vanheule <sander@svanheule.net>
Acked-by: Arınç ÜNAL <arinc.unal@arinc9.com>
Remove PM debug features from sama5 kernel config. It is not
necessary to have it on production code. This also fixes the
build for sama5 target after commit 97158fe10e ("kernel:
package ramoops pstore-ram crash log storage)
Fixes: 97158fe10e ("kernel: package ramoops pstore-ram crash log storage")
Signed-off-by: Claudiu Beznea <claudiu.beznea@microchip.com>
Increase the kernel size from 3 MB to 4 MB for EA8500 and EA7500v1.
* modify the common .dtsi
* modify the kernel size in the image recipes
Define compat-version 2.0 to force factory image usage for sysupgrade.
Add explanation message. Reenable both devices.
As for 4MiB (and not more): Hannu Nyman noted that:
"We have lots of ipq806x devices with 4 MB kernel, so will
need action at that point in future in any case.
(Assuming that the bootloader did not have a 4 MB limit that
has been tested...)"
Signed-off-by: Hannu Nyman <hannu.nyman@iki.fi>
(squashed, added 4MiB notice of support in ipq806x)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
ZTE MF286A and MF286R are indoor LTE category 6/7 CPE router with simultaneous
dual-band 802.11ac plus 802.11n Wi-Fi radios and quad-port gigabit
Ethernet switch, FXS and external USB 2.0 port.
Hardware highlights:
- CPU: QCA9563 SoC at 775MHz,
- RAM: 128MB DDR2,
- NOR Flash: MX25L1606E 2MB SPI Flash, for U-boot only,
- NAND Flash: W25N01GV 128MB SPI NAND-Flash, for all other data,
- Wi-Fi 5GHz: QCA9886 2x2 MIMO 802.11ac Wave2 radio,
- WI-Fi 2.4GHz: QCA9563 3x3 MIMO 802.11n radio,
- Switch: QCA8337v2 4-port gigabit Ethernet, with single SGMII CPU port,
- WWAN:
[MF286A] MDM9230-based category 6 internal LTE modem
[MF286R] PXA1826-based category 7 internal LTE modem
in extended mini-PCIE form factor, with 3 internal antennas and
2 external antenna connections, single mini-SIM slot.
- FXS: one external ATA port (handled entirely by modem part) with two
physical connections in parallel,
- USB: Single external USB 2.0 port,
- Switches: power switch, WPS, Wi-Fi and reset buttons,
- LEDs: Wi-Fi, Test (internal). Rest of LEDs (Phone, WWAN, Battery,
Signal state) handled entirely by modem. 4 link status LEDs handled by
the switch on the backside.
- Battery: 3Ah 1-cell Li-Ion replaceable battery, with charging and
monitoring handled by modem.
- Label MAC device: eth0
The device shares many components with previous model, MF286, differing
mostly by a Wave2 5GHz radio, flash layout and internal LED color.
In case of MF286A, the modem is the same as in MF286. MF286R uses a
different modem based on Marvell PXA1826 chip.
Internal modem of MF286A is supported via uqmi, MF286R modem isn't fully
supported, but it is expected to use comgt-ncm for connection, as it
uses standard 3GPP AT commands for connection establishment.
Console connection: connector X2 is the console port, with the following
pinout, starting from pin 1, which is the topmost pin when the board is
upright:
- VCC (3.3V). Do not use unless you need to source power for the
converer from it.
- TX
- RX
- GND
Default port configuration in U-boot as well as in stock firmware is
115200-8-N-1.
Installation:
Due to different flash layout from stock firmware, sysupgrade from
within stock firmware is impossible, despite it's based on QSDK which
itself is based on OpenWrt.
STEP 0: Stock firmware update:
As installing OpenWrt cuts you off from official firmware updates for
the modem part, it is recommended to update the stock firmware to latest
version before installation, to have built-in modem at the latest firmware
version.
STEP 1: gaining root shell:
Method 1:
This works if busybox has telnetd compiled in the binary.
If this does not work, try method 2.
Using well-known exploit to start telnetd on your router - works
only if Busybox on stock firmware has telnetd included:
- Open stock firmware web interface
- Navigate to "URL filtering" section by going to "Advanced settings",
then "Firewall" and finally "URL filter".
