The ZTE MF282 Plus is a LTE router used (exclusively?) by the network
operator "3". It is very similar to the MF286/MF287 but in the form factor
of the MF282.
Specifications
==============
SoC: IPQ4019
RAM: 256MiB
Flash: 8MiB SPI-NOR + 128MiB SPI-NAND
LAN: 1x GBit LAN
LTE: ZTE Cat6
WiFi: 802.11a/b/g/n/ac SoC-integrated
MAC addresses
=============
LAN: from config
WiFi 1: from config + 1
WiFi 2: from config + 2
Installation
============
Option 1 - TFTP
---------------
TFTP installation using UART is preferred. Disassemble the device and
connect serial. Put the initramfs image as openwrt.bin to your TFTP server
and configure a static IP of 192.168.1.100. Load the initramfs image by
typing:
setenv serverip 192.168.1.100
setenv ipaddr 192.168.1.1
tftpboot 0x84000000 openwrt.bin
bootm 0x84000000
From this intiramfs boot you can take a backup of the currently installed
partitions as no vendor firmware is available for download:
ubiattach -m9
cat /dev/ubi0_0 > /tmp/ubi0_0
cat /dev/ubi0_1 > /tmp/ubi0_1
Copy the files /tmp/ubi0_0 and /tmp/ubi0_1 somewhere save.
Once booted, transfer the sysupgrade image and run sysupgrade. You might
have to delete the stock volumes first:
ubirmvol /dev/ubi0 -N ubi_rootfs
ubirmvol /dev/ubi0 -N kernel
Option 2 - From stock firmware
------------------------------
The installation from stock requires an exploit first. The exploit consists
of a backup file that forces the firmware to download telnetd via TFTP from
192.168.0.22 and run it. Once exploited, you can connect via telnet and
login as admin:admin.
The exploit will be available at the device wiki page.
Once inside the stock firmware, you can transfer the -factory.bin file to
/tmp by using "scp" from the stock frmware or "tftp".
ZTE has blocked writing to the NAND. Fortunately, it's easy to allow write
access - you need to read from one file in /proc. Once done, you need to
erase the UBI partition and flash OpenWrt. Before performing the operation,
make sure that mtd9 is the partition labelled "rootfs" by calling
"cat /proc/mtd".
Complete commands:
cd /tmp
tftp -g -r factory.bin 192.168.0.22
cat /proc/driver/sensor_id
flash_erase /dev/mtd9 0 0
dd if=/tmp/factory.bin of=/dev/mtdblock9 bs=131072
Afterwards, reboot your device and you should have a working OpenWrt
installation.
Restore Stock
=============
Option 1 - via UART
-------------------
Boot an OpenWrt initramfs image via TFTP as for the initial installation.
Transfer the two backed-up files to your box to /tmp.
Then, run the following commands - replace $kernel_length and $rootfs_size
by the size of ubi0_0 and ubi0_1 in bytes.
ubiattach -m 9
ubirmvol /dev/ubi0 -N kernel
ubirmvol /dev/ubi0 -N rootfs
ubirmvol /dev/ubi0 -N rootfs_data
ubimkvol /dev/ubi0 -N kernel -s $kernel_length
ubimkvol /dev/ubi0 -N ubi_rootfs -s $rootfs_size
ubiupdatevol /dev/ubi0_0 /tmp/ubi0_0
ubiupdatevol /dev/ubi0_1 /tmp/ubi0_1
Option 2 - from within OpenWrt
------------------------------
This option requires to flash an initramfs version first so that access
to the flash is possible. This can be achieved by sysupgrading to the
recovery.bin version and rebooting. Once rebooted, you are again in a
default OpenWrt installation, but no partition is mounted.
Follow the commands from Option 1 to flash back to stock.
LTE Modem
=========
The LTE modem is similar to the MF286R, it provides an RNDIS interface
and an AT interface.
Other Notes
===========
There is one GPIO Switch "Power button blocker" which, if enabled, does not
trigger a reset of the SoC if the modem reboots. If disabled, the SoC is
rebooted along with the modem. The modem can be rebooted via the exported
GPIO "modem-reset" in /sys/class/gpio.