- Add an entry ending with "&&telnetd&&", for example
"http://hostname/&&telnetd&&".
- telnetd will immediately listen on port 4719.
- After connecting to telnetd use "admin/admin" as credentials.
Method 2:
This works if busybox does not have telnetd compiled in. Notably, this
is the case in DNA.fi firmware.
If this does not work, try method 3.
- Set IP of your computer to 192.168.0.22. (or appropriate subnet if
changed)
- Have a TFTP server running at that address
- Download MIPS build of busybox including telnetd, for example from:
https://busybox.net/downloads/binaries/1.21.1/busybox-mips
and put it in it's root directory. Rename it as "telnetd".
- As previously, login to router's web UI and navigate to "URL
filtering"
- Using "Inspect" feature, extend "maxlength" property of the input
field named "addURLFilter", so it looks like this:
<input type="text" name="addURLFilter" id="addURLFilter" maxlength="332"
class="required form-control">
- Stay on the page - do not navigate anywhere
- Enter "http://aa&zte_debug.sh 192.168.0.22 telnetd" as a filter.
- Save the settings. This will download the telnetd binary over tftp and
execute it. You should be able to log in at port 23, using
"admin/admin" as credentials.
Method 3:
If the above doesn't work, use the serial console - it exposes root shell
directly without need for login. Some stock firmwares, notably one from
finnish DNA operator lack telnetd in their builds.
STEP 2: Backing up original software:
As the stock firmware may be customized by the carrier and is not
officially available in the Internet, IT IS IMPERATIVE to back up the
stock firmware, if you ever plan to returning to stock firmware.
It is highly recommended to perform backup using both methods, to avoid
hassle of reassembling firmware images in future, if a restore is
needed.
Method 1: after booting OpenWrt initramfs image via TFTP:
PLEASE NOTE: YOU CANNOT DO THIS IF USING INTERMEDIATE FIRMWARE FOR INSTALLATION.
- Dump stock firmware located on stock kernel and ubi partitions:
ssh root@192.168.1.1: cat /dev/mtd4 > mtd4_kernel.bin
ssh root@192.168.1.1: cat /dev/mtd9 > mtd9_ubi.bin
And keep them in a safe place, should a restore be needed in future.
Method 2: using stock firmware:
- Connect an external USB drive formatted with FAT or ext4 to the USB
port.
- The drive will be auto-mounted to /var/usb_disk
- Check the flash layout of the device:
cat /proc/mtd
It should show the following:
mtd0: 000a0000 00010000 "u-boot"
mtd1: 00020000 00010000 "u-boot-env"
mtd2: 00140000 00010000 "reserved1"
mtd3: 000a0000 00020000 "fota-flag"
mtd4: 00080000 00020000 "art"
mtd5: 00080000 00020000 "mac"
mtd6: 000c0000 00020000 "reserved2"
mtd7: 00400000 00020000 "cfg-param"
mtd8: 00400000 00020000 "log"
mtd9: 000a0000 00020000 "oops"
mtd10: 00500000 00020000 "reserved3"
mtd11: 00800000 00020000 "web"
mtd12: 00300000 00020000 "kernel"
mtd13: 01a00000 00020000 "rootfs"
mtd14: 01900000 00020000 "data"
mtd15: 03200000 00020000 "fota"
mtd16: 01d00000 00020000 "firmware"
Differences might indicate that this is NOT a MF286A device but
one of other variants.
- Copy over all MTD partitions, for example by executing the following:
for i in 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15; do cat /dev/mtd$i > \
/var/usb_disk/mtd$i; done
"Firmware" partition can be skipped, it is a concatenation
of "kernel" and "rootfs".
- If the count of MTD partitions is different, this might indicate that
this is not a MF286A device, but one of its other variants.
- (optionally) rename the files according to MTD partition names from
/proc/mtd
- Unmount the filesystem:
umount /var/usb_disk; sync
and then remove the drive.
- Store the files in safe place if you ever plan to return to stock
firmware. This is especially important, because stock firmware for
this device is not available officially, and is usually customized by
the mobile providers.
STEP 3: Booting initramfs image:
Method 1: using serial console (RECOMMENDED):
- Have TFTP server running, exposing the OpenWrt initramfs image, and
set your computer's IP address as 192.168.0.22. This is the default
expected by U-boot. You may wish to change that, and alter later
commands accordingly.
- Connect the serial console if you haven't done so already,
- Interrupt boot sequence by pressing any key in U-boot when prompted
- Use the following commands to boot OpenWrt initramfs through TFTP:
setenv serverip 192.168.0.22
setenv ipaddr 192.168.0.1
tftpboot 0x81000000 openwrt-ath79-nand-zte_mf286a-initramfs-kernel.bin
bootm 0x81000000
(Replace server IP and router IP as needed). There is no emergency
TFTP boot sequence triggered by buttons, contrary to MF283+.
- When OpenWrt initramfs finishes booting, proceed to actual
installation.
Method 2: using initramfs image as temporary boot kernel
This exploits the fact, that kernel and rootfs MTD devices are
consecutive on NAND flash, so from within stock image, an initramfs can
be written to this area and booted by U-boot on next reboot, because it
uses "nboot" command which isn't limited by kernel partition size.
- Download the initramfs-kernel.bin image
- After backing up the previous MTD contents, write the images to the
"firmware" MTD device, which conveniently concatenates "kernel" and
"rootfs" partitions that can fit the initramfs image:
nandwrite -p /dev/<firmware-mtd> \
/var/usb_disk/openwrt-ath79-zte_mf286a-initramfs-kernel.bin
- If write is OK, reboot the device, it will reboot to OpenWrt
initramfs:
reboot -f
- After rebooting, SSH into the device and use sysupgrade to perform
proper installation.
Method 3: using built-in TFTP recovery (LAST RESORT):
- With that method, ensure you have complete backup of system's NAND
flash first. It involves deliberately erasing the kernel.
- Download "-initramfs-kernel.bin" image for the device.
- Prepare the recovery image by prepending 8MB of zeroes to the image,
and name it root_uImage:
dd if=/dev/zero of=padding.bin bs=8M count=1
cat padding.bin openwrt-ath79-nand-zte_mf286a-initramfs-kernel.bin >
root_uImage
- Set up a TFTP server at 192.0.0.1/8. Router will use random address
from that range.
- Put the previously generated "root_uImage" into TFTP server root
directory.
- Deliberately erase "kernel" partition" using stock firmware after
taking backup. THIS IS POINT OF NO RETURN.
- Restart the device. U-boot will attempt flashing the recovery
initramfs image, which will let you perform actual installation using
sysupgrade. This might take a considerable time, sometimes the router
doesn't establish Ethernet link properly right after booting. Be
patient.
- After U-boot finishes flashing, the LEDs of switch ports will all
light up. At this moment, perform power-on reset, and wait for OpenWrt
initramfs to finish booting. Then proceed to actual installation.
STEP 4: Actual installation:
- Set your computer IP to 192.168.1.22/24
- scp the sysupgrade image to the device:
scp openwrt-ath79-nand-zte_mf286a-squashfs-sysupgrade.bin \
root@192.168.1.1:/tmp/
- ssh into the device and execute sysupgrade:
sysupgrade -n /tmp/openwrt-ath79-nand-zte_mf286a-squashfs-sysupgrade.bin
- Wait for router to reboot to full OpenWrt.
STEP 5: WAN connection establishment
Since the router is equipped with LTE modem as its main WAN interface, it
might be useful to connect to the Internet right away after
installation. To do so, please put the following entries in
/etc/config/network, replacing the specific configuration entries with
one needed for your ISP:
config interface 'wan'
option proto 'qmi'
option device '/dev/cdc-wdm0'
option auth '<auth>' # As required, usually 'none'
option pincode '<pin>' # If required by SIM
option apn '<apn>' # As required by ISP
option pdptype '<pdp>' # Typically 'ipv4', or 'ipv4v6' or 'ipv6'
For example, the following works for most polish ISPs
config interface 'wan'
option proto 'qmi'
option device '/dev/cdc-wdm0'
option auth 'none'
option apn 'internet'
option pdptype 'ipv4'
The required minimum is:
config interface 'wan'
option proto 'qmi'
option device '/dev/cdc-wdm0'
In this case, the modem will use last configured APN from stock
firmware - this should work out of the box, unless your SIM requires
PIN which can't be switched off.