Signed-off-by: Andreas Böhler <dev@aboehler.at>
Turn the "gpio-restart" node into a "gpio-export" node for all MF287
variants, similar to the MF287 Pro. Unfortunately, there doesn't seem to be
a "power button blocker" GPIO for the MF287 and MF287 Plus, so a modem
reset always triggers a system reset.
Signed-off-by: Andreas Böhler <dev@aboehler.at>
The ZTE MF287 requires a different board calibration file for ath10k than
the ZTE MF287+. The two devices receive their own DTS, thus the device tree
is slightly refactored.
Signed-off-by: Andreas Böhler <dev@aboehler.at>
For the ZTE MF287 series, a special recovery image is built. The Makefile
worked fine on snapshot, but created corrupt images on the 23.05 images.
By using the appropriate variable, this should be fixed.
Signed-off-by: Andreas Böhler <dev@aboehler.at>
Kernel config for 6.1 on ipq40xx is missing the config for
CONFIG_NVMEM_QCOM_SEC_QFPROM which them makes the build stop with a prompt.
Symbol is there in 5.15 config but 6.1 config was based of a version that
does not yet have it set as it was introduced after the 6.1 PR.
So, disable CONFIG_NVMEM_QCOM_SEC_QFPROM to fix building on 6.1.
Fixes: 825cfa4e36 ("ipq40xx: 6.1: refresh kernel config")
Signed-off-by: Robert Marko <robimarko@gmail.com>
This pulls-in the latest version of qca8k based IPQ4019 driver as well as
the latest version of IPQESS that was sent upstream.
Both qca8k and IPQESS have been improved and cleaned up compared to current
version of patches.
PSGMII PHY mode and missing reset have been upstreamed and will be in
the kernel 6.6.
Signed-off-by: Robert Marko <robimarko@gmail.com>
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
Adapt and refresh patches to apply.
DSA and ethernet driver patches are dropped as they will be replaced with
the latest version that was sent upstream.
Signed-off-by: Robert Marko <robimarko@gmail.com>
Kernel 6.1 has changed format of sfp_parse_support(), so lets adapt to
those changes so it works on newer kernels as well.
Signed-off-by: Robert Marko <robimarko@gmail.com>
As a preparation to move to 6.1, we need to move the DSA and ethernet
drivers to a 5.15 specific directory as 6.1 will use the latest patchset
that was sent upstream which is too hard to backport to 5.15.
Signed-off-by: Robert Marko <robimarko@gmail.com>
This adds support for the RBR40 and RBS40 (sold together as RBK40),
two netgear routers identical to SRR60/SRS60 in all but antennae (and
hardware id). See 2cb24b3f3c for details.
Signed-off-by: Thomas Makin <halorocker89@gmail.com>
The bootcmd limits the kernel to 4 MiB which is
exceeded when using Device/FitImage. Device/FitzImage
reduces the size to around 3 MiB.
Reviewed-by: Robert Marko <robimarko@gmail.com>
Signed-off-by: Thomas Bong <thomas.bong@devolo.de>
Renamed the interfaces to match the other devices.
Name the interface connected to the builtin G.hn chip 'ghn'.
This might toggle at runtime while the G.hn chip is in the
bootloader.
Reviewed-by: Robert Marko <robimarko@gmail.com>
Signed-off-by: Thomas Bong <thomas.bong@devolo.de>
Import commits from upstream Linux replacing some downstream patches.
Move accepted patches from pending-{5.15,6.1} to backport-{5.15,6.1}.
Signed-off-by: Daniel Golle <daniel@makrotopia.org>
The MAC address of the GMAC is contained inside the CWMP-Account
number on the label.
The label MAC address alias was defined previously, but it has been
removed with the switch to IPQESS / DSA.
Restore the label MAC address alias.
Fixes: 27b441cbaf ("ipq40xx: drop ESSEDMA + AR40xx DTS nodes")
Signed-off-by: Fabian Bläse <fabian@blaese.de>
Reviewed-by: Robert Marko <robimarko@gmail.com>
qca8k driver we are currently based of is rather out of date and is lacking
support for setting the ageing time or fast ageing so until we update the
driver lets just backport support for those from qca8k.
Signed-off-by: Robert Marko <robimarko@gmail.com>
The ZTE MF287 Pro is a LTE router used (exclusively?) by the network
operator "3". It is very similar to the MF287+, but the hardware layout
and partition layout have changed quite a bit.
Specifications
==============
SoC: IPQ4018
RAM: 256MiB
Flash: 8MiB SPI-NOR + 128MiB SPI-NAND
LAN: 4x GBit LAN
LTE: ZTE Cat12
WiFi: 802.11a/b/g/n/ac SoC-integrated
USB: 1x 2.0
MAC addresses
=============
LAN: from config + 2
WiFi 1: from config
WiFi 2: from config + 1
Installation
============
Option 1 - TFTP
---------------
TFTP installation using UART is preferred. Disassemble the device and
connect serial. Put the initramfs image as openwrt.bin to your TFTP server
and configure a static IP of 192.168.1.100. Load the initramfs image by
typing:
setenv serverip 192.168.1.100
setenv ipaddr 192.168.1.1
tftpboot 0x82000000 openwrt.bin
bootm 0x82000000
From this intiramfs boot you can take a backup of the currently installed
partitions as no vendor firmware is available for download:
ubiattach -m17
cat /dev/ubi0_0 > /tmp/ubi0_0
cat /dev/ubi0_1 > /tmp/ubi0_1
Copy the files /tmp/ubi0_0 and /tmp/ubi0_1 somewhere save.
Once booted, transfer the sysupgrade image and run sysupgrade. You might
have to delete the stock volumes first:
ubirmvol /dev/ubi0 -N ubi_rootfs
ubirmvol /dev/ubi0 -N kernel
Option 2 - From stock firmware
------------------------------
The installation from stock requires an exploit first. The exploit consists
of a backup file that forces the firmware to download telnetd via TFTP from
192.168.0.22 and run it. Once exploited, you can connect via telnet and
login as admin:admin.
The exploit will be available at the device wiki page.
Once inside the stock firmware, you can transfer the -factory.bin file to
/tmp by using "scp" from the stock frmware or "tftp".
ZTE has blocked writing to the NAND. Fortunately, it's easy to allow write
access - you need to read from one file in /proc. Once done, you need to
erase the UBI partition and flash OpenWrt. Before performing the operation,
make sure that mtd13 is the partition labelled "rootfs" by calling
"cat /proc/mtd".
Complete commands:
cd /tmp
tftp -g -r factory.bin 192.168.0.22
cat /proc/driver/sensor_id
flash_erase /dev/mtd17 0 0
dd if=/tmp/factory.bin of=/dev/mtdblock17 bs=131072
Afterwards, reboot your device and you should have a working OpenWrt
installation.
Restore Stock
=============
Option 1 - via UART
-------------------
Boot an OpenWrt initramfs image via TFTP as for the initial installation.
Transfer the two backed-up files to your box to /tmp.
Then, run the following commands - replace $kernel_length and $rootfs_size
by the size of ubi0_0 and ubi0_1 in bytes.
ubiattach -m 17
ubirmvol /dev/ubi0 -N kernel
ubirmvol /dev/ubi0 -N rootfs
ubirmvol /dev/ubi0 -N rootfs_data
ubimkvol /dev/ubi0 -N kernel -s $kernel_length
ubimkvol /dev/ubi0 -N ubi_rootfs -s $rootfs_size
ubiupdatevol /dev/ubi0_0 /tmp/ubi0_0
ubiupdatevol /dev/ubi0_1 /tmp/ubi0_1
Option 2 - from within OpenWrt
------------------------------
This option requires to flash an initramfs version first so that access
to the flash is possible. This can be achieved by sysupgrading to the
recovery.bin version and rebooting. Once rebooted, you are again in a
default OpenWrt installation, but no partition is mounted.
Follow the commands from Option 1 to flash back to stock.
LTE Modem
=========
The LTE modem is similar to other ZTE devices and controls some more LEDs
and battery management.
Configuring the connection using uqmi works properly, the modem
provides three serial ports and a QMI CDC ethernet interface.
Other Notes
===========
Contrary to the stock firmware, the USB port on the back can be used.
There is one GPIO Switch "Power button blocker" which, if enabled, does not
trigger a reset of the SoC if the modem reboots. If disabled, the SoC is
rebooted along with the modem. The modem can be rebooted via the exported
GPIO "modem-reset" in /sys/class/gpio.