If you have build with LuCI, installing luci-proto-qmi helps with this
task.
Restoring the stock firmware:
Preparation:
If you took your backup using stock firmware, you will need to
reassemble the partitions into images to be restored onto the flash. The
layout might differ from ISP to ISP, this example is based on generic stock
firmware
The only partitions you really care about are "web", "kernel", and
"rootfs". These are required to restore the stock firmware through
factory TFTP recovery.
Because kernel partition was enlarged, compared to stock
firmware, the kernel and rootfs MTDs don't align anymore, and you need
to carve out required data if you only have backup from stock FW:
- Prepare kernel image
cat mtd12_kernel.bin mtd13_rootfs.bin > owrt_kernel.bin
truncate -s 4M owrt_kernel_restore.bin
- Cut off first 1MB from rootfs
dd if=mtd13_rootfs.bin of=owrt_rootfs.bin bs=1M skip=1
- Prepare image to write to "ubi" meta-partition:
cat mtd6_reserved2.bi mtd7_cfg-param.bin mtd8_log.bin mtd9_oops.bin \
mtd10_reserved3.bin mtd11_web.bin owrt_rootfs.bin > \
owrt_ubi_ubi_restore.bin
You can skip the "fota" partition altogether,
it is used only for stock firmware update purposes and can be overwritten
safely anyway. The same is true for "data" partition which on my device
was found to be unused at all. Restoring mtd5_cfg-param.bin will restore
the stock firmware configuration you had before.
Method 1: Using initramfs:
This method is recmmended if you took your backup from within OpenWrt
initramfs, as the reassembly is not needed.
- Boot to initramfs as in step 3:
- Completely detach ubi0 partition using ubidetach /dev/ubi0_0
- Look up the kernel and ubi partitions in /proc/mtd
- Copy over the stock kernel image using scp to /tmp
- Erase kernel and restore stock kernel:
(scp mtd4_kernel.bin root@192.168.1.1:/tmp/)
mtd write <kernel_mtd> mtd4_kernel.bin
rm mtd4_kernel.bin
- Copy over the stock partition backups one-by-one using scp to /tmp, and
restore them individually. Otherwise you might run out of space in
tmpfs:
(scp mtd3_ubiconcat0.bin root@192.168.1.1:/tmp/)
mtd write <ubiconcat0_mtd> mtd3_ubiconcat0.bin
rm mtd3_ubiconcat0.bin
(scp mtd5_ubiconcat1.bin root@192.168.1.1:/tmp/)
mtd write <ubiconcat1_mtd> mtd5_ubiconcat1.bin
rm mtd5_ubiconcat1.bin
- If the write was correct, force a device reboot with
reboot -f
Method 2: Using live OpenWrt system (NOT RECOMMENDED):
- Prepare a USB flash drive contatining MTD backup files
- Ensure you have kmod-usb-storage and filesystem driver installed for
your drive
- Mount your flash drive
mkdir /tmp/usb
mount /dev/sda1 /tmp/usb
- Remount your UBI volume at /overlay to R/O
mount -o remount,ro /overlay
- Write back the kernel and ubi partitions from USB drive
cd /tmp/usb
mtd write mtd4_kernel.bin /dev/<kernel_mtd>
mtd write mtd9_ubi.bin /dev/<kernel_ubi>
- If everything went well, force a device reboot with
reboot -f
Last image may be truncated a bit due to lack of space in RAM, but this will happen over "fota"
MTD partition which may be safely erased after reboot anyway.
Method 3: using built-in TFTP recovery:
This method is recommended if you took backups using stock firmware.
- Assemble a recovery rootfs image from backup of stock partitions by
concatenating "web", "kernel", "rootfs" images dumped from the device,
as "root_uImage"
- Use it in place of "root_uImage" recovery initramfs image as in the
TFTP pre-installation method.
Quirks and known issuesa
- It was observed, that CH340-based USB-UART converters output garbage
during U-boot phase of system boot. At least CP2102 is known to work
properly.
- Kernel partition size is increased to 4MB compared to stock 3MB, to
accomodate future kernel updates - at this moment OpenWrt 5.10 kernel
image is at 2.5MB which is dangerously close to the limit. This has no
effect on booting the system - but keep that in mind when reassembling
an image to restore stock firmware.