Signed-off-by: Andreas Böhler <dev@aboehler.at>
DK01 and DK04 board support has been in a form of 2 patches that we have
been carrying for a long time.
Both of the patches contain weird changes, dont follow any DT syntax and I
honestly doubt they are even valid.
DK01 and DK04 also have not been converted to DSA even after a long time
and I doubt that anybody in the community even has these boards as they are
QCA reference boards that are not even obtainable anymore.
Since patches for these 2 boards have been just causing us pain when trying
to update the kernel to a new major release or even point releases lets
remove the support for these boards, and if there are users they can easily
be reinstated.
Signed-off-by: Robert Marko <robimarko@gmail.com>
Teltonika RUTX currently is the only device pulling in DK01 DTSI and thus
preventing removal of DK01 and DK04 support.
So, lets add the missing nodes from DK01 DTSI and use the SoC DTSI instead.
Signed-off-by: Robert Marko <robimarko@gmail.com>
Lets add a proper commit title and description to the SCM cold boot
patch so it applies with a git apply or git-am.
Signed-off-by: Robert Marko <robimarko@gmail.com>
SCM SDI disable support is pending upstream, so lets use that instead.
Since the board check needs to be split out, export it with a header so
it applies with git-am.
Signed-off-by: Robert Marko <robimarko@gmail.com>
It seems that the Meraki bootloader does not respect the kernel ARM booting
specification[1] that requires that address where DTB is located needs to
be 64-bit aligned and often places the DTB on a non 64-bit aligned address
and then kernel fails to find the DTB magic and fails to boot.
Even worse, there is no prints until early printk is enabled and then its
visible that kernel is trying to find the ATAG-s as DTB was not found or
is invalid.
Unifi 6 devices had the same issue and it can be solved by passing the
load adress as part of the FIT image.
It seems that the vendor was aware of the issue and is always relocating
the DTB to 0x89000000, so lets just do the same.
Now that booting is reliable, reenable default images for the Meraki MR33
and MR74 devices.
Reviewed-by: Lech Perczak lech.perczak@gmail.com
Signed-off-by: Robert Marko <robimarko@gmail.com>
ipq40xx was converted to DSA and swconfig is not being included at all in
the default packages so there is no need to drop it from device packages.
Signed-off-by: Robert Marko <robimarko@gmail.com>
MR33 and MR74 share pretty much everything in the image recipe, so lets
extract a common recipe to avoid duplication.
Signed-off-by: Robert Marko <robimarko@gmail.com>
new versions of the device have NAND with 8bit ECC
which was not yet supported before. This change removes
ECC restrictions.
Signed-off-by: Alexander Friese <af944580@googlemail.com>
Hardware
--------
CPU: Qualcomm IPQ4018
RAM: 256M
Flash: 16MB SPI-NOR (W25Q128)
128MB SPI-NAND (XTX)
WiFi: 2T2R (2GHz 802.11n ; 5 GHz 802.11ac)
ETH: 4x LAN ; 1x WAN (Gigabit)
CELL: Quectel RG501Q 3G/4G/5G
UART: Available on the goldfinger connector (Pinout silkscreened)
115200 8N1 3V3 - Only connect RX / TX / GND
Installation
------------
1. Enable SSH in the Teltonika UI
(System --> Administration --> Access Control)
2. Check from which partition set the device is currently running from.
$ cat /proc/boot_info/rootfs/primaryboot
In case this output reads 0, install a Software update from Teltonika
first. After upgrade completion, check this file now reads 1 before
continuing.
2. Transfer the OpenWrt factory image to the device using scp. Use the
same password (user root!) as used for the Web-UI.
$ scp -O openwrt-factory.bin root@192.168.1.1:/tmp
3. Connect to the device using ssh as the root user.
4. Install OpenWrt by writing the factory image to flash.
$ ubiformat /dev/mtd16 -y -f /tmp/openwrt-factory.bin
5. Instruct the bootloaer to boot from the first partition set.
$ echo 0 > /proc/boot_info/rootfs/primaryboot
$ cat /proc/boot_info/getbinary_bootconfig > /tmp/bootconfig.bin
$ cat /proc/boot_info/getbinary_bootconfig1 > /tmp/bootconfig1.bin
$ mtd write /tmp/bootconfig.bin /dev/mtd2
$ mtd write /tmp/bootconfig1.bin /dev/mtd3
6. Reboot the device.
$ reboot
Signed-off-by: David Bauer <mail@david-bauer.net>
The upstream board-2.bin file in the linux-firmware.git
repository for the QCA4019 contains a packed board-2.bin
for this device for both 2.4G and 5G wifis. This isn't
something that the ath10k driver supports.
Until this feature either gets implemented - which is
very unlikely -, or the upstream boardfile is mended
(both, the original submitter and ath10k-firmware
custodian have been notified). OpenWrt will go back
and use its own bespoke boardfile. This unfortunately
means that 2.4G and on some revisions the 5G WiFi is
not available in the initramfs image for this device.
Fixes: #12886
Reported-by: Christian Heuff <christian@heuff.at>
Debugged-by: Georgios Kourachanis <geo.kourachanis@gmail.com>
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
The ZTE MF287+ is a LTE router used (exclusively?) by the network operator
"3". The MF287 (i.e. non-plus aka 3Neo) is also supported (the only
difference is the LTE modem)
Specifications
==============
SoC: IPQ4018
RAM: 256MiB
Flash: 8MiB SPI-NOR + 128MiB SPI-NAND
LAN: 4x GBit LAN
LTE: ZTE Cat12 (MF287+) / ZTE Cat6 (MF287)
WiFi: 802.11a/b/g/n/ac SoC-integrated
MAC addresses
=============
LAN: from config + 2
WiFi 1: from config
WiFi 2: from config + 1
Installation
============
Option 1 - TFTP
---------------
TFTP installation using UART is preferred. Disassemble the device and
connect serial. Put the initramfs image as openwrt.bin to your TFTP server
and configure a static IP of 192.168.1.100. Load the initramfs image by
typing:
setenv serverip 192.168.1.100
setenv ipaddr 192.168.1.1
tftpboot 0x82000000 openwrt.bin
bootm 0x82000000
From this intiramfs boot you can take a backup of the currently installed
partitions as no vendor firmware is available for download:
ubiattach -m14
cat /dev/ubi0_0 > /tmp/ubi0_0
cat /dev/ubi0_1 > /tmp/ubi0_1
Copy the files /tmp/ubi0_0 and /tmp/ubi0_1 somewhere save.
Once booted, transfer the sysupgrade image and run sysupgrade. You might
have to delete the stock volumes first:
ubirmvol /dev/ubi0 -N ubi_rootfs
ubirmvol /dev/ubi0 -N kernel
Option 2 - From stock firmware
------------------------------
The installation from stock requires an exploit first. The exploit consists
of a backup file that forces the firmware to download telnetd via TFTP from
192.168.0.22 and run it. Once exploited, you can connect via telnet and
login as admin:admin.
The exploit will be available at the device wiki page.
Once inside the stock firmware, you can transfer the -factory.bin file to
/tmp by using "scp" from the stock frmware or "tftp".
ZTE has blocked writing to the NAND. Fortunately, it's easy to allow write
access - you need to read from one file in /proc. Once done, you need to
erase the UBI partition and flash OpenWrt. Before performing the operation,
make sure that mtd13 is the partition labelled "rootfs" by calling
"cat /proc/mtd".
Complete commands:
cd /tmp
tftp -g -r factory.bin 192.168.0.22
cat /proc/driver/sensor_id
flash_erase /dev/mtd13 0 0
dd if=/tmp/factory.bin of=/dev/mtdblock13 bs=131072
Afterwards, reboot your device and you should have a working OpenWrt
installation.
Restore Stock
=============
Option 1 - via UART
-------------------
Boot an OpenWrt initramfs image via TFTP as for the initial installation.
Transfer the two backed-up files to your box to /tmp.
Then, run the following commands - replace $kernel_length and $rootfs_size
by the size of ubi0_0 and ubi0_1 in bytes.
ubiattach -m 14
ubirmvol /dev/ubi0 -N kernel
ubirmvol /dev/ubi0 -N rootfs
ubirmvol /dev/ubi0 -N rootfs_data
ubimkvol /dev/ubi0 -N kernel -s $kernel_length
ubimkvol /dev/ubi0 -N ubi_rootfs -s $rootfs_size
ubiupdatevol /dev/ubi0_0 /tmp/ubi0_0
ubiupdatevol /dev/ubi0_1 /tmp/ubi0_1
Option 2 - from within OpenWrt
------------------------------
This option requires to flash an initramfs version first so that access
to the flash is possible. This can be achieved by sysupgrading to the
recovery.bin version and rebooting. Once rebooted, you are again in a
default OpenWrt installation, but no partition is mounted.