- uqmi seems to be unable to change APN manually, so please use the one
you used before in stock firmware first. If you need to change it,
please use protocok '3g' to establish connection once, or use the
following command to change APN (and optionally IP type) manually:
echo -ne 'AT+CGDCONT=1,"IP","<apn>' > /dev/ttyUSB0
- The only usable LED as a "system LED" is the blue debug LED hidden
inside the case. All other LEDs are controlled by modem, on which the
router part has some influence only on Wi-Fi LED.
- Wi-Fi LED currently doesn't work while under OpenWrt, despite having
correct GPIO mapping. All other LEDs are controlled by modem,
including this one in stock firmware. GPIO19, mapped there only acts
as a gate, while the actual signal source seems to be 5GHz Wi-Fi
radio, however it seems it is not the LED exposed by ath10k as
ath10k-phy0.
- GPIO5 used for modem reset is a suicide switch, causing a hardware
reset of whole board, not only the modem. It is attached to
gpio-restart driver, to restart the modem on reboot as well, to ensure
QMI connectivity after reboot, which tends to fail otherwise.
- Modem, as in MF283+, exposes root shell over ADB - while not needed
for OpenWrt operation at all - have fun lurking around.
The same modem module is used as in older MF286.
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
Add the missing pinctrl properties on the ethernet node.
GMAC1 will start working with this change.
Link: https://lore.kernel.org/netdev/83a35aa3-6cb8-2bc4-2ff4-64278bbcd8c8@arinc9.com/
Overwrite pinctrl-0 property without rgmii2_pins on devicetrees which use
the rgmii2 pins as GPIO (22 - 33).
Give gpio function to rgmii2 pin group on mt7621_tplink_archer-x6-v3.dtsi
which uses GPIO 28.
Signed-off-by: Arınç ÜNAL <arinc.unal@arinc9.com>
Flow control needs to be enabled on both sides to work.
It is already enabled on gmac0, enable it on port@6 too.
Signed-off-by: Arınç ÜNAL <arinc.unal@arinc9.com>
Tested-by: Sungbo Eo <mans0n@gorani.run>
Remove reg property from ports node to fix this warning:
Warning (unit_address_vs_reg): /ethernet@1e100000/mdio-bus/switch@1f/ports: node has a reg or ranges property, but no unit name
Another warning surfaces afterwards. Remove #address-cells and #size-cells
from switch@1f node to fix this warning:
Warning (avoid_unnecessary_addr_size): /ethernet@1e100000/mdio-bus/switch@1f: unnecessary #address-cells/#size-cells without "ranges" or child "reg" property
Signed-off-by: Arınç ÜNAL <arinc.unal@arinc9.com>
The Zyxel EMG2926-Q10A is 99% the Zyxel NBG6716, but the bootloader
expects a different product name when flashing over TFTP. Also, the
EMG2926-Q10A always has 128 MiB of NAND flash whereas the NBG6716
reportedly can have either 128 MiB or 256 MiB.
Signed-off-by: Alex Henrie <alexhenrie24@gmail.com>
The Sagem/Plusnet F@ST2704N has a red label in ethernet port 4. Its purpose is
to be used as Fibre/WAN with the stock firmware.
Configure the Eth4 as WAN.
Fixes: fbbb977772 (brcm63xx: Tune the network configuration for several
routers)
Signed-off-by: Daniel González Cabanelas <dgcbueu@gmail.com>
the Aerohive HiveAP-330 and HiveAP-350 come equipped
with an TI TMP125 temperature chip. This patch wires
up the necessary support for this sensor and exposes
it through hwmon / thermal sensor framework. Upstream
support is coming, but it has to go through hwmon-next
first.
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
The last remaining 5.4 target currently chokes because the
symbols haven't been disabled like for 5.10.
Fixes: 97158fe10e ("kernel: package ramoops pstore-ram crash log storage")
Reported-by: Hannu Nyman <hannu.nyman@iki.fi>
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
Add the following kconfig symbols (disabled):
CONFIG_DEFAULT_FQ
CONFIG_DEFAULT_CODEL
CONFIG_DEFAULT_SFQ
Also resort the config with the kconfig.pl script.