Follow the commands from Option 1 to flash back to stock.
LTE Modem
=========
The LTE modem is similar to other ZTE devices and controls some more LEDs
and battery management.
Configuring the connection using uqmi works properly, the modem
provides three serial ports and a QMI CDC ethernet interface.
Signed-off-by: Andreas Böhler <dev@aboehler.at>
Some ZTE devices require the gpio-restart driver to support restarting the
LTE modem along with OpenWrt
Signed-off-by: Andreas Böhler <dev@aboehler.at>
After migrating to kernel 5.15, upgrading causes the units to become
soft-bricked, hanging forever at the kernel startup.
Kernel size limitation of 4000000 bytes is suspected here, but this is
not fully confirmed.
Disable the images to protect users from inadvertent bricking of units,
because recovery of those is painful with Cisco's U-boot, until the root
cause is found and fixed.
Signed-off-by: Lech Perczak <lech.perczak@gmail.com>
Backport initial LEDs hw control support. Currently this is limited to
only rx/tx and link events for the netdev trigger but the API got
accepted and the additional modes are working on and will be backported
later.
Refresh every patch and add the additional config flag for QCA8K new
LEDs support.
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
Currently, e2600ac-c1 cannot be built as the kernel is larger than the defined KERNEL_SIZE,
however, there is no bootloader limit for the kernel size so remove KERNEL_SIZE completely.
Signed-off-by: 张 鹏 <sd20@qxwlan.com>
[ improve commit title, fix merge conflict ]
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
Convert E2600ac c2 to DSA and enable it.
Signed-off-by: 张 鹏 <sd20@qxwlan.com>
[ rename port to more generic name ]
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
Convert E2600ac c1 to DSA and enable it.
Signed-off-by: 张 鹏 <sd20@qxwlan.com>
[ rename port to more generic name ]
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
This removes unneeded kernel version switches from the targets after
kernel 5.10 has been dropped.
Signed-off-by: Aleksander Jan Bajkowski <olek2@wp.pl>
Kernel 5.15.111 includes backport of commit
("firmware: qcom_scm: Clear download bit during reboot") which is causing
reboot on ipq40xx to stop working, more precisely the board will hang after
reboot is called with:
root@OpenWrt:/# reboot
root@OpenWrt:/# [ 76.473541] device lan1 left promiscuous mode
[ 76.474204] br-lan: port 1(lan1) entered disabled state
[ 76.527975] device lan2 left promiscuous mode
[ 76.530301] br-lan: port 2(lan2) entered disabled state
[ 76.579376] device lan3 left promiscuous mode
[ 76.581698] br-lan: port 3(lan3) entered disabled state
[ 76.638434] device lan4 left promiscuous mode
[ 76.638777] br-lan: port 4(lan4) entered disabled state
[ 76.978489] qca8k-ipq4019 c000000.switch wan: Link is Down
[ 76.978883] device eth0 left promiscuous mode
[ 76.987077] ipqess-edma c080000.ethernet eth0: Link is Down
[
Format: Log Type - Time(microsec) - Message - Optional Info
Log Type: B - Since Boot(Power On Reset), D - Delta, S - Statistic
S - QC_IMAGE_VERSION_STRING=BOOT.BF.3.1.1-00123
S - IMAGE_VARIANT_STRING=DAABANAZA
S - OEM_IMAGE_VERSION_STRING=CRM
S - Boot Config, 0x00000021
S - Reset status Config, 0x00000010
S - Core 0 Frequency, 0 MHz
B - 261 - PBL, Start
B - 1339 - bootable_media_detect_entry, Start
B - 1679 - bootable_media_detect_success, Start
B - 1693 - elf_loader_entry, Start
B - 5076 - auth_hash_seg_entry, Start
B - 7223 - auth_hash_seg_exit, Start
B - 578349 - elf_segs_hash_verify_entry, Start
B - 696356 - PBL, End
B - 696380 - SBL1, Start
B - 787236 - pm_device_init, Start
D - 7 - pm_device_init, Delta
B - 788701 - boot_flash_init, Start
D - 52782 - boot_flash_init, Delta
B - 845625 - boot_config_data_table_init, Start
D - 3836 - boot_config_data_table_init, Delta - (419 Bytes)
B - 852841 - clock_init, Start
D - 7566 - clock_init, Delta
B - 864883 - CDT version:2,Platform ID:9,Major ID:0,Minor ID:0,Subtype:64
B - 868413 - sbl1_ddr_set_params, Start
B - 873402 - cpr_init, Start
D - 2 - cpr_init, Delta
B - 877842 - Pre_DDR_clock_init, Start
D - 4 - Pre_DDR_clock_init, Delta
D - 13234 - sbl1_ddr_set_params, Delta
B - 891155 - pm_driver_init, Start
D - 2 - pm_driver_init, Delta
B - 909105 - Image Load, Start
B - 1030210 - Boot error ocuured!. Error code: 303d
So, until a proper fix is found, lets revert the culprit patch to have
reboot working again.