Fixes: f39872d966 ("kernel: generic: select the fq_codel qdisc by default")
Tested-by: Christian Lamparter <chunkeey@gmail.com>
Signed-off-by: Rui Salvaterra <rsalvaterra@gmail.com>
Define the kernel crash log storage ramoops/pstore feature
for R7800 and its sister XR500.
Reference to the ramoops admin guide in upstream Linux:
https://www.kernel.org/doc/html/v5.10/admin-guide/ramoops.html
Tested with R7800.
Signed-off-by: Hannu Nyman <hannu.nyman@iki.fi>
Package the ability to log kernel crashes to 'ramoops' pstore
files into RAM in /sys/fs/pstore
Reference to the ramoops admin guide in upstream Linux:
https://www.kernel.org/doc/html/v5.10/admin-guide/ramoops.html
The files in RAM survive a warm reboot, but not a cold reboot.
Note: kmod-ramoops selects kmod-pstore and kmod-reed-solomon.
The feature can be used by selecting the kmod-ramoops and
adding a ramoops reserved-memory definition to the device DTS.
Example from R7800:
reserved-memory {
rsvd@5fe00000 {
reg = <0x5fe00000 0x200000>;
reusable;
};
ramoops@42100000 {
compatible = "ramoops";
reg = <0x42100000 0x40000>;
record-size = <0x4000>;
console-size = <0x4000>;
ftrace-size = <0x4000>;
pmsg-size = <0x4000>;
};
};
If no definition has been made in DTS, no crash log is stored
for the device.
Signed-off-by: Hannu Nyman <hannu.nyman@iki.fi>
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
(added CONFIG_EFI_VARS_PSTORE disable)
Previously, grub2 was hardcoded to always look on "hd0" for the
kernel.
This works well when the system only had a single disk.
But if there was a second disk/stick present, it may have look
on the wrong drive because of enumeration races.
This patch utilizes grub2 search function to look for a filesystem
with the label "kernel". This works thanks to existing setup in
scripts/gen_image_generic.sh. Which sets the "kernel" label on
both the fat and ext4 filesystem variants.
Signed-off-by: Jax Jiang <jax.jiang.007@gmail.com>
Suggested-by: Alberto Bursi <bobafetthotmail@gmail.com> (MX100 WA)
(word wrapped, slightly rewritten commit message, removed MX100 WA)
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
This reverts all four commits
dbb45421ba "bcm27xx: bcm2708: update defconfig"
332f69583a "bcm27xx: bcm2709: update defconfig"
a478202d74 "bcm27xx: bcm2710: update defconfig"
82da1dfd69 "bcm27xx: bcm2711: update defconfig"
this also highlighted an unrelated kconfig failure
that warrants investigation. But for now it is important
for the bcm27xx target to come back again.
|*
|* Restart config...
|*
|*
|* Allow override default queue discipline
|*
|Allow override default queue discipline (NET_SCH_DEFAULT) [Y/n/?] y
| Default queuing discipline
| 1. Fair Queue (DEFAULT_FQ) (NEW)
| 2. Controlled Delay (DEFAULT_CODEL) (NEW)
| > 3. Fair Queue Controlled Delay (DEFAULT_FQ_CODEL)
| 4. Stochastic Fair Queue (DEFAULT_SFQ) (NEW)
| 5. Priority FIFO Fast (DEFAULT_PFIFO_FAST)
| choice[1-5?]:
|Error in reading or end of file.
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
Add kernel support for SAMA7G5 by back-porting mainline kernel patches.
Among SAMA7G5 features could be remembered:
- ARM Cortex-A7
- double data rate multi-port dynamic RAM controller supporting DDR2,
DDR3, DDR3L, LPDDR2, LPDDR3 up to 533MHz
- peripherals for audio, video processing
- 1 gigabit + 1 megabit Ethernet controllers
- 6 CAN controllers
- trust zone support
- DVFS for CPU
- criptography IPs
Signed-off-by: Claudiu Beznea <claudiu.beznea@microchip.com>
Adding the feature flag automatically creates a a rootfs.tar.gz files
which can be used for Docker rootfs containers.
Signed-off-by: Paul Spooren <mail@aparcar.org>
fwtool is now always part of the sysupgrade stage2 ramdisk, so drop
the no longer needed RAMFS_COPY_BIN variable.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>