Fixes: 228e0e1039 ("kernel: bump 5.15 to 5.15.111")
Signed-off-by: Robert Marko <robimarko@gmail.com>
The BDFs for the:
Aruba AP-365
Devolo Magic 2 WiFi next
Edgecore ECW5410
Edgecore OAP100
Extreme Networks WS-AP3915i
GL.iNet GL-A1300
GL.iNet GL-AP1300
GL.iNet GL-S1300
Linksys EA8300
Linksys WHW03v2
Nokia Wi4A AC400i
P&W R619AC
Pakedge WR-1
Qxwlan E2600AC C1
Sony NCP-HG100/Cellular
Teltonika RUTX10
ZTE MF18A
were upstreamed to the ath10k-firmware repository
and landed in linux-firmware.git.
Furthermore the BDFs for the:
8devices Habanero
8devices Jalapeno
Qxwlan E2600AC C2
have been updated.
Signed-off-by: Christian Lamparter <chunkeey@gmail.com>
Add patch commenting unused sdhci function, hopin this will be dropped
when the problem is actually found.
Fix compilation warning:
drivers/mmc/host/sdhci-msm.c:1781:13: error: 'sdhci_msm_set_clock' defined but not used [-Werror=unused-function]
1781 | static void sdhci_msm_set_clock(struct sdhci_host *host, unsigned int clock)
| ^~~~~~~~~~~~~~~~~~~
cc1: all warnings being treated as errors
Signed-off-by: Christian Marangi <ansuelsmth@gmail.com>
Upstream commit ("net: phylink: add generic validate implementation") was
backported, however PSGMII PHY mode patch for ipq40xx was not updated to
add PSGMII to phylink_get_linkmodes() so the following warning would be
printed during kernel compilation:
drivers/net/phy/phylink.c: In function 'phylink_get_linkmodes':
drivers/net/phy/phylink.c:360:9: error: enumeration value 'PHY_INTERFACE_MODE_PSGMII' not handled in switch [-Werror=switch]
360 | switch (interface) {
| ^~~~~~
Resolve the warning by adding the PSGMII mode to phylink_get_linkmodes().
Signed-off-by: Robert Marko <robimarko@gmail.com>
Kernel setting CONFIG_IO_URING supports high-performance I/O for file
access and servers, generally for more performant platforms, and adds
~45 KB to kernel sizes. The need for this on less "beefy" devices is
questionable, as is the size cost considering many platforms have kernel
size limits which require tricky repartitioning if outgrown. The size
cost is also large relative to the ~180 KB bump expected between major
OpenWRT kernel releases.
No OpenWrt packages have hard dependencies on this; samba4 and mariadb
can take advantage if available (+KERNEL_IO_URING:liburing) but
otherwise build and work fine.
Since CONFIG_IO_URING is already managed via the KERNEL_IO_URING setting
in Config-kernel.in (default Y), remove it from those target configs
which unconditionally enable it, and update the defaults to enable it
conditionally only on more powerful 64-bit x86 and arm devices. It may
still be manually enabled as needed for high-performance custom builds.
Signed-off-by: Tony Ambardar <itugrok@yahoo.com